JP2016168568A - 電解装置、電解装置を用いた空気清浄機、及び電解水生成方法 - Google Patents

電解装置、電解装置を用いた空気清浄機、及び電解水生成方法 Download PDF

Info

Publication number
JP2016168568A
JP2016168568A JP2015051124A JP2015051124A JP2016168568A JP 2016168568 A JP2016168568 A JP 2016168568A JP 2015051124 A JP2015051124 A JP 2015051124A JP 2015051124 A JP2015051124 A JP 2015051124A JP 2016168568 A JP2016168568 A JP 2016168568A
Authority
JP
Japan
Prior art keywords
chamber
liquid
gas
electrode
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015051124A
Other languages
English (en)
Inventor
久野 勝美
Katsumi Kuno
勝美 久野
千草 尚
Hisashi Chigusa
尚 千草
川野 浩一郎
Koichiro Kawano
浩一郎 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015051124A priority Critical patent/JP2016168568A/ja
Publication of JP2016168568A publication Critical patent/JP2016168568A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】 効率的に電解水を生成すること、或いは良好な空気清浄作用を得ること。【解決手段】 一実施形態における電解装置は、筐体と、隔膜と、第1電極と、第2電極と、液体供給部と、気泡発生部と、排出部と、を備えている。上記隔膜は、上記筐体内に第1室及び第2室を形成する。上記第1電極は、上記第1室に配置される。上記第2電極は、上記第2室に配置され、上記第1電極と対向する。上記液体供給部は、上記第1室に電解水の生成元となる液体を供給する。上記気泡発生部は、上記第1電極及び上記第2電極に通電する電解時において、上記第1室の液体中に、上記第1電極に沿って上昇する気泡を発生させる。上記排出部は、上記気泡として液体中を通過した気体を上記第1室から排出する。【選択図】 図3

Description

本発明の実施形態は、電解装置、電解装置を用いた空気清浄機、及び電解水生成方法に関する。
電解装置は、電解により次亜塩素酸水、アルカリイオン水、或いはオゾン水などの電解水を生成する。この種の電解装置としては、例えば、イオン交換膜により筐体内を陽極が配置される陽極室及び陰極が配置される陰極室の2室に区切る2室型の電解槽や、一対のイオン交換膜により筐体内を陽極室及び陰極室に加えてこれらの間に介在する中間室の3室に区切る3室型の電解槽を備えるものが知られている。陽極室及び陰極室に対しては、例えばポンプなどの送液装置により液体の供給及び排出が行われる。生成された電解水は、例えば殺菌消毒など、種々の目的で利用することができる。電解水を空気清浄に用いる技術も提案されている。
電解装置においては、所望の量或いは性質の電解水を効率的に生成することが望まれている。電解水の生成効率を向上させる一つの手法として、陽極室或いは陰極室において液体を偏りなく流し、陽極或いは陰極の面積を有効的に利用することが考えられる。この手法は、例えば、液体を陽極或いは陰極の各部に接するように流す流路を陽極室或いは陰極室に形成することで実現できる。しかしながら、この場合には流路により圧力損失が増すため送液装置の能力を増大させる必要が生じるなど、他の問題を生じ得る。このように、電解水の生成効率を向上させる技術については、検討の余地がある。
特開2005−305100号公報
本発明の一態様における目的は、効率的に電解水を生成すること、或いは良好な空気清浄作用を得ることが可能な電解装置、空気清浄機、及び電解水生成方法を提供することである。
一実施形態における電解装置は、筐体と、隔膜と、第1電極と、第2電極と、液体供給部と、気泡発生部と、排出部と、を備えている。上記隔膜は、上記筐体内に第1室及び第2室を形成する。上記第1電極は、上記第1室に配置される。上記第2電極は、上記第2室に配置され、上記第1電極と対向する。上記液体供給部は、上記第1室に電解水の生成元となる液体を供給する。上記気泡発生部は、上記第1電極及び上記第2電極に通電する電解時において、上記第1室の液体中に、上記第1電極に沿って上昇する気泡を発生させる。上記排出部は、上記気泡として液体中を通過した気体を上記第1室から排出する。
図1は、第1実施形態における電解装置を概略的に示す図である。 図2は、第1実施形態における電解槽の断面の一例を示す図である。 図3は、図2におけるIII−III線に沿う陽極室の断面を示す図である。 図4は、実験Iの結果を示す図である。 図5は、実験IIにて用いた空気清浄機の概略的な構成を示す図である。 図6は、実験IIの結果を示す図である。 図7は、気泡の直径の分布の一例を示す図である。 図8は、第2実施形態に係る電解装置を説明するための図である。 図9は、第3実施形態に係る電解装置を説明するための図である。 図10は、第4実施形態に係る電解装置を説明するための図である。 図11は、第5実施形態に係る電解装置を説明するための図である。 図12は、第6実施形態に係る電解装置を説明するための図である。 図13は、図12におけるXIII−XIII線に沿う断面の一例を示す図である。 図14は、第7実施形態に係る電解装置を説明するための図である。 図15は、第8実施形態に係る電解装置を説明するための図である。 図16は、第9実施形態に係る電解装置を説明するための図である。 図17は、第10実施形態に係る電解装置を説明するための図である。 図18は、第11実施形態に係る電解装置を概略的に示す図である。
いくつかの実施形態につき、図面を参照しながら説明する。各実施形態を通して、同一或いは類似する要素には同一の符号を付し、重複する説明は省略する。各図は、実施形態の理解に資することを目的とした模式図であり、各図に示された要素の形状及び寸法などは実際の装置と異なる場合があるが、これらは以下の開示と公知技術等を参酌して適宜に変更し得る。
(第1実施形態)
図1は、第1実施形態に係る電解装置1を概略的に示す図である。この電解装置1は、空気清浄機に用いることができるものであって、陽極室10を有する電解槽2を備えている。
電解装置1は、さらに、陽極室10を含む流路に関連する要素として、送液ポンプ3と、送気ポンプ4と、塵埃フィルタ5と、気液分離装置6と、塩素除去装置7と、を備えている。
送液ポンプ3は、タンク或いは水道配管などの給水源WSから供給される電解水の生成元となる液体、例えば水を陽極室10に送る。送気ポンプ4は、吸気口8から取り込んだ気体、例えば電解装置1の外部の空気を陽極室10に送る。塵埃フィルタ5は、吸気口8と送気ポンプ4との間に介在し、吸気口8から取り込まれた空気に含まれる塵埃を除去する。これにより、送気ポンプ4及び陽極室10等への塵埃の侵入が防がれる。
送液ポンプ3は陽極室10に液体を送る送液装置の一例であり、送気ポンプ4は陽極室10に気体を送る送気装置の一例である。送液装置及び送気装置は、電磁弁などの他種の装置であっても良い。
陽極室10においては、例えば次亜塩素酸水(次亜塩素酸及び塩酸を含む水)である電解水が生成される。この電解水を含む液体と陽極室10に供給された空気を含む気体とから成る気液混合流体は、気液分離装置6に送られる。気液分離装置6は、例えば、供給される気液混合流体を溜める容器を備える。この容器の内部には、重力方向Gの下側に気液混合流体中の液体からなる液層が、上側に気液混合流体中の気体からなる気層が形成される。このように気液混合流体から分離された液体(次亜塩素酸水)は、図示せぬタンクなどの排出場所に排出される。一方で、気液混合流体から分離された気体は、塩素除去装置7に送られる。この気体は電解時に生じる塩素(塩素ガス)を含み得るものであり、塩素除去装置7はこの気体から塩素を除去する。このような塩素除去装置7としては、例えば活性炭フィルタを用いることができる。塩素が除去された気体(空気)は、排気口9から電解装置1の外部に排出される。
吸気口8は、気液分離装置6よりも重力方向Gにおいて高い位置に配置されている。これにより、例えば停電時などに送気ポンプ4が停止した場合であっても、流路内の液体が吸気口8から漏洩することを防止できる。
例えば塵埃フィルタ5が吸気口8から奥まった管路の途中に配置されている場合、送気ポンプ4が停止した状態においては塵埃フィルタ5の表面に外気が流通しにくい。また、塵埃フィルタ5が吸気口8の近傍に配置されている場合でも、少なくとも塵埃フィルタ5の下流側(送気ポンプ4側)の一面には外気が流通しにくい。したがって、これらいずれの場合であっても、塵埃フィルタ5は一旦濡れると乾きにくい。塵埃フィルタ5が長時間に亘って濡れた状態に置かれると、雑菌やカビが繁殖する可能性があるため好ましくない。また、塵埃フィルタ5が濡れた状態では、水分による目詰まりにより、塵埃フィルタ5に空気を通すときの圧力損失が上昇し、送気ポンプ4を稼働させた際に所定の空気流量を得ることができなくなる。さらには、塵埃フィルタ5が紙などの耐水性が低い材料で形成されている場合には、水分によって塵埃フィルタ5が破損する可能性がある。これらのことから、塵埃フィルタ5が濡れることを防止する手段を講じることが好ましい。本実施形態において、塵埃フィルタ5は、気液分離装置6の気体出口と重力方向Gにおいて同等か或いは高い位置に配置されている。このようにすることで、例えば停電時などに送気ポンプ4が停止した場合においても流路内の液体が塵埃フィルタ5に到達せず、塵埃フィルタ5が濡れることを防止できる。
電解装置1は、さらに、コントローラCTLを備えている。コントローラCTLは、例えば、電解装置1の制御の中枢を担うプロセッサ、各種の設定条件やプロセッサが実行するコンピュータプログラムを記憶したメモリ、各部に供給する電圧を生成する電源装置、表示灯或いはディスプレイなどの表示装置、ボタン或いはスイッチ等の入力装置などを備えている。コントローラCTLは、送液ポンプ3及び送気ポンプ4を駆動することで、陽極室10に流入する液体及び気体の流量を調整することができる。
このような電解装置1において、陽極室10を経て排気口9から排出される気体は、次亜塩素酸水によって清浄化(殺菌、消毒等)されている。また、電解により生成される次亜塩素酸水などの電解水は、洗浄などの用途で利用することができる。
続いて、電解槽2の構造の一例について説明する。
図2は、電解槽2の断面の一例を示す図である。電解槽2は、筐体20を備えている。例えば、筐体20は、底壁20aと、底壁20aに対向する頂壁20bと、これら底壁20a及び頂壁20bの間を繋ぐ複数の側壁とを有した箱状に形成されている。電解装置1の使用時において、電解槽2は、底壁20aが重力方向Gにおける下側に位置し、頂壁20bが重力方向Gにおける上側に位置するように配置される。
電解槽2は、第1隔膜21と、第2隔膜22と、陽極23と、陰極24と、を備えている。第1隔膜21及び第2隔膜22は、底壁20aから頂壁20bに亘って延び、筐体20の内部を3つの空間に仕切っている。第1隔膜21及び筐体20によって囲われた図中左側の空間は陽極室10に相当し、第2隔膜22及び筐体20によって囲われた図中右側の空間は陰極室11に相当し、第1隔膜21、第2隔膜22及び筐体20によって囲われた陽極室10及び陰極室11の間の空間は中間室12に相当する。陽極室10は第1室の一例であり、陰極室11は第2室の一例である。
陽極23は、第1電極の一例であり、陽極室10において第1隔膜21に近接して配置されている。陰極24は、第2電極の一例であり、陰極室11において第2隔膜22に近接して配置されている。陽極23及び陰極24は、第1隔膜21及び第2隔膜22を介して対向している。例えば、第1隔膜21は陰イオン交換膜として機能する多孔質膜であり、第2隔膜22は陽イオン交換膜として機能する多孔質膜である。
筐体20は、陽極室10に連通する流入口10a及び流出口10bと、陰極室11に連通する流入口11a及び流出口11bと、中間室12に連通する流入口12a及び流出口12bと、を備えている。図2の例において、流入口10a,11a,12aはいずれも底壁20aの近傍に設けられており、流出口10b,11b,12bはいずれも頂壁20bの近傍に設けられている。
陽極室10には、送液ポンプ3により送られる電解水の生成元となる液体、例えば水が流入口10aを介して流入する。陰極室11にも、電解水の生成元となる液体、例えば水が流入口11aを介して流入する。陰極室11に流入する液体は、送液ポンプ3により送られる液体が分流されたものであっても良いし、他の送液ポンプや水頭圧などを利用して送られるものであっても良い。中間室12には、例えば塩水などの電解液が流入口12aを介して流入する。この電解液は、例えばタンクなどから送液ポンプや水頭圧などを利用して送られる。
陽極23及び陰極24の間に電位差が形成されると、中間室12の電解液中において電離している塩素イオンが陽極23に引き寄せられ、第1隔膜21を通過して陽極室10の液体に流入する。そして、陽極23において塩素イオンが還元されて塩素ガスが発生し、この塩素ガスが陽極室10の液体と反応して次亜塩素酸水等の電解水を生じる。一方、中間室12の電解液中において電離しているナトリウムイオンが陰極24に引き寄せられ、第2隔膜22を通過して陰極室11の液体に流入する。そして、陰極24で液体が電気分解されて水素ガスと水酸化ナトリウム水溶液等の電解水とを生じる。なお、陽極室10及び陰極室11において生成される電解水は次亜塩素酸水及び水酸化ナトリウム水溶液に限られず、陽極室10、陰極室11、及び中間室12に供給する液体の適宜の選択により、種々の性質を有した電解水を得ることができる。
陽極室10の液体は、流出口10bを介して陽極室10から流出し、気液分離装置6に送られる。陰極室11の液体は、流出口11bを介して陰極室11から流出する。流出した液体は、例えば、タンクなどの排液場所に排出される。この排出された液体、すなわちアルカリ性水等の電解水は、洗浄などの用途で利用することができる。中間室12の液体、例えば電解に使用され濃度が低下した塩水等の電解液は、流出口12bを介して中間室12から流出する。この液体は、タンクなどの排液場所に排出される。中間室12を含む流路は、液体に電解質を補充しながら循環する循環流路であっても良い。
図3は、図2におけるIII−III線に沿う陽極室10の断面を示す図である。筐体20は、陽極室10に接するとともに互いに対向する第1側壁20c及び第2側壁20dをさらに有している。第1側壁20c及び第2側壁20dは、底壁20a及び頂壁20bの端部を繋いでいる。
図3の例において、流入口10a及び流出口10bは、第1側壁20cに設けられている。さらに、第2側壁20dには、底壁20aの近傍に気体の流入口10cが設けられている。流入口10aには送液ポンプ3に繋がる管路25が接続され、流入口10cには送気ポンプ4に繋がる管路26が接続され、流出口10bには気液分離装置6に繋がる管路27が接続されている。
コントローラCTLは、陽極23及び陰極24に通電する電解時において、送液ポンプ3を駆動し流入口10aを介して陽極室10に液体を送るとともに、送気ポンプ4を駆動し流入口10cを介して陽極室10に気体を送る。このとき流入口10aから流入する液体と、流入口10cから流入する気体は、互いに反対方向(図中の左右方向)の速度成分を有している。陽極23及び陰極24への通電によって、陽極室10には例えば次亜塩素酸水である電解水が生成され、陰極室11には例えば水酸化ナトリウム水溶液である電解水が生成される。
例えば、送気ポンプ4が陽極室10に送る気体の第1体積流量は、送液ポンプ3が陽極室10に送る液体の第2体積流量よりも大きい。一例として、第1体積流量は第2体積流量の約100倍以上の流量とすることができる。
流入口10cから陽極室10に流入した空気は気泡(図3において円形で示した複数の“B”)となって、陽極室10内を重力方向Gの上側、すなわち頂壁20bに向けて陽極23に沿って浮力により上昇する。この気泡は、陽極室10の液体とともに流出口10bを介して排出される。
以上のような構成の電解装置1において、送液ポンプ3、液体の流入口10a、及びこれらを繋ぐ管路25などは、陽極室10に液体(水)を供給する液体供給部を構成する。また、送気ポンプ4、気体の流入口10c、及びこれらを繋ぐ管路26などは、陽極室10に気泡を発生させる気泡発生部を構成する。さらに、流出口10b及び流出口10bと気液分離装置6とを繋ぐ管路27などは、陽極室10から液体(酸性水)及び気体(空気)を排出する排出部を構成する。
陽極室10において発生した気泡は、陽極室10内の液体を撹拌する。したがって、この気泡により、陽極23の表面における物質伝達を向上させることができる。
気泡は、陽極室10における流体駆動をアシストする役割も担う。すなわち、仮に送液能力が低い送液ポンプ3を用いた場合であっても、浮力によって上昇する気泡によって、流入口10aから流出口10bに向かう液体の流れが促進される。
さらに、図3の例においては、気泡の流れにより、流入口10cが設けられた第2側壁20dの近くで頂壁20bに向けた相対的に速い液体の流れが生じるために、矢印Aで示すような循環流が生じる。このような循環流により、液体が陽極室10内で滞留する時間が長くなり、高い濃度の電解水を生成することができる。例えばコントローラCTLの制御の下で、陽極室10に供給される気体の量を送気ポンプ4の回転数などによって調整し、ユーザが任意に設定する濃度の電解水を得るようにしても良い。
また、上記の循環流によって、陽極23の表面全体に沿って万遍なく液体が流れ、圧力損失上昇の原因となる複雑な流路を陽極室10内に形成せずとも、効率よく電解水を生成することができる。仮に、陽極室10内に複雑な流路を形成して液体を偏りなく流そうとした場合には、圧力損失が上昇するので送液ポンプ3の動力を高めなければならず、筐体20の各部を繋ぐシール材等に負荷がかかる。これに対し、本実施形態の構成であれば送液ポンプ3の動力を高める必要がないので、シール材等への負荷を低減できる。
このように、本実施形態の電解装置1及びこの電解装置1により実行される電解水生成方法(或いは空気清浄方法)によれば、気泡発生部が発生する気泡により得られる種々の好適な作用により、効率的に電解水を生成することができる。
また、本実施形態のように、吸気口8から取り込んだ空気を陽極室10の酸性水を通過させ、排気口9から排出する構成によれば、良好な空気清浄作用を得ることができる。発明者らは、この作用に関する2通りの実験を行った。以下に、これらの実験について説明する。
[実験I]
実験Iにおいては、実験対象場所の空気を、容器に溜められた液体の中を気泡の状態で通過させ、容器の外に排出する実験装置を用いた。この実験装置において、容器から空気を排出する排気口に培地を入れたシャーレを配置し、一定時間に亘り菌を培養した。この実験は、容器の液体として次亜塩素酸水(60ppm)を用いた場合と、容器の液体として中性の水(市水)を用いた場合の2通りで実施した。さらに、比較のために、液体を通さずにそのまま実験対象場所の空気をシャーレの培地に吹き付け、一定時間に亘り菌を培養した。
図4に実験Iの結果を示す。この図は上記の3通りの実験におけるシャーレの中を撮影したものであり、図4(a)は容器の液体として次亜塩素酸水を用いた場合、図4(b)は容器の液体として水を用いた場合、図4(c)は液体を通さない場合に相当する。
図4(a)のように、次亜塩素酸水を用いた場合には菌が殆ど培養されなかった。これに対し、図4(c)のように、液体を通さない場合には多量の菌が培養された。水を用いた場合には、図4(b)に示すように、液体を通さない場合ほどではないものの、菌の培養が確認された。
この実験Iから、本実施形態のように空気等の気体を次亜塩素酸水に通すことで、この気体に対する高い除菌効果が得られることが判る。
[実験II]
実験IIにおいては、1mの密閉された空間内に煙草の煙を充満させ、この空間内の空気を気泡として次亜塩素酸水を通過させる実験装置を用いて、アンモニアの除去効果を検証した。比較のために、加湿機能付きの空気清浄機を用いた実験も行った。図5は、この空気清浄機100の概略的な構成を示す図である。空気清浄機100は、給水源WSからの水を送液ポンプ101により電解槽102に供給し、この電解槽102の陽極室103にて生成された次亜塩素酸水を噴霧装置104により空気流路105に噴霧する。空気流路105には送気ファン106が設けられており、この送気ファン106の駆動に伴い外気が空気流路105に導入され、噴霧された次亜塩素酸水とともに空気流路105から外気に送り出される。空気流路105にはフィルタが設けられていない。この空気清浄機100により煙草の煙が充満した上記空間内に次亜塩素酸水を噴霧し、アンモニアの除去効果を検証した。さらに、煙草の煙が充満した上記空間内の空気におけるアンモニアの自然減衰についても検証した。
図6に実験IIの結果を示す。図示したグラフにおいて、横軸は時間[分]であり、縦軸はアンモニアの残存率[%]である。円形のプロットは、上記実験装置にて180ppmの次亜塩素酸水に気泡を通した場合における、上記空間中の空気に含まれるアンモニアの残存率である(気泡方式)。気泡として次亜塩素酸水に通した空気の流量は、0.4m/minである。四角形のプロットは、上記空気清浄機100にて60ppmの次亜塩素酸水を噴霧した場合における、上記空間中の空気に含まれるアンモニアの残存率である(噴霧方式)。次亜塩素酸水の噴霧に用いた空気の流量は、5.1m/minである。三角形のプロットは、上記空間中の空気に含まれるアンモニアの自然減衰に係る残存率である。
このグラフから明らかなように、気泡方式及び噴霧方式の双方において、アンモニアの残存率は数分の間に急激に低下し、10分〜20分の間で殆ど除去された。一方で、自然減衰の場合には、30分が経過した時点でもアンモニアの残存率が高い状態で維持された。気泡方式においては、空気の流量が噴霧方式に比べて低いにも関わらず、噴霧方式と同等の結果が得られたことは注目に値する。
以上の実験I,IIから、本実施形態に係る電解装置1のように外部から取り込んだ空気を気泡として酸性水に通し、再び外部に排出する構成においては、良好な空気清浄作用が得られることが判る。
また、本実施形態に係る電解装置1は、上記の噴霧方式のように次亜塩素酸水を空気中に放出せずとも空気を清浄化できる。次亜塩素酸水を噴霧した場合には、液滴が電解装置1の周囲の床、壁、家具、或いは電子機器等を濡らしてしまう可能性があるが、本実施形態に係る電解装置1においてはそのような心配がない。
以上説明した他にも、本実施形態からは種々の好適な作用が得られる。
発明者らは、陽極室10に発生させる気泡のサイズについて検討した。以下に、この検討の概要について述べる。
気泡の水中での上昇速度は、気泡が球形であり、気泡周辺の液体の流れが層流であると仮定すると、気泡に働く浮力と抗力との釣り合いから求めることができる。気泡に働く浮力F1[N]は、空気(陽極室10に供給される気体)の密度が、水(陽極室10に供給される液体)に対して著しく小さく無視できると仮定すると、次の(1)式にて表すことができる。
F1=ρg(1/6)πd・・・(1)
ここに、ρは水の密度[kg・m]、dは気泡の直径[m]、g(≒9.8)は重力加速度[m/s]である。
一方、上昇する気泡に対する抗力係数CDはCD=24/Reと表すことができ、レイノルズ数ReはRe=Ud/νと表すことができる。したがって、気泡に働く抗力F2[N]は、次の(2)式にて表すことができる。
F2=CD(1/2)ρU(πd/4)=3πνρUd・・・(2)
ここに、νは水の動粘性係数[m/s]、Uは気泡上昇速度U[m/s]である。常温において、動粘性係数νは0.857×10−6/sである。
浮力F1と抗力F2とが釣り合うとき、次の(3)式が成り立つ。
ρg(1/6)πd=3πνρUd・・・(3)
さらにこの(3)式を整理すると、次の(4)式を得ることができる。
U=gd/(18ν)・・・(4)
続いて、図3に示したように、陽極室10内で水(陽極室10内の液体)を循環させるときの水の流速を求める。陽極室10の下部から流入した水が室内を一巡した後に上部から排出される場合に、図3に示したように陽極室10内の右側領域(側壁20d側の領域)を上昇した水の半分が排出口27から排出され、もう半分が陽極室10内の左側領域(側壁20c側の領域)を下降すると仮定する。そのとき、陽極室10内の右側領域を上昇する水の平均速度Uw[m/s]は、次の(5)式で表すことができる。
Uw=4Qw/A・・・(5)
ここに、Aは陽極室10の水平断面積[m]、Qwは水の体積流量[m/s]である。
気泡により水の流れをアシストするためには、気泡の上昇速度Uが水の平均速度Uwよりも大きくなければならない。このとき、上記(4)(5)式に基づけば、gd/(18ν)>4Qw/Aが成り立つ。これを整理して得られる次の(6)式に示す条件を満たすように、気泡の直径dを定めることが好ましい。
d>√(72νQw/(Ag))・・・(6)
次に、空気清浄作用の面から気泡のサイズを検討する。気泡の表面積S[m]はS=πdであり、気泡の体積V[m]はV=(1/6)πdである。したがって、陽極室10内で単位時間あたりに発生する気泡の数N[個/s]は、次の(7)式にて表すことができる。
N=Q/V=6/(πd)・・・(7)
ここに、Qは陽極室10に導入される空気の体積流量[m/s]である。
また、気泡が陽極室10内を直線的に上昇した後に排出されると仮定すると、気泡が陽極室10内に滞留する時間Δt[s]は、次の(8)式によって表すことができる。
Δt=L/U=18νL/(gd)・・・(8)
ここに、Lは陽極室10の高さ[m]である。
上記(7)式及び(8)式等を用いれば、空気と水が接触している面積Sc[m]は、次の(9)式のように表すことができる。
Sc=NSΔt=108νL/(gd)・・・(9)
面積Scが大きいほど空気清浄作用が高まるため、(9)式に基づけば、気泡の直径dが小さいほど良好な空気清浄作用を得られることが分かる。
なお、冬季の空調された室内の温度と水道水の温度との関係のように、空気よりも水の温度が低いときには、取り込まれた空気が気泡となって水中に放出された際に小さくなる。空気は、概ね絶対温度に比例して膨張収縮する。常温27℃(絶対温度300K)付近で最大30℃程度の温度低下が生じる可能性を想定すると、気泡のサイズは、上記(7)式及び(8)式等に基づいて定める目標値よりも、体積Vで約10%、気泡の直径dで約3%大きく設定することが好ましい。
図7に示すように、気泡の直径dの分布がd=0を−3σ(σは標準偏差)の位置に対応させた正規分布であると仮定する。この分布のうち−2σ以上の領域の気泡、すなわち発生した気泡の約85%(ハッチングを付した領域)が上記条件を満たすという条件を追加すると、気泡の直径dの目標値は、約50%大きく設定する必要がある。なお、気泡サイズの分布に関しては、例えば「日本機械学会論文集Vol.80 No.819,2014 “二次元ベンチュリ管におけるマイクロバルブ生成機構”黒島,大高,門」において所定の実験条件下で測定されており、図7の正規分布はこのような測定値等を勘案して定義することができる。
以上のことから、気泡の直径d、より正確にはサイズに分布のある気泡の直径dの平均値が次の(10)式を満たすように電解装置1を設計することで、水の流れのアシストと高い空気清浄作用とを両立できる。
d>√(72νQw/(Ag))*1.54・・・(10)
ここに、式中の“1.54”は温度と気泡サイズの分布とを掛け合わせた係数である。
例えば、陽極室の高さLを100mm、水平断面積Aを10mm×100mm、水の流量Qwを1L/min(1.67×10−5/s)とした場合においては、上記(10)式により、d>4.998×10−4となる。この場合においては、例えば気泡の直径dの平均値は、約0.5mmとすることができる。
(第2実施形態)
第2実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図8は、第2実施形態に係る電解装置1を説明するための図であって、陽極室10及びその近傍の管路の断面を示している。本実施形態に係る電解装置1は、送液ポンプ3によって送られる水と、送気ポンプ4によって送られる空気とが共通の流入口10dを通じて陽極室10に流入する点で、第1実施形態と相違する。
流入口10dは、底壁20aの近傍において第2側壁20dに設けられている。流入口10dには、送液ポンプ3に繋がる管路25が接続されている。この管路25には、送気ポンプ4に繋がる管路26が接続されている。管路25と管路26との接続部分には、例えば一般的な枝配管部品を用いることができる。
このような構成においては、送液ポンプ3によって流入口10dに送られる液体に対して、送気ポンプ4によって送られる気体が合流する。合流した気体は気泡となって、流入口10dから液体とともに陽極室10に放出される。この場合であっても、第1実施形態と同じく矢印Aで示すような循環流が生じる。
本実施形態の構成であれば、陽極室10に繋がる配管の本数が減るので電解槽2の構成が単純となり、コストの低減と信頼性の向上を実現できる。その他、本実施形態からは第1実施形態と同様の作用を得ることができる。
(第3実施形態)
第3実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図9は、第3実施形態に係る電解装置1を説明するための図であって、陽極室10及びその近傍の管路の断面を示している。本実施形態に係る電解装置1は、陽極室10内に配置された気体管28を備え、送気ポンプ4によって送られる気体がこの気体管28を通じて陽極室10に流入する点で、第1実施形態と相違する。気体管28は、管路26を介して送気ポンプ4に接続されている。気体管28と管路26とは、一体的に形成されたものであっても良い。
気体管28は、例えば中空の円管であり、多数の小孔28aを有している。送気ポンプ4から管路26を介して気体管28に送られた気体は、小孔28aから気泡として陽極室10の液体内に放出される。本実施形態において、送気ポンプ4、気体管28、及びこれらを繋ぐ管路26などは、陽極室10に気泡を発生させる気泡発生部を構成する。
図9の例においては、第1側壁20cの近傍まで気体管28が延び、且つ概ね等間隔で小孔28aが設けられている。この場合、底壁20aの近傍から陽極室10内に万遍なく気泡を発生させることができ、気体と液体との接触が良好となって、気体に対する高い除菌能力を得ることができる。
なお、小孔28aは不規則(例えばランダム)に配置されても良いし、第2側壁20dから第1側壁20cに向けて小孔28aを多くするなどして、小孔28aの配置密度を変化させても良い。また、例えば第2側壁20d寄りの位置に気体管28の先端を位置させるなど、気体管28の形状は種々の態様に変形することができる。小孔28aを設ける位置や密度、或いは気体管28の形状等を調整することで、第1実施形態と同様の循環流を陽極室10内に生じさせることもできる。小孔28aの形状及びサイズは、例えば小孔28aから発生する気泡が上記(6)式或いは上記(10)等を満たすように定めれば良い。
その他、本実施形態によれば、第1実施形態と同様の作用を得ることができる。
(第4実施形態)
第4実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図10は、第4実施形態に係る電解装置1を説明するための図であって、陽極室10及びその近傍の管路の断面を示している。本実施形態に係る電解装置1は、流入口10cが第1側壁20cに設けられ、且つ底壁20a寄りの位置に仕切板29が配置されている点で、第1実施形態と相違する。
図10の例において、流入口10cは、流入口10aよりも底壁20aよりの位置に設けられている。仕切板29は、流入口10a,10cの間において底壁20aと概ね平行に配置され、陽極室10の内部を第1領域A1と第2領域A2とに仕切っている。流入口10aから流入する液体は第1領域A1に導入され、流入口10cから流入する空気は第2領域A2に導入される。
仕切板29は、多数の小孔29aを有している。送気ポンプ4から管路26及び流入口10cを介して第2領域A2に送られた気体は、小孔29aから気泡として陽極室10の液体内に放出される。本実施形態において、送気ポンプ4、流入口10c、これらを繋ぐ管路26、及び仕切板29などは、陽極室10に気泡を発生させる気泡発生部を構成する。
図10の例においては、仕切板29が第1側壁20cと第2側壁20dの間に亘って延び、且つ概ね等間隔で小孔29aが設けられている。この場合、底壁20aの近傍から陽極室10内に万遍なく気泡を発生させることができ、気体と液体との接触が良好となって、気体に対する高い除菌能力を得ることができる。
なお、小孔29aは不規則(例えばランダム)に配置されても良いし、第2側壁20dから第1側壁20cに向けて小孔29aを多くするなどして、小孔29aの配置密度を変化させても良い。また、仕切板29を底壁20aに対して傾けるなど、仕切板29の配置態様を変形しても良い。小孔29aを設ける位置や密度、或いは仕切板29の配置態様等を調整することで、第1実施形態と同様の循環流を陽極室10内に生じさせることもできる。小孔29aの形状及びサイズは、例えば小孔29aから発生する気泡が上記(6)式或いは上記(10)等を満たすように定めれば良い。
その他、本実施形態によれば、第1実施形態と同様の作用を得ることができる。
(第5実施形態)
第5実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図11は、第5実施形態に係る電解装置1を説明するための図であって、陽極室10及びその近傍の管路の断面を示している。本実施形態に係る電解装置1は、第2実施形態と同じく送液ポンプ3によって送られる液体と送気ポンプ4によって送られる気体とが共通の流入口10dを通じて陽極室10に流入する点、及び、陽極室10内に複数の流路壁30が配置されている点で、第1実施形態と相違する。
流入口10dは、底壁20aの近傍において第1側壁20cに設けられている。流路壁30は、底壁20aと頂壁20bとの間において、例えば等間隔で且つ底壁20a及び頂壁20bと平行に配置されている。図11の例において、底壁20aの側から奇数番目の流路壁30は第1側壁20cに接続されるとともに第2側壁20dとの間に隙間を形成し、偶数番目の流路壁30は第2側壁20dに接続されるとともに第1側壁20cとの間に隙間を形成している。これにより、第1側壁20cと第2側壁20dとの間で複数回に亘って往復するように曲がった流路が陽極室10内に形成される。
本実施形態の構成においては、流路壁30によって形成される流路により、陽極室10内で液体を万遍なく流し、陽極23の面積を有効に活用することができる。他の実施形態に比べて流路抵抗が増加し得るが、流入口10dから供給される気泡によって液体の流れがアシストされるため、送液ポンプ3の能力を左程増大させる必要はない。
第1側壁20c或いは第2側壁20dに接続された流路壁30の一端よりも他端が頂壁20b側に位置するように各流路壁30を傾ければ、気泡の浮力をより有効に活用して、高いアシスト能を得ることができる。その他、流路壁30の形状、位置、及び姿勢などは、種々の態様に変形することができる。
(第6実施形態)
第6実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図12は、第6実施形態に係る電解装置1を説明するための図であって、陽極室10及びその近傍の管路の断面を示している。本実施形態に係る電解装置1は、第5実施形態と同じく送液ポンプ3によって送られる液体と送気ポンプ4によって送られる気体とが共通の流入口10dを通じて陽極室10に流入する点、及び、流出口10bに代えて液体の流出口10eと気体の流出口10fとが設けられている点で、第1実施形態と相違する。
図12の例において、流出口10e,10fは、いずれも第1側壁20cに設けられている。流出口10fは流出口10eよりも頂壁20b側に位置している。本実施形態に係る電解装置1は気液分離装置6を備えておらず、流出口10eと電解水の排出場所とが管路31によって接続され、流出口10fと塩素除去装置7とが管路32によって接続されている。送液ポンプ3により送られる液体の流量、送気ポンプ4により送られる気体の流量、流出口10e,10fの径、及び管路31,32の径などは、流出口10e,10fの間に液面が位置する液層L1と、流入口10dから気泡として供給される空気が溜まった気層L2とが陽極室10内に形成されるように調整されている。
このような構成においては、液層L1に連通する流出口10eを介して液体が陽極室10から排出されるとともに、気層L2に連通する流出口10fを介して気体が陽極室10から排出される。流出口10eは、図12に示した位置よりも、さらに底壁20a寄りに設けることができる。一例として、流出口10eは、底壁20a及び頂壁20bから等距離にある位置よりも底壁20a側に設けても良い。流入口10d及び流出口10eを設ける位置や陽極室10に供給される空気の流量等を調整することで、第1実施形態と同様の循環流を陽極室10内に生じさせることもできる。
本実施形態において、流出口10e,10f及びこれらに繋がる管路31,32などは、陽極室10から液体及び気体を排出する排出部を構成する。さらに、この排出部は、気液分離装置の機能を兼ねている。
図12の例においては、流出口10eと流出口10fとの間において、複数の小孔33aを有する押え部材33が配置されている。押え部材33は、液層L1の液面に対向しており、気泡が液面に到達した際の液体の跳ねや液面の揺れを抑える役割を担う。このような押え部材33としては、例えば金属線などを所定間隔で交差させて網の目(小孔33a)を形成した部材や、板状の部材にドリル等で小孔33aを設けたものを用いることができる。
図13は、陰極室11に対して陽極室10と同様の構造を採用した例を説明するための図であって、図12におけるXIII−XIII線に沿う断面の一例を示している。この図の例において、筐体20は、陰極室11に連通する流出口11c,11dを有している。流入口11aからは、液体とともに気泡が供給される。流出口11dは流出口11cよりも頂壁20b側に位置している。陰極室11には、流出口11c,11dの間に液面が位置する液層L1と、流入口11aから気泡として供給される気体や陰極24において発生したガスが溜まった気層L2とが形成されている。さらに、陰極室11には、流出口11cと流出口11dとの間に液層L1の液面と対向する押え部材33が配置されている。陰極室11の液層L1の液体は流出口11cを介して排出され、陰極室11の気層L2の気体は流出口11dを介して排出される。
図13の例においては、例えば流入口12aから中間室12に気泡が供給されることにより、中間室12においても液層L1と気層L2とが形成されている。中間室12の流出口12bは、中間室12の液層L1及び気層L2の双方に連通しており、液層L1の電解液と気層L2の気体とがこの流出口12bを介して排出される。
また、図13の例においては、陽極室10、陰極室11、及び中間室12の液層L1の液面が揃っている。このような状態においては、陽極室10、陰極室11、及び中間室12の圧力が概ね同じとなる。中間室12の液面を陽極室10及び陰極室11の液面よりも高い位置とすることで、中間室12を陽極室10及び陰極室11に対して陽圧としても良い。
本実施形態のように電解槽2に気液分離装置としての機能を持たせることで、別途の気液分離装置6を設ける必要がなくなり、電解装置1をコンパクト化できる。その他、本実施形態からは第1実施形態等と同様の作用を得ることができる。
(第7実施形態)
第7実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図14は、第7実施形態に係る電解装置1を説明するための図であって、陽極室10及びその近傍の管路の断面を示している。本実施形態に係る電解装置1は、第6実施形態と同じく流出口10bに代えて流出口10e,10fが設けられている点、底壁20aの近傍に気泡生成壁34が設けられている点、及び、頂壁20bの形状を変更した点で、第1実施形態と相違する。
図14の例において、気泡生成壁34は、ドーム状(半球状)の断面形状を有している。気体の流入口10cは、底壁20aに設けられ、気泡生成壁34で覆われた領域に連通している。気泡生成壁34は、多数の小孔34aを有している。流入口10cから気泡生成壁34と底壁20aとで囲われた領域に流入した気体は、小孔34aから気泡となって陽極室10の液体中に放出される。気泡生成壁34において小孔34aを設ける位置は、例えばランダムであっても良いし、規則的であっても良い。
気体の流出口10fは、頂壁20bに設けられている。頂壁20bは、流出口10fに向けて先細るテーパ形状を有している。液体の流出口10eは、第2側壁20dに設けられている。陽極室10内には、第6実施形態と同様に、液層L1と気層L2とが形成されている。液層L1は、頂壁20bに接している。この陽極室10に、図12に示したような押え部材33をさらに設けても良い。流入口10cや気泡生成壁34を設ける位置、気泡生成壁34の形状、気泡生成壁34において小孔34aを設ける位置や密度等を調整することで、第1実施形態と同様の循環流を陽極室10内に生じさせることもできる。小孔34aの形状及びサイズは、例えば小孔34aから発生する気泡が上記(6)式或いは上記(10)等を満たすように定めれば良い。
本実施形態の構成においても、電解槽2に気液分離装置としての機能を持たせることができる。さらに、図14に示す構成では、流出口10fが重力方向Gにおいて陽極室10内で最も高い位置にある。したがって、陽極室10内の空気を流出口10fから円滑に排出することができる。
また、図14に示す気泡生成壁34の形状であれば、陽極室10内の広範囲に気泡を供給することができる。その他、本実施形態からは第1実施形態等と同様の作用を得ることができる。
(第8実施形態)
第8実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図15は、第8実施形態に係る電解装置1を説明するための図であって、陽極室10及びその近傍の管路の断面を示している。本実施形態に係る電解装置1は、第5実施形態と同じく送液ポンプ3によって送られる液体と送気ポンプ4によって送られる気体とが共通の流入口10dを通じて陽極室10に流入する点、第6実施形態と同じく流出口10bに代えて流出口10e,10fが設けられている点、及び、電解槽2が傾けられている点で、第1実施形態と相違する。
図15の例において、筐体20は、底壁20a、頂壁20b、第1側壁20c、及び第2側壁20dにより囲われた直方体形状の陽極室10を形成する。液体の流出口10eは、頂壁20b及び第1側壁20cが成す第1角部C1において、第1側壁20cに設けられている。気体の流出口10fは、頂壁20b及び第2側壁20dが成す第2角部C2において、第2側壁20dに設けられている。液体及び気体の流入口10dは、底壁20a及び第1側壁20cが成す第3角部C3において、第1側壁20cに設けられている。頂壁20b(或いは底壁20a)から流出口10e,10fまでの距離は、概ね同一である。
図15の例において、電解槽2は、第1側壁20c及び第2側壁20dが重力方向に対して反時計回りに角度θ(鋭角)で傾くように設置されている。これにより、気体の流出口10fが液体の流出口10eよりも重力方向Gにおいて上側に位置する。また、液体及び気体の流入口10dは、重力方向Gにおいて最も低い角部に位置することとなる。陽極室10内には、第6実施形態と同様に液層L1と気層L2とが形成され、流出口10eが液層L1に連通し、流出口10fが気層L2に連通している。液層L1の液面は、例えば、頂壁20bと第2側壁20dとに接している。この陽極室10に、図12に示したような押え部材33をさらに設けても良い。流入口10d及び流出口10eを設ける位置、陽極室10に供給される空気の流量、及び角度θ等を調整することで、第1実施形態と同様の循環流を陽極室10内に生じさせることもできる。
本実施形態の構成においても、電解槽2に気液分離装置としての機能を持たせることができる。さらに、本実施形態の構成であれば、直方体形状の陽極室10を有する電解槽2を傾けることでこの機能を得られるので、装置設計を簡略化できる。また、電解槽2に各種管路を接続した後に電解槽2を傾ける角度θを調整することで、気液分離に適した流出口10e,10fの位置関係を実現することもできる。その他、本実施形態によれば、第1実施形態と同様の作用を得ることができる。
(第9実施形態)
第9実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図16は、第9実施形態に係る電解装置1を説明するための図であって、陽極室10及びその近傍の管路の断面を示している。本実施形態に係る電解装置1は、陽極室10が筐体20を周面とし第1隔膜21を円形面(底面或いは上面)とした円柱形状に形成されている点で、第1実施形態と相違する。
図16の例において、筐体20は、底壁20a,頂壁20b、第1側壁20c、及び第2側壁20dに代えて、断面が円形の周壁20eを有している。第1隔膜21及び陽極23は、周壁20eに対応した円形に形成されている。
液体の流入口10a及び気体の流入口10cは、周壁20eの重力方向Gにおける下側寄りに設けられている。液体及び気体の流出口10bは、周壁20eの重力方向Gにおいて最も高い位置に設けられている。流入口10aから流入する液体と、流入口10cから流入する気体は、互いに反対方向の速度成分を有している。そのため、気泡と液体の混合が促進され、空気清浄作用を高めることができる。図16に示すように、陽極室10内で気泡が偏って発生することで、矢印Aで示すような循環流が陽極室10内に生じる。
陽極室10を円柱形状とすれば、陽極室10内に角部が形成されないので、循環流が生じやすい。また、陰極室11及び中間室12も陽極室10と同様の円柱形状とし、陽極室10、陰極室11及び中間室12の周壁に相当する個別の枠部材をシール材を介して接続する場合においては、矩形などの枠部材を用いる場合に比べて均等にシール材を潰すことができ、電解槽2の信頼性が向上する。その他、本実施形態によれば、第1実施形態と同様の作用を得ることができる。
陽極室10内に例えば図11に示したような流路を形成しない場合においては、陽極室10の外形を比較的自由に選択できるため、図16に示したものの他にも陽極室10ないし電解槽2には種々の形状を採用できる。
(第10実施形態)
第10実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図17は、第10実施形態に係る電解装置1を説明するための図であって、電解槽2の概略的な構成を示している。説明のために、電解槽2を構成する要素の一部を破断している。本実施形態に係る電解装置1は、陽極室10及び中間室12が円筒形状(中空形状)を有し、陰極室11が円柱形状(中実形状)を有する点で、第1実施形態と相違する。
図17の例において、筐体20は、円形の底壁20a及び頂壁20bと、底壁20a及び頂壁20bの間を繋ぐ円筒形状の周壁20fを有している。第1隔膜21及び陽極23も円筒形状であり、周壁20fの内部において周壁20fと一定の間隔を空けて配置されている。さらに、第2隔膜22及び陰極24も円筒形状であり、第1隔膜21の内部において第1隔膜21と一定の間隔を空けて配置されている。このような構成においては、周壁20fを外周面とし、第1隔膜21を内周面とし、これら外周面と内周面の間に陽極23が配置された円筒形状の陽極室10が形成される。また、第1隔膜21を外周面とし、第2隔膜22を内周面とした円筒形状の中間室12が形成され、第2隔膜22を外周面とした円柱形状の陰極室11が形成される。
陽極室10への液体の流入口10a及び気体の流入口10cは、底壁20aの近傍において周壁20fに設けられている。陽極室10の液体及び気体の流出口10bは、頂壁20bの近傍において周壁20fに設けられている。図17の例において、管路25,26は、液体及び気体(気泡)が陽極23の周方向に向けた速度成分を持って陽極室10に流入するように、周壁20fに対して傾けて流入口10a,10cに接続されている。
このような構成において、陽極室10に供給された液体及び気体は、矢印Aで示すような旋回流となって、頂壁20bに向けて螺旋状に上昇する。これにより、陽極室10内での液体及び気体の滞留時間が長くなり、気体に対する除菌性能が向上するとともに、陽極室10内での流速の偏りを低減することができる。
陰極室11への液体の流入口11aは底壁20aに設けられ、陰極室11からの液体の流出口11bは頂壁20bに設けられている。流入口11aには陰極室11に液体を供給する管路35が接続され、流出口11bには陰極室11から液体を排出する管路36が接続されている。陰極室11においても陽極室10と同様の旋回流が生じるように、管路35,36の接続態様等を調整しても良い。この場合において、陰極室11には陽極室10と逆回りの旋回流を生じさせても良い。
中間室12への電解液の流入口12aは底壁20aに設けられ、中間室12からの電解液の流出口12bは頂壁20bに設けられている。流入口12aには中間室12に電解液を供給する管路37が接続され、流出口12bには中間室12から電解液を排出する管路38が接続されている。図17の例においては、管路37,38が重力方向Gにおいてずれた位置に配置されている。このようにすることで、中間室12において周方向への電解液の流れを生成し、局所的な電解液の滞留を防ぐことができる。
以上説明した他にも、本実施形態によれば第1実施形態と同様の作用を得ることができる。
(第11実施形態)
第11実施形態について説明する。以下の説明においては主に第1実施形態と異なる構成に着目し、第1実施形態と同一又は類似する要素には同一の符号を付して重複する説明を省略することがある。
図18は、第11実施形態に係る電解装置1を概略的に示す図である。本実施形態に係る電解装置1は、陽極室10内の液体を冷却する冷却器40と、熱交換器41とをさらに備える点で、第1実施形態と相違する。
冷却器40は、例えば陽極室10の内部を通る配管を備え、この配管を流れる冷媒により陽極室10内の液体及び気体から熱を奪うことで、陽極室10内を冷却する。上記配管は、例えば陽極室10の外部に配置された空冷式の熱交換器に接続され、陽極室10内で冷媒が得た熱をこの熱交換器において排熱させ、排熱後の冷媒を再び陽極室10内に送る。冷媒を送る手段としては、例えばポンプを用いることができる。上記配管として、板状の多数の伝熱体が取り付けられたフィンチューブを用いても良い。冷却器40の構成はここで述べたものに限られず、陽極室10の内壁面等に取り付けられたペルチェ素子等であっても良い。また、冷却器40は、陽極室10に供給される液体又は気体を陽極室10の外部において冷却するものであっても良い。以上のような冷却器40は、冷却装置の一例である。
熱交換器41は、送液ポンプ3によって陽極室10に送られる水と、気液分離装置6から排出される液体(次亜塩素酸水)とを熱交換させる。気液分離装置6から排出される液体は、冷却器40によって冷却されたものであるため、給水源WSから供給される水よりも温度が低い。したがって、この熱交換により陽極室10に供給される水の温度が下がり、冷却器40の消費エネルギを低減できる。
本実施形態の構成においては、冷却器40を設けたことにより、陽極室10内の液体及び気体の温度が低下する。これにより、陽極室10の気体に水蒸気が含まれにくくなるため、陽極室10から排出される気体の絶対湿度が低下する。さらに、電解装置1から排出されて室温まで上昇した気体の相対湿度が低下し、室内の過度の湿度上昇を防ぐことができる。
また、陽極室10内の液体を冷却することで、陽極23において発生した塩素が水に溶け易くなり、次亜塩素酸水の生成効率を向上させる効果も期待できる。その他にも、本実施形態によれば、第1実施形態と同様の作用を得ることができる。
なお、本実施形態において、電解槽2には第1乃至第10実施形態にて開示したいずれの構成も採用できる。電解槽2が気液分離装置の機能を兼ねる場合には、図18に示した気液分離装置6を設けなくても良い。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
例えば、各実施形態にて開示した構成は適宜に組み合わせることができる。さらに、各実施形態においては主に陽極室10に着目したが、これら実施形態にて開示した構成は陰極室11及び中間室12にも適用することができる。
また、各実施形態においては3室型の電解槽2を備える電解装置1を開示したが、中間室を備えない2室型の電解槽を備える電解装置にも同様の構成を適用できる。2室型の電解槽においては、陽極室及び陰極室に、例えば塩水などの電解液が供給されても良い。
また、各実施形態において開示した電解槽2等の構成は、空気清浄機以外の電解装置にも適用することができる。同様に、各実施形態において開示した電解装置1にて実行される電解水生成方法は、空気清浄以外の用途のために利用することができる。陽極室10、陰極室11及び中間室12にそれぞれ供給される液体や気体は、電解装置の用途に応じて適宜に選択することができる。
1…電解装置、2…電解槽、3…送液ポンプ、4…送気ポンプ、5…塵埃フィルタ、6…気液分離装置、7…塩素除去装置、10…陽極室、10a…液体の流入口、10b…液体及び気体の流出口、10c…気体の流入口、11…陰極室、12…中間室、20…筐体、20a…底壁、20b…頂壁、20c…第1側壁、20d…第2側壁、21…第1隔膜、22…第2隔膜、23…第1陽極、24…第2陰極。

Claims (20)

  1. 筐体と、
    前記筐体内に第1室及び第2室を形成する隔膜と、
    前記第1室に配置された第1電極と、
    前記第2室に配置され、前記第1電極と対向する第2電極と、
    前記第1室に電解水の生成元となる液体を供給する液体供給部と、
    前記第1電極及び前記第2電極に通電する電解時において、前記第1室の液体中に、前記第1電極に沿って上昇する気泡を発生させる気泡発生部と、
    前記気泡として液体中を通過した気体を前記第1室から排出する排出部と、
    を備える電解装置。
  2. 前記第1電極は陽極であり、前記第2電極は陰極である、
    請求項1に記載の電解装置。
  3. 前記気泡発生部が前記第1室に送る気体の第1体積流量は、前記液体供給部が前記第1室に送る液体の第2体積流量よりも大きい、
    請求項1又は2に記載の電解装置。
  4. 前記液体供給部は、前記第1室に連通する第1流入口と、前記第1流入口に液体を送る送液装置と、を含み、
    前記気泡発生部は、前記第1室に連通する第2流入口と、気体を前記第2流入口に送る送気装置と、を含み、
    前記第2流入口に送られた気体が気泡となって前記第1室の液体中に放出される、
    請求項1乃至3のうちいずれか1項に記載の電解装置。
  5. 前記筐体は、前記第1室に接するとともに互いに対向する第1側壁及び第2側壁を含み、
    前記第1流入口は、前記第1側壁に設けられ、
    前記第2流入口は、前記第2側壁に設けられた、
    請求項4に記載の電解装置。
  6. 前記排出部は、前記第1側壁に設けられ前記第1室に連通する流出口を含み、この流出口を介して前記第1室から液体とともに前記気泡を排出する、
    請求項5に記載の電解装置。
  7. 前記第1室は、前記筐体が外周面を形成するとともに前記隔膜が内周面を形成する円筒形状を有し、
    前記第1電極は、前記外周面及び前記内周面の間に配置された円筒形状を有し、
    前記送液装置によって送られる液体は、前記第1電極の周方向に向けた速度成分を有して前記第1流入口から前記第1室に流入し、
    前記送気装置によって送られる気体は、前記第1電極の周方向に向けた速度成分を有して前記第2流入口から前記第1室に流入する、
    請求項4に記載の電解装置。
  8. 前記液体供給部は、前記第1室に設けられた流入口と、前記流入口に液体を送る送液装置と、を含み、
    前記気泡発生部は、前記送液装置によって前記流入口に送られる液体に気体を合流させる送気装置を含み、
    液体に合流した気体が気泡となって、前記流入口から前記第1室の液体中に放出される、
    請求項1乃至3のうちいずれか1項に記載の電解装置。
  9. 前記気泡発生部は、前記第1室に配置されるとともに複数の小孔が設けられた気体管と、気体を前記気体管に送る送気装置と、を含み、
    前記気体管に送られた気体が前記小孔から気泡となって前記第1室の液体中に放出される、
    請求項1乃至3のうちいずれか1項に記載の電解装置。
  10. 前記液体供給部は、前記第1室に連通する第1流入口と、前記第1流入口に液体を送る送液装置と、を含み、
    前記気泡発生部は、前記第1室に連通する第2流入口と、気体を前記第2流入口に送る送気装置と、前記第1室を前記第1流入口に送られる液体が流入する第1領域および前記第2流入口に送られる気体が流入する第2領域に仕切るとともに複数の小孔が設けられた仕切板と、を含み、
    前記第2領域の気体が前記小孔から気泡となって前記第1室の液体中に放出される、
    請求項1乃至3のうちいずれか1項に記載の電解装置。
  11. 前記第1室には、液層及び気層が形成され、
    前記排出部は、前記液層に連通する第1流出口と、前記気層に連通する第2流出口と、を含み、前記第1流出口を介して前記液層の液体を前記第1室から排出するとともに、前記第2流出口を介して前記気層の気体を前記第1室から排出する、
    請求項1乃至3のうちいずれか1項に記載の電解装置。
  12. 前記第1流出口及び前記第2流出口は、重力方向において異なる高さ位置に設けられ、
    前記第1流出口と前記第2流出口との間において前記液層の液面に対向して配置された、複数の小孔を有する押え部材をさらに備える、
    請求項11に記載の電解装置。
  13. 前記筐体は、前記気層に接するとともに前記第2流出口が設けられ、前記第2流出口に向けて先細る頂壁を含む、
    請求項11に記載の電解装置。
  14. 前記筐体は、互いに対向する第1側壁及び第2側壁と、前記第1側壁及び前記第2側壁の端部をそれぞれ繋ぐ底壁及び頂壁と、を含み、前記第1側壁、前記第2側壁、前記底壁及び前記頂壁により囲われた直方体形状の前記第1室を形成し、
    前記第1流出口は、前記第1側壁及び前記頂壁が成す第1角部に設けられ、
    前記第2流出口は、前記第2側壁及び前記頂壁が成す第2角部に設けられ、
    前記第2流出口が前記第1流出口よりも重力方向において上側に位置するように、前記筐体が前記重力方向に対して傾けられた、
    請求項11に記載の電解装置。
  15. 前記筐体及び前記隔膜は、前記筐体を周面とし前記隔膜を円形面とした円柱形状の前記第1室を形成する、
    請求項1乃至3のうちいずれか1項に記載の電解装置。
  16. 前記第1室の液体又は気体を冷却する冷却装置をさらに備える、
    請求項1乃至15のうちいずれか1項に記載の電解装置。
  17. 筐体と、前記筐体内に第1室及び第2室を形成する隔膜と、前記第1室に配置された第1電極と、前記第2室に配置され、前記第1電極と対向する第2電極と、前記第1室に電解水の生成元となる液体を供給する液体供給部と、前記第1電極及び前記第2電極に通電する電解時において、前記第1室の液体中に、前記第1電極に沿って上昇する気泡を発生させる気泡発生部と、前記気泡として液体中を通過した気体を前記第1室から排出する排出部と、を有する電解装置と、
    前記気泡の発生元となる気体から塵埃を除去するフィルタと、
    前記排出部により排出された気体から、電解時に生じた塩素を除去する塩素除去装置と、
    を備える空気清浄機。
  18. 前記排出部は、気体及び液体が混合した気液混合流体を前記第1室から排出し、
    前記排出部から排出された前記気液混合流体を気体と液体に分離する気液分離装置をさらに備える、
    請求項17に記載の空気清浄機。
  19. 筐体と、前記筐体内に第1室及び第2室を形成する隔膜と、前記第1室に配置された第1電極と、前記第2室に配置され前記第1電極と対向する第2電極と、を備える電解槽において電解水を生成する方法であって、
    前記第1室に電解水の生成元となる液体を供給することと、
    前記第1室に前記第1電極に沿って上昇する気泡を発生させ、この気泡により前記第1室の液体を撹拌或いは前記第1室において循環させることと、
    前記第1電極及び前記第2電極に通電し、前記第1室に電解水を生成することと、
    を含む電解水生成方法。
  20. 前記気泡の発生元となる気体から塵埃を除去することと、
    前記気泡として液体中を通過した気体を前記第1室から排出することと、
    前記第1室から排出された気体から、電解時に生じた塩素を除去することと、
    をさらに含む請求項19に記載の電解水生成方法。
JP2015051124A 2015-03-13 2015-03-13 電解装置、電解装置を用いた空気清浄機、及び電解水生成方法 Pending JP2016168568A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015051124A JP2016168568A (ja) 2015-03-13 2015-03-13 電解装置、電解装置を用いた空気清浄機、及び電解水生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015051124A JP2016168568A (ja) 2015-03-13 2015-03-13 電解装置、電解装置を用いた空気清浄機、及び電解水生成方法

Publications (1)

Publication Number Publication Date
JP2016168568A true JP2016168568A (ja) 2016-09-23

Family

ID=56982913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015051124A Pending JP2016168568A (ja) 2015-03-13 2015-03-13 電解装置、電解装置を用いた空気清浄機、及び電解水生成方法

Country Status (1)

Country Link
JP (1) JP2016168568A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106594945A (zh) * 2016-12-14 2017-04-26 安徽冠东电子科技有限公司 一种智能新风装置
CN106989450A (zh) * 2017-04-26 2017-07-28 重庆科技学院 一种负离子新风净化系统及净风方法
JP2019063363A (ja) * 2017-10-03 2019-04-25 キヤノンマーケティングジャパン株式会社 洗浄装置及び洗浄方法
JP7274796B1 (ja) 2022-09-29 2023-05-17 株式会社テックコーポレーション 電解槽

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106594945A (zh) * 2016-12-14 2017-04-26 安徽冠东电子科技有限公司 一种智能新风装置
CN106989450A (zh) * 2017-04-26 2017-07-28 重庆科技学院 一种负离子新风净化系统及净风方法
CN106989450B (zh) * 2017-04-26 2023-04-28 重庆科技学院 一种负离子新风净化系统及净风方法
JP2019063363A (ja) * 2017-10-03 2019-04-25 キヤノンマーケティングジャパン株式会社 洗浄装置及び洗浄方法
JP7023079B2 (ja) 2017-10-03 2022-02-21 キヤノンマーケティングジャパン株式会社 洗浄システム及び洗浄方法
JP7274796B1 (ja) 2022-09-29 2023-05-17 株式会社テックコーポレーション 電解槽
JP2024049785A (ja) * 2022-09-29 2024-04-10 株式会社テックコーポレーション 電解槽

Similar Documents

Publication Publication Date Title
JP6924223B2 (ja) ガス発生装置
JP2016168568A (ja) 電解装置、電解装置を用いた空気清浄機、及び電解水生成方法
KR101861864B1 (ko) 전기 분해 시스템
KR102053377B1 (ko) 냉수소수 제조장치
JP7195662B2 (ja) 水素ガス生成装置
JP2018165396A (ja) 水素ガス生成装置およびそれを含む水素ガス吸入装置
JP5867534B2 (ja) 加湿装置
WO2013065355A1 (ja) オゾン液生成器及びオゾン液生成方法
JP6612714B2 (ja) 電解水生成装置
JP5357594B2 (ja) オゾン発生装置
CN103118989A (zh) 电解装置及具备该电解装置的热泵式供热水器
JP2019018187A (ja) 水素含有率の高い水を製造するシステム
JP6223112B2 (ja) 空気清浄装置および空気調和機
SU1107870A1 (ru) Генератор биологически активных сред
JP5847043B2 (ja) 加湿機構
JP2008215707A (ja) 空気調和機
JP2016172884A (ja) ガス生成装置およびそれを用いた装置
JP5174049B2 (ja) 冷凍装置
KR102062810B1 (ko) 냉각식 통형 유격막 전해수 생성장치
JP6052350B2 (ja) 加湿装置
JP7168202B2 (ja) 除菌脱臭装置
JP5450039B2 (ja) 電解水生成装置、及び、除菌システム
JP2012075963A (ja) イオン水供給機構
EP2915781A1 (en) Saturator and water treating apparatus including the same
JP6215162B2 (ja) 電解装置及び電解方法