JP5884419B2 - Jacket material for vacuum heat insulating material and vacuum heat insulating material using the same - Google Patents

Jacket material for vacuum heat insulating material and vacuum heat insulating material using the same Download PDF

Info

Publication number
JP5884419B2
JP5884419B2 JP2011246428A JP2011246428A JP5884419B2 JP 5884419 B2 JP5884419 B2 JP 5884419B2 JP 2011246428 A JP2011246428 A JP 2011246428A JP 2011246428 A JP2011246428 A JP 2011246428A JP 5884419 B2 JP5884419 B2 JP 5884419B2
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
protective film
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011246428A
Other languages
Japanese (ja)
Other versions
JP2013103343A (en
Inventor
小河原 賢次
賢次 小河原
栄 賢治
賢治 栄
中島 篤志
篤志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2011246428A priority Critical patent/JP5884419B2/en
Publication of JP2013103343A publication Critical patent/JP2013103343A/en
Application granted granted Critical
Publication of JP5884419B2 publication Critical patent/JP5884419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、冷蔵庫や低温コンテナあるいは住居の外壁材などに取り付けられる真空断熱材の真空断熱材用外被材及びそれを用いた真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating jacket material for a vacuum heat insulating material attached to a refrigerator, a low temperature container, a housing outer wall material, or the like, and a vacuum heat insulating material using the same.

冷蔵庫や低温コンテナあるいは住居の外壁材などには、従来から種々の断熱材が用いられており、特に、断熱性能の優れた断熱材として、コア材を外被材内に封入し、内部を真空排気した構成の真空断熱材が使用されている。   Various heat insulating materials have been used for refrigerators, low-temperature containers, and external wall materials in houses. Especially, as a heat insulating material with excellent heat insulating performance, the core material is enclosed in the jacket material and the inside is vacuumed. An evacuated vacuum insulation material is used.

この外被材は、外部からのガスの侵入を防ぎ、内部を長期間真空状態に保持するため
に、ガスバリア性に優れたものである必要がある。そこで、従来、高いガスバリア性を持たすために、外被材のガスバリア層として7〜15μm程度の厚さの金属アルミニウム箔を含む積層フィルムが主として用いられてきた。
This jacket material needs to be excellent in gas barrier properties in order to prevent gas from entering from the outside and keep the inside in a vacuum state for a long time. Therefore, conventionally, in order to have a high gas barrier property, a laminated film including a metal aluminum foil having a thickness of about 7 to 15 μm has been mainly used as a gas barrier layer of a covering material.

この金属アルミニウム箔は、屈曲によりクラックやピンホールが発生し、ガスバリア性が著しく低下するという問題があり、長期間に亘って外被材の内部を真空状態に保っておくことが難しかった。   This metal aluminum foil has a problem that cracks and pinholes are generated by bending and the gas barrier property is remarkably lowered, and it is difficult to keep the inside of the jacket material in a vacuum state for a long period of time.

このクラックやピンホールの発生の低減化をはかり、外被材の内部の真空状態を長期に渡って維持する試みが行われている。例えば、層構成が、外側から順に、第1の延伸ナイロンフィルム、第2の延伸ナイロンフィルム、金属箔からなるガスバリア層、熱溶着層であり、前記第1、第2の延伸ナイロンフィルム間に接着層が設けられている外被材があった(特許文献1)。   Attempts have been made to reduce the occurrence of cracks and pinholes and maintain the vacuum state inside the jacket material for a long period of time. For example, the layer configuration is, in order from the outside, a first stretched nylon film, a second stretched nylon film, a gas barrier layer made of metal foil, and a heat-welded layer, and is bonded between the first and second stretched nylon films. There was a jacket material provided with a layer (Patent Document 1).

また、熱溶着層に、縦方向及び横方向の引張伸度がそれぞれ400%以上で、横方向の引張伸度に対して縦方向の引張伸度が2倍以下のプラスチックフィルムである、比重が0.935以上の直鎖状低密度ポリエチレンフィルムを用いた外被材があった(特許文献2)。   In addition, the thermal weld layer is a plastic film having a tensile elongation in the longitudinal direction and in the transverse direction of 400% or more and a tensile elongation in the longitudinal direction that is not more than twice the tensile elongation in the transverse direction. There was a jacket material using a linear low density polyethylene film of 0.935 or more (Patent Document 2).

公知文献を以下に示す。   Known documents are shown below.

特許第3482408号公報Japanese Patent No. 3482408 特許第4207476号公報Japanese Patent No. 4207476

アルミニウム箔などの金属箔は、伸びがほとんどなく、突き刺しや折り曲げなどで延ばされると容易にピンホールやクラックが発生し、バリアー性が著しく低下し、真空断熱材としての断熱効果が低下してしまう。上記、特許文献においては、アルミニウム箔に生ずるピンホールの発生を抑制することは難しく更なる、改良が求められていた。   Metal foil such as aluminum foil has almost no elongation, and when it is extended by piercing or bending, pinholes and cracks are easily generated, the barrier property is remarkably lowered, and the heat insulating effect as a vacuum heat insulating material is lowered. . In the above-mentioned patent documents, it is difficult to suppress the generation of pinholes generated in the aluminum foil, and further improvements have been demanded.

本発明は上記した事情に鑑みてなされたもので、アルミニウム箔に発生するピンホールやクラックを防止し、バリアー性が低下しにくい真空断熱材用外被材、及び、それを用いた断熱効果が低下しにくい真空断熱材を提供することを課題としている。   The present invention has been made in view of the above-described circumstances, and prevents a pinhole and a crack generated in an aluminum foil, and a barrier material for a vacuum heat insulating material in which barrier properties are not easily lowered, and a heat insulating effect using the same. It aims at providing the vacuum heat insulating material which is hard to fall.

本発明の請求項1に係る発明は、芯材が充填され、内部が脱気された真空断熱材に用いる真空断熱材用外被材であって、アルミニウム箔の両面に外面側保護フィルムと内面側保護フィルムとがそれぞれ積層され、該外面側保護フィルムと内面側保護フィルムの引張弾性率が2.0〜5.0GPaであり、かつ、
外面側保護フィルムがポリエチレンテレフタレートフィルムであり、
内面側保護フィルムがポリアミドフィルムであり
アルミニウム箔が、珪素を0.05重量%以上、0.3%重量%以下、鉄を0.7重量%以上、1.7重量%以下含有するアルミニウム合金箔である
ことを特徴とする真空断熱材用外被材である。
The invention according to claim 1 of the present invention is a vacuum heat insulating material used for a vacuum heat insulating material filled with a core material and deaerated inside, wherein an outer surface side protective film and an inner surface are formed on both surfaces of an aluminum foil. stacked and side protective film respectively, outer surface side protective film and the inner surface tensile modulus of the protective film is Ri 2.0~5.0GPa der, and
The outer surface side protective film is a polyethylene terephthalate film,
The inner surface side protective film is a polyamide film ,
The aluminum foil is an aluminum alloy foil containing 0.05% by weight or more and 0.3% by weight or less of silicon and 0.7% by weight or more and 1.7% by weight or less of iron .
It is the jacket material for vacuum heat insulating materials characterized by this.

本発明の真空断熱材用外被材は、以上のような構成であって、アルミニウム箔の両面に引張弾性率が2.0〜5.0GPaである外面側保護フィルムと内面側保護フィルムがそれぞれ積層されているので、アルミニウム箔にピンホールやクラックが発生するのを防止し、バリアー性が低下しにくい。   The jacket material for a vacuum heat insulating material of the present invention has the above-described configuration, and an outer surface side protective film and an inner surface side protective film having a tensile elastic modulus of 2.0 to 5.0 GPa on both surfaces of the aluminum foil, respectively. Since they are laminated, pinholes and cracks are prevented from occurring in the aluminum foil, and the barrier properties are unlikely to deteriorate.

本発明は、真空断熱材用外被材が、外面側保護フィルムにポリエチレンテレフタレートフィルムを用いているので、ポリプロピレンフィルムなどと比較して耐熱性が高く、製袋シール時などにアルミニウム箔へのダメージが少ない。 The present invention uses a polyethylene terephthalate film for the outer surface side protective film of the vacuum heat insulating material, so it has high heat resistance compared to polypropylene film, etc., and damages to the aluminum foil at the time of bag making seal etc. Less is.

本発明は、真空断熱材用外被材の内面側保護フィルムがポリアミドフィルムであるので、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルムに比べ屈曲に強く、アルミニウム箔が芯材の角や曲面部分で屈曲されるのを緩和し、発生するピンホールやクラックを防止することができる。   In the present invention, since the inner surface side protective film of the jacket for vacuum heat insulating material is a polyamide film, it is more resistant to bending than polyethylene terephthalate film and polypropylene film, and the aluminum foil is bent at the corners and curved portions of the core material. Can be mitigated and pinholes and cracks generated can be prevented.

本発明の請求項2に係る発明は、請求項1に記載の真空断熱材用外被材で芯材を充填・収納したことを特徴とする真空断熱材である。 The invention according to claim 2 of the present invention is a vacuum heat insulating material characterized in that a core material is filled and accommodated with the outer covering material for vacuum heat insulating material according to claim 1 .

本発明は、真空断熱材に、請求項1に記載の真空断熱材用外被材を用いているので、アルミニウム箔にピンホールやクラックが発生しにくく、バリアー性が低下しにくいので、真空断熱材として、断熱効果が低下しにくく、耐久性に優れている。 In the present invention, since the vacuum insulation material according to claim 1 is used for the vacuum insulation material, pinholes and cracks are hardly generated in the aluminum foil, and the barrier property is not easily lowered. As a material, the heat insulation effect is not easily lowered, and the durability is excellent.

本発明の真空断熱材用外被材は、アルミニウム箔にピンホールやクラックが発生しにくく、バリアー性が低下しにくい。また、それを用いた真空断熱材は、断熱効果が低下しにくく、耐久性に優れている。   The jacket material for a vacuum heat insulating material of the present invention is less likely to cause pinholes and cracks in the aluminum foil, and the barrier property is unlikely to deteriorate. Moreover, the vacuum heat insulating material using it is hard to reduce the heat insulation effect, and is excellent in durability.

本発明の真空断熱材用外被材の一例を模式的に断面で示した説明図である。It is explanatory drawing which showed typically an example of the jacket material for vacuum heat insulating materials of this invention in the cross section. 本発明の真空断熱材の一例を模式的に断面で示した説明図である。It is explanatory drawing which showed typically an example of the vacuum heat insulating material of this invention in the cross section.

以下本発明を実施するための形態につき説明する。
図1は、本発明の真空断熱材用外被材の一例を模式的に断面で示した説明図である。
Hereinafter, modes for carrying out the present invention will be described.
FIG. 1 is an explanatory view schematically showing a cross section of an example of a jacket material for a vacuum heat insulating material according to the present invention.

本例の真空断熱材用外被材10は、図1のように、真空断熱材100の外側より、外層フィルム1、外面側保護フィルム2、アルミニウム箔3、内面側保護フィルム4、熱溶着層5の順に積層されている。外面側保護フィルム2とアルミニウム箔3の間、アルミニウム箔3と内面側保護フィルム4の間は、接着剤によって積層されている。   As shown in FIG. 1, the outer cover material 10 for the vacuum heat insulating material of the present example has an outer layer film 1, an outer surface side protective film 2, an aluminum foil 3, an inner surface side protective film 4, and a heat welding layer from the outside of the vacuum heat insulating material 100. They are stacked in the order of 5. The outer surface side protective film 2 and the aluminum foil 3 are laminated with an adhesive between the aluminum foil 3 and the inner surface side protective film 4.

接着剤はウレタン樹脂系接着剤が好ましく用いられる。特にウレタン樹脂系2液硬化型接着剤が好ましく、また接着方法はドライラミネート法で積層するのが好ましい。特に、ウェブ状の材料を積層するのに、ウレタン樹脂系2液硬化型接着剤を用いてドライラミネート法により積層するのが好ましい。   As the adhesive, a urethane resin adhesive is preferably used. In particular, a urethane resin-based two-component curable adhesive is preferable, and the bonding method is preferably laminated by a dry lamination method. In particular, it is preferable to laminate a web-like material by a dry laminating method using a urethane resin two-component curable adhesive.

外層フィルム1は、外面側保護フィルム2を外部からの磨耗、突き刺しなどから守るための物で、特に制限されないが、延伸ポリエチレンテレフタレートフィルム、延伸ポリプロピレンフィルム、延伸ナイロンフィルムなどが用いられる。厚みに特に制限はないが、延伸ポリエチレンテレフタレートフィルムであれば6μm〜30μm程度、延伸ポリプロピレンフィルムであれば20μm〜40μm程度、延伸ナイロンフィルムであれば10μm〜30μm程度が適当である。   The outer layer film 1 is a material for protecting the outer surface side protective film 2 from external wear, piercing, and the like, and is not particularly limited, but a stretched polyethylene terephthalate film, a stretched polypropylene film, a stretched nylon film, and the like are used. Although there is no particular limitation on the thickness, a stretched polyethylene terephthalate film is about 6 μm to 30 μm, a stretched polypropylene film is about 20 μm to 40 μm, and a stretched nylon film is about 10 μm to 30 μm.

外層フィルム1と外面側保護フィルム2の間の積層方法は、ドライラミネート法(無溶剤ラミネート法を含む)で貼り合わせたり、また、サンドイッチラミネート法により貼り合わせたりしても良い。   The lamination method between the outer layer film 1 and the outer surface side protective film 2 may be bonded by a dry lamination method (including a solventless lamination method) or may be bonded by a sandwich lamination method.

外面側保護フィルム2及び内面側保護フィルム4には、JIS K7161−1994に準じて測定された引張弾性率が、2.0〜5.0GPaのフィルムが用いられる。引張弾性率が2.0〜5.0GPaのフィルムとしては、延伸ポリエチレンテレフタレートフィルム、延伸ポリプロピレンフィルム、延伸ナイロンフィルム、延伸エチレンビニルアルコール共重合体フィルムが挙げられる。測定した各種フィルムの引張弾性率を表1に示す。   For the outer surface side protective film 2 and the inner surface side protective film 4, a film having a tensile modulus of 2.0 to 5.0 GPa measured according to JIS K7161-1994 is used. Examples of the film having a tensile modulus of 2.0 to 5.0 GPa include a stretched polyethylene terephthalate film, a stretched polypropylene film, a stretched nylon film, and a stretched ethylene vinyl alcohol copolymer film. Table 1 shows the measured tensile modulus of various films.

Figure 0005884419
このように、外面側保護フィルム2及び内面側保護フィルム4の引張弾性率が2.0〜5.0GPaのフィルムの間に、アルミニウム箔3を挟むことで、アルミニウム箔3に引っ張りや、突き刺しの影響が直接行かないようにしている。引張弾性率が2.0GPaより小さいと、芯材の角や曲面部分で、アルミニウム箔3が引っ張られたりして、アルミニウム箔3にクラックや、ピンホールが発生してしまう。
Figure 0005884419
Thus, the aluminum foil 3 is sandwiched between the outer surface side protective film 2 and the inner surface side protective film 4 having a tensile elastic modulus of 2.0 to 5.0 GPa, so that the aluminum foil 3 can be pulled or pierced. The influence is not made directly. If the tensile modulus is less than 2.0 GPa, the aluminum foil 3 is pulled at the corners or curved surfaces of the core material, and cracks and pinholes are generated in the aluminum foil 3.

逆に、引張弾性率が5.0GPaより大きいと、芯材の角部分で、外面側保護フィルム2及び内面側保護フィルム4が鋭角的に折れ曲がり、アルミニウム箔3にクラックや、ピンホールが発生してしまう。外面側保護フィルム2及び内面側保護フィルム4の厚みは、特に制限はないが、6μm〜50μmが好ましい。   On the contrary, if the tensile modulus is greater than 5.0 GPa, the outer surface side protective film 2 and the inner surface side protective film 4 are bent acutely at the corners of the core material, and cracks and pinholes are generated in the aluminum foil 3. End up. Although the thickness of the outer surface side protective film 2 and the inner surface side protective film 4 is not particularly limited, it is preferably 6 μm to 50 μm.

特に、外面側保護フィルム2及び内面側保護フィルム4としては、延伸ポリエチレンテレフタレートフィルムまたは延伸ナイロンフィルムが好ましく用いることができる。さらには、内面側保護フィルム4には、延伸ナイロンフィルムを用いることが好ましい。   In particular, as the outer surface side protective film 2 and the inner surface side protective film 4, a stretched polyethylene terephthalate film or a stretched nylon film can be preferably used. Furthermore, a stretched nylon film is preferably used for the inner surface side protective film 4.

アルミニウム箔3は、真空断熱材用外被材10のバリアー性を担う主な層であって、アルミニウム箔3にピンホールやクラックが入ると、真空断熱材100としての品質が保持できない。   The aluminum foil 3 is a main layer responsible for the barrier property of the vacuum insulating material 10 and if the aluminum foil 3 has pinholes or cracks, the quality as the vacuum heat insulating material 100 cannot be maintained.

アルミニウム箔3として限定されないが、珪素を0.05重量%以上、0.3%重量%以下、鉄を0.7重量%以上、1.7重量%以下含有するアルミニウム合金箔を用いるこ
とが好ましい。このように特定されたアルミニウム合金箔は、包装に一般的に使用される1N30箔より屈曲に強く、ピンホールやクラックが発生しにくく、バリアー性が低下しにくい。
Although not limited as the aluminum foil 3, it is preferable to use an aluminum alloy foil containing 0.05 wt% or more and 0.3 wt% or less of silicon and 0.7 wt% or more and 1.7 wt% or less of iron. . The aluminum alloy foil specified in this way is more resistant to bending than the 1N30 foil generally used for packaging, is less prone to pinholes and cracks, and is less likely to deteriorate barrier properties.

このようなアルミニウム合金箔は、純度の高いアルミニウムの箔と比較して、やわらかく、伸びがあるので、アルミニウム箔自体がピンホールやクラックの発生が起こりにくい。このようなアルミニウム合金箔としては、合金番号A8021や合金番号A8079のアルミニウム合金の箔がある。   Such an aluminum alloy foil is softer and more elongated than an aluminum foil of high purity, so that the aluminum foil itself is less likely to cause pinholes and cracks. As such aluminum alloy foil, there are aluminum alloy foils of alloy number A8021 and alloy number A8079.

熱溶着層5は、真空断熱材用外被材10の最内層に位置し、熱溶着により、充填した芯材を密封するものである。熱溶着層5としては、熱可塑性樹脂が用いられ、特にポリオレフィン系樹脂が好ましく用いられる。   The thermal welding layer 5 is located in the innermost layer of the vacuum insulating material covering material 10 and seals the filled core material by thermal welding. As the heat welding layer 5, a thermoplastic resin is used, and a polyolefin resin is particularly preferably used.

ポリオレフィン系樹脂としては、低密度ポリエチレン樹脂、直鎖状低密度ポリエチレン樹脂、中密度ポリエチレン樹脂、エチレン−α−オレフィン共重合体樹脂などのエチレン系樹脂や、ホモポリプロピレン樹脂、プロピレン−エチレンランダム共重合体、プロピレン−エチレンブロック共重合体、ポリプロピレン−α−オレフィン共重合体などのプロピレン系樹脂などの選択が可能である。   Polyolefin resins include low density polyethylene resins, linear low density polyethylene resins, medium density polyethylene resins, ethylene-α-olefin copolymer resins and other ethylene resins, homopolypropylene resins, and propylene-ethylene random copolymers. It is possible to select a propylene resin such as a polymer, a propylene-ethylene block copolymer, and a polypropylene-α-olefin copolymer.

熱溶着層5の内面側保護フィルム4への積層方法は、前記の樹脂のフィルムを、ドライラミネート法(無溶剤ラミネート法を含む)で貼り合わせたり、また、サンドイッチラミネート法により貼り合わせたりしても良い。さらには、前記の樹脂を溶融させて、押し出しラミネート法により貼り合わせても良い。   The method for laminating the heat-welded layer 5 on the inner surface side protective film 4 is to bond the resin film by a dry lamination method (including a solvent-free lamination method) or by a sandwich lamination method. Also good. Further, the resin may be melted and bonded by an extrusion laminating method.

図2は、本発明の真空断熱材の一例を模式的に断面で示した説明図である。   FIG. 2 is an explanatory view schematically showing a cross section of an example of the vacuum heat insulating material of the present invention.

以上のような、真空断熱材用外被材10を2枚、熱溶着層5が対向するように重ね合わせ、芯材20を充填する充填口を除いて、その周囲を熱シールする。そして、芯材20を充填して、内部を脱気した状態で充填口を熱シールして、真空断熱材100を図2のように、作成する。   Two of the vacuum insulating material covering materials 10 as described above are overlapped so that the heat-welded layer 5 faces each other, and the surroundings are heat-sealed except for the filling port filled with the core material 20. Then, the core material 20 is filled, the filling port is heat-sealed in a state where the inside is deaerated, and the vacuum heat insulating material 100 is formed as shown in FIG.

真空断熱材100は、上述の真空断熱材用外被材10を用いているので、アルミニウム箔3にピンホールやクラックが発生しにくく、バリアー性が低下しにくいので、断熱効果が低下しにくく、耐久性に優れている。   Since the vacuum heat insulating material 100 uses the above-described vacuum heat insulating material covering material 10, pinholes and cracks are unlikely to occur in the aluminum foil 3, and the barrier property is unlikely to decrease, so the heat insulating effect is unlikely to decrease, Excellent durability.

芯材20は、真空断熱材100としたときに、脱気により真空断熱材用外被材10で押されても、つぶれずに内部に減圧された空間を残せるものであれば特に限定されるものではない。   When the core material 20 is the vacuum heat insulating material 100, the core material 20 is not particularly limited as long as it can leave a decompressed space without being crushed even if it is pushed by the vacuum heat insulating material 10 by deaeration. It is not a thing.

例えば、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール、炭化珪素繊維などの無機繊維を裁断してなる嵩密度の小さい針状短繊維粉末や、シリカやパーライト等の粉末を一定の形状に成形した成形体、ケイ酸カルシウム成形体の無機成形体、あるいは、発泡ポリウレタン、発泡ポリスチレンなどの連続気泡の合成樹脂発泡体、等が使用される。   For example, needle-like short fiber powder with a small bulk density formed by cutting inorganic fibers such as glass wool, glass fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool, silicon carbide fiber, or powder such as silica or pearlite. A molded body molded into a fixed shape, an inorganic molded body of a calcium silicate molded body, or an open-cell synthetic resin foam such as foamed polyurethane or foamed polystyrene is used.

この真空断熱材用外被材10を用いて作られた真空断熱材100は、アルミニウム箔3にピンホールやクラックが発生しにくく、バリアー性が低下しにくいので、断熱効果が低下しにくく、耐久性に優れている。   The vacuum heat insulating material 100 made by using the outer cover material 10 for vacuum heat insulating material is less likely to cause pinholes and cracks in the aluminum foil 3, and the barrier property is not easily lowered. Excellent in properties.

以下に、本発明の具体的実施例について説明する。   Specific examples of the present invention will be described below.

<実施例1>
外層フィルム1として延伸ポリプロピレンフィルム20μm、外面側保護フィルム2として延伸ポリエチレンテレフタレートフィルム12μm、アルミニウム箔3として合金番号A8021のアルミニウム合金箔7μm、内面側保護フィルム4として延伸ナイロンフィルム15μm、熱溶着層5として直鎖状低密度ポリエチレンフィルム50μmを用意し、順次、それぞれの間をウレタン樹脂系2液硬化型接着剤を用いてドライラミネート法により積層し、図1の構成の積層体にして、実施例1の真空断熱材用外被材10を得た。
<Example 1>
Stretched polypropylene film 20 μm as the outer layer film 1, stretched polyethylene terephthalate film 12 μm as the outer surface side protective film 2, aluminum alloy foil 7 μm of alloy number A8021 as the aluminum foil 3, stretched nylon film 15 μm as the inner surface side protective film 4, as the heat welding layer 5 Example 1 A linear low density polyethylene film of 50 μm was prepared, and each layer was sequentially laminated by a dry laminating method using a urethane resin-based two-component curable adhesive to form a laminate having the structure shown in FIG. The outer sheath material 10 for a vacuum heat insulating material was obtained.

<実施例2>
外面側保護フィルム2として内面側保護フィルム4と同じ延伸ナイロンフィルム15μm用いた以外は、実施例1と同様にして、実施例2の真空断熱材用外被材10を得た。
<Example 2>
A vacuum heat insulating jacket material 10 of Example 2 was obtained in the same manner as in Example 1 except that the same stretched nylon film 15 μm as the inner surface side protective film 4 was used as the outer surface side protective film 2.

以下に、本発明の比較例について説明する。   Below, the comparative example of this invention is demonstrated.

<比較例1>
外層フィルム1として延伸ポリエチレンテレフタレートフィルム12μm、外面側保護フィルム2として延伸ナイロンフィルム15μm、アルミニウム箔3として合金番号A8021のアルミニウム合金箔7μm、熱溶着層5として直鎖状低密度ポリエチレン50μmを用意し、内面側保護フィルム4は用いないで、順次、それぞれの間を、ウレタン樹脂系2液硬化型接着剤を用いてドライラミネート法により積層し、積層体を作成して、比較例1の真空断熱材用外被材を得た。
<Comparative Example 1>
Stretched polyethylene terephthalate film 12 μm as outer layer film 1, stretched nylon film 15 μm as outer surface side protective film 2, aluminum alloy foil 7 μm of alloy number A8021 as aluminum foil 3, linear low density polyethylene 50 μm as heat welding layer 5, The inner surface side protective film 4 is not used, and the space between them is sequentially laminated by a dry laminating method using a urethane resin two-component curable adhesive, and a laminate is prepared. An outer jacket material was obtained.

<比較例2>
外層フィルム1として延伸ナイロンフィルム15μm、外面側保護フィルム2としてアルミニウム蒸着延伸ポリエチレンテレフタレートフィルム12μm、アルミニウム箔3として合金番号A8021のアルミニウム合金箔7μm、熱溶着層5として直鎖状低密度ポリエチレン50μmを用意し、内面側保護フィルム4は用いないで、順次、それぞれの間をウレタン樹脂系2液硬化型接着剤を用いてドライラミネート法により積層し、積層体を作成して、比較例2の真空断熱材用外被材を得た。
<Comparative Example 2>
Stretched nylon film 15 μm as outer layer film 1, aluminum vapor-deposited stretched polyethylene terephthalate film 12 μm as outer surface side protective film 2, aluminum alloy foil 7 μm of alloy number A8021 as aluminum foil 3, and linear low density polyethylene 50 μm as heat welding layer 5 are prepared Then, without using the inner surface side protective film 4, the respective layers are sequentially laminated by a dry laminating method using a urethane resin two-component curable adhesive, and a laminated body is prepared. An outer jacket material was obtained.

<試験方法>
実施例と比較例の真空断熱材用外被材を下記の方法で試験し、比較評価した。
<Test method>
The jacket materials for vacuum heat insulating materials of the example and the comparative example were tested by the following method and subjected to comparative evaluation.

<ゲルボフレックス試験>
実施例と比較例の真空断熱材用外被材を、それぞれ、寸法が205mm×290mmの試験片とし、各3つずつ準備し、これら試験片の各々をゲルボフレックス試験に供した。
<Gelboflex test>
Each of the jacket materials for vacuum heat insulating materials of the example and the comparative example was used as a test piece having a dimension of 205 mm × 290 mm, and three test pieces were prepared, and each of these test pieces was subjected to a gelbo flex test.

具体的には、試験片の両短辺を試験機のつかみ具に取り付け、5℃の環境中で、試験片を最大ねじれ角が440°となるようにねじりながら、3.5インチだけ縮め、次いで試験片をねじらずに2.5インチだけさらに縮め、その後、試験片を逆の行程で、最初の状態に戻すサイクルを300回繰り返した。その後、3つの試験片のアルミニウム箔に生じたピンホール数を調べた。その調べた結果を、3つの試験片のピンホール数の平均をピンホール数として表2にまとめた。   Specifically, both short sides of the test piece are attached to the holding tool of the testing machine, and the test piece is shrunk by 3.5 inches while twisting the test piece so that the maximum twist angle is 440 ° in an environment of 5 ° C. The test piece was then further shrunk by 2.5 inches without being twisted, and then the cycle of returning the test piece to the initial state in the reverse stroke was repeated 300 times. Thereafter, the number of pinholes generated in the aluminum foil of the three test pieces was examined. The results of the investigation are summarized in Table 2 with the average number of pinholes of the three test pieces as the number of pinholes.

Figure 0005884419
以下に、実施例と比較例との比較結果について説明する。
Figure 0005884419
Below, the comparison result of an Example and a comparative example is demonstrated.

<比較結果>
実施例1と実施例2の真空断熱材用外被材は、アルミニウム箔3の両面の外面側保護フィルム2と内面側保護フィルム4に、それぞれ、引張弾性率が2.0〜5.0GPaのフィルムを用いていて、外面側保護フィルム2には、ポリアミドフィルム、または、ポリエチレンテレフタレートフィルムを用いて、内面側保護フィルム4にポリアミドフィルムを用いているので、ゲルボフレックス試験を行っても、アルミニウム箔3に生じたピンホール数は極めて少なかった。
<Comparison result>
The outer sheath materials for vacuum heat insulating materials of Example 1 and Example 2 have a tensile modulus of 2.0 to 5.0 GPa on the outer surface side protective film 2 and the inner surface side protective film 4 on both sides of the aluminum foil 3, respectively. Since a film is used, a polyamide film or a polyethylene terephthalate film is used for the outer surface side protective film 2 and a polyamide film is used for the inner surface side protective film 4, aluminum is used even if the gelboflex test is performed. The number of pinholes generated in the foil 3 was very small.

一方、比較例1と比較例2の真空断熱材用外被材は、外面側保護フィルム2に、引張弾性率が2.0〜5.0GPaのポリアミドフィルムやアルミニウム蒸着延伸ポリエチレンテレフタレートフィルムを用いているが、内面側保護フィルム4は用いず、直接、アルミニウム箔3に接着剤を介して、熱溶着層5の引張弾性率が1GPa未満の直鎖状低密度ポリエチレンを積層している。   On the other hand, the envelope materials for vacuum heat insulating materials of Comparative Example 1 and Comparative Example 2 were prepared by using a polyamide film having a tensile modulus of 2.0 to 5.0 GPa or an aluminum vapor-deposited stretched polyethylene terephthalate film as the outer protective film 2. Although the inner surface side protective film 4 is not used, linear low density polyethylene having a tensile elastic modulus of less than 1 GPa of the heat-welded layer 5 is laminated directly on the aluminum foil 3 via an adhesive.

この比較例1と比較例2では、ゲルボフレックス試験で、アルミニウム箔3に生じたピンホール数はそれぞれ、20個、11個と多数のピンホールが発生してしまい、実施例1、2より、アルミニウム箔3にピンホール数が発生しやすいことがわかる。   In the comparative example 1 and the comparative example 2, in the gelboflex test, the number of pinholes generated in the aluminum foil 3 was 20 and 11, respectively. It can be seen that the number of pinholes is likely to occur in the aluminum foil 3.

以上のように、本発明の真空断熱材用外被材10は、バリアー性を担う主な層であるアルミニウム箔3にピンホールやクラックが発生しにくく、バリアー性が低下しにくい。そのため、この真空断熱材用外被材10を用いて、芯材を充填・収納し、脱気して密封した、本発明の真空断熱材100は、アルミニウム箔3にピンホールやクラックの発生によるバリアー性の低下が起こりにくく、断熱効果が低下せず、耐久性に優れている。   As described above, in the vacuum insulator jacket 10 according to the present invention, pinholes and cracks are unlikely to occur in the aluminum foil 3 which is the main layer responsible for barrier properties, and the barrier properties are unlikely to decrease. Therefore, the vacuum heat insulating material 100 of the present invention, in which the core material is filled and accommodated using this vacuum heat insulating jacket material 10 and deaerated and sealed, is due to the occurrence of pinholes and cracks in the aluminum foil 3. Deterioration of barrier properties hardly occurs, heat insulation effect does not decrease, and durability is excellent.

100・・・真空断熱材
10・・・真空断熱材用外被材
20・・・芯材
1・・・外層フィルム
2・・・外面側保護フィルム
3・・・アルミニウム箔
4・・・内面側保護フィルム
5・・・熱溶着層
DESCRIPTION OF SYMBOLS 100 ... Vacuum heat insulating material 10 ... Cover material 20 for vacuum heat insulating materials ... Core material 1 ... Outer layer film 2 ... Outer surface side protective film 3 ... Aluminum foil 4 ... Inner surface side Protective film 5 ... heat welding layer

Claims (2)

芯材が充填され、内部が脱気された真空断熱材に用いる真空断熱材用外被材であって、アルミニウム箔の両面に外面側保護フィルムと内面側保護フィルムとがそれぞれ積層され、該外面側保護フィルムと内面側保護フィルムの引張弾性率が2.0〜5.0GPaであり、かつ、
外面側保護フィルムがポリエチレンテレフタレートフィルムであり、
内面側保護フィルムがポリアミドフィルムであり
アルミニウム箔が、珪素を0.05重量%以上、0.3%重量%以下、鉄を0.7重量%以上、1.7重量%以下含有するアルミニウム合金箔である
ことを特徴とする真空断熱材用外被材。
An outer cover material for a vacuum heat insulating material used for a vacuum heat insulating material filled with a core material and deaerated inside, wherein an outer surface side protective film and an inner surface side protective film are respectively laminated on both surfaces of the aluminum foil, and the outer surface side protective film and the inner surface tensile modulus of the protective film is Ri 2.0~5.0GPa der, and
The outer surface side protective film is a polyethylene terephthalate film,
The inner surface side protective film is a polyamide film ,
The aluminum foil is an aluminum alloy foil containing 0.05% by weight or more and 0.3% by weight or less of silicon and 0.7% by weight or more and 1.7% by weight or less of iron .
An outer covering material for a vacuum heat insulating material.
請求項1に記載の真空断熱材用外被材で芯材を充填・収納したことを特徴とする真空断熱材。 A vacuum heat insulating material, wherein the core material is filled and accommodated with the envelope material for a vacuum heat insulating material according to claim 1 .
JP2011246428A 2011-11-10 2011-11-10 Jacket material for vacuum heat insulating material and vacuum heat insulating material using the same Active JP5884419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011246428A JP5884419B2 (en) 2011-11-10 2011-11-10 Jacket material for vacuum heat insulating material and vacuum heat insulating material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246428A JP5884419B2 (en) 2011-11-10 2011-11-10 Jacket material for vacuum heat insulating material and vacuum heat insulating material using the same

Publications (2)

Publication Number Publication Date
JP2013103343A JP2013103343A (en) 2013-05-30
JP5884419B2 true JP5884419B2 (en) 2016-03-15

Family

ID=48623298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246428A Active JP5884419B2 (en) 2011-11-10 2011-11-10 Jacket material for vacuum heat insulating material and vacuum heat insulating material using the same

Country Status (1)

Country Link
JP (1) JP5884419B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102163292B1 (en) 2013-07-26 2020-10-08 삼성전자주식회사 Vacuum heat insulating material and refrigerator including the same
JP6511719B2 (en) * 2014-02-20 2019-05-15 凸版印刷株式会社 Vacuum insulation covering material and heat insulation container using the same
JP2016008706A (en) * 2014-06-26 2016-01-18 凸版印刷株式会社 Packing material for vacuum heat insulation material and vacuum heat insulation material with packaging material
WO2016157931A1 (en) * 2015-03-30 2016-10-06 大日本印刷株式会社 Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
CN105057355A (en) * 2015-07-29 2015-11-18 洛阳双瑞精铸钛业有限公司 Method for reducing surface cracks of titanium alloy boards after heating once and rolling
JP6123927B1 (en) 2016-02-24 2017-05-10 大日本印刷株式会社 Vacuum insulation outer packaging, vacuum insulation, and equipment with vacuum insulation
JP6149997B1 (en) * 2016-07-21 2017-06-21 大日本印刷株式会社 Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP6471734B2 (en) * 2016-09-30 2019-02-20 大日本印刷株式会社 Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP6202174B1 (en) * 2016-09-30 2017-09-27 大日本印刷株式会社 Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP6642605B2 (en) 2018-03-05 2020-02-05 大日本印刷株式会社 Outer packaging material for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP7427863B2 (en) * 2018-10-30 2024-02-06 東洋製罐株式会社 Exterior bag for oxygen absorbing film
JP2019095066A (en) * 2019-01-24 2019-06-20 大日本印刷株式会社 Outer packaging material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034821A (en) * 1996-07-18 1998-02-10 Dainippon Printing Co Ltd Laminated film for packaging
JP3482408B2 (en) * 2002-03-11 2003-12-22 松下冷機株式会社 Vacuum insulation and refrigerators using vacuum insulation
JP4361324B2 (en) * 2003-07-09 2009-11-11 カイト化学工業株式会社 Packaging film and manufacturing method thereof
JP2006077799A (en) * 2004-09-07 2006-03-23 Toppan Printing Co Ltd Barrier property exterior material for vacuum heat insulating material, and vacuum heat insulating material
JP2010179925A (en) * 2009-02-03 2010-08-19 Nichias Corp Heat insulating container

Also Published As

Publication number Publication date
JP2013103343A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5884419B2 (en) Jacket material for vacuum heat insulating material and vacuum heat insulating material using the same
US8956710B2 (en) Vacuum insulation panel
KR101353647B1 (en) Core material for vacuum insulation panel and vacuum insulation panel using the same
JP6202174B1 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP2008106532A (en) Vacuum heat insulation material
JP4207476B2 (en) Vacuum insulation material and equipment using vacuum insulation material
JP7271919B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP2014228135A (en) Method of manufacturing vacuum heat insulation material, and the vacuum heat insulation material
JP2010260619A (en) Bag and method of manufacturing the same
JP2011089740A (en) Bag body and vacuum heat insulating material
JP2018021662A (en) Vacuum heat insulating material outer package material, vacuum heat insulating material, and article with vacuum heat insulating material
JP2018059524A (en) Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material
JP6471734B2 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP2011012797A (en) Vacuum heat insulating material
JP6245332B1 (en) Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation
JP6212975B2 (en) Vacuum insulation material
JP7056029B2 (en) Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and articles with vacuum heat insulating material
JP6255735B2 (en) Vacuum insulation material
JP6430823B2 (en) Laminated body and vacuum heat insulating material using the same
JP2016148418A (en) Sheath material for vacuum heat insulation material and evaluation method of sheath material for vacuum heat insulation material
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
JP2012026512A (en) Bag body and vacuum heat insulating material
JP7447675B2 (en) Outer packaging material for vacuum insulation materials, vacuum insulation materials, and articles with vacuum insulation materials
JP2007071247A (en) Vacuum heat insulating material, heat insulating panel, and heat insulating box
JP6511719B2 (en) Vacuum insulation covering material and heat insulation container using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5884419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250