JP2016148418A - Sheath material for vacuum heat insulation material and evaluation method of sheath material for vacuum heat insulation material - Google Patents

Sheath material for vacuum heat insulation material and evaluation method of sheath material for vacuum heat insulation material Download PDF

Info

Publication number
JP2016148418A
JP2016148418A JP2015026102A JP2015026102A JP2016148418A JP 2016148418 A JP2016148418 A JP 2016148418A JP 2015026102 A JP2015026102 A JP 2015026102A JP 2015026102 A JP2015026102 A JP 2015026102A JP 2016148418 A JP2016148418 A JP 2016148418A
Authority
JP
Japan
Prior art keywords
vacuum
vacuum heat
heat insulating
heat insulation
insulation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015026102A
Other languages
Japanese (ja)
Inventor
松本 雄一
Yuichi Matsumoto
雄一 松本
伸次 中西
Shinji Nakanishi
伸次 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2015026102A priority Critical patent/JP2016148418A/en
Publication of JP2016148418A publication Critical patent/JP2016148418A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulation material having sufficient stretching and bending resistance in actual use, provide a method for evaluating stretching and bending resistance of a sheath material for a vacuum heat insulation material in a state of being close to an actual use condition in the vacuum heat insulation material, and provide flexibility determination reference of the sheath material for a vacuum heat insulation material.SOLUTION: A sheath material for a vacuum heat insulation material subjects a heat insulation material to vacuum sealing to form a vacuum heat insulation material. The sheath material includes at least a rein base material, a barrier layer, and a thermal fusion resin layer. An inner pressure change amount of a specimen obtained by filling a bag, formed by making the sheath material into a bag shape, with spherical bodies, and performing vacuum sealing is 100 Pa/day or less.SELECTED DRAWING: Figure 1

Description

本発明は、冷蔵庫や低温コンテナあるいは住居の壁材などに取り付けられる真空断熱材に使用される真空断熱材用外装材及びこれを評価する方法に関するものである。   The present invention relates to a vacuum heat insulating material exterior material used for a vacuum heat insulating material attached to a refrigerator, a low temperature container or a wall material of a house, and a method for evaluating the same.

冷蔵庫や低温コンテナあるいは住居の壁材などには、従来から種々の断熱材が用いられており、特に近年では、断熱性能の優れた断熱材として、グラスウールなどの無機繊維シートや、多孔質シリカを不織布で包んだ芯材を外装材で包み、真空封止した構成の真空断熱材が使用されている。   Various heat insulating materials have been used for refrigerators, low-temperature containers, or residential wall materials. Especially, in recent years, inorganic fiber sheets such as glass wool and porous silica have been used as heat insulating materials with excellent heat insulating performance. The vacuum heat insulating material of the structure which wrapped the core material wrapped with the nonwoven fabric with the exterior material, and was vacuum-sealed is used.

真空断熱材用外装材の構成としては、主に樹脂基材(保護層)、バリア材(バリア層)、熱融着性樹脂(シーラント層)を備えた積層体が一般的に用いられている。このような外装材としては、内部を長期間真空状態に保持するために、外部からの水蒸気やガスの侵入を防ぐ、優れたバリア性が要求される。   As the structure of the vacuum heat insulating material, a laminate including a resin base material (protective layer), a barrier material (barrier layer), and a heat-fusible resin (sealant layer) is generally used. . Such an exterior material is required to have excellent barrier properties that prevent entry of water vapor and gas from the outside in order to keep the inside in a vacuum state for a long time.

また、外装材には、延びや曲げに対する強さ(ガスバリア性能の維持)も要求される。これは芯材となるグラスウールや多孔質シリカを真空封止した際に生じる凹凸や、規定サイズへの成型加工により、外装材が伸びや曲げのストレスを受けるからである。初期のバリア性に優れていても屈曲や延伸後のバリア性が見劣りすると真空断熱材用外装材としての適用は困難である。   Further, the exterior material is required to have strength against extension and bending (maintenance of gas barrier performance). This is because the exterior material is subjected to elongation and bending stress due to irregularities generated when glass wool or porous silica as a core material is vacuum-sealed, and molding to a specified size. Even if it is excellent in the initial barrier property, if the barrier property after bending or stretching is inferior, it is difficult to apply as a vacuum heat insulating material.

このような屈曲や延伸を想定したフィルムの評価方法としてはゲルボ試験(特許文献1〜4)が一般的であるが、用途として真空断熱材用外装材を想定した場合、試験としては過酷であると言える。そのため、過剰品質となり開発コストがかさむ可能性があった。   As an evaluation method of a film assuming such bending and stretching, a gelbo test (Patent Documents 1 to 4) is common, but when a vacuum heat insulating material is assumed as an application, the test is severe. It can be said. Therefore, there was a possibility that the quality would be excessive and the development cost would increase.

特許第3068106号公報Japanese Patent No. 3068106 特許第3068107号公報Japanese Patent No. 3068107 特許第3095153号公報Japanese Patent No. 3095153 特許第3070702号公報Japanese Patent No. 3070702

本発明は上記の事情を鑑みてなされたもので、実際の使用時に十分な延伸・屈曲耐性を備えた真空断熱材を提供することを課題とする。また、真空断熱材としての実際の使用条件に近い状態での真空断熱材用外装材の延伸・屈曲耐性を評価する方法を提供することを課題とする。   This invention is made | formed in view of said situation, and makes it a subject to provide the vacuum heat insulating material provided with sufficient extending | stretching and bending resistance at the time of actual use. It is another object of the present invention to provide a method for evaluating the stretching / bending resistance of a vacuum heat insulating exterior material in a state close to actual use conditions as a vacuum heat insulating material.

本発明の真空断熱材用外装材は、断熱材を真空封止して真空断熱材を形成するための真空断熱材用外装材であって、前記真空断熱材用外装材は少なくとも樹脂基材、バリア層、熱融着性樹脂を備えており、前記真空断熱材用外装材は、これを製袋した袋の中に球状体を充填後、真空封止して得られた試験体の内圧変化量が100Pa/day以下であることを特徴とする。   The vacuum insulation material exterior material of the present invention is a vacuum insulation material exterior material for vacuum-sealing the insulation material to form a vacuum insulation material, wherein the vacuum insulation material exterior material is at least a resin base material, A barrier layer and a heat-sealable resin are provided. The amount is 100 Pa / day or less.

本発明の真空断熱材用外装材の評価方法は、断熱材を真空封止して真空断熱材を形成するための真空断熱材用外装材を評価する方法であって、真空断熱材用外装材を袋状に製袋し、内部に複数の球状体を充填して真空封止した試験体を作成し、この試験体の内圧変化量を測定することを特徴とする。   The method for evaluating a packaging material for a vacuum heat insulating material according to the present invention is a method for evaluating a packaging material for a vacuum heat insulating material for vacuum-sealing the heat insulating material to form a vacuum heat insulating material. Is made into a bag shape, a plurality of spherical bodies are filled into a vacuum sealed test body, and the amount of change in internal pressure of the test body is measured.

本発明の真空断熱材用外装材によれば、内圧変化量が100Pa/day以下であると、球状体によるクラック等のダメージが一定レベルで抑制される屈曲性を有するので、芯材を封入した後、10年経過後でも十分なガスバリア性能を維持することができる。 According to the vacuum heat insulating exterior material of the present invention, when the amount of change in internal pressure is 100 Pa / day or less, the core material is enclosed because damage such as cracks due to the spherical body is suppressed at a certain level. Thereafter, sufficient gas barrier performance can be maintained even after 10 years.

本発明の真空断熱材用外装材の評価方法によれば、ゲルボ試験や、積層体のガスバリア性能を評価する一般的な方法であるMOCON法では評価ができなかった、真空断熱材用外装材としての適性を評価することができる。より具体的には、積層体の屈曲性(芯材封入後の真空度変化)を実際の使用環境に近い状態で評価することができ、過剰品質とならずに、適正な評価結果を得ることができる。 According to the method for evaluating a vacuum insulation material according to the present invention, as a vacuum insulation material exterior material that could not be evaluated by the MOCON method, which is a general method for evaluating the gas barrier performance of a laminate or gas barrier, The suitability of can be evaluated. More specifically, the flexibility of the laminate (change in the degree of vacuum after enclosing the core material) can be evaluated in a state close to the actual usage environment, and an appropriate evaluation result can be obtained without excessive quality. Can do.

本発明の真空断熱材用外装材の一実施形態を示す断面概略図である。It is a section schematic diagram showing one embodiment of the exterior material for vacuum heat insulating materials of the present invention. 本発明の真空断熱材用外装材を用いた真空断熱材の一実施形態を示す断面概略図である。It is the cross-sectional schematic which shows one Embodiment of the vacuum heat insulating material using the exterior material for vacuum heat insulating materials of this invention. 本発明の真空断熱材の評価方法を行うための装置の概略を示した図である。It is the figure which showed the outline of the apparatus for performing the evaluation method of the vacuum heat insulating material of this invention.

以下、本発明を図に基づき具体的に説明する。
<真空断熱材用外装材>
図1に示すように、本発明の真空断熱材用外装材10は、樹脂基材1、バリア層2、熱融着性樹脂3を順次積層してなる積層体からなる。なお、樹脂基材1、バリア層2、熱融着性樹脂3を順次積層する方法としては、例えば、それぞれの層間に接着剤を介する公知の方法を用いることができる。
Hereinafter, the present invention will be specifically described with reference to the drawings.
<Exterior material for vacuum insulation>
As shown in FIG. 1, the vacuum insulating material exterior material 10 of the present invention is composed of a laminate in which a resin base material 1, a barrier layer 2, and a heat-fusible resin 3 are sequentially laminated. In addition, as a method of laminating | stacking the resin base material 1, the barrier layer 2, and the heat-fusible resin 3 one by one, the well-known method through an adhesive agent between each layer can be used, for example.

また、図2は図1に示す本発明の真空断熱材用外装材10を用いて、その内部に断熱材(芯材)30を真空封止して形成した真空断熱材20の断面を示している。具体的には真空断熱材用外装材10の熱融着性樹脂3(シーラント)面を内側にしてヒートシールにより包装体を形成し、その中に断熱材(芯材)30を入れた後に真空封止(脱気しながらヒートシールして封止)して真空断熱材20を成形する。   2 shows a cross-section of a vacuum heat insulating material 20 formed by vacuum-sealing a heat insulating material (core material) 30 inside the vacuum heat insulating material exterior material 10 of the present invention shown in FIG. Yes. Specifically, the package is formed by heat sealing with the heat-fusible resin 3 (sealant) surface of the vacuum heat insulating material exterior 10 inside, and after the heat insulating material (core material) 30 is put therein, the vacuum is formed. The vacuum heat insulating material 20 is formed by sealing (sealing by heat sealing while degassing).

本発明に係る樹脂基材1は保護層として機能し、例えば外部からの磨耗、突き刺しなどに対して耐性がある樹脂基材であれば用いることができ、特に制限されない。例えば、延伸ポリエチレンテレフタレートフィルム、延伸ポリプロピレンフィルム、延伸ナイロンフィルムなどが用いられる。厚みに特に制限はないが、延伸ポリエチレンテレフタレートフィルムであれば6μm〜30μm程度、延伸ポリプロピレンフィルムであれば20μm〜40μm程度、延伸ナイロンフィルムであれば10μm〜30μm程度が適当である。   The resin substrate 1 according to the present invention functions as a protective layer, and can be used as long as it is a resin substrate that is resistant to external wear, piercing, and the like, and is not particularly limited. For example, a stretched polyethylene terephthalate film, a stretched polypropylene film, a stretched nylon film, etc. are used. Although there is no particular limitation on the thickness, a stretched polyethylene terephthalate film is about 6 μm to 30 μm, a stretched polypropylene film is about 20 μm to 40 μm, and a stretched nylon film is about 10 μm to 30 μm.

樹脂基材1とバリア層2との積層方法は、ドライラミネート法(無溶剤ラミネート法を含む)で貼り合わせたり、また、サンドイッチラミネート法により貼り合わせたりしても良い。   The lamination method of the resin base material 1 and the barrier layer 2 may be bonded by a dry lamination method (including a solventless lamination method) or may be bonded by a sandwich lamination method.

バリア層2は、真空断熱材20のバリア性を担う中心の層であって、アルミニウム箔やバリア性に優れた金属蒸着フィルムを用いることができる。中でも、珪素を0.05重量%以上、0.3%重量%以下、鉄を0.7重量%以上、1.7重量%以下を含有するアルミニウム合金が好ましい。   The barrier layer 2 is a central layer that bears the barrier property of the vacuum heat insulating material 20, and an aluminum foil or a metal vapor-deposited film excellent in barrier property can be used. Among these, an aluminum alloy containing 0.05 wt% or more and 0.3 wt% or less of silicon and 0.7 wt% or more and 1.7 wt% or less of iron is preferable.

上記のアルミニウム合金からなるアルミニウム箔は、純度の高いアルミニウムの箔と比較して、やわらかく、伸びがあるので、アルミニウム箔自体がピンホールやクラックの発生が起こりにくい。このようなアルミニウム箔としては、合金番号A8021や合金番号A8079のアルミニウム箔があり、膜厚は7〜20μm程度のものが好ましい。   The aluminum foil made of the above aluminum alloy is softer and more elongated than an aluminum foil having a high purity, so that the aluminum foil itself is less likely to cause pinholes and cracks. As such an aluminum foil, there are aluminum foils of alloy number A8021 and alloy number A8079, and those having a film thickness of about 7 to 20 μm are preferable.

また、金属蒸着系のバリア層としては、PETなどの汎用フィルムをベースにアルミナ、シリカなどを蒸着層とした水蒸気透過率0.5g/m2/day以下のものが好ましく、ベースフィルムの膜厚は6μm〜30μm程度、蒸着層は10〜300nm程度が適当である。   Moreover, as a barrier layer of a metal vapor deposition system, a water vapor transmission rate of 0.5 g / m 2 / day or less with a vapor deposition layer of alumina, silica or the like based on a general-purpose film such as PET is preferable, and the film thickness of the base film is A suitable thickness is about 6 to 30 μm, and the vapor deposition layer is about 10 to 300 nm.

熱融着性樹脂3はいわゆるシーラントとして機能し、真空断熱材20の最内層に位置し、熱溶着により、充填した芯材を密封するものである。主に熱可塑性樹脂が用いられ、特にポリオレフィン系樹脂が好ましく用いられる。   The heat-fusible resin 3 functions as a so-called sealant, is located in the innermost layer of the vacuum heat insulating material 20, and seals the filled core material by heat welding. A thermoplastic resin is mainly used, and a polyolefin resin is particularly preferably used.

ポリオレフィン系樹脂としては、低密度ポリエチレン樹脂、直鎖状低密度ポリエチレン樹脂、中密度ポリエチレン樹脂、エチレン−α−オレフィン共重合体樹脂などのエチレン系樹脂や、ホモポリプロピレン樹脂、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体、ポリプロピレン−α−オレフィン共重合体などのプロピレン系樹脂などの選択が可能である。   Polyolefin resins include low density polyethylene resins, linear low density polyethylene resins, medium density polyethylene resins, ethylene-α-olefin copolymer resins and other ethylene resins, homopolypropylene resins, and propylene-ethylene random copolymers. It is possible to select a propylene resin such as a polymer, a propylene-ethylene block copolymer, and a polypropylene-α-olefin copolymer.

熱融着性樹脂3とバリア層2との積層は、接着剤を介して、ドライラミネート法(無溶剤ラミネート法を含む)で貼り合わせたり、また、サンドイッチラミネート法により貼り合わせたりしても良い。さらには、接着剤を用いずに前記熱可塑性樹脂を溶融し、押し出しラミネート法によりバリア層と貼り合わせても良い。   Lamination of the heat-fusible resin 3 and the barrier layer 2 may be carried out by an adhesive using a dry lamination method (including a solventless lamination method), or by a sandwich lamination method. . Furthermore, the thermoplastic resin may be melted without using an adhesive and bonded to the barrier layer by an extrusion laminating method.

本発明で使用される接着剤はウレタン樹脂系接着剤が好ましく用いられる。特にウレタン樹脂系2液硬化型接着剤が好ましく、また層同士の接着はドライラミネート法で積層するのが好ましい。特に、ウェブ状の材料を接着するためには、ウレタン樹脂系2液硬化型接着剤を用いてドライラミネート法により積層するのが好ましい。   As the adhesive used in the present invention, a urethane resin adhesive is preferably used. In particular, a urethane resin two-component curable adhesive is preferable, and the adhesion between layers is preferably laminated by a dry lamination method. In particular, in order to adhere a web-like material, it is preferable to laminate by a dry laminating method using a urethane resin two-component curable adhesive.

<真空断熱材>
次に、本発明の真空断熱材用外装材10を用いて、その内部に断熱材(芯材)30を真空封止して形成した真空断熱材20について説明する。
<Vacuum insulation>
Next, the vacuum heat insulating material 20 formed by vacuum-sealing the heat insulating material (core material) 30 in the inside thereof using the vacuum heat insulating material exterior material 10 of the present invention will be described.

真空断熱材20の具体的な作製方法としては、先ず真空断熱材用外装材10を用いて包装体を形成する。
包装体の形成方法としては、所定のサイズに断裁した2枚の真空断熱材用外装材10を用いて熱融着性樹脂5(シーラント)面を対向させ、断熱材30を挿入する開口部以外は周囲をヒートシールにより融着させることで得られる。
As a specific method for producing the vacuum heat insulating material 20, first, a package is formed using the vacuum heat insulating material exterior material 10.
As a method of forming the package, the two heat insulating resin 5 (sealant) surfaces are opposed to each other using two vacuum insulating material exterior members 10 cut into a predetermined size, and the opening other than the opening for inserting the heat insulating material 30 is used. Is obtained by fusing the periphery by heat sealing.

また例えば別の方法として、所定のサイズに断裁した1枚の真空断熱材用外装材10を用いて、その熱融着性樹脂3(シーラント)面を内側にして対向させ、その後上記と同様に断熱材30を挿入する開口部以外は周囲をヒートシールにより融着させることで得られる。
次に、前記包装体の開口部から断熱材(芯材)30を挿入した後、脱気しながら開口部をヒートシールして封止することで真空断熱材20を作製することができる。
Further, for example, as another method, using one vacuum heat insulating material exterior member 10 cut to a predetermined size, the heat fusible resin 3 (sealant) faced inward, and then the same as described above. Other than the opening for inserting the heat insulating material 30, the periphery can be fused by heat sealing.
Next, after inserting the heat insulating material (core material) 30 from the opening of the package, the vacuum heat insulating material 20 can be manufactured by heat-sealing and sealing the opening while degassing.

断熱材(芯材)30は、真空断熱材20を作製する工程において、脱気により真空断熱材用外装材10で押されても、つぶれずに内部に減圧された空間を残せるものであれば特に限定されるものではない。
例えば、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール、炭化珪素繊維などの無機繊維を裁断してなる嵩密度の小さい針状短繊維粉末や、シリカやパーライト等の粉末を一定の形状に成形した成形体、ケイ酸カルシウム成形体の無機成形体、あるいは、発泡ポリウレタン、発泡ポリスチレンなどの連続気泡の合成樹脂発泡体、等が使用される。
中でも空隙率の高い多孔性のシリカゲル微粒子が好ましく、特に空隙率が70%以上、粒子径が50μm以下のものが好ましい。空隙率が70%以下では、真空下での断熱性付与が困難になる。微粒子や微細な繊維を外装材に封入する場合は、予め通気性の袋(不織布など)で断熱材を包装しておくとよい。
As long as the heat insulating material (core material) 30 is capable of leaving a decompressed space without being crushed even if it is pressed by the vacuum heat insulating exterior material 10 by deaeration in the process of manufacturing the vacuum heat insulating material 20. It is not particularly limited.
For example, needle-like short fiber powder with a small bulk density formed by cutting inorganic fibers such as glass wool, glass fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool, silicon carbide fiber, or powder such as silica or pearlite. A molded body molded into a fixed shape, an inorganic molded body of a calcium silicate molded body, or an open-cell synthetic resin foam such as foamed polyurethane or foamed polystyrene is used.
Among them, porous silica gel particles having a high porosity are preferable, and those having a porosity of 70% or more and a particle diameter of 50 μm or less are particularly preferable. When the porosity is 70% or less, it becomes difficult to impart heat insulation under vacuum. When enclosing fine particles and fine fibers in the exterior material, it is preferable to wrap the heat insulating material in advance in a breathable bag (nonwoven fabric or the like).

本発明の真空断熱材用外装材は、断熱材を真空封止して真空断熱材を形成するための真空断熱材用外装材であって、前記真空断熱材用外装材は少なくとも樹脂基材、バリア層、熱融着性樹脂を備えており、前記真空断熱材用外装材は、これを製袋した袋の中に球状体を充填後、真空封止して得られた試験体の内圧変化量が100Pa/day以下であることが好ましい。
内圧変化量が100Pa/day以下であると、球状体によるクラック等のダメージが一定レベルで抑制される屈曲性を有することから好ましい。内圧変化量が50Pa/day以下であると、球状体によりクラック等のダメージを受け難いレベルの屈曲性を有することからより好ましい。
The vacuum insulation material exterior material of the present invention is a vacuum insulation material exterior material for vacuum-sealing the insulation material to form a vacuum insulation material, wherein the vacuum insulation material exterior material is at least a resin base material, A barrier layer and a heat-fusible resin are provided, and the outer packaging material for the vacuum heat insulating material is filled with a spherical body in a bag in which the bag is made, and then the internal pressure change of the test body obtained by vacuum-sealing. The amount is preferably 100 Pa / day or less.
It is preferable for the amount of change in internal pressure to be 100 Pa / day or less because it has flexibility to prevent damage such as cracks due to spherical bodies at a certain level. It is more preferable that the amount of change in the internal pressure is 50 Pa / day or less because it has flexibility at a level that makes it difficult to receive damage such as cracks due to the spherical body.

<真空断熱材用外装材の評価>
以下、本発明の真空断熱材の評価方法を説明する。
まず、真空断熱材用外装材を袋状に製体する。実際に真空断熱材を製造する場合と同様、内容物を充填するための開口部を設ける。本発明の評価においてはここから芯材の代わりに球状体を充填する。十分な量の球状体を充填した後、開口部から脱気しつつ、開口部を熱封止して試験体を得る。
<Evaluation of vacuum insulation exterior materials>
Hereinafter, the evaluation method of the vacuum heat insulating material of this invention is demonstrated.
First, the vacuum heat insulating material is formed into a bag shape. As in the case of actually manufacturing a vacuum heat insulating material, an opening for filling the contents is provided. In the evaluation of the present invention, a spherical body is filled instead of the core material. After filling a sufficient amount of the spherical body, the opening is heat-sealed while degassing from the opening to obtain a test body.

こうして得られた試験体の真空度を測定する。
たとえば、真空チャンバー101、真空ポンプユニット102、真空度計103、レーザー変位計104、データロガー105を組み合わせた測定機器を利用する(図3)。
真空チャンバー101は真空ポンプユニット102及び真空度計103と接続されている。真空チャンバー101には外部から観察可能な窓が設けられ、ガラスで覆われている。レーザー変位計104は真空チャンバー101内の試験体110の外形の変位を測定するためのものであり、データロガー105と接続されている。レーザー107はガラス窓106を介して試験体110に照射可能となっている。
The degree of vacuum of the specimen thus obtained is measured.
For example, a measuring instrument combining a vacuum chamber 101, a vacuum pump unit 102, a vacuum meter 103, a laser displacement meter 104, and a data logger 105 is used (FIG. 3).
The vacuum chamber 101 is connected to a vacuum pump unit 102 and a vacuum meter 103. The vacuum chamber 101 is provided with a window that can be observed from the outside, and is covered with glass. The laser displacement meter 104 is for measuring the displacement of the outer shape of the test body 110 in the vacuum chamber 101, and is connected to the data logger 105. The laser 107 can irradiate the test body 110 through the glass window 106.

試験体110を真空チャンバー101に入れ、真空引きを開始すると、試験体110内部の気圧よりも真空チャンバー101内の気圧が低くなった時点で試験体110の形状に変化が生じる。具体的には気圧が下がるため膨張する。この変位をレーザー変位計104で検知し、変位の開始時点の気圧を試験体内部の真空度として記録する(リフトオフ法)。延伸・屈曲に対し耐性があるほど真空度の変化は小さいので、この真空度の変化を当該外装材の延伸・屈曲耐性の評価(以下、単に屈曲性ということがある)に用いることができる。   When the test body 110 is placed in the vacuum chamber 101 and evacuation is started, the shape of the test body 110 changes when the pressure inside the vacuum chamber 101 becomes lower than the pressure inside the test body 110. Specifically, it expands because the atmospheric pressure drops. This displacement is detected by a laser displacement meter 104, and the atmospheric pressure at the start of the displacement is recorded as the degree of vacuum inside the specimen (lift-off method). Since the change in the degree of vacuum is so small that it is resistant to stretching / bending, the change in the degree of vacuum can be used for evaluating the stretching / bending resistance of the exterior material (hereinafter, sometimes simply referred to as bendability).

本発明の測定に使用する球状体は直径が3〜20mmの球形であるものが好ましく、特に5〜10mmのものが好ましい。この範囲であると、球状体が現実の真空断熱材で要求される形状に近いカーブを備えているので、現実的な延伸・屈曲耐性を評価することができる。球状体の直径が20mmより大きいと、外装材に与える延伸・屈曲幅が過大となり、真空度の変化が大きくなりすぎてしまい、正確な測定が困難となる恐れがある。球状体の直径が3mmより小さいと、球状体が外装材の外形に沿って分散してしまい延伸・屈曲幅が小さくなるので、真空度の変化も小さなものとなり、評価に時間がかかってしまう。
一度に使用される球状体の大きさは同じであることが好ましいが、適した範囲(3mm以上20mm以下、好ましくは5mm以上10mm以下)であれば、複数の大きさの球状体を混合して使用することができる。
球状体は真空断熱材用外装材が変形しない程度に充填する。真空封止後は、球状態の表面形状に沿って外装材が延伸・屈曲されてよい。球状体の形状としては極端な凹凸やゆがみがないほうが正確な延伸・屈曲耐性の測定のために好ましい。その材料は、正確な真空度測定のために真空封止時に脱ガスのないものが好ましく、ガラスや金属であることが好ましい。たとえば、ガラスビーズを使用することができる。
The spherical body used in the measurement of the present invention is preferably a spherical body having a diameter of 3 to 20 mm, particularly preferably 5 to 10 mm. Within this range, the spherical body has a curve close to the shape required for an actual vacuum heat insulating material, so that realistic stretching / bending resistance can be evaluated. If the diameter of the spherical body is larger than 20 mm, the stretching / bending width given to the exterior material becomes excessive, the change in the degree of vacuum becomes too large, and there is a possibility that accurate measurement becomes difficult. If the diameter of the spherical body is smaller than 3 mm, the spherical body is dispersed along the outer shape of the exterior material, and the stretching / bending width is reduced, so that the change in the degree of vacuum is small and the evaluation takes time.
It is preferable that the size of the spheres used at the same time is the same, but within a suitable range (3 mm or more and 20 mm or less, preferably 5 mm or more and 10 mm or less), a mixture of spheres of a plurality of sizes can be mixed. Can be used.
The spherical body is filled to such an extent that the vacuum insulation material is not deformed. After the vacuum sealing, the exterior material may be stretched and bent along the spherical surface shape. As the shape of the spherical body, it is preferable that there is no extreme unevenness or distortion for accurate measurement of stretching / bending resistance. In order to accurately measure the degree of vacuum, the material preferably does not degas during vacuum sealing, and is preferably glass or metal. For example, glass beads can be used.

以下、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

<実施例1>
(真空断熱材用外装材の作製)
樹脂基材として、15μm膜厚の延伸ナイロンフィルム(ユニチカ製、エンブレムONM)、バリア層として、9μm膜厚のアルミニウム箔(東洋アルミニウム製、8021合金)、熱融着性樹脂(シーラント)として40μm膜厚の直鎖状低密度ポリエチレンフィルム(三井化学東セロ製、TUX−FCS)を用いて、それぞれの層間をポリエステルポリウレタン系主剤(DIC製、LX500)と芳香族イソシアネート硬化剤(DIC製、KW75)からなる接着剤を介して、ドライラミネート法により順次積層して積層体(真空断熱材用外装材)を作製した。
<Example 1>
(Preparation of vacuum insulation exterior materials)
A stretched nylon film with a thickness of 15 μm (made by Unitika, Emblem ONM) as a resin base material, an aluminum foil with a thickness of 9 μm (Toyo Aluminum, 8021 alloy) as a barrier layer, and a 40 μm film as a heat-fusible resin (sealant) Using a thick linear low-density polyethylene film (Mitsui Chemicals Tosero, TUX-FCS), each layer is made from a polyester polyurethane base (DIC, LX500) and an aromatic isocyanate curing agent (DIC, KW75). A laminated body (exterior material for vacuum heat insulating material) was produced by sequentially laminating with an adhesive as described above by a dry laminating method.

(屈曲性の評価)
上記で得られた真空断熱材用外装材を200mm角にカットし、シーラント面を内側に貼合し、シール幅10mmで三方シールした袋を作製した。その後、この袋内に10mm径のガラス製の球状体を封入し、真空封止装置により、真空度10Pa下で封止した。この真空封止品の初期内圧をリフトオフ法により測定し、その後、25℃,40%RH環境下で保管し、内圧の経時変化(Pa/day)を測定した。その結果、3Pa/dayで真空度が上昇する結果を得た。なお、内容物がない場合の真空度上昇は、0.3Pa/dayであった。
(Evaluation of flexibility)
The vacuum insulating material exterior material obtained above was cut into 200 mm square, the sealant surface was bonded to the inside, and a three-side sealed bag with a seal width of 10 mm was produced. Thereafter, a glass spherical body having a diameter of 10 mm was sealed in the bag, and sealed with a vacuum sealing device at a vacuum degree of 10 Pa. The initial internal pressure of this vacuum-sealed product was measured by the lift-off method, and then stored in an environment of 25 ° C. and 40% RH, and the change over time in internal pressure (Pa / day) was measured. As a result, the result of increasing the degree of vacuum at 3 Pa / day was obtained. The increase in the degree of vacuum when there was no content was 0.3 Pa / day.

<実施例2>
(真空断熱材用外装材の作製)
ベースフィルム(樹脂基材)としては12μm膜厚の延伸ポリエチレンテレフタレートフィルム(東洋紡績製、E5100)を使用した。ベースフィルムの一方の面に、アクリルポリオールとトリレンジイソシアネートからなる樹脂溶液を、マイクログラビアコータを使用して乾燥膜厚が30nmとなるように塗布し、アンカーコート層を形成した。次いで、アンカーコート層を形成した面にSiをターゲットとして、プロセスガスにAr、反応性ガスにO2を用いてDCスパッタリング法にて膜厚が50nmとなるようにSiOx膜を形成し、バリア層を形成した。
このバリア層上に実施例1と同様に、ポリエステルポリウレタン系主剤(DIC製、LX500)と芳香族イソシアネート硬化剤(DIC製、KW75)からなる接着剤を介して、ドライラミネート法により熱融着性樹脂(シーラント)として40μm膜厚の直鎖状低密度ポリエチレンフィルム(三井化学東セロ製、TUX−FCS)をドライラミネート法により積層し、積層体(真空断熱材用外装材)を作製した。
<Example 2>
(Preparation of vacuum insulation exterior materials)
As the base film (resin substrate), a stretched polyethylene terephthalate film (E5100, manufactured by Toyobo Co., Ltd.) having a thickness of 12 μm was used. On one surface of the base film, a resin solution composed of acrylic polyol and tolylene diisocyanate was applied using a micro gravure coater so as to have a dry film thickness of 30 nm, thereby forming an anchor coat layer. Next, an SiOx film is formed by DC sputtering using Si as a target on the surface on which the anchor coat layer has been formed, using Ar as a process gas, and O2 as a reactive gas so as to have a film thickness of 50 nm. Formed.
In the same manner as in Example 1, on this barrier layer, a heat-bonding property is obtained by a dry laminating method through an adhesive composed of a polyester polyurethane main agent (manufactured by DIC, LX500) and an aromatic isocyanate curing agent (manufactured by DIC, KW75). A 40 μm-thick linear low-density polyethylene film (manufactured by Mitsui Chemical Tosero, TUX-FCS) was laminated as a resin (sealant) by a dry laminating method to produce a laminate (exterior material for vacuum heat insulating material).

(屈曲性の評価)
実施例1と同様の方法で真空度の変化を測定した。その結果、25Pa/dayで真空度が上昇する結果を得た。なお、内容物がない場合の真空度上昇は、1Pa/dayであった。
(Evaluation of flexibility)
A change in the degree of vacuum was measured in the same manner as in Example 1. As a result, the degree of vacuum increased at 25 Pa / day. The increase in the degree of vacuum when there was no content was 1 Pa / day.

<実施例3>
(真空断熱材用外装材の作製)
DCスパッタリングによる膜厚を100nmとなるようにSiOx膜を形成したほかは、実施例2と同様にして、積層体(真空断熱材用外装材)を作製した。
<Example 3>
(Preparation of vacuum insulation exterior materials)
A laminate (exterior material for vacuum heat insulating material) was produced in the same manner as in Example 2 except that the SiOx film was formed so that the film thickness by DC sputtering was 100 nm.

(屈曲性の評価)
実施例1と同様の方法で真空度の変化を測定した。その結果、40Pa/dayで真空度が上昇する結果を得た。なお、内容物がない場合の真空度上昇は、0.6Pa/dayであった。
(Evaluation of flexibility)
A change in the degree of vacuum was measured in the same manner as in Example 1. As a result, the degree of vacuum increased at 40 Pa / day. The increase in the degree of vacuum when there was no content was 0.6 Pa / day.

<実施例4>
(真空断熱材用外装材の作製)
DCスパッタリングによる膜厚を200nmとなるようにSiOx膜を形成したほかは、実施例2と同様にして、積層体(真空断熱材用外装材)を作製した。
<Example 4>
(Preparation of vacuum insulation exterior materials)
A laminate (exterior material for vacuum heat insulating material) was produced in the same manner as in Example 2 except that the SiOx film was formed to have a film thickness of 200 nm by DC sputtering.

(屈曲性の評価)
実施例1と同様の方法で真空度の変化を測定した。その結果、60Pa/dayで真空度が上昇する結果を得た。なお、内容物がない場合の真空度上昇は、0.3Pa/dayであった。
(Evaluation of flexibility)
A change in the degree of vacuum was measured in the same manner as in Example 1. As a result, the degree of vacuum increased at 60 Pa / day. The increase in the degree of vacuum when there was no content was 0.3 Pa / day.

<比較例1>
(真空断熱材用外装材の作製)
DCスパッタリングによる膜厚を400nmとなるようにSiOx膜を形成したほかは、実施例2と同様にして、積層体(真空断熱材用外装材)を作製した。
<Comparative Example 1>
(Preparation of vacuum insulation exterior materials)
A laminate (exterior material for vacuum heat insulating material) was produced in the same manner as in Example 2 except that the SiOx film was formed so that the film thickness by DC sputtering was 400 nm.

(屈曲性の評価)
実施例1と同様の方法で真空度の変化を測定した。その結果、300Pa/dayで真空度が上昇する結果を得た。なお、内容物がない場合の真空度上昇は、0.1Pa/dayであった。
(Evaluation of flexibility)
A change in the degree of vacuum was measured in the same manner as in Example 1. As a result, the degree of vacuum increased at 300 Pa / day. The increase in the degree of vacuum when there was no content was 0.1 Pa / day.

以上の結果から、本発明によれば過剰品質に陥ることなく、実使用に近い条件での外装材の屈曲性を評価できる。   From the above results, according to the present invention, it is possible to evaluate the flexibility of the exterior material under conditions close to actual use without falling into excessive quality.

1・・・樹脂基材
2・・・バリア層
3・・・熱融着性樹脂
10・・真空断熱材用外装材
20・・真空断熱材
30・・断熱材(芯材)
101・・・真空チャンバー
102・・・真空ポンプユニット
103・・・真空度計
104・・・レーザー変位計
105・・・データロガー
106・・・ガラス窓
107・・・レーザー光
108・・・コンピュータ(PC)
110・・・試験体(真空断熱材)
DESCRIPTION OF SYMBOLS 1 ... Resin base material 2 ... Barrier layer 3 ... Heat-sealable resin 10 ... Vacuum insulation material exterior material 20 ... Vacuum insulation material 30 ... Heat insulation material (core material)
DESCRIPTION OF SYMBOLS 101 ... Vacuum chamber 102 ... Vacuum pump unit 103 ... Vacuum meter 104 ... Laser displacement meter 105 ... Data logger 106 ... Glass window 107 ... Laser beam 108 ... Computer (PC)
110 ... Specimen (vacuum insulation)

Claims (3)

断熱材を真空封止して真空断熱材を形成するための真空断熱材用外装材であって、
前記真空断熱材用外装材は少なくとも樹脂基材、バリア層、熱融着性樹脂を備えており、
前記真空断熱材用外装材は、これを製袋した袋の中に球状体を充填後、真空封止して得られた試験体の内圧変化量が100Pa/day以下であることを特徴とする真空断熱材用外装材。
A vacuum insulation material exterior material for vacuum-sealing the insulation material to form a vacuum insulation material,
The exterior material for vacuum heat insulating material includes at least a resin base material, a barrier layer, and a heat-fusible resin,
The vacuum insulating material exterior material is characterized in that the amount of change in the internal pressure of a test body obtained by vacuum sealing after filling a spherical body into a bag made from the bag is 100 Pa / day or less. Exterior material for vacuum insulation.
断熱材を真空封止して真空断熱材を形成するための真空断熱材用外装材を評価する方法であって、
真空断熱材用外装材を袋状に製袋し、内部に複数の球状体を充填して真空封止した試験体を作成し、この試験体の内圧変化量を測定することを特徴とする真空断熱材用外装材評価方法。
It is a method for evaluating a vacuum heat insulating material exterior material for vacuum-sealing a heat insulating material to form a vacuum heat insulating material,
A vacuum characterized in that a vacuum insulation material is made into a bag shape, a plurality of spherical bodies are filled inside and vacuum sealed to create a test body, and the amount of change in internal pressure of the test body is measured. Thermal insulation exterior material evaluation method.
前記球状体は直径が3〜20mmの球形であることを特徴とする請求項2に記載の真空断熱材用外装材評価方法。   The said spherical body is a spherical shape with a diameter of 3-20 mm, The exterior material evaluation method for vacuum heat insulating materials of Claim 2 characterized by the above-mentioned.
JP2015026102A 2015-02-13 2015-02-13 Sheath material for vacuum heat insulation material and evaluation method of sheath material for vacuum heat insulation material Pending JP2016148418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015026102A JP2016148418A (en) 2015-02-13 2015-02-13 Sheath material for vacuum heat insulation material and evaluation method of sheath material for vacuum heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015026102A JP2016148418A (en) 2015-02-13 2015-02-13 Sheath material for vacuum heat insulation material and evaluation method of sheath material for vacuum heat insulation material

Publications (1)

Publication Number Publication Date
JP2016148418A true JP2016148418A (en) 2016-08-18

Family

ID=56687805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015026102A Pending JP2016148418A (en) 2015-02-13 2015-02-13 Sheath material for vacuum heat insulation material and evaluation method of sheath material for vacuum heat insulation material

Country Status (1)

Country Link
JP (1) JP2016148418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028232A (en) * 2017-09-08 2019-03-18 오씨아이 주식회사 Apparatus for inspecting vacuum insulation panel
JP2021162032A (en) * 2020-03-30 2021-10-11 大日本印刷株式会社 Heat insulation board sheet, heat insulation board and article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190028232A (en) * 2017-09-08 2019-03-18 오씨아이 주식회사 Apparatus for inspecting vacuum insulation panel
KR102319615B1 (en) * 2017-09-08 2021-11-03 오씨아이 주식회사 Apparatus for inspecting vacuum insulation panel
JP2021162032A (en) * 2020-03-30 2021-10-11 大日本印刷株式会社 Heat insulation board sheet, heat insulation board and article
JP7452189B2 (en) 2020-03-30 2024-03-19 大日本印刷株式会社 Sheets for insulation boards, insulation boards, and articles

Similar Documents

Publication Publication Date Title
JP5884419B2 (en) Jacket material for vacuum heat insulating material and vacuum heat insulating material using the same
US8686323B2 (en) Freezable/microwavable packaging films and venting packages
US10723530B2 (en) Outer packing material for vacuum insulation material, vacuum insulation material, and article provided with vacuum insulation material
JP2008106532A (en) Vacuum heat insulation material
JP2016148418A (en) Sheath material for vacuum heat insulation material and evaluation method of sheath material for vacuum heat insulation material
CN103298865B (en) By the formation of foam of phenolic resin curing the core for evacuated insulation panel and use its evacuated insulation panel and manufacture method thereof
JP7271919B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
US20180252464A1 (en) Vacuum heat insulator; and heat-insulating container, heat-insulating wall, and refrigerator using same
EP1355103B1 (en) Preinsulated pipe
JP2010281444A (en) Heat insulating material
WO2018016351A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and article provided with vacuum heat-insulating member
JP2007056922A (en) Vacuum heat insulating material
JP2011012797A (en) Vacuum heat insulating material
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
TW201719068A (en) Vacuum heat insulation material and heat insulation box
KR101944162B1 (en) Outer packaging materials having high temperature resistance for vacuum insulation panel, Vacuum insulation panel using the same, and Manufacturing method thereof
JP6471734B2 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP2016138638A (en) Laminate for vacuum heat insulation material and vacuum heat insulation material using laminate
JP2019027444A (en) External packaging material for vacuum heat insulation material, vacuum heat insulation material and article with vacuum heat insulation material
JP6422713B2 (en) Bag body and vacuum heat insulating material using the bag body
JP2017137955A (en) Jacket material for vacuum heat insulation material and vacuum heat insulation material using the same
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
JP7056029B2 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and articles with vacuum heat insulating material
JP7447675B2 (en) Outer packaging material for vacuum insulation materials, vacuum insulation materials, and articles with vacuum insulation materials
JP2018059557A (en) Outer packaging material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material