JP2016166698A - 空気調和装置室内機 - Google Patents

空気調和装置室内機 Download PDF

Info

Publication number
JP2016166698A
JP2016166698A JP2015046422A JP2015046422A JP2016166698A JP 2016166698 A JP2016166698 A JP 2016166698A JP 2015046422 A JP2015046422 A JP 2015046422A JP 2015046422 A JP2015046422 A JP 2015046422A JP 2016166698 A JP2016166698 A JP 2016166698A
Authority
JP
Japan
Prior art keywords
blower
air
motor
indoor unit
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015046422A
Other languages
English (en)
Other versions
JP6453115B2 (ja
Inventor
隼人 森
Hayato Mori
隼人 森
安田 源
Hajime Yasuda
源 安田
和人 関場
Kazuto Sekiba
和人 関場
裕太 橋本
Yuta Hashimoto
裕太 橋本
宏幸 荻巣
Hiroyuki Ogisu
宏幸 荻巣
俊太郎 井上
Shuntaro Inoue
俊太郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2015046422A priority Critical patent/JP6453115B2/ja
Publication of JP2016166698A publication Critical patent/JP2016166698A/ja
Application granted granted Critical
Publication of JP6453115B2 publication Critical patent/JP6453115B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】抵抗の異なる様々なダクトが接続された場合でも所要の風量に容易に調整でき、空調のエネルギ効率を向上させることができる空気調和装置室内機を提供する。【解決手段】空気調和装置室内機において、送風機3の出口32側の静圧、送風機3の回転速度、および記憶部54に記憶される静圧、風量、および回転速度の関係を示す関係情報としての送風機特性に基づいて、送風機3の風量が予め設定された設定風量となるようにモータ4の回転速度が制御される(ステップS6)。【選択図】図6

Description

本発明は、空気調和装置の室内機(空気調和装置室内機)に関し、特に、搬送される空気が流通するダクトと接続するダクト接続型の空気調和装置室内機に関する。
一般の工場、クリーンルーム、倉庫等において空調を行う場合、ダクト接続型の空気調和装置室内機が使われることが多い。この形態の空気調和装置室内機は、例えば、特許3045142号公報(特許文献1)に開示されている。
特許文献1に記載のダクト接続型の空気調和装置室内機を現地に設置する場合、現地で施工されるダクトの抵抗と顧客からの要求風量とを考慮して、送風機の必要な回転速度が別途計算等の手段によって求められる。そして、送風機の回転速度を変更するために使用される部材であるファン側プーリおよびモータ側プーリの径の組み合わせが選定され、両プーリの外周にベルトを掛けてモータの動力を伝達することで、送風機の回転速度が決まる。
特許3045142号公報
しかしながら、ダクトの施工形態としては様々な形態があり、現地におけるダクトの抵抗を前もって正確に見積もることは難しい。また、顧客によって要求風量はまちまちである。このように様々な要求風量とダクトの抵抗とが想定されることから、特許文献1に記載のダクト接続型の空気調和装置室内機を採用する場合、製品の部品としてのファン側プーリおよびモータ側プーリの組み合わせを多数用意する必要があった。
また、特許文献1に記載のダクト接続型の空気調和装置室内機を固定風量で使用するとしても、現地におけるダクトの抵抗の見積り誤差等から所要の風量が得られない場合があり、この場合には現地にてプーリを交換する必要がある。しかし、プーリは一般に金属鋳物で製造されているために重く、プーリの交換時における作業者の負担が大きい。また、両プーリの中心位置の調整や両プーリに掛け渡されるベルトのテンションの調整が不適切な場合にはベルトの寿命やベルトの伝達効率に悪影響を与えるため、プーリの交換作業は、熟練および時間を要する。
さらに、特許文献1に記載のダクト接続型の空気調和装置室内機は、省エネルギ性についても問題がある。すなわち、ダクト接続型の空気調和装置室内機では、ダクトでの吹出し空気の圧力損失を考慮して、比較的高静圧の状態での使用を考慮した送風機が採用される。このため、空気調和装置室内機から直接に空調空気が吹き出す一般のビル用対人空気調和装置室内機(例えば天井埋込カセット形4方向吹出しタイプ)等に比べて、送風機動力が大きい。加えて、両プーリの径の組み合わせによって風量を調整するシステムでは、両プーリの組み合わせを変更せずに風量を変更することができない。つまり、一旦両プーリの組み合わせを設定すると、運転中には風量を変えることができず、固定風量での運転となる。このため、空調負荷が低くなった場合には必要以上に風量が大きいまま運転されることとなり、空調のエネルギ効率が悪化する。
本発明は、このような事情に鑑みてなされたものであり、抵抗の異なる様々なダクトが接続された場合でも所要の風量に容易に調整でき、空調のエネルギ効率を向上させることができる空気調和装置室内機を提供することを課題とする。
前記した課題を解決するために、本発明に係る空気調和装置室内機は、送風機と、前記送風機を駆動するモータと、前記送風機が内部に設置され前記送風機によって搬送される空気が流通するダクトとの接続部を有する筺体と、前記送風機の出口側の圧力に対応する特性情報を検知する第1検知部と、前記送風機の回転速度を検知する第2検知部と、前記送風機の出口側の圧力、前記送風機の風量、および前記送風機の回転速度の関係を示す関係情報を記憶する記憶部と、第1検知部によって検知される前記特性情報、第2検知部によって検知される前記送風機の回転速度、および前記記憶部に記憶される前記関係情報に基づいて、前記送風機の風量が予め設定された設定風量となるように前記モータの回転速度を制御する送風制御部と、を備えることを特徴とする。
本発明によれば、抵抗の異なる様々なダクトが接続された場合でも所要の風量に容易に調整でき、空調のエネルギ効率を向上させることができる空気調和装置室内機を提供できる。
本発明の第1実施形態に係る空気調和装置室内機の正面図である。 図2(a)は、図1に示される空気調和装置室内機において筐体の一部が切り欠かれた状態の正面図、図2(b)は、図1に示される空気調和装置室内機において筐体の一部が切り欠かれた状態の右側面図である。 室内機の制御系の概略構成を示すブロック図である。 静圧と風量との関係を回転速度ごとに示す送風機特性の一例を示す図である。 送風機のサージング領域と風量を求める方法とを説明するための図である。 室内機の送風機の駆動制御の手順を示すフローチャートである。 図7(a)は、比較例に係る空気調和装置室内機において筐体の一部が切り欠かれた状態の正面図、図7(b)は、比較例に係る空気調和装置室内機において筐体の一部が切り欠かれた状態の右側面図である。 図8(a)は、図7(a)に示される送風機の駆動機構を拡大して示す左側面図、図8(b)は、図7(a)に示される送風機の駆動機構を拡大して示す正面図である。 ダクトを介さない一般的な空気調和装置室内機の抵抗と送風機特性とを示す図である。 ダクト接続型の空気調和装置室内機の抵抗と送風機特性とを示す図である。 本発明の第2実施形態に係る室内機の制御系の概略構成を示すブロック図である。 静圧と風量との関係を回転速度およびモータの軸動力の各々ごとに示す送風機特性の一例を示す図である。 インバータ制御における出力電圧と周波数との関係を示す図である。 本発明の第2実施形態に係る室内機の送風機の駆動制御の手順を示すフローチャートである。 図15(a)は、本発明の第3実施形態に係る空気調和装置室内機において筐体の一部が切り欠かれた状態の正面図、図15(b)は、本発明の第3実施形態に係る空気調和装置室内機において筐体の一部が切り欠かれた状態の右側面図である。 図16(a)は、図15(a)に示される送風機の駆動機構を拡大して示す正面図、図16(b)は、図15(a)に示される送風機の駆動機構を拡大して示す右側面図である。 送風機の運転台数を切り替えた場合の送風機特性の変化を説明するための図である。 本発明の第3実施形態に係る室内機の送風機3の駆動制御の手順を示すフローチャートである。 図19(a)は、本発明の第4実施形態に係る空気調和装置室内機において筐体の一部が切り欠かれた状態の正面図、図19(b)は、本発明の第4実施形態に係る空気調和装置室内機において筐体の一部が切り欠かれた状態の右側面図である。 図20は、本発明の第4実施形態に係る室内機の送風機の駆動制御の手順を示すフローチャートである。 変形例に係る空気調和装置室内機において筐体の一部が切り欠かれた状態の正面図、図19(b)は、変形例に係る空気調和装置室内機において筐体の一部が切り欠かれた状態の右側面図である。
次に、本発明の実施形態について適宜図面を参照しながら詳細に説明する。なお、各図において同一符号を付した部分は同一または相当する部分を示している。
〔第1実施形態〕
図1は、本発明の第1実施形態に係る空気調和装置室内機100の正面図である。
本実施形態に係る空気調和装置室内機100は、搬送される空気が流通するダクト8と接続するダクト接続型の空気調和装置室内機(以下、単に「室内機」ともいう)である。
本実施形態における空気調和装置は、室内機100と室外機(図示せず)とが冷媒配管(図示せず)によって接続されて冷凍サイクルを構成し、空気調和を行う。
図1に示すように、室内機100は、空気吸い込み口10から吸い込んだ空気を、筐体1の内部に設置された熱交換器2(図2参照)によって冷却若しくは加熱し、熱交換後の空気を筐体1に接続されたダクト8を介して、空気調和対象の場所へ搬送する。この空気は、筐体1内部に設置された送風機3により搬送される。
図2(a)は、図1に示される空気調和装置室内機において筐体1の一部が切り欠かれた状態の正面図、図2(b)は、図1に示される空気調和装置室内機において筐体1の一部が切り欠かれた状態の右側面図である。
図2に示すように、室内機100は、送風機3と、送風機3を駆動するモータ4と、送風機3によって搬送される空気が流通するダクト8(図1参照)との接続部16を有する筐体1とを備えている。また、筐体1の接続部16には、送風機3の出口32が位置されている。そして、筐体1の接続部16にダクト8(図1参照)が接続され、ダクト8を介して温風または冷風が空気調和対象となる例えば室内に送風可能となっている。
筐体1の内部には、熱交換器2、送風機3、モータ4、制御装置15等が設置されている。また、筐体1の正面には、ユーザによる操作の受付けや情報の表示を行う操作・表示装置9が設置されている。
送風機3は、モータ4によって回転させられるファンランナ33と、ファンランナ33の外側を覆うケーシング34とを有している。ケーシング34には、ファンランナ33の回転によってケーシング34内に吸い込まれる空気が通過する吸込み口31と、ケーシング34外へ吹き出される空気が通過する出口32とが形成されている。送風機3のファンランナ33は、本実施形態では、モータ4の出力軸に直結されることによって直接駆動される。これにより、モータ4から送風機3への動力伝達効率が向上する。
また、筐体1の正面には、空気吸込み口10(図1も参照)が配置されている。空気吸込み口10から吸い込まれた空気は、熱交換器2にて熱交換された後、送風機3の吸込み口31へ吸い込まれ、送風機3の出口32から吹き出す。
図2に示す送風機3は、軸方向の両側から空気を吸い込む両吸込みタイプのシロッコファンであるが、軸方向の片側から空気を吸い込む片吸込みタイプのシロッコファンであってもよい。あるいはシロッコファンに代えてターボファンが使用されてもよい。
送風機3の出口32付近には、送風機3の出口32側の圧力としての静圧を検出するための圧力センサ58(図3参照)が取り付けられている。
図3は、室内機100の制御系の概略構成を示すブロック図である。
図3に示すように、制御装置15は、制御部50と、記憶部54とを備えている。制御部50は、マイコン(マイクロプロセッサ)を有しており、送風機3や、膨張弁12(図2参照)等の冷凍サイクル部品57を制御する。
記憶部54は、計測または演算によって得られた、送風機3の出口32側の静圧、送風機3の風量、および送風機3の回転速度(単位時間当たりの回転数)すなわちファンランナ33の回転速度等の情報を保持することができる。また、記憶部54には、送風機3の出口32側の静圧、送風機3の風量、および送風機3の回転速度の関係を示す関係情報が、予め求められて保存されている。
また、制御装置15は、入出力回路55を備えており、入出力回路55を介して、操作・表示装置9、冷凍サイクル部品57、および圧力センサ58とそれぞれ接続されている。さらに、制御装置15には、モータ4をインバータ制御するインバータ56が設置されている。モータ4は交流電動機(例えば、ブラシレスDCモータ等を含む)であり、インバータ56は、モータ4へ供給する交流電力の周波数を変換する。
制御装置15は、インバータ56を用いて、モータ4の回転速度、ひいては送風機3の(ファンランナ33の)回転速度を自在に制御できる構成となっている。ここで、インバータ56によるモータ駆動用の交流電力の周波数(以下、「モータ駆動周波数」ともいう)をF[Hz]、モータ4の極数をZとすると、モータ4の回転速度Nは、N[min−1]=(60×F)/(Z/2)で求められる。ここで、モータ4の極数Zは、予め記憶部54に保存される。したがって、回転速度計を付加して設置せずとも、送風機3の回転速度の情報を得ることができる。
制御装置15の制御部50は、圧力センサ58からの信号によって送風機3の出口32側の静圧を検知する第1検知部51と、インバータ56によるモータ駆動周波数を用いて送風機3の回転速度を検知する第2検知部52とを有している。
また、制御部50は、送風機3の動作を制御する送風制御部53を有している。送風制御部53は、第1検知部51によって検知される送風機3の出口32側の静圧、第2検知部52によって検知される送風機3の回転速度、および記憶部54に記憶される前記した関係情報に基づいて、送風機3の風量を演算し、演算によって得られる風量が予め設定された設定風量となるようにモータ4の回転速度を制御する。ここで、風量の演算とは、現在の風量を求めるために送風制御部53が実行する処理の全般をいう。
前記した関係情報は、本実施形態では、送風機3の出口32側の静圧(以下、単に「静圧」ともいう)と送風機3の風量(以下、単に「風量」ともいう)との関係を送風機3の回転速度(以下、単に「回転速度」ともいう)ごとに示す送風機特性として与えられる。
ここで、前記送風機特性を用いて、送風機3の現在の風量を演算する方法を説明する。
まず、前記した関係情報として、静圧と風量との関係を回転速度ごとに示す送風機特性が、予め試験を実施することによって求められる。
図4は、静圧と風量との関係を回転速度ごとに示す送風機特性の一例を示す図である。
図4に示すように、送風機3の回転速度を一定とした場合、送風機3の風量が増加すると、概ね送風機3の出口32側の静圧が減少する傾向を示す。また、ある回転速度のときの送風機特性(の線図)がわかれば、送風機相似則を用いることで、異なる回転速度のときの送風機特性も換算できる。例えば、回転速度700rpmのときの送風機特性がわかれば、回転速度1000rpmのときの送風機特性は、700rpmのときの送風機特性(の線図)に対して、風量を回転速度比すなわち(1000/700)=1.43倍、静圧を回転速度比の2乗すなわち(1000/700)=2.04倍にすることによって、換算して求めることができる。
このように、ある回転速度のときの送風機特性を試験で求めれば、それと異なる回転速度のときの送風機特性もわかる。これにより、静圧、風量、回転数の3者の関係式を作ることができ、これら3者のうち2つの値を定めると、残り一つの値が求まる。具体的には、制御装置15の記憶部54に、この関係式が記憶されるか、若しくはこの関係式を予め計算して得たデータテーブルが記憶される。かかる関係式やデータテーブルは、前記した関係情報に相当する。送風機3の制御の際には、インバータ56によるモータ駆動周波数を用いて送風機3の回転速度が求められるとともに、送風機3の出口32側の静圧が測定される。そして、これら2つの情報を用いて、静圧、風量および回転速度の関係を示す関係情報としての前記した送風機特性を参照することによって、現在の風量がわかる。
図5は、送風機3のサージング領域と風量を求める方法とを説明するための図である。
図5に示すように、静圧と風量との関係を回転速度ごとに示す送風機特性には、風量の増加とともに静圧が減少した後に増加に転じる領域Aと、風量の増加とともに単調な静圧の減少となる領域(以下、「安定領域」ともいう)Bとがある。したがって、静圧と回転速度との特定の組み合わせにおいては、一つの静圧に対して2つ若しくは3つの風量Q1〜Q3の解を持つ場合がある。ここで、領域Aは、サージングと呼ばれる現象が生じる領域であり、静圧の時間変動が大きく不安定な領域(以下、「サージング領域」ともいう)である。このサージング領域Aでは、送風機3にかかる応力が大きくなり、また静圧変動のため送風機3で生じる音も異常で大きな音となる。よって、サージング領域Aは、送風機3として運転を避けるべき領域である。したがって、サージング領域Aにおける風量Q1や風量Q2と、安定領域Bにおける風量Q3とを判別する必要がある。ここで、サージング領域Aに存在する風量Q1,Q2の状態においては、静圧の時間平均値は同じものの、静圧の時間変動に注目すると静圧の変動成分が大きくなっている。このため、静圧の変動成分を圧力センサ58によって検出し、静圧の所定時間当たりの変動量が記憶部54に保存されている予め設定された閾値よりも大きいか否かによって、送風機特性を用いて求めた風量の解が、サージング領域Aに存在するか、あるいは安定領域Bに存在するかを判別できる。
次に、室内機100の送風機3の駆動制御について説明する。
図6は、室内機100の送風機3の駆動制御の手順を示すフローチャートである。
図6に示すように、空気調和装置の運転が開始されると、制御装置15の制御部50は、設定風量の取得を行う(ステップS1)。この設定風量は、制御装置15に接続された操作・表示装置9から入力可能である。
続いて、制御部50の第1検知部51は、圧力センサ58からの信号によって送風機3の出口32側の静圧を検知する(ステップS2)。また、制御部50の第2検知部52は、インバータ56によるモータ駆動周波数を用いて送風機3の回転速度を検知する(ステップS3)。ステップS2とステップS3とは、実行順序が逆であってもよい。
そして、制御部50の送風制御部53は、検知された静圧および回転速度を、記憶部54に記憶されている静圧、風量および回転速度の関係を示す関係情報としての送風機特性に照らし合わせることによって、送風機3の風量を演算する(ステップS4)。
ステップS5では、制御部50の送風制御部53は、送風機3がサージング領域A(図5参照)にあるか否かを判定する。具体的には、ステップS4において求められた風量の解が一つとならない場合においては、前記したように静圧の変動成分を検出し、これが予め設定された閾値よりも大きいときには、送風制御部53は、送風機3がサージング領域Aにあると判定する。これにより、サージングに伴う振動や騒音の発生を防止する措置を取ることが可能となる。
ステップS5において送風機3がサージング領域A(図5参照)にないと判定された場合(ステップS5でNo)、処理がステップS6に進む。一方、ステップS5において送風機3がサージング領域A(図5参照)にあると判定された場合(ステップS5でYes)、処理がステップS11に進む。
ステップS6では、制御部50の送風制御部53は、演算によって得られる安定領域Bでの風量が予め設定された設定風量となるようにモータ4の回転速度を制御する。すなわち、空気調和装置の運転開始後、送風制御部53は、徐々に送風機3の回転速度を上昇させながら、操作・表示装置9を通して入力された設定風量に対する現在の風量のずれを知り、このずれを解消すべく、フィードバック制御にて設定風量となるように送風機3の回転速度を制御する。
このような風量の演算および送風制御の方法は、ダクト接続型の空気調和装置室内機に一般的に用いられるシロッコファンだけでなく、ターボファンを用いる場合でも同様である。
ステップS11では、制御部50の送風制御部53は、送風機3がサージング領域Aにあることを示す情報を操作・表示装置9に表示して警告する。このとき、警告に代えて、あるいは警告に加えて、空気調和装置の運転が停止されるように構成されてもよい。これにより、サージングに伴う振動や騒音の発生を防止できる。
なお、ステップS1における設定風量は、単一の値に限定されるものではない。例えば、基準設定風量と下限設定風量とが操作・表示装置9から入力されてもよい。この場合、空調負荷が所定値よりも大きい場合には、設定風量を基準設定風量とし、空調負荷が所定値以下の場合には、入力された下限設定風量を満たす範囲で空調負荷に応じて設定風量を下げることが可能とされる。
図7(a)は、比較例に係る空気調和装置室内機において筐体1の一部が切り欠かれた状態の正面図、図7(b)は、比較例に係る空気調和装置室内機において筐体1の一部が切り欠かれた状態の右側面図である。図8(a)は、図7(a)に示される送風機3の駆動機構を拡大して示す左側面図、図8(b)は、図7(a)に示される送風機3の駆動機構を拡大して示す正面図である。比較例に係る空気調和装置室内機の機械的構成は、送風機3の駆動機構が本実施形態と相違しているが、他の構成は同様であるため説明を省略する。
図7に示す比較例では、送風機3はモータ4にて駆動されるが、モータ側プーリ6とファン側プーリ5とを用いて両プーリにベルト7を掛けることによって、モータ4の動力が送風機3に伝達される。図8に示すように、モータ側プーリ6とファン側プーリ5の両プーリの直径比を変えることで、送風機3の回転速度が所要の回転速度となるように設定される。ここで、所要の風量となる回転速度を求める必要があるが、ダクト接続型の空気調和装置室内機の場合、ダクト8(図1参照)の部分の抵抗を見積り、見積ったダクト8の抵抗に基づいて回転速度が算出される。しかし、ダクト8の抵抗の見積り値と実際の値とに相違があった場合、要求風量と実際の風量とに差異を生ずることとなる。
ダクト接続型の空気調和装置室内機において、要求風量と実際の風量との差異を生じさせる理由を説明するために、ダクト8を介さず直接空気が室内機から吹き出す場合における室内機の抵抗特性を説明する。
図9は、ダクト8を介さない一般的な空気調和装置室内機の抵抗と送風機特性とを示す図である。一般的な室内機の場合、室内機の抵抗(機内抵抗)Rは、熱交換器2と筐体1内部の抵抗からなっており、かかる抵抗特性は室内機のみで決まる。このため、回転速度を600rpmとすれば風量Qa1、回転速度を800rpmとすれば風量Qb1というように、送風機特性と機内抵抗Rとが釣り合う点にて容易に求められる。
一方、図10に示すように、ダクト接続型の空気調和装置室内機の場合には、機内抵抗Rの他にダクト8の抵抗があり、これら二つの抵抗を合成した合成抵抗R1と送風機特性の釣り合う点にて風量が定まる。しかしながら、ダクト8の部分の抵抗は、ダクト8の施工時に概算されているものの、実際には見積り値と差異がある場合があり、見積り値に対してバラツキが大きい。図10に示す風量Qa2,Qb2は、合成抵抗R1のバラツキの分だけ値にバラツキを持つ。このため、ダクト接続型の空気調和装置室内機は、その設置後に風量が所要の値とならずに、再調整となる場合がある。
このような場合、比較例に係る空気調和装置室内機では、現地でプーリを交換する必要がある。しかし、前記したように、プーリは一般に重いため、交換時の作業者の負担が大きい。また、両プーリの中心位置の調整やベルトのテンションの調整が不適切な場合にはベルトの寿命や伝達効率に悪影響を与えるため、交換作業は熟練および時間を要する。さらに、一旦両プーリの組み合わせを設定すると、運転中には風量を変えることができないため、空調負荷が低くなった場合には必要以上に風量が大きいまま運転されることとなり、空調のエネルギ効率が悪化する。
これに対し、本実施形態では、送風機3の出口32側の静圧、送風機3の回転速度、および記憶部54に記憶される静圧、風量、および回転速度の関係を示す関係情報としての送風機特性に基づいて、送風機3の風量が演算される。そして、演算によって得られる風量が予め設定された設定風量となるようにモータ4の回転速度が制御される。
すなわち、送風機3の出口32側の静圧と、送風機3の回転速度と、静圧、風量および回転速度の関係を示す関係情報とに基づいて予め設定された所定の風量となるようにモータ4の回転速度が制御される。
したがって本実施形態によれば、送風機3の回転速度の増減をフィードバック制御することで、送風機3の風量を予め設定された設定風量となるように自動的に調整できる。
すなわち、抵抗の異なる様々なダクト8が接続された場合でも所要の風量に容易に調整でき、空調のエネルギ効率を向上させることができる空気調和装置室内機100を提供できる。
〔第2実施形態〕
次に、図11〜図14を参照して、第2実施形態について、第1実施形態と相違する点を中心に説明し、共通する点の説明を適宜省略する。
図11は、本発明の第2実施形態に係る室内機100の制御系の概略構成を示すブロック図である。
第1実施形態は、送風機3の出口32付近に圧力センサ58を備えている。そして、第1実施形態は、圧力センサ58を用いて検知した送風機3の出口32側の静圧と、送風機3の回転速度と、静圧と風量との関係を回転速度ごとに示す送風機特性とに基づいて、送風機3の現在の風量を演算し、設定風量となるような制御を行う。しかしながら、送風機3の出口32付近に圧力センサ58を設けると、圧力センサ分のコストが上昇する。そこで、第2実施形態は、送風機特性を用いつつも、送風機3の出口32側の圧力に対応する特性情報を他の手段によって求め、同等の効果を得るように構成されている。
本実施形態に係る室内機100の全体構成は、図1〜図2にて示した構成と概ね同じである。図11に示すように、本実施形態に係る室内機100は、送風機3の出口32付近に圧力センサ58を持たない点で、第1実施形態と相違している。また、後記するように、制御部50の第1検知部51aが、インバータ56の1次側(入力側)若しくは2次側(出力側)の電圧・電流からモータ4へ供給する電力(以下、「モータ電力」ともいう)を求め、送風機3を駆動するモータ4の軸動力(送風機軸動力)を算出する点で、第1実施形態と相違している。つまり、第1検知部51aは、第1実施形態で用いられる圧力に対応する特性情報として、モータ4の軸動力を検知する。
本実施形態において、インバータ56は、その入力部、若しくは出力部の電圧・電流を検出し得る構成とされており、検出した電圧・電流から、インバータ56の入力側若しくは出力側の電力を算出し得る構成とされている。
ここで、本実施形態における送風機3の現在の風量を演算する方法を説明する。
まず、送風機3の静圧、送風機3の風量、モータ4の軸動力、および送風機3の回転速度の関係を示す関係情報が、予め試験を実施することによって求められる。
図12は、静圧と風量との関係を回転速度およびモータ4の軸動力の各々ごとに示す送風機特性の一例を示す図である。
図12においてモータ4の軸動力は破線で示す線である。このモータ4の軸動力の線図から、同一の回転速度では、風量の増加とともにモータ4の軸動力が増加し、また、同一の風量でも、回転速度の増加とともに、静圧と軸動力とが増加することがわかる。したがって、この図12の情報をデータテーブル、若しくは、それぞれのパラメータの関係式として、制御装置15の記憶部54に記憶させておけば、モータ4の軸動力と送風機3の回転速度の情報から、現在の風量と静圧がわかる。かかる関係式やデータテーブルは、前記した関係情報に相当する。
モータ4の軸動力は、モータ電力にモータ効率を乗ずることによって算出することができる。ここで、モータ電力として、インバータ56の出力側の電力を用いてもよいし、インバータ効率を加味したうえで、インバータ56の入力側の電力を用いてもよい。
図13は、インバータ制御における出力電圧と周波数との関係を示す図である。
インバータ56の出力側の電力からモータ電力を算出する場合、電流値だけを用いて算出することも考えられる。しかし、図13に示すように、インバータ56は、図13に示すF1領域の低回転側では(電圧/周波数)を一定にてモータ4を制御し、図13に示すF2領域の高回転側では、電圧一定とし周波数を可変させる。このため、回転速度の低いすなわち周波数が低い領域では、モータ負荷に応じて、電力は変化するが、電圧も変化させているため、結果として電流がほとんど変わらない領域がある。よって、電流値に基づいてモータ4の軸動力を推定算出した場合、風量の低い領域で不正確な結果となる。したがって、電力を検知してモータ4の軸動力を求める必要がある。
次に、本発明の第2実施形態に係る室内機100の送風機3の駆動制御について説明する。図14は、本発明の第2実施形態に係る室内機100の送風機3の駆動制御の手順を示すフローチャートである。
図14に示すように、第2実施形態は、ステップS2a,4a,5a,6aの内容が、図6に示す第1実施形態と相違している。図14におけるステップS1、S3,S11は、図8におけるステップと同様である。
ステップS2aでは、制御部50の第1検知部51aはモータ4の軸動力を検知する。
ステップS4aでは、制御部50の送風制御部53aは、検知されたモータ4の軸動力および回転速度を、記憶部54に記憶されている静圧、風量、モータ4の軸動力、および回転速度の関係を示す関係情報としての送風機特性に照らし合わせることによって、送風機3の風量を演算する。
ステップS5aでは、制御部50の送風制御部53aは、ステップS4aにおける演算によって得られる風量と前記した関係情報としての送風機特性を比較することによって、送風機3がサージング領域A(図5参照)にあるか否かを判定する。
ステップS6aでは、制御部50の送風制御部53aは、演算によって得られる風量が予め設定された設定風量となるようにモータ4の回転速度を制御する(ステップS5)。
このような第2実施形態によれば、前記した第1実施形態と同様の作用効果を奏することに加えて、以下のような作用効果を奏する。
すなわち、送風機3の出口32付近に圧力センサを備えなくても、送風機3を所定の運転、すなわち設定風量とすることができる。
また、第1実施形態では、回転速度と静圧の情報を与えて送風機特性の線図を参照する際に、一つの静圧に対して2つ若しくは3つの風量の解を持つ場合がある(図5参照)。このため、風量の解がサージング領域Aにあるか安定領域Bにあるかを判別するために、静圧の所定時間当たりの変動量が用いられる。これに対して、第2実施形態は、モータ4の軸動力を算出して用いる。すなわち、第2実施形態は、検知されたモータ4の軸動力および回転速度を、記憶部54に記憶されている静圧、風量、モータ4の軸動力、および回転速度の関係を示す関係情報としての送風機特性(図12参照)に照らし合わせることによって、送風機3の風量を演算するため、風量が一意的に求まる。このため、第2実施形態は、第1実施形態よりも風量の同定が容易である。
また、風量が一意的に求まるので、現在の風量と回転速度を、前記した関係情報としての送風機特性と比較することで、現在の風量が送風機3のサージング領域A(図5参照)に該当するか否かも判断できる。
〔第3実施形態〕
次に、図15〜図18を参照して、第3実施形態について、第1実施形態と相違する点を中心に説明し、共通する点の説明を適宜省略する。
図15(a)は、本発明の第3実施形態に係る空気調和装置室内機100において筐体1の一部が切り欠かれた状態の正面図、図15(b)は、本発明の第3実施形態に係る空気調和装置室内機100において筐体1の一部が切り欠かれた状態の右側面図である。図16(a)は、図15(a)に示される送風機3の駆動機構を拡大して示す正面図、図16(b)は、図15(a)に示される送風機3の駆動機構を拡大して示す右側面図である。
第3実施形態は、前記した第1実施形態において送風機3がサージング領域A(図5参照)にあると判定された場合のサージング抑制技術について提示する。前記した第1実施形態においては、送風機3がサージング領域A(図5参照)にあるか否かが判別できる。しかし、送風機3がサージング領域にあると判別して空気調和装置の運転の運転を止めてしまうと、空気調和装置の運転範囲が狭くなるおそれがある。第3実施形態の技術は、これを回避するために、第1実施形態と合わせて用いる技術である。ただし、第3実施形態の技術は、第2実施形態と合わせて用いることも可能である。
図15に示すように、第3実施形態に係る室内機100は、複数(例えば図15では2つ)の送風機3と、複数の送風機3をそれぞれ駆動する複数(例えば図15では2つ)のモータ4とを備えている。複数のモータ4の各々は、個別に運転可能な独立したモータである。
複数の送風機3のそれぞれにモータ4が割り当てられているため、通常の誘導電動機では、モータの軸方向の長さが大きく、室内機100の筐体1の幅方向寸法を大きくせざるを得ない。しかし、本実施形態では、モータ4として、円盤状に配置された回転子と固定子とが軸方向に対向した構造を有するアキシャルギャップモータが使用されている。これにより、モータの軸方向の寸法を小さくしつつ、所要の出力のモータが得られる。したがって、送風機3ごとに個別のモータ4を配置しても、室内機100の筐体1の幅方向寸法を大きくすることなく、各モータ4を個別に制御できる利点を享受することができる。
また、図16に示すように、送風機3がサージング領域Aにあると判定された場合に複数の送風機3のうちの少なくとも送風制御部53による停止対象となる送風機3の出口32に、該出口32を開閉可能な出口開閉機構としてのダンパ機構11が設けられている。
ここで、本実施形態におけるサージング領域の回避方法について説明する。
本実施形態では、送風制御部53は、送風機3がサージング領域Aにあると判別された場合、2台の送風機3のうちの一つを停止させ、停止させた送風機3の出口32に設置されたダンパ機構11を作動させて、停止させた送風機3の出口32を閉鎖する。
図17は、送風機3の運転台数を切り替えた場合の送風機特性の変化を説明するための図である。
図17に示すように、送風機3の運転台数が2台から1台に変わると、送風機特性は、同じ回転速度においては、静圧が同じ状態で見ると、風量が例えばQ2からQ1へと半分になる特性となる。このように、送風機3の2台運転時のサージング領域A2よりも送風機3の1台運転時のサージング領域A1が小さくなるため、送風機3の運転台数を2台から1台に切り替えることによって、サージング領域から脱することができる。この後、設定風量になるように、運転継続している残りの送風機3の回転速度をフィードバック制御すれば、低風量側においてもサージングを発生させることがなく、空気調和装置の運転範囲を広げることができる。
また、片側の送風機3を停止させた際に、運転継続をしている残りの送風機3の回転速度をフィードフォワード制御にて適当な回転速度増加を行うと、送風機3の運転台数の切り替え時の吹き出し風量変化が穏やかになる。
次に、本発明の第3実施形態に係る室内機100の送風機3の駆動制御について説明する。図18は、本発明の第3実施形態に係る室内機100の送風機3の駆動制御の手順を示すフローチャートである。
図18に示すように、ステップS5でYesの場合に、第3実施形態はステップS7を実行する点で、ステップS11(図6参照)を実行する第1実施形態と相違している。図18におけるステップS7以外のステップは、図6におけるステップと同様である。
第3実施形態では、制御部50の送風制御部53は、送風機3がサージング領域にあると判定した場合(ステップS5でYes)、複数の送風機3(本実施形態では2つ)の少なくとも一つ(本実施形態では一つ)を停止させる制御を行う(ステップS7)。これにより、送風機特性におけるサージング領域が小さくなり、サージング領域から脱することが可能となる。また、送風制御部53は、停止させた送風機3の出口32をダンパ機構11によって閉鎖する制御を行う。これにより、送風効率の低下を防止することができる。
この後、処理がステップS1に戻り、制御部50の送風制御部53は、予め設定された設定風量となるように、運転継続している残りの送風機3の回転速度、つまりモータ4の回転速度を制御する。
そして、空調負荷が増加する際は、再び風量を大きくする必要があるが、この際、送風機3の運転台数を1台から2台に切り替える閾値を適切に設定する必要がある。これに関しては、制御装置15の記憶部54に記憶された静圧と風量との関係を示す送風機特性に、モータ4の軸動力(送風機軸動力)の情報を付加するとよい。そして、同一の静圧および風量の条件下で、送風機3を1台使用する場合の送風機軸動力と2台使用する場合の送風機軸動力とを比較する。そして、送風機3を2台使用する場合にサージングが発生しない領域であることを確認した上で、送風機3の1台使用時よりも送風機軸動力が低い状態にて送風機3の2台使用に切り替えるようにすればよい。
このような第3実施形態によれば、前記した第1実施形態または第2実施形態と同様の作用効果を奏することに加えて、以下のような作用効果を奏する。
すなわち、複数の送風機3の少なくとも一つを停止させることによって、送風機特性におけるサージング領域が小さくなり、サージング領域から脱することが可能となる。このため、低風量側においてもサージングを発生させることがなく、空気調和装置の運転範囲の拡大が可能となる。これにより、空調負荷の低下時には、その空調負荷に見合う程度まで風量を下げることが可能となる。
なお、第3実施形態では、送風機3が2台設置される場合について説明したが、3台以上の複数台数が設置される場合においても、同様の考え方にて、サージング領域での運転を回避することが可能である。
〔第4実施形態〕
次に、図19〜図20を参照して、第4実施形態について、第3実施形態と相違する点を中心に説明し、共通する点の説明を適宜省略する。
図19(a)は、本発明の第4実施形態に係る空気調和装置室内機100において筐体1の一部が切り欠かれた状態の正面図、図19(b)は、本発明の第4実施形態に係る空気調和装置室内機100において筐体1の一部が切り欠かれた状態の右側面図である。
第4実施形態は、第3実施形態とは異なる他のサージング抑制技術について提示する。第4実施形態の技術は、第3実施形態と同様に、第1実施形態と合わせて用いる技術である。ただし、第4実施形態の技術は、第2実施形態と合わせて用いることも可能である。
サージング領域は、前記したように、送風機特性の低風量側において圧力変動等が起きる不安定領域である。第3実施形態の技術は、送風機3の運転台数を調整して送風機特性の不安定領域を小さくすることによって、運転時のサージングを抑制し、低風量側の運転範囲を拡大できる。
しかしながら、送風機3を1台のみ備える室内機100の場合には、第3実施形態のように、送風機3の運転台数の調整をすることはできない。第4実施形態の技術は、送風機3を1台のみ備える室内機100であっても、第3実施形態と同様の効果を得ることができるように構成されている。
図19に示すように、第4実施形態に係る室内機100は、空気を吸い込む複数の吸込み口31a,31bを有する両吸い込みタイプの送風機3を備えている。送風機3の複数の吸込み口31a,31bのうち少なくても片側には、吸込み口を開閉可能な吸込み口開閉機構としての吸込みダンパ13が設けられている。
また、送風機3のファンランナ33の軸方向中央部には、モータ4の回転軸と嵌合するボスを取り付けるディスク33aが形成されている。したがって、片側の吸込みダンパ13を閉じることによって、ランナ幅の短い送風機に近い特性となる。このため、送風機特性の線図(図5、図17参照)において、サージング領域が左側に移動し、低風量側の運転範囲が拡大する。
次に、本発明の第4実施形態に係る室内機100の送風機3の駆動制御について説明する。図20は、本発明の第4実施形態に係る室内機100の送風機3の駆動制御の手順を示すフローチャートである。
図20に示すように、ステップS5でYesの場合に、第4実施形態はステップS7aを実行する点で、ステップS7(図18参照)を実行する第3実施形態と相違している。図20におけるステップS7a以外のステップは、図18におけるステップと同様である。
第4実施形態では、制御部50の送風制御部53は、送風機3がサージング領域にあると判定した場合(ステップS5でYes)、複数の吸込み口31a,31bの少なくとも一つを閉鎖する制御を行う(ステップS7a)。ここでは、吸込み口31bが、吸込みダンパ13によって閉じられる。
このような第4実施形態によれば、片側の吸込み口31bを閉じることによって、送風機特性の線図(図5、図17参照)においてサージング領域が左側に移動し、送風機特性におけるサージング領域が小さくなる。したがって、第4実施形態によっても、前記した第3実施形態と同様の作用効果を奏することができる。
なお、送風機3の種類によっては、ケーシング34の形状の影響で、片側の吸込み口を閉じた場合と両方の吸込み口から空気を吸い込む場合とでの送風機特性の変化を、吸込み口31a,31bのどちらか一方を閉じた場合の送風機特性を用いて推定できない場合がある。この場合には、それぞれの送風機特性を事前に測定して、制御装置15の記憶部54に記憶させて適宜判定に使用するとよい。
以上、本発明について実施形態に基づいて説明したが、本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
例えば、前記した実施形態では、空気調和装置室内機は、冷房および暖房の両方に使用できるものであるが、これに限定されるものではなく、例えば冷房専用であってもよい。この場合、図21に示すように、制御装置15aは、熱交換器2に対して筐体1内の空気流れの下流側に配置されているとよい。このようにすれば、制御装置15aを冷却することができ、動作の安定化をより図ることができる。
1 筐体
2 熱交換器
3 送風機
4 モータ
8 ダクト
9 操作・表示装置
11 ダンパ機構
12 膨張弁
13 吸込みダンパ
15,15a 制御装置
16 接続部
31,31a,31b 吸込み口
32 出口
33 ファンランナ
34 ケーシング
50 制御部
51,51a 第1検知部
52 第2検知部
53,53a 送風制御部
54 記憶部
55 入出力回路
56 インバータ
57 冷凍サイクル部品
58 圧力センサ
100 空気調和装置室内機

Claims (13)

  1. 送風機と、
    前記送風機を駆動するモータと、
    前記送風機が内部に設置され前記送風機によって搬送される空気が流通するダクトとの接続部を有する筐体と、
    前記送風機の出口側の圧力に対応する特性情報を検知する第1検知部と、
    前記送風機の回転速度を検知する第2検知部と、
    前記送風機の出口側の圧力、前記送風機の風量、および前記送風機の回転速度の関係を示す関係情報を記憶する記憶部と、
    第1検知部によって検知される前記特性情報、第2検知部によって検知される前記送風機の回転速度、および前記記憶部に記憶される前記関係情報に基づいて、前記送風機の風量が予め設定された設定風量となるように前記モータの回転速度を制御する送風制御部と、
    を備えることを特徴とする空気調和装置室内機。
  2. 前記送風機の出口側に設けられる圧力センサを備え、
    前記第1検知部は、前記圧力センサからの信号によって前記送風機の出口側の圧力を前記特性情報として検知し、
    前記送風制御部は、前記第1検知部によって検知される前記送風機の出口側の圧力、前記第2検知部によって検知される前記送風機の回転速度、および前記記憶部に記憶される前記関係情報に基づいて、前記モータの回転速度を制御することを特徴とする請求項1に記載の空気調和装置室内機。
  3. 前記送風制御部は、前記第1検知部によって検知される圧力の所定時間当たりの変動量が所定以上の場合、前記送風機がサージング領域にあると判定することを特徴とする請求項2に記載の空気調和装置室内機。
  4. 前記第1検知部は、前記モータの軸動力を前記特性情報として検知し、
    前記関係情報は、前記送風機の出口側の圧力、前記送風機の風量、前記モータの軸動力、および前記送風機の回転速度の関係を示すものであり、
    前記送風制御部は、前記第1検知部によって検知される前記モータの軸動力、前記第2検知部によって検知される前記送風機の回転速度、および前記記憶部に記憶される前記関係情報に基づいて、前記モータの回転速度を制御することを特徴とする請求項1に記載の空気調和装置室内機。
  5. 前記送風制御部は、前記第1検知部によって検知される前記モータの軸動力、前記第2検知部によって検知される前記送風機の回転速度、および前記記憶部に記憶される前記関係情報に基づいて、前記送風機がサージング領域にあるか否かを判定することを特徴とする請求項4に記載の空気調和装置室内機。
  6. 前記モータは交流電動機であり、
    前記モータへ供給する交流電力の周波数を変換するインバータを備え、
    前記第2検知部は、前記インバータから前記モータへ供給する交流電力の周波数を用いて前記送風機の回転速度を算出して検知することを特徴とする請求項1に記載の空気調和装置室内機。
  7. 前記送風制御部は、前記送風機がサージング領域にあると判定した場合、判定結果を表示装置に表示させる制御、および前記送風機を停止させる制御の少なくとも一方を行うことを特徴とする請求項3または請求項5に記載の空気調和装置室内機。
  8. 複数の前記送風機と、複数の前記送風機をそれぞれ駆動する複数の前記モータと、を備えており、
    前記送風制御部は、前記送風機がサージング領域にあると判定した場合、複数の前記送風機の少なくとも一つを停止させる制御を行うことを特徴とする請求項3または請求項5に記載の空気調和装置室内機。
  9. 前記モータは、アキシャルギャップモータであることを特徴とする請求項8に記載の空気調和装置室内機。
  10. 前記送風機がサージング領域にあると判定された場合に複数の前記送風機のうちの少なくとも前記送風制御部による停止対象となる前記送風機の出口に、該出口を開閉可能な出口開閉機構が設けられていることを特徴とする請求項8に記載の空気調和装置室内機。
  11. 前記送風機は、空気を吸い込む複数の吸込み口を有し、
    前記送風制御部は、前記送風機がサージング領域にあると判定した場合、複数の前記吸込み口の少なくとも一つを閉鎖する制御を行うことを特徴とする請求項3または請求項5に記載の空気調和装置室内機。
  12. 前記空気調和装置室内機は、冷房専用であり、
    前記筐体の内部に設置される熱交換器を備え、
    前記送風制御部を含む制御装置は、前記熱交換器に対して前記筐体内の空気流れの下流側に配置されていることを特徴とする請求項1に記載の空気調和装置室内機。
  13. 前記送風機は、前記モータによって回転させられるファンランナを有し、
    前記ファンランナは、前記モータの出力軸に直結されていることを特徴とする請求項1に記載の空気調和装置室内機。
JP2015046422A 2015-03-09 2015-03-09 空気調和装置室内機 Active JP6453115B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046422A JP6453115B2 (ja) 2015-03-09 2015-03-09 空気調和装置室内機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046422A JP6453115B2 (ja) 2015-03-09 2015-03-09 空気調和装置室内機

Publications (2)

Publication Number Publication Date
JP2016166698A true JP2016166698A (ja) 2016-09-15
JP6453115B2 JP6453115B2 (ja) 2019-01-16

Family

ID=56898297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046422A Active JP6453115B2 (ja) 2015-03-09 2015-03-09 空気調和装置室内機

Country Status (1)

Country Link
JP (1) JP6453115B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109210689A (zh) * 2018-09-12 2019-01-15 珠海格力电器股份有限公司 一种空气调节设备及其控制方法
WO2020070828A1 (ja) * 2018-10-03 2020-04-09 三菱電機株式会社 冷凍サイクル装置
CN111059693A (zh) * 2019-12-31 2020-04-24 宁波奥克斯电气股份有限公司 一种多联机系统电加热的控制方法、装置及多联机系统
WO2021054431A1 (ja) * 2019-09-20 2021-03-25 株式会社富士通ゼネラル 空気調和装置
CN113049088A (zh) * 2019-12-26 2021-06-29 宁波奥克斯电气股份有限公司 一种空调喘振状态检测装置
CN113531655A (zh) * 2020-04-14 2021-10-22 青岛海信日立空调系统有限公司 一种风管机
WO2022030492A1 (ja) 2020-08-07 2022-02-10 ダイキン工業株式会社 ファンユニット、およびそれを備えた空気処理システム
JP7306290B2 (ja) 2020-02-13 2023-07-11 株式会社富士通ゼネラル 空気調和装置
US11971188B2 (en) 2020-08-07 2024-04-30 Daikin Industries, Ltd. Fan unit and air treatment system including the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573596U (ja) * 1978-11-16 1980-05-21
JPS62294797A (ja) * 1986-06-13 1987-12-22 Kawasaki Steel Corp 送排風機の風量制御方法
JPS63141895U (ja) * 1987-03-09 1988-09-19
JPH03177743A (ja) * 1989-12-06 1991-08-01 Mitsubishi Electric Corp 空気調和機
JPH046341A (ja) * 1990-04-24 1992-01-10 Mitsubishi Electric Corp 空気調和機
JPH04288422A (ja) * 1991-03-18 1992-10-13 Matsushita Seiko Co Ltd ダクト式空調機
JPH09203552A (ja) * 1996-01-29 1997-08-05 Kubota Toreen Kk 空気調和システム
JP2003114021A (ja) * 2001-10-04 2003-04-18 Miura Co Ltd 送風機の制御方法
JP2005171835A (ja) * 2003-12-10 2005-06-30 Fujitsu General Ltd 送風装置
JP2010117062A (ja) * 2008-11-12 2010-05-27 Panasonic Corp ダクトファン
JP2014066423A (ja) * 2012-09-26 2014-04-17 Hitachi Appliances Inc 空気調和機

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573596U (ja) * 1978-11-16 1980-05-21
JPS62294797A (ja) * 1986-06-13 1987-12-22 Kawasaki Steel Corp 送排風機の風量制御方法
JPS63141895U (ja) * 1987-03-09 1988-09-19
JPH03177743A (ja) * 1989-12-06 1991-08-01 Mitsubishi Electric Corp 空気調和機
JPH046341A (ja) * 1990-04-24 1992-01-10 Mitsubishi Electric Corp 空気調和機
JPH04288422A (ja) * 1991-03-18 1992-10-13 Matsushita Seiko Co Ltd ダクト式空調機
JPH09203552A (ja) * 1996-01-29 1997-08-05 Kubota Toreen Kk 空気調和システム
JP2003114021A (ja) * 2001-10-04 2003-04-18 Miura Co Ltd 送風機の制御方法
JP2005171835A (ja) * 2003-12-10 2005-06-30 Fujitsu General Ltd 送風装置
JP2010117062A (ja) * 2008-11-12 2010-05-27 Panasonic Corp ダクトファン
JP2014066423A (ja) * 2012-09-26 2014-04-17 Hitachi Appliances Inc 空気調和機

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109210689A (zh) * 2018-09-12 2019-01-15 珠海格力电器股份有限公司 一种空气调节设备及其控制方法
JPWO2020070828A1 (ja) * 2018-10-03 2021-04-30 三菱電機株式会社 冷凍サイクル装置
WO2020070828A1 (ja) * 2018-10-03 2020-04-09 三菱電機株式会社 冷凍サイクル装置
WO2021054431A1 (ja) * 2019-09-20 2021-03-25 株式会社富士通ゼネラル 空気調和装置
JP2021046994A (ja) * 2019-09-20 2021-03-25 株式会社富士通ゼネラル 空気調和装置
CN113049088A (zh) * 2019-12-26 2021-06-29 宁波奥克斯电气股份有限公司 一种空调喘振状态检测装置
CN111059693A (zh) * 2019-12-31 2020-04-24 宁波奥克斯电气股份有限公司 一种多联机系统电加热的控制方法、装置及多联机系统
CN111059693B (zh) * 2019-12-31 2021-10-26 宁波奥克斯电气股份有限公司 一种多联机系统电加热的控制方法、装置及多联机系统
JP7306290B2 (ja) 2020-02-13 2023-07-11 株式会社富士通ゼネラル 空気調和装置
CN113531655A (zh) * 2020-04-14 2021-10-22 青岛海信日立空调系统有限公司 一种风管机
WO2022030492A1 (ja) 2020-08-07 2022-02-10 ダイキン工業株式会社 ファンユニット、およびそれを備えた空気処理システム
EP4194764A4 (en) * 2020-08-07 2024-01-03 Daikin Ind Ltd FAN UNIT AND AIR TREATMENT SYSTEM EQUIPPED THEREOF
US11971188B2 (en) 2020-08-07 2024-04-30 Daikin Industries, Ltd. Fan unit and air treatment system including the same

Also Published As

Publication number Publication date
JP6453115B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
JP6453115B2 (ja) 空気調和装置室内機
JP6089319B2 (ja) 空気調和装置及び空気調和装置の制御方法
JP2012241969A (ja) 空気調和機の風量調整装置
JP6397050B2 (ja) 空気調和機
JP5896719B2 (ja) 空気調和機
US20190049134A1 (en) Method and apparatus for system diagnostics using accelerometers
JP5988224B2 (ja) モータ制御装置及びモータ制御方法
US11549861B2 (en) Determination of pulley ratio of a belt-drive blower
JP6229167B2 (ja) ブラシレスdcモータを搭載した送風装置
JP2017215115A (ja) 空気調和装置
JP2013253731A (ja) 空気調和装置の室内機
EP4160101A1 (en) A ventilation system for a room
JP6324187B2 (ja) 送風機
JP2015183874A (ja) 空気調和装置
JP7450138B2 (ja) 送風装置及び静圧評価装置
JP4910577B2 (ja) 逆相検知装置、それを備えた空気調和装置、及び、逆相検知方法
WO2018198688A1 (ja) 空気調和機
JP2014126331A (ja) 空気調和装置
JP6052271B2 (ja) ファン回転数決定方法及び空気調和機
WO2023175874A1 (ja) 空気調和機
US11448415B2 (en) Auto-adjusting fan assembly for an air conditioning appliance
JP2014059095A (ja) 給排型換気装置
US11719457B2 (en) HVAC system and method for determining a temperature offset between a discharged air temperature and an indoor temperature
CN112240625B (zh) 空气调节系统以及异常检测系统
JP4042689B2 (ja) 空気調和機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181212

R150 Certificate of patent or registration of utility model

Ref document number: 6453115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150