JP2016170086A - 液面レベル計測監視装置および液面レベル計測監視方法 - Google Patents

液面レベル計測監視装置および液面レベル計測監視方法 Download PDF

Info

Publication number
JP2016170086A
JP2016170086A JP2015050574A JP2015050574A JP2016170086A JP 2016170086 A JP2016170086 A JP 2016170086A JP 2015050574 A JP2015050574 A JP 2015050574A JP 2015050574 A JP2015050574 A JP 2015050574A JP 2016170086 A JP2016170086 A JP 2016170086A
Authority
JP
Japan
Prior art keywords
water level
liquid level
heater
switching circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015050574A
Other languages
English (en)
Other versions
JP6416022B2 (ja
Inventor
二郎 町田
Jiro Machida
二郎 町田
岩男 憲一
Kenichi Iwao
憲一 岩男
秋夫 加藤
Akio Kato
秋夫 加藤
洋介 林
Yosuke Hayashi
洋介 林
鈴木 健介
Kensuke Suzuki
健介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015050574A priority Critical patent/JP6416022B2/ja
Publication of JP2016170086A publication Critical patent/JP2016170086A/ja
Application granted granted Critical
Publication of JP6416022B2 publication Critical patent/JP6416022B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

【課題】急激な液位変化が生じる異常事態発生時においても、必要最低限度の計測精度で通常時よりも素早く液位レベルを把握可能な液面レベルの計測監視技術を提供する。
【解決手段】液面レベル計測監視装置10は、異なる高さに各々設定されるn個の水位温度検出要素11−1,…,11−nを備える水位温度検出部11と、ヒータ線11bの通電状態と熱電対11aで計測される温度変化とに基づき、各水位温度検出要素に対し、気中か液中かを判定する液面レベル判定部12とを具備し、さらに、各ヒータ線への供給電源13との各接続を独立して入切可能に構成される第1の切替回路と、第1の切替回路と供給電源との接続を入切可能に構成される第2の切替回路と、各ヒータ線と供給電源との接続を一括して入切可能に構成される第3の切替回路とを具備する。
【選択図】図1

Description

本発明の実施形態は、液面レベル計測監視装置および液面レベル計測監視方法に関するものである。
原子力発電所における従来の燃料プールの水位計測は、通常時には、通常の水位近傍での監視を行っているが、地震や津波などの天災による影響により、通常の水位から大きく乖離する場合が生じ得る。このような事態に備えた水位計の一例として、ヒートサーモ式の水位温度測定装置が提案されている。
一般に、ヒートサーモ式水位計を備える水位計測装置は、ヒータと熱電対を組み合せた検出器を備える構成となっており、個々の検出器の位置が気中にあるか否(水中)にあるかを、空気と水との熱伝達特性の相違に起因する温度上昇の違い等から判断している。水位を計測する場合には、各検出器を順次計測状態とすることによって、水面の存在する位置(検出器間)が特定される。
特開2013−040822号公報
ヒートサーモ式水位計を備える水位計測装置が燃料プールに設置される場合、ヒータおよび熱電対を1セットとした検出器が燃料プールの上端から使用済燃料の下端の高さ(位置)までを網羅するように所定の間隔に配設される。
水位計測装置は、例えば、地震や津波などの重大事故が発生し電源容量に制約がある状況下においても、原子炉の冷却系に必要な機器を停止させることなく稼働を継続できることが求められる。そのため、水位計測装置への供給電源は、重大事故が発生した場合に発生し得る、電源容量に制約がある環境を想定して、電源容量が必要最低限化されている。この電源容量の必要最低限化のため、水位計測装置では、例えば、検出器1セットずつ1分間ヒータで加熱し、順次計測を行う構成が採用されているのが一般的である。
また、燃料プールに設置される水位計測装置では、計測ポイントが20ポイント前後あるため、一通り計測を終えるまで、すなわち、計測の1周期は、それなりの時間を要する(約20分間)。従って、検出器の故障検知の観点から前記順次計測を行う方法でもプラントに異常が生じていない通常時には問題は生じない一方、プラントに何らかの異常が生じ、大規模な燃料プール水の漏洩などによる急激な水位変化を伴う異常事態が生じた場合には、前記順次計測を行う方法では対応できない。
もちろん、電源容量を大きくし同時に複数セットの検出器に通電すれば、前記順次計測を行う方法であっても、急激な水位変化を伴うような異常事態が生じた場合にも早急に液面レベルを特定できるであろうが、当該異常事態が生じた場合には電源容量に制約がある環境下にある可能性が極めて高く、電源容量を現状よりも大きくすることは可能な限り回避したい。
本発明の実施形態は、上述した事情に鑑みてなされたものであり、急激な液位変化が生じる異常事態発生時においても、必要最低限度の計測精度で通常時よりも素早く液位レベルを把握可能な液面レベル計測監視装置および液面レベル計測監視方法を提供することを目的とする。
本実施形態に係る液面レベル計測監視装置は、上述した課題を解決するため、熱電対とヒータ線とを有し、ぞれぞれ、異なる高さに設定される、複数であるn個(nは2以上の整数)の水位温度検出要素を備える水位温度検出部と、前記水位温度検出部を構成する前記ヒータ線の通電状態と前記熱電対で計測される温度変化とに基づいて、前記n個の水位温度検出要素の各々に対して、気中か液中かを判定する液面レベル判定部とを具備し、さらに、前記n個の水位温度検出要素の各ヒータ線と各ヒータ線への供給電源との各接続を独立して入と切とに切り替え可能に構成される第1の切替回路と、前記第1の切替回路と前記供給電源との接続を入と切とに切り替え可能に構成される第2の切替回路と、前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続を一括して入と切とに切り替え可能に構成される第3の切替回路と、を具備することを特徴とする。
また、本実施形態に係る液面レベル計測監視装置は、上述した課題を解決するため、熱電対とヒータ線とを有し、ぞれぞれ、異なる高さに設定される、複数であるn個(nは2以上の整数)の水位温度検出要素を備える水位温度検出部と、前記水位温度検出部を構成する前記ヒータ線の通電状態と前記熱電対で計測される温度変化とに基づいて、前記n個の水位温度検出要素の各々に対して、気中か液中かを判定する液面レベル判定部とを具備し、さらに、前記n個の水位温度検出要素の各ヒータ線と各ヒータ線への供給電源との各接続を独立して入と切とに切り替え可能に構成される第1の切替回路と、前記第1の切替回路と前記供給電源との接続を入と切とに切り替え可能に構成される第2の切替回路と、前記第1の切替回路の前記n個の水位温度検出要素の各ヒータ線と各ヒータ線への供給電源との各接続の入切状態を独立して制御するヒータ個別制御部と、を具備し、前記ヒータ個別制御部は、前記n個の水位温度検出要素の各ヒータ線が1個ずつ通電するように前記入切状態を制御する第1のモードと、前記n個の水位温度検出要素のうち、前記液面レベル判定部が気中にあると判定した水位温度検出要素のうち最も低い位置に配設される水位温度検出要素のヒータ線と、前記液面レベル判定部が水中にあると判定した水位温度検出要素のうち最も高い位置に配設される水位温度検出要素のヒータ線とを含む少なくとも2個の水位温度検出要素のヒータ線が通電するように前記入切状態を制御する第2のモードとを有し、前記第1のモードと前記第2のモードとを切替可能に構成されることを特徴とする。
本実施形態に係る液面レベル計測監視方法は、上述した課題を解決するため、熱電対とヒータ線とを有し、ぞれぞれ、異なる高さに設定される、複数であるn個(nは2以上の整数)の水位温度検出要素と、前記水位温度検出要素を構成する前記ヒータ線の通電状態と前記熱電対で計測される温度変化とに基づいて、前記n個の水位温度検出要素の各々に対して、気中か液中かを判定する液面レベル判定部と、前記n個の水位温度検出要素の各ヒータ線と各ヒータ線への供給電源との各接続を独立して入と切とに切り替え可能に構成される第1の切替回路と、前記第1の切替回路と前記供給電源との接続を入と切とに切り替え可能に構成される第2の切替回路と、前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続を一括して入と切とに切り替え可能に構成される第3の切替回路とを具備する液面レベル計測監視装置を用いる液面レベル計測監視方法であり、前記液面レベル判定部が、前記第1の切替回路と前記供給電源との接続を入とし、前記第1の切替回路内で、前記供給電源との接続を入とする前記n個の水位温度検出要素の各ヒータ線の1個を順次切り替えつつ残りのn−1個の水位温度検出要素の各ヒータ線と前記供給電源との接続を切とする一方、前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続を切とした状態で、前記第1の切替回路内で、前記供給電源との接続を入としているヒータ線の1個を有する前記水位温度検出要素の前記熱電対から得られる温度情報に基づき、当該水位温度検出要素が気中か液中かを判定するステップと、前記液面レベル判定部が、前記第1の切替回路と前記供給電源との接続を切とし、さらに、前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続が一括して入にした状態に切り替わった後、前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続を一括して入となった後に取得される前記n個の水位温度検出要素が有する熱電対から得られる温度情報に基づき、前記n個の水位温度検出要素の各々に対して、気中か液中かを判定するステップと、を具備することを特徴とする。
本発明の実施形態によれば、必要最低限度の計測精度で液面レベルをより迅速に計測することができ、急激な液位変化が生じた場合においても、当該液位変化を的確に把握することができる。
実施形態に係る液面レベル計測監視装置の構成を概略的に示した構成図。 実施形態に係る液面レベル計測監視装置が具備するヒータ電源供給部の構成を概略的に示した構成図。 実施形態に係る液面レベル計測監視装置における、通常時の水位温度検出要素の動作タイミングチャート。 実施形態に係る液面レベル計測監視装置における、緊急時の水位温度検出要素のタイミングチャート。 実施形態に係る液面レベル計測監視装置が具備する液面レベル判定部による、水位温度検出要素の気中/液中を判定する手法を説明する説明図。 実施形態に係る液面レベル計測監視装置が具備するヒータ電源供給部の構成例(第1の構成例)の概略図。 実施形態に係る液面レベル計測監視装置が具備するヒータ電源供給部の構成例(第2の構成例)の概略図。 実施形態に係る液面レベル計測監視方法の一例において、水位温度検出要素の気中/液中判定の手法を説明する説明図であり、(A)が基準水位温度検出部のヒータ線の通電/非通電のタイミングを示す説明図、(B)が基準水位温度検出部の温度推移を示す説明図、(C)が検出要素(気中)のヒータ線の通電/非通電のタイミングを示す説明図、(D)が検出要素(気中)の温度推移を示す説明図、(E)が検出要素(液中)のヒータ線の通電/非通電のタイミングを示す説明図、(F)が検出要素(液中)の温度推移を示す説明図。 実施形態に係る液面レベル計測監視方法の一例において、水位温度検出要素の気中/液中判定の手法を説明する説明図であり、(A)が検出要素(液中→気中)のヒータ線の通電/非通電のタイミングを示す説明図、(B)が検出要素(液中→気中)の温度推移を示す説明図、(C)が検出要素(気中→液中)のヒータ線の通電/非通電のタイミングを示す説明図、(D)が検出要素(気中→液中)の温度推移を示す説明図。
以下、本発明の実施形態に係る液面レベル計測監視装置および液面レベル計測監視方法について、図面を参照して説明する。なお、液面レベルの計測または監視の一例として、以下の説明では、原子力発電所内の燃料プール1内の水位(液面レベル)を計測および監視する場合の例について説明する。
図1は、実施形態に係る液面レベル計測監視装置の一例である液面レベル計測監視装置10の構成を概略的に示す構成図である。また、図2は液面レベル計測監視装置10が具備するヒータ電源供給部14の構成を概略的に示した構成図である。
液面レベル計測監視装置10は、例えば、水位温度検出部11と、液面レベル判定部12と、ヒータ電源(直流電源)13の供給の仕方(例えば、個別給電か一括給電か)を切り替えるヒータ電源供給部14と、ヒータ制御部15と、切替入力部16と、超音波レベル計17からの計測結果を受け取る液位計測部18と、基準水位温度検出部19と、警報発報部21と、記録部22とを具備する。
水位温度検出部11は、燃料プール1内の水位(液面レベル)および温度を検出可能な複数個(ここではn個とする。但し、nは2以上の整数)の水位温度検出要素11−1,…,11−nを備える水位および温度の検出手段である。各水位温度検出要素11−1,…,11−nは、熱電対11aとヒータ線11bとを1セット有しており、例えば、それぞれ、異なる高さに設置される。
各水位温度検出要素11−1,…,11−nの出力、すなわち、各水位温度検出要素11−1,…,11−nが有する熱電対11aの出力は、それぞれ、液面レベル判定部12へ入力される。
液面レベル判定部12は、受け取る各水位温度検出要素11−1,…,11−nの出力と各水位温度検出要素11−1,…,11−nのヒータ線11bの通電状態とに基づいて、n個の水位温度検出要素11−1,…,11−nが気中にあるか液中にあるかを判定する機能と、少なくとも記録部22へ送るまでの間、n個の水位温度検出要素11−1,…,11−nについての判定結果を保持する機能とを有する。
水位温度検出要素11−1,…,11−nのヒータ線11bの通電状態は、ヒータ電源供給部14内の接点の入切情報に基づいて判断される。なお、ヒータ電源供給部14内の接点の入切情報は、ヒータ制御部15から与えられる。
液面レベル判定部12は、n個の水位温度検出要素11−1,…,11−nが気中にあるか液中にあるかを判定すると、当該判定結果を警報発報部21と記録部22へ送る。なお、液面レベル判定部12は、判定結果を警報発報部21と記録部22へ送った後、直ちに保持していた判定結果を消去する必要はなく、その後、一定時間当該判定結果を保持していてもよい。
ヒータ電源供給部14は、直流電源であるヒータ電源13の2ライン(PラインとNライン)に水位温度検出部11および基準水位温度検出部19が接続されている。また、ヒータ電源供給部14は、ヒータ制御部15と接続されている。ヒータ電源供給部14は、ヒータ制御部15から与えられる切替指令に基づき、ヒータ電源13の供給の仕方、すなわち、それぞれ接続される水位温度検出部11のn個のヒータおよび基準水位温度検出部19のヒータへの給電方式(例えば、個別給電か一括給電か)を切り替える。
ヒータ電源供給部14は、例えば、切替回路25,26,27,28(図2)と、水位温度検出要素11−1,…,11−nへの電流を許容値以下に制限する電流制限回路29(図2)とを備えており、ヒータ制御部15から与えられる切替回路25〜28のオンオフ(接点の短絡または開放)の切替指令に基づいて、切替回路25〜28のオンオフを切り替える。
切替回路25は、水位温度検出要素11−1,…,11−nと対応するn個のオンオフ(短絡または開放)可能な接点を有しており、これらn個の接点を入り(短絡)切り(開放)することで、ヒータ電源13の供給先を個別に(水位温度検出要素11−1,…,11−n単位で)切り替える。
切替回路26は、切替回路25と供給電源13との接続をオンオフ可能、すなわち、「入」(短絡)または「切」(開放)に切替可能な接点を有し、当該接点をオンオフすることで、切替回路25と供給電源13との接続状態を切り替える。
切替回路26が接点を「入」としている場合には、ヒータ電源13と切替回路25とが接続され、切替回路25内のn個の接点の入切状態に応じて水位温度検出要素11−1,…,11−nが個別にヒータ電源13と接続される。一方、切替回路26が接点を「切」としている場合には、切替回路25がヒータ電源13から切り離される(電源供給されない)。
切替回路27は、電流制限回路29を介して接続される水位温度検出要素11−1,…,11−nとヒータ電源13と接続をオンオフ可能、すなわち、入(短絡)または「切」(開放)に切替可能な接点を有し、当該接点をオンオフすることで、水位温度検出要素11−1,…,11−nとヒータ電源13との接続状態を切り替える。
切替回路27が接点を「入」としている場合には、各水位温度検出要素11−1,…,11−nが一括してヒータ電源13と接続される(電源供給を受ける)一方、切替回路27が接点を「切」としている場合には、各水位温度検出要素11−1,…,11−nが一括してヒータ電源13から切り離される(電源供給されない)。
なお、切替回路25〜27に対して、装置保護等の観点から、接点の入切状態の禁止条件を回避するインターロック機構を設けてもよい。例えば、切替回路25内の何れかの接点と切替回路27の接点とが同時に「入」とならないように、切替回路25内の全ての接点が「切」とならないと切替回路27の接点が「入」に切り替わらないような動作制限をかけるインターロック機構を設けることができる。
また、切替回路26および切替回路27の各接点が同時に「切」および「入」とならないように、切替回路26の接点が「入」の場合には切替回路27の接点が「切」に切り替わる一方、切替回路26の接点が「切」の場合には切替回路27の接点が「入」に切り替わるように、一方(切替回路26)の接点のオンオフに他方(切替回路27)の接点のオンオフが連動する1個の切替回路を構成してもよい。
切替回路28は、基準水位温度検出部(基準水位温度検出要素)19とヒータ電源13との接続を「入」(短絡)または「切」(開放)に切り替えるための構成である。切替回路28が接点を「入」としている場合には、基準水位温度検出部(基準水位温度検出要素)19とヒータ電源13とが接続される(電源供給を受ける)一方、切替回路28が接点を「切」としている場合には、基準水位温度検出部(基準水位温度検出要素)19はヒータ電源13から切り離される(電源供給されない)。
電流制限回路29は、水位温度検出要素11−1,…,11−nとヒータ電源13と接続が一括して「入」になる場合に、複数ヒータの起動電流が外部電源としてのヒータ電源13やヒューズ等の回路素子に影響を与えないように電流を制限する役割を担う。
ヒータ制御部15は、ヒータ電源供給部14が備える切替回路25,26,27,28に対して接点のオンオフ(短絡または開放)の情報と切替入力部16のモード選択の情報を取得する機能と、ヒータ電源供給部14が備える切替回路25,26,27,28に対してオンオフ(短絡または開放)の切替指令を与える機能とを有する。
ヒータ制御部15は、切替回路25,26,27,28内の接点のオンオフ(短絡または開放)の情報と切替入力部16のモード選択の情報とを監視すると共に、通常の計測時(以下、単に「通常時」と称する。)であるか、異常事態が生じた場合等の迅速な計測が要求される緊急の計測時(以下、単に「緊急時」と称する。)であるかに応じて、ヒータ線11bへの電源供給の仕方を切り替える。
すなわち、ヒータ制御部15は、通常時の計測モードと緊急時の計測モードとを有し、当該計測モードの何れが選択されているかに応じて、切替回路25,26,27,28に対して接点のオンオフ(短絡または開放)の切替指令を生成して与える。ヒータ制御部15は、切替回路25,26,27,28に対して接点のオンオフ(短絡または開放)の切替指令を与えることで、水位検出部11(より詳細には、各水位温度検出要素11−1,…,11−nが有するヒータ線11b)および基準水位温度検出部19への電源供給を制御する。
例えば、通常時のように迅速な計測が要求されない状況下では、多少時間をかけても精度良く計測したいのが一般的である。このように、多少時間をかけても精度良く計測したい場合には、水位温度検出要素11−1,…,11−nがそれぞれ有するヒータ線11bとの接点を順次オンオフ(短絡または開放)して接続を切り替えるように制御して1個ずつ(個別に)電源供給する。
一方、緊急時(必要最低限度の計測精度でなるべく短時間で計測したい場合)には、水位温度検出要素11−1,…,11−nがそれぞれ有するヒータ線11bとヒータ電源13との間を一括して接続するように、切替回路27を「入」(短絡)させるように制御して各ヒータ線11bに一括して電源供給する。
ここで、緊急時に該当する場合の例としては、燃料プール1内の水位(液面レベル)を計測および監視する場合、例えば、大規模な漏水が生じている場合や、燃料プール1内に水を短時間で供給する場合等がある。
また、ヒータ制御部15は、切替回路25,26,27,28に対してオンオフ(短絡または開放)の切替指令を、各水位温度検出要素11−1,…,11−nのヒータ線11bへどの様に電源供給(給電)しているかを示すヒータ制御情報として、液面レベル判定部12へ与える。
なお、図1に例示されるヒータ制御部15は、水位検出部11への電源供給を制御する機能と、基準水位温度検出部19への電源供給を制御する機能とを有している一つの構成要素として表されているが、ヒータ制御部15は、例えば、水位検出部11への電源供給を制御する機能を有する構成要素と、基準水位温度検出部19への電源供給を制御する機能とを有する構成要素とを備える等の複数の構成要素を備えていてもよい。
切替入力部16は、各水位温度検出要素11−1,…,11−nの出力、すなわち、各水位温度検出要素11−1,…,11−nが有するヒータ線11bへの電源供給を個別供給とするか、一括供給とするかの入力を受け付ける機能と、ヒータ電源供給部14内の接点の一部または全部を手動で切り替える(手動モード)か自動で切り替える(自動モード)かの入力を受け付ける機能と、受け付けた内容をヒータ制御部15へ与える機能とを有する。
切替入力部16の手動モードは、単一のモードとは限らず複数のモードにすることもできる。例えば、手動での切り替えを許可する接点数を変えることで、各水位温度検出要素11−1,…,11−nが有するヒータ線11bへの電源供給を個別供給とするか一括供給とするかの手動切替を可能とするモードと、水位温度検出要素11−1,…,11−nが有するヒータ線11bへの電源供給の手動切替を可能とするモードとを併存させることもできる。
超音波レベル計17は、超音波を利用した非接触方式の距離測定装置であり、設置位置から水面WLまでの距離を計測する。なお、超音波レベル計17には、計測範囲があるため、水面WLが計測範囲を超えている場合、すなわち、燃料プール1内の水位(液位)が計測可能な下限水位Lを下回っていると計測できない場合がある。このような水面WLまでの距離が計測範囲を超えていて水位を計測できない場合、超音波レベル計17は、計測結果として、水面WLまでの距離が計測範囲を超えている旨を示す情報を液位計測部18へ出力する。
液位計測部18は、超音波レベル計17の計測結果を受け取り、受け取った超音波レベル計17の計測結果と、予め確認されている燃料プール1の底面を基準とした超音波レベル計17の設置高さとを用いて水位(水面WLの底面からの高さ)を計算する。
また、液位計測部18は、超音波レベル計17から受け取る結果が、水面WLまでの距離が計測範囲を超えている旨を示す結果であった場合、水面WLが計測範囲を逸脱していることを示す検知信号をヒータ制御部15へ送る。すなわち、液位計測部18は、水面WLが超音波レベル計17の計測範囲を逸脱しているか否かを検知する手段としても機能する。
基準水位温度検出部19は、常に気中となる位置に配設されており、温度がヒータ電源供給部14およびヒータ制御部15によってヒータ線11bへの通電をオンオフすることによって所定範囲内に維持されている。また基準水位温度検出部19は、少なくとも1個の水位温度検出要素(図示せず)を有する水位および温度の検出手段であり、機能的には水位温度検出部11と同様である。
警報発報部21は、液面レベル判定部12の判定結果に基づく水位が予め設定された警報域に入っている場合に、燃料プール1内の水位が警報域に入っていることを示す警報を発報する。また、警報発報部21は、超音波レベル計17から水面WLまでの距離が超音波レベル計17の計測範囲を超えている場合にその旨を示す警報を発報してもよい。
記録部22は、データの読み書き(リード/ライト)可能な領域を有しており、当該領域に、液面レベル判定部12から与えられる液面レベル判定部12の判定結果が書き込まれる。また、液面レベル判定部12からデータ読出要求があった場合には、記録部22から当該データ読出要求に応じたデータが読み出される。
なお、上述した液面レベル計測監視装置10は、水位温度検出部11と、液面レベル判定部12と、ヒータ電源供給部14と、ヒータ制御部15と、切替入力部16と、液位計測部18と、基準水位温度検出部19と、警報発報部21と、記録部22とを具備する一例であるが、ヒータ電源供給部14の切替回路28および電流制限回路29、ヒータ制御部15、切替入力部16、液位計測部18、基準水位温度検出部19、警報発報部21、および記録部22については、必ずしも具備している必要はない。
例えば、水位温度検出部11と、液面レベル判定部12と、(切替回路25,26,27と電流制限回路29とを備える)ヒータ電源供給部14と、ヒータ制御部15とを具備する液面レベル計測監視装置10を構成したり、水位温度検出部11と、液面レベル判定部12と、切替回路25,27とを具備する液面レベル計測監視装置10を構成したりしてもよい。
また、図1に例示される液面レベル計測監視装置10において、ヒータ電源13は水位温度検出部11と基準水位温度検出部19とで共用されているが、水位温度検出部11へ供給する電源と、基準水位温度検出部19へ供給する電源とを別々に有していてもよい。
さらに、ヒータ電源供給部14についても、水位温度検出部11へ供給する電源を制御する構成要素(切替回路25,26,27)と、基準水位温度検出部19へ供給する電源を制御する構成要素(切替回路28)とを、それぞれ独立したヒータ電源供給部として構成してもよい。
次に、本発明の実施形態に係る液面レベル計測監視方法の一例として、液面レベル計測監視装置10を用いた液面レベル計測監視手順(第1の液面レベル計測監視手順〜第5の液面レベル計測監視手順)について説明する。
[第1の液面レベル計測監視手順]
第1の液面レベル計測監視手順は、被計測監視対象である液面レベルの計測を行うための処理手順であり、液面レベル計測監視装置10が計測開始要求を受け付けると開始される。
第1の液面レベル計測監視手順は、例えば、液面レベル判定部12が、ヒータ線11bへ一括で給電するか個別に給電するかに応じて切替回路25,26の接点の入切状態が切り替わっている状態で、熱電対11aから得られる温度情報とヒータ線11bへの通電状態とに基づいて各水位温度検出要素11−1,…,11−nが気中にあるか液中にあるかを判定するステップを具備する。ヒータ線11bへ一括で給電するか個別に給電するかは、通常時か否(緊急時)かによって異なる。
図3および図4は、液面レベル計測監視装置10における、通常時(図3)および緊急時(図4)の水位温度検出要素11−1,…,11−n(より詳細にはヒータ線11b)のタイミングチャートである。なお、図3および図4に示される「#n」は、水位温度検出要素11−1,…,11−nが有するヒータ線11bを表している。
通常時(図3)においては、ヒータ線11bが順番に1個ずつ(例えば、#1から#nまで昇順に)通電し、順次加熱される。ヒータ線11bへの通電時間は、少なくともヒータ線11bを有する水位温度検出要素11−1,…,11−nが気中に在るか液中に在るかを精度良く判定する(計測する)のに十分な時間であり、例えば1分程度である。
一方、緊急時(図4)においては、n個のヒータ線11bが一括して通電し、一括して加熱される。但し、ヒータ電源13は同一のものを使用するため、電源容量の関係から各ヒータ線11bを流れる電流は通常時(個別給電)の場合よりも小さくなる。
液面レベル判定部12は、上述したようなタイミングでn個のヒータ線11bが通電して加熱された熱電対11aから得られる温度情報とヒータ線11bへの通電状態とに基づきn個の水位温度検出要素11−1,…,11−nに対して気中にあるか液中にあるかを判定する。
図5は、液面レベル判定部12(図1)による、水位温度検出要素11−1,…,11−nが気中に在るか液中に在るかを判定する手法を説明する説明図(横軸をヒータ線11bの通電時間、縦軸を温度上昇率とした、熱電対11aの出力に基づく温度推移を例示したグラフ)である。
図5に例示されるように、ヒータ線11bが通電した(ヒータが起動)後、当該ヒータ線11bを有する水位温度検出要素11−1,…,11−nの温度は上昇することになるが、その上昇の度合いは、周囲の環境が気中であるか液中であるかによって異なる。これは、気中と液中とでは熱伝導率が相違するためで、当該相違に起因して水位温度検出要素11−1,…,11−nは、時間の経過とともに高温側に位置するXグループおよび低温側に位置するYグループの2グループに分かれる。
液面レベル判定部12は、図5に例示される温度情報が得られた場合、当該温度情報に基づき、例えば、通常時(個別給電)においては、所定温度(例えば、図5に例示される温度上昇率T)以上であれば気中と判定し、所定温度未満であれば液中と判定する、または、統計的手法(仮設検定)を用いて統計的に有意な2グループ(Xグループ、Yグループ)に分類し、高温側に位置する(温度変化が急な)Xグループを気中と判定し、低温側に位置する(温度変化が緩やかな)Yグループを液中と判定する等の手法によって、n個の水位温度検出要素11−1,…,11−nが気中に在るか液中に在るかを判定する。
また、緊急時(一括給電)においては、ヒータ電源13の電源容量の関係から各ヒータ線11bを流れる電流は通常時(個別給電)の場合よりも小さくなるため、温度閾値を用いた判定ではなく、例えば、統計的手法による統計的に有意な2グループ(Xグループ、Yグループ)に分類し、高温側に位置する(温度変化が急な)Xグループを気中と判定し、低温側に位置する(温度変化が緩やかな)Yグループを液中と判定する手法を優先的に採用する。
なお、通常時および緊急時の何れにおいても、2グループに分かれる点は共通するが、緊急時(一括給電)の場合には、ヒータ電源13の電源容量の関係から各ヒータ線11bを流れる電流は通常時(個別給電)の場合よりも小さくなるため、Xグループに属するかYグループに属するかの判定精度は通常時(個別給電)の場合よりも低下するものの、一度にn個の水位温度検出要素11−1,…,11−nについて気中に在るか液中に在るかの判定ができるため、通常時(個別給電)の場合よりも素早くn個の水位温度検出要素11−1,…,11−nについて気中に在るか液中に在るかを判定することができる。
また、緊急時(一括給電)の場合、XグループとYグループとに分かれるまでに時間がかかる場合もあるため、水位温度検出要素11−1,…,11−nが気中に在る場合(Xグループに相当)と液中に在る場合(Yグループに相当)とでヒータ線11bへの通電開始時から所定時間までの温度上昇率を記録部22に記録しておき、記録しておいたデータが示す温度上昇率と比べることで、n個の水位温度検出要素11−1,…,11−nの各々をXグループとYグループとに仕分けるようにしても良い。
第1の液面レベル計測監視手順によれば、通常時と緊急時とで計測の仕方を切り替えることができ、通常時には計測精度を重視して液面レベルを計測する一方、緊急時には計測速度を重視して通常時よりも迅速に必要最低限度の計測精度で液面レベルを計測することができる。従って、第1の液面レベル計測監視手順によれば、急激な液位変化が生じた場合においても、当該液位変化を的確に把握することができる。
また、第1の液面レベル計測監視手順によれば、通常時においても緊急時においても共通の電源を使用するため、電源容量を従来よりも大きくすることなく、電源容量に制約がある環境下においても従来同様に使用することができる。
[第2の液面レベル計測監視手順]
第2の液面レベル計測監視手順は、第1の液面レベル計測監視手順と同様に、被計測監視対象である液面レベルの計測を行うための処理手順であり、第1の液面レベル計測監視手順に対して、超音波レベル計17の計測結果に基づいて通常時と緊急時とを切り替えるステップをさらに具備する点と、通常時の計測を超音波レベル計17で計測される結果を優先する点とで相違するが、その他の点では実質的に相違しない。そこで、第2の液面レベル計測監視手順の説明では、超音波レベル計17の計測結果に基づく通常時と緊急時とを切り替えるステップを中心に説明し、第1の液面レベル計測監視手順と重複する説明を省略する。
第2の液面レベル計測監視手順は、計測が開始されると、液位計測部18が超音波レベル計17から受け取る計測結果が具体的な距離を示すデータである場合(水面WLが超音波レベル計17の計測範囲内の場合)には、通常時として計測を行う。通常時においては、超音波レベル計17から受け取る計測結果に基づき、水位(水面WLの底面からの高さ)が得られる。第2の液面レベル計測監視手順では、通常時は、液位計測部18が得る水位を液面レベルの計測結果として出力する。
一方、液位計測部18が超音波レベル計17から受け取る計測結果が超音波レベル計17の計測範囲を超えている旨を示す情報である場合、緊急時として計測を行う。緊急時においては、ヒータ制御部15が液位計測部18から与えられる水面WLが計測範囲を逸脱していることを示す検知信号に基づきヒータ電源供給部14へ接点の切替指令を与えて、n個の水位温度検出要素11−1,…,11−nが有するヒータ線11bを一括して通電させる。その後の処理内容は、第1の液面レベル計測監視手順と同様である。
第2の液面レベル計測監視手順によれば、超音波レベル計17で計測される結果に基づき、緊急時への切り替えが必要か否かの判断することで、通常時から緊急時への切り替えが必要か否かの判断が従来よりも容易になる。
また、第2の液面レベル計測監視手順によれば、超音波レベル計17で計測される結果に基づき、切替回路25,26,27が有する接点のオンオフ(短絡または開放)を行うことで通常時と緊急時とを切り替えるステップを具備するため、例えば、超音波レベル計17で計測される結果に基づいて切替回路25,26,27が有する接点のオンオフ(短絡または開放)切替指令を生成して切替回路25,26,27へ出力することで、ヒータ制御部15による通常時と緊急時との自動切替が可能になる。
第2の液面レベル計測監視手順では、通常時の計測を超音波レベル計17で計測される結果を優先することで、従来よりも通常時の計測速度を向上させる(高速化)することができる。
なお、第2の液面レベル計測監視手順において、通常時に第1の液面レベル計測監視手順と同様に液面レベルを判定するステップを並行して行うこともできるが、省略することも可能である。
また、第2の液面レベル計測監視手順は、液面レベル計測監視装置10を液面レベル判定部12が超音波レベル計17で計測される結果を取得するように構成しておき、液面レベル判定部12が超音波レベル計17で計測される結果と液面レベル判定部12が判定した液面レベルの位置とを比べた結果、両者が示す液面レベルの位置が著しく相違する場合には、液面レベル判定部12が警報発報部21へ警報発報指令を与える、または液面レベル判定部12による両者の比較結果を受け取り、当該比較結果基づいて警報発報部21が警報を発報するステップをさらに具備してもよい。
[第3の液面レベル計測監視手順]
第3の液面レベル計測監視手順は、第1の液面レベル計測監視手順と同様に、被計測監視対象である液面レベルの計測を行うための処理手順であり、第1の液面レベル計測監視手順に対して、n個の水位温度検出要素11−1,…,11−nについて気中に在るか液中に在るかを判定する際に、基準水位温度検出部19から得られる熱電対11aの出力を基準にする点で相違するが、その他の点では実質的に相違しない。そこで、第3の液面レベル計測監視手順の説明では、n個の水位温度検出要素11−1,…,11−nについて気中に在るか液中に在るかを判定するステップを中心に説明し、第1の液面レベル計測監視手順と重複する説明を省略する。
第3の液面レベル計測監視手順では、計測が開始されると、液面レベル判定部12が、水位温度検出部11(水位温度検出要素11−1,…,11−n)および基準水位温度検出部19が有する熱電対11aから得られる温度情報に基づいて、n個の水位温度検出要素11−1,…,11−nが気中に在るか液中に在るかを判定する。
第3の液面レベル計測監視手順では、基準水位温度検出部19が、常に気中に在り、温度が設定された所定範囲内に維持されている点を考慮して、基準水位温度検出部19の温度変化を気中での温度変化の基準とする。
つまり、第3の液面レベル計測監視手順では、液面レベル判定部12が、基準水位温度検出部19の温度変化と同様の温度変化を示しているか否かを判定した結果、基準水位温度検出部19の温度変化と同様の温度変化を示している場合には気中、否の場合には液中と判定する。基準水位温度検出部19の温度変化と同様の温度変化を示しているか否かについては、例えば、通電中の単位時間当たりの温度上昇が設定した範囲内に収まっているか否か等に基づいて判定する。
第3の液面レベル計測監視手順によれば、常に気中に在る基準水位温度検出部19の温度変化の情報を基準とすることで、基準とする温度変化の傾向からn個の水位温度検出要素11−1,…,11−nが有する熱電対11aからの出力に基づく温度が、気中に在る側のグループ(図5に例示されるXグループに相当)と液中に在る側のグループ(図5に例示されるYグループに相当)とに仕分けることが可能となるタイミングよりも早期のタイミングで気中に在るか液中に在るかを判定することができる。
なお、基準水位温度検出部19の温度変化の情報は、図1に例示される液面レベル計測監視装置10では、ヒータ線11bへの供給電流を増減可能な構成ではない(供給電流は1通りである)ため、個別給電時(通常時)または一括給電時(緊急時)における温度変化となるが、後述する図6,7に例示される液面レベル計測監視装置10Aを適用すれば、ヒータ線を流れる電流の大きさを変えることができる。従って、個別給電時(通常時)および一括給電時(緊急時)の両方の場合における基準水位温度検出部の温度変化の情報を得ることができ、給電時(通常時)および一括給電時(緊急時)の何れの場合においても基準水位温度検出部の温度変化の情報を基準とした、各水位温度検出要素の気中/液中判定が可能となる。
図6および図7は、実施形態に係る液面レベル計測監視装置の一例である液面レベル計測監視装置10Aが具備するヒータ電源供給部14Aの構成例の概略図である。
図6および図7に例示される液面レベル計測監視装置10Aは、液面レベル計測監視装置10に対して、ヒータ電源供給部14の代わりにヒータ電源供給部14Aを具備する点で相違するが、その他の点は実質的に相違しないため、図6および図7では、ヒータ電源供給部14A以外の図示を省略し、液面レベル計測監視装置10(図1)と重複する説明を省略する。なお、図7については、図を簡略化する観点から、ヒータ電源供給部14Aの一部構成(切替回路25,26,27および電流制限回路29)についても図示を省略している。
図6に例示されるヒータ電源供給部14Aは、切替回路28の代わりに、切替回路28に相当する、二つのスイッチ31a,31bを有する切替部31に加え、切替部31と基準水位温度検出部19との間に、基準水位温度検出部19と並列に接続される抵抗素子(抵抗値を可変できるタイプを含む)32を有する電路(枝)と、当該電路を開閉するスイッチ33とをさらに設けた切替回路28Aを備える。
切替回路28Aを備える液面レベル計測監視装置10Aを適用した場合、ヒータ電源13と基準水位温度検出部19との電気的な接続を、スイッチ33を「切」(開放)とする場合と、スイッチ33を「入」(短絡)とする場合とに切り替えることができ、基準水位温度検出部19内のヒータ線(図6において省略)を流れる電流の大きさを少なくとも2通りに変化させることができる。
従って、変化させる電流の大きさを、個別給電時(通常時)および一括給電時(緊急時)にヒータ線11bに通電させる電流の大きさと対応させれば、個別給電時(通常時)および一括給電時(緊急時)の両方の場合における基準水位温度検出部の温度変化の情報を取得することができるので、給電時(通常時)および一括給電時(緊急時)の何れの場合においても基準水位温度検出部の温度変化の情報を基準とした、各水位温度検出要素の気中/液中判定が可能となる。
なお、切替回路28A(図6)は一例であり、必ずしも図6に例示される構成に限定されるものではない。他の構成によっても、切替回路28Aと同様の機能を提供できる。例えば、図6に例示されるヒータ電源供給部14Aの代わりに、切替回路28Aと回路的には等価な切替回路28B(図7)を備えるヒータ電源供給部14A(図7)等を適用することもできる。
切替回路28B(図7)は、接点35a1を短絡させる第1のオン状態と、接点35a2を短絡させる第2のオン状態と、両接点35a1,35a2とも短絡させない(開放させる)オフ状態とを切替可能なスイッチ35aと、接点35b1を短絡させる第1のオン状態と、接点35b2を短絡させる第2のオン状態と、両接点35b1,35b2とも短絡させない(開放させる)オフ状態とを切替可能なスイッチ35bとを有する切替部35と、接点35a2と接点35b2との間に電気的に接続される抵抗素子32とを備える。
切替回路28Bにおいて、切替部35(スイッチ35a,35b)の第1のオン状態は、切替回路28A(図6)において、スイッチ31a,31bを「入」(短絡)、スイッチ33を「切」(開放)とする場合に対応する。また、第2のオン状態は、切替回路28Aにおいて、スイッチ31a,31bを「入」(短絡)、スイッチ33を「入」(短絡)とする場合に対応する。さらに、オフ状態は、切替回路28Aにおいて、スイッチ31a,31b,33を全て「切」(開放)とする場合に対応する。
[第4の液面レベル計測監視手順]
第4の液面レベル計測監視手順は、第1の液面レベル計測監視手順と同様に、被計測監視対象である液面レベルの計測を行うための処理手順であり、第3の液面レベル計測監視手順に対して、通常時の計測を多周期に亘って行い、液面レベル判定部12が、今回計測時に取得された熱電対11aから得られる温度変化の範囲と前回計測時に取得された熱電対11aから得られる温度変化の範囲とを比べて液面レベルの変動(水位変動)の有無を判定するステップをさらに具備する点で相違するが、その他の点では実質的に相違しない。そこで、第4の液面レベル計測監視手順の説明では、液面レベルの変動(水位変動)の有無を判定するステップを中心に説明し、第3の液面レベル計測監視手順と重複する説明を省略する。
図8および図9は、第4の液面レベル計測監視手順における、水位温度検出要素11−1,…,11−nの気中/液中判定の手法を説明する説明図である。
図8(図8(A)〜図8(F))に関して、より詳細には、図8(A)が基準水位温度検出部19(図1)のヒータ線の通電(ON:オン)と非通電(OFF:オフ)とのタイミングを示す説明図(タイミングチャート)、図8(B)が基準水位温度検出部19の温度推移を示す説明図、図8(C)が気中に在る水位温度検出要素(図8(C)および図8(D)において「検出要素(気中)」)のヒータ線の通電(ON:オン)と非通電(OFF:オフ)とのタイミングを示す説明図(タイミングチャート)、図8(D)が気中に在る水位温度検出要素の温度推移を示す説明図、図8(E)が液中に在る水位温度検出要素(図8(E)および図8(F)において「検出要素(液中)」)のヒータ線の通電(ON:オン)と非通電(OFF:オフ)とのタイミングを示す説明図(タイミングチャート)、図8(F)が液中に在る水位温度検出要素の温度推移を示す説明図である。
また、図9(図9(A)〜図9(D))に関して、より詳細には、図9(A)が検出要素(液中→気中)のヒータ線の通電(ON:オン)と非通電(OFF:オフ)とのタイミングを示す説明図(タイミングチャート)、図9(B)が検出要素(液中→気中)の温度推移を示す説明図、図9(C)が検出要素(気中→液中)のヒータ線の通電(ON:オン)と非通電(OFF:オフ)とのタイミングを示す説明図(タイミングチャート)、図9(D)が検出要素(気中→液中)の温度推移を示す説明図である。
第4の液面レベル計測監視手順では、通常時の計測が開始されると、ヒータ電源13からn個の水位温度検出要素11−1,…,11−nが有するヒータ線11bに個別に給電され、液面レベル判定部12がn個の水位温度検出要素11−1,…,11−nの各々に対して気中に在るか液中に在るかの判定を、緊急時(一括給電)に切り替えられるまで周期的に行われる。
気中に在る基準水位温度検出部19(図1)は、温度変化が、例えば、最低温度Tから最高温度Tまでの所定範囲Rの範囲内となるように、ヒータ線の通電と非通電とが繰り返される(図8(A)および(B))。
この場合において、気中に在る水位温度検出要素では、気中に在る基準水位温度検出部19(図1)と同様に温度が変化し、例えば、最低温度TL1から最高温度TH1までの所定範囲Rの範囲内で温度が変化する(図8(C)および(D))。
また、液中に在る水位温度検出要素では、ヒータ線11b(図1)で発生する熱が周囲の液体に奪われること、空気等の気体よりも熱伝導率が大きいこと等の理由から温度変化の範囲が所定範囲Rよりも小さい、例えば、最低温度TL2から最高温度TH2までの所定範囲Rの範囲内で温度が変化する(図8(E)および(F))。
例えば、図9(A)および図9(C)に示されるように、周期的な判定を継続する中で液面レベルの変動(水位変動)が生じて、t=taのタイミングで液中に在った水位温度検出要素が気中へ出る場合(図9(A))、または気中に在った水位温度検出要素が液中に入る場合(図9(C))がある。
水位温度検出要素が液中から気中に出た場合(図9(A))、例えば、図9(B)に示されるように、気中に出たt=ta以降で温度変化が大きくなり、所定範囲Rを逸脱する。逆に、水位温度検出要素が気中から液中へ入った場合(図9(C))、例えば、図9(D)に示されるように、液中に入ったt=ta以降で温度変化が小さくなり、温度変化は所定範囲Rに収まるようになる。
従って、例えば所定範囲R等、液中で変化し得る温度範囲を考慮して、温度の変化範囲に対して閾値を設定し、設定した閾値を超えて温度変化が生じているか否かを判定するように、液面レベル判定部12を構成すれば、液面レベル計測監視装置10において、当該判定結果からその水位温度検出要素が気中に在るか液中にあるかを判定することができる。
また、液面レベルの判定を周期的に多周期行うことで、前回計測時の温度変化と今回計測時の温度変化とを比較することができる。比較の結果、前回計測時と今回計測時とで温度変化の仕方に変化が生じた場合、その水位温度検出要素は、液中から気中に出た、または気中から液中に入った、の何れかの変化が生じていると判定できる。
第4の液面レベル計測監視手順によれば、液中で変化し得る温度範囲を考慮して、温度の変化範囲に対して閾値を設定し、設定した閾値を超えて温度変化が生じているか否かを判定することで、その水位温度検出要素が気中に在るか液中にあるかを判定することができる。
また、液面レベルの判定を周期的に多周期行い、前回計測時の温度変化と今回計測時の温度変化とを比べた結果、前回計測時には設定した閾値以下で生じていた温度変化が今回計測時には設定した閾値を超えて温度変化が生じている場合、その水位温度検出要素は、液中から気中に出たと判定できる。逆に、前回計測時には設定した閾値を超えて生じていた温度変化が今回計測時には設定した閾値以下で温度変化が生じている場合、その水位温度検出要素は、気中から液中に入ったと判定できる。
なお、第4の液面レベル計測監視手順は、例えば、液面レベルが低下したことが観測された場合に通常時の計測から緊急時の計測に切り替えるステップをさらに具備していても良い。液面レベル計測監視装置10の構成としては、液面レベル判定部12を液面レベルが低下した旨を判定した場合に、液面レベルが低下した旨の判定信号をヒータ制御部15へ与えるように構成し、ヒータ制御部15を当該判定信号に基づいて通常時の計測から緊急時の計測に切り替える切替指令を生成するように構成すれば良い。
また、第4の液面レベル計測監視手順を実行するにあたり、液面レベル計測監視装置10は必ずしも現在の液面レベルをユーザに提示しなくてもよい。すなわち、液面レベル計測監視装置10を、液面レベルが変動した場合に、例えば、警報発報部21が液面レベルの変動を知らせる警報を発報する等して当該液面レベルの変動をユーザに報知する液面レベルの監視装置として構成してもよい。
[第5の液面レベル計測監視手順]
第5の液面レベル計測監視手順は、第1の液面レベル計測監視手順と同様に、被計測監視対象である液面レベルの計測を行うための処理手順であり、第1の液面レベル計測監視手順に対して、緊急時の計測に関するステップが相違するが、その他の点では実質的に相違しない。そこで、第5の液面レベル計測監視手順の説明では、緊急時の計測に関するステップを中心に説明し、第1の液面レベル計測監視手順と重複する説明を省略する。
第5の液面レベル計測監視手順は、計測が開始されると、通常時においては、第1の液面レベル計測監視手順と同様に処理ステップが実行される。すなわち、ヒータ電源13からn個の水位温度検出要素11−1,…,11−nが有するヒータ線11bに個別に給電され、液面レベル判定部12がn個の水位温度検出要素11−1,…,11−nの各々に対して気中に在るか液中に在るかの判定を、緊急時に切り替えられるまで周期的に行われる。
一方、緊急時において、第5の液面レベル計測監視手順は、第1の液面レベル計測監視手順と異なり、n個のヒータ線11bを一括通電するのではなく、前回の計測結果に基づく液面レベルの判定結果または液面レベルの位置情報(n個の水位温度検出要素11−1,…,11−nのうち、何れの水位温度検出要素間に在るのかを示す情報)に基づき、通電させるヒータ線11bを、例えば、液面レベル近傍に在る水位温度検出要素等のn個の少なくとも一部であるk個(但し、kは2≦k≦nを満たす整数)に絞り込む。
すなわち、第5の液面レベル計測監視手順では、緊急時において、切替回路25の複数(k個)の接点と切替回路26の接点とを「入」(短絡)とすることで、液面レベル判定部12が気中に在ると判定した水位温度検出要素のうち最も低い位置に配設される水位温度検出要素のヒータ線11bと、液面レベル判定部12が水中に在ると判定した水位温度検出要素のうち最も高い位置に配設される水位温度検出要素のヒータ線11bとを含む少なくとも2個の水位温度検出要素のヒータ線11bに限定して通電させる。
このように、ヒータ線11bの個数を絞り込んで通電させることで、ヒータ電源13の電源容量を増大させることなく、n個のヒータ線11bへの一括通電時よりも単位時間当たりの温度上昇を大きくすることができるため、より短時間で温度変化の傾向を捉えることができ、また、気中側(図5におけるXグループに相当)のヒータ線11bと液中側(図5におけるYグループに相当)のヒータ線11bとの温度差が大きく出るため、温度変化の傾向をより正確に捉えることができる。
従って、第5の液面レベル計測監視手順では、緊急時の計測モードにおける、ヒータ電源13の電源容量を増大させることなく、気中/液中判定の判定速度および判定精度をより向上させることができる。
液面レベル計測監視装置10の構成としては、n個の水位温度検出要素11−1,…,11−nの各ヒータ線11bを1個ずつ通電するように切替回路25,26,27の接点の入切状態を制御する通常時の計測モード(第1の計測モード)と、液面レベル判定部12が気中に在ると判定した水位温度検出要素のうち最も低い位置に配設される水位温度検出要素のヒータ線11bと、液面レベル判定部12が水中に在ると判定した水位温度検出要素のうち最も高い位置に配設される水位温度検出要素のヒータ線11bとを含む少なくとも2個(複数個)の水位温度検出要素のヒータ線11bが通電するように切替回路25,26,27の接点の入切状態を制御する緊急時の計測モード(第2の計測モード)とを有し、これら二つの計測モードを切替自在に、ヒータ制御部15を構成すれば良い。
なお、第5の液面レベル計測監視手順は、緊急時の計測モードにおいても、切替回路25,26,27の接点を個別にオンオフするため、第5の液面レベル計測監視手順を実行する液面レベル計測監視装置10,10Aは、ヒータ電源供給部14,14Aにおいて、切替回路27および電流制限回路29が省略されていてもよい。
第5の液面レベル計測監視手順によれば、緊急時において、通電させるヒータ線11bの個数を絞り込んで通電させることで、n個のヒータ線11bへの一括通電時よりも単位時間当たりの温度上昇が大きくすることができ、ヒータ電源13の電源容量を増大させることなく気中/液中判定の判定速度および判定精度を向上させることができる。
以上、液面レベル計測監視装置10,10Aおよび液面レベル計測監視方法(第1の液面レベル計測監視手順〜第5の液面レベル計測監視手順)によれば、複数の異なる計測モードを有しており、此等の計測モードを切り替えることで、より柔軟に液面レベルを計測することができる。
例えば、必要最低限度以上の計測精度に設定された所定の計測精度で液面レベルを計測する通常計測モード(通常時)と、必要最低限度の計測精度まで計測精度が落ちる一方、液面レベル計測が通常時よりも迅速に行える高速計測モード(緊急時)とを有している場合、高速計測モードを選択することで、急激な水位変化が生じた場合においても、その水位変化を的確に把握することができる。
また、超音波レベル計17で計測される結果等に基づき、ヒータ制御部15が切替回路25,26,27内の接点のオンオフ(短絡または開放)を切り替える切替指令を生成することができるので、通常計測モード(通常時)と高速計測モード(緊急時)とを自動的に切り替えることができる。
さらに、液面レベルの判定を周期的に多周期行うことで、液面レベルの監視を行うことができる。また、液面レベルの監視を行い液面レベルの変化が検出された場合、当該液面レベルの変化をトリガーとして切替回路25,26,27内の接点のオンオフ(短絡または開放)を切り替える切替指令を生成するようにヒータ制御部15を構成すれば、通常計測モード(通常時)と高速計測モード(緊急時)とを自動的に切り替えることができる。
また、高速計測モードについて、n個のヒータ線11bへの一括通電の他にも、液面レベル判定部12が、前回の計測結果を読み出す等して液面レベルの位置情報を取得できる場合、例えば、液面レベルを計測するために重要な液面レベル近傍に位置するヒータ線11bに絞り込んでn個の少なくとも一部である複数個であるk個(但しkは、2≦k≦nを満たす整数)だけを通電させることもできる。この場合、n個のヒータ線11bへの一括通電時よりも単位時間当たりの温度上昇が大きくなるため、ヒータ電源13の電源容量を増大させることなく気中/液中判定の判定速度および判定精度を向上させることができる。
なお、本発明は上述した実施形態そのままに限定されるものではなく、実施段階では、上述した実施例以外にも様々な形態で実施することが可能である。本発明は、発明の要旨を逸脱しない範囲で、種々の省略、追加、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 燃料プール
10,10A 液面レベル計測監視装置
11 水位温度検出部
11−1〜11−n 水位温度検出要素
11a 熱電対
11b ヒータ線
12 液面レベル判定部
13 ヒータ電源
14,14A ヒータ電源供給部
15 ヒータ制御部
16 切替入力部
17 超音波レベル計
18 液位計測部
19 基準水位温度検出部
21 警報発報部
22 記録部
25,26,27,28,28A,28B 切替回路
29 電流制限回路
31,35 切替部
31a,31b,33,35a,35b スイッチ
32 抵抗素子
35a1,35a2;35b1,35b2 接点
WL 水面
L 下限水位
,TL1,TL2 最低温度
,TH1,TH2 最高温度

Claims (13)

  1. 熱電対とヒータ線とを有し、ぞれぞれ、異なる高さに設定される、複数であるn個(nは2以上の整数)の水位温度検出要素を備える水位温度検出部と、
    前記水位温度検出部を構成する前記ヒータ線の通電状態と前記熱電対で計測される温度変化とに基づいて、前記n個の水位温度検出要素の各々に対して、気中か液中かを判定する液面レベル判定部とを具備し、さらに、
    前記n個の水位温度検出要素の各ヒータ線と各ヒータ線への供給電源との各接続を独立して入と切とに切り替え可能に構成される第1の切替回路と、
    前記第1の切替回路と前記供給電源との接続を入と切とに切り替え可能に構成される第2の切替回路と、
    前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続を一括して入と切とに切り替え可能に構成される第3の切替回路と、を具備することを特徴とする液面レベル計測監視装置。
  2. 前記第2の切替回路は、前記1の切替回路と前記供給電源との接続の入切の切り替えの他、前記第3の切替回路と前記供給電源との接続を入と切とに切り替え可能に構成されており、
    前記1の切替回路と前記供給電源との接続を入とする場合には、前記第3の切替回路と前記供給電源との接続が切に切り替わり、前記1の切替回路と前記供給電源との接続を切とする場合には、前記第3の切替回路と前記供給電源との接続が入に切り替わるように構成されていることを特徴とする請求項1に記載の液面レベル計測監視装置。
  3. 前記第1の切替回路および前記第2の切替回路の入切状態を制御することで、前記n個の水位温度検出要素の加熱具合を制御するヒータ制御部をさらに具備することを特徴とする請求項2に記載の液面レベル計測監視装置。
  4. 前記第1の切替回路、前記第2の切替回路、および前記第3の切替回路の入切状態を制御することで、前記n個の水位温度検出要素の加熱具合を制御するヒータ制御部をさらに具備することを特徴とする請求項1に記載の液面レベル計測監視装置。
  5. 計測監視される液面が、当該液面を予め設定される範囲内で監視する超音波レベル計の範囲逸脱を検知する逸脱検知部をさらに具備し、
    前記ヒータ制御部は、前記範囲逸脱を検知した場合に前記逸脱検知部から与えられる検知信号を受け取ると、前記第3の切替回路の入切状態を切とし、前記第1の切替回路の入切状態を入に切り替えるように構成されることを特徴とする請求項3または4に記載の液面レベル計測監視装置。
  6. 前記水位温度検出部は、常に気中となる位置に配設され、温度が所定範囲内に維持される基準水位温度検出要素を少なくとも1個備えることを特徴とする請求項1から5の何れか1項に記載の液面レベル計測監視装置。
  7. 前記基準水位温度検出要素を構成する前記ヒータ線の入と切とを制御する基準用ヒータ制御部を具備することを特徴とする請求項6に記載の液面レベル計測監視装置。
  8. 前記液面レベル判定部は、前記n個の水位温度検出要素のうち、前記基準水位温度検出要素以外の水位温度検出要素における温度変化が、前記基準水位温度検出要素における温度変化に対して設定する所定範囲内に収まっているか否かを判定し、当該判定結果に基づいて、前記基準水位温度検出要素以外の水位温度検出要素が気中にあるか液中にあるかを判定するように構成されることを特徴とする請求項6または7に記載の液面レベル計測監視装置。
  9. 前記液面レベル判定部は、前記n個の水位温度検出要素を、当該水位温度検出要素を構成する前記熱電対の出力に基づいて二つのグループに仕分け、当該仕分け結果に基づいて、前記n個の水位温度検出要素が気中にあるか液中にあるかを判定するように構成されることを特徴とする請求項1から8の何れか1項に記載の液面レベル計測監視装置。
  10. 前記液面レベル判定部は、前記第2の切替回路が入であって前記第1の切替回路が前記n個の水位温度検出要素の各ヒータ線への供給電源との各接続を独立して入と切とに切り替えて周期的に計測を行っている場合、今回計測時に取得された前記熱電対から得られる温度変化の範囲と前回計測時に取得された前記熱電対から得られる温度変化の範囲とを比べて相違の有無を判定し、当該判定結果に基づき、今回計測時および前回計測時に取得された前記熱電対を有する前記水位温度検出要素のある場所が、液中から気中または気中から液中に変化したか否かを判定するように構成されることを特徴とする請求項1から9の何れか1項に記載の液面レベル計測監視装置。
  11. 前記ヒータ制御部は、前記第1の切替回路の前記n個の水位温度検出要素の各ヒータ線と各ヒータ線への供給電源との各接続の入切状態を独立して制御するヒータ個別制御部を備え、
    前記ヒータ個別制御部は、前記n個の水位温度検出要素の各ヒータ線が1個ずつ通電するように前記入切状態を制御する第1のモードと、前記n個の水位温度検出要素のうち、前記液面レベル判定部が気中にあると判定した水位温度検出要素のうち最も低い位置に配設される水位温度検出要素のヒータ線と、前記液面レベル判定部が水中にあると判定した水位温度検出要素のうち最も高い位置に配設される水位温度検出要素のヒータ線とを含む少なくとも2個の水位温度検出要素のヒータ線が通電するように前記入切状態を制御する第2のモードとを有し、前記第1のモードと前記第2のモードとを切替可能に構成されることを特徴とする請求項1から10の何れか1項に記載の液面レベル計測監視装置。
  12. 熱電対とヒータ線とを有し、ぞれぞれ、異なる高さに設定される、複数であるn個(nは2以上の整数)の水位温度検出要素を備える水位温度検出部と、
    前記水位温度検出部を構成する前記ヒータ線の通電状態と前記熱電対で計測される温度変化とに基づいて、前記n個の水位温度検出要素の各々に対して、気中か液中かを判定する液面レベル判定部とを具備し、さらに、
    前記n個の水位温度検出要素の各ヒータ線と各ヒータ線への供給電源との各接続を独立して入と切とに切り替え可能に構成される第1の切替回路と、
    前記第1の切替回路と前記供給電源との接続を入と切とに切り替え可能に構成される第2の切替回路と、
    前記第1の切替回路の前記n個の水位温度検出要素の各ヒータ線と各ヒータ線への供給電源との各接続の入切状態を独立して制御するヒータ個別制御部と、を具備し、
    前記ヒータ個別制御部は、前記n個の水位温度検出要素の各ヒータ線が1個ずつ通電するように前記入切状態を制御する第1のモードと、前記n個の水位温度検出要素のうち、前記液面レベル判定部が気中にあると判定した水位温度検出要素のうち最も低い位置に配設される水位温度検出要素のヒータ線と、前記液面レベル判定部が水中にあると判定した水位温度検出要素のうち最も高い位置に配設される水位温度検出要素のヒータ線とを含む少なくとも2個の水位温度検出要素のヒータ線が通電するように前記入切状態を制御する第2のモードとを有し、前記第1のモードと前記第2のモードとを切替可能に構成されることを特徴とする液面レベル計測監視装置。
  13. 熱電対とヒータ線とを有し、ぞれぞれ、異なる高さに設定される、複数であるn個(nは2以上の整数)の水位温度検出要素と、前記水位温度検出要素を構成する前記ヒータ線の通電状態と前記熱電対で計測される温度変化とに基づいて、前記n個の水位温度検出要素の各々に対して、気中か液中かを判定する液面レベル判定部と、前記n個の水位温度検出要素の各ヒータ線と各ヒータ線への供給電源との各接続を独立して入と切とに切り替え可能に構成される第1の切替回路と、前記第1の切替回路と前記供給電源との接続を入と切とに切り替え可能に構成される第2の切替回路と、前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続を一括して入と切とに切り替え可能に構成される第3の切替回路とを具備する液面レベル計測監視装置を用いる液面レベル計測監視方法であり、
    前記液面レベル判定部が、前記第1の切替回路と前記供給電源との接続を入とし、前記第1の切替回路内で、前記供給電源との接続を入とする前記n個の水位温度検出要素の各ヒータ線の1個を順次切り替えつつ残りのn−1個の水位温度検出要素の各ヒータ線と前記供給電源との接続を切とする一方、前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続を切とした状態で、前記第1の切替回路内で、前記供給電源との接続を入としているヒータ線の1個を有する前記水位温度検出要素の前記熱電対から得られる温度情報に基づき、当該水位温度検出要素が気中か液中かを判定するステップと、
    前記液面レベル判定部が、前記第1の切替回路と前記供給電源との接続を切とし、さらに、前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続が一括して入にした状態に切り替わった後、前記n個の水位温度検出要素の各ヒータ線と前記供給電源との接続を一括して入となった後に取得される前記n個の水位温度検出要素が有する熱電対から得られる温度情報に基づき、前記n個の水位温度検出要素の各々に対して、気中か液中かを判定するステップと、を具備することを特徴とする液面レベル計測監視方法。
JP2015050574A 2015-03-13 2015-03-13 液面レベル計測監視装置および液面レベル計測監視方法 Active JP6416022B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015050574A JP6416022B2 (ja) 2015-03-13 2015-03-13 液面レベル計測監視装置および液面レベル計測監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015050574A JP6416022B2 (ja) 2015-03-13 2015-03-13 液面レベル計測監視装置および液面レベル計測監視方法

Publications (2)

Publication Number Publication Date
JP2016170086A true JP2016170086A (ja) 2016-09-23
JP6416022B2 JP6416022B2 (ja) 2018-10-31

Family

ID=56983527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015050574A Active JP6416022B2 (ja) 2015-03-13 2015-03-13 液面レベル計測監視装置および液面レベル計測監視方法

Country Status (1)

Country Link
JP (1) JP6416022B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992028A (zh) * 2017-04-05 2017-07-28 中山大学 钠冷快堆严重事故时熔融燃料池晃动特性的可视化实验系统
JP2018205180A (ja) * 2017-06-06 2018-12-27 株式会社Soken 液位検知装置、燃料電池システム
CN110592635A (zh) * 2019-10-10 2019-12-20 石河子众金电极箔有限公司 一种化成箔生产线中化成槽的液位与加热互锁系统
CN113327696A (zh) * 2021-06-08 2021-08-31 中山大学 一种测量棒束通道等效交混系数的实验方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998279B2 (ja) * 2018-06-29 2022-01-18 日立Geニュークリア・エナジー株式会社 熱電対式液位計及び原子炉水位計

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057457U (ja) * 1973-09-25 1975-05-29
US20010035827A1 (en) * 1999-08-03 2001-11-01 Snelling Charles Darwin Internal liquid level detector system
JP2001312785A (ja) * 2000-05-01 2001-11-09 Toshiba Eng Co Ltd 水位計のデータ収集装置
US20090293608A1 (en) * 2006-05-29 2009-12-03 Areva Np Gmbh Apparatus for Measuring a Filling Level
JP2013104675A (ja) * 2011-11-10 2013-05-30 Toshiba Corp 使用済み燃料貯蔵プールの水位検出装置、方法及びプログラム
JP2013104791A (ja) * 2011-11-14 2013-05-30 Toshiba Corp 水位温度測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057457U (ja) * 1973-09-25 1975-05-29
US20010035827A1 (en) * 1999-08-03 2001-11-01 Snelling Charles Darwin Internal liquid level detector system
JP2001312785A (ja) * 2000-05-01 2001-11-09 Toshiba Eng Co Ltd 水位計のデータ収集装置
US20090293608A1 (en) * 2006-05-29 2009-12-03 Areva Np Gmbh Apparatus for Measuring a Filling Level
JP2013104675A (ja) * 2011-11-10 2013-05-30 Toshiba Corp 使用済み燃料貯蔵プールの水位検出装置、方法及びプログラム
JP2013104791A (ja) * 2011-11-14 2013-05-30 Toshiba Corp 水位温度測定装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106992028A (zh) * 2017-04-05 2017-07-28 中山大学 钠冷快堆严重事故时熔融燃料池晃动特性的可视化实验系统
JP2018205180A (ja) * 2017-06-06 2018-12-27 株式会社Soken 液位検知装置、燃料電池システム
CN110592635A (zh) * 2019-10-10 2019-12-20 石河子众金电极箔有限公司 一种化成箔生产线中化成槽的液位与加热互锁系统
CN113327696A (zh) * 2021-06-08 2021-08-31 中山大学 一种测量棒束通道等效交混系数的实验方法
CN113327696B (zh) * 2021-06-08 2024-03-15 中山大学 一种测量棒束通道等效交混系数的实验方法

Also Published As

Publication number Publication date
JP6416022B2 (ja) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6416022B2 (ja) 液面レベル計測監視装置および液面レベル計測監視方法
KR940004778B1 (ko) 발전기의 온도 모니터 장치
US8260472B2 (en) Cooling system for power transformer
JP5787729B2 (ja) 水位温度測定装置
US20080183404A1 (en) Monitoring heater condition to predict or detect failure of a heating element
FR2673288A1 (fr) Detecteur d'anomalie de temperature pour appareil electronique.
US20100109883A1 (en) Temperature monitoring system for power transformers submerged in oil
CN104864980B (zh) 一种电机定子温度检测装置及方法、温度监控装置及方法
CN102298102A (zh) 电路的冷却部的异常检查系统
US9888526B2 (en) Detecting heater failure in a group of electric heaters in a process equipment heating system
CN110221164B (zh) 检测电池包中铜排连接的系统及其方法
JPH0259617A (ja) フロー・センサー及びこれを組み込んだドレン弁モニター装置
US6359566B2 (en) Welding machines
TWI808996B (zh) 即時監視具有加熱區早期檢測的多區立式爐
CN112015165A (zh) 一种温控器自检方法、系统及其存储介质
JP6800072B2 (ja) 劣化診断方法
JP5159288B2 (ja) 状態監視装置
CN209822412U (zh) 超导保护结构、超导装置及磁共振成像系统
EP0784786A1 (en) Transmitter sensor
JP2007035896A (ja) 負荷時タップ切換器の監視装置
CN104281174A (zh) 电子装置的温度控制装置及其方法
JP4753304B2 (ja) 超電導コイルの状態監視装置、超電導コイルの監視基準作成方法及び超電導エネルギー貯蔵装置
JP2017153208A (ja) 電動機駆動システムの予防保全装置
WO2007038845A1 (en) System for measuring and monitoring the moisture in insulating oil for power transformers and similar
CN109900387A (zh) 用于确定电力设备的报警温升阈值的方法与装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181003

R150 Certificate of patent or registration of utility model

Ref document number: 6416022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150