JP2019027444A - External packaging material for vacuum heat insulation material, vacuum heat insulation material and article with vacuum heat insulation material - Google Patents
External packaging material for vacuum heat insulation material, vacuum heat insulation material and article with vacuum heat insulation material Download PDFInfo
- Publication number
- JP2019027444A JP2019027444A JP2017143754A JP2017143754A JP2019027444A JP 2019027444 A JP2019027444 A JP 2019027444A JP 2017143754 A JP2017143754 A JP 2017143754A JP 2017143754 A JP2017143754 A JP 2017143754A JP 2019027444 A JP2019027444 A JP 2019027444A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum heat
- heat insulating
- outer packaging
- film
- packaging material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermal Insulation (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本開示は、真空断熱材の形成に用いる真空断熱材用外包材に関する。 The present disclosure relates to an outer packaging material for a vacuum heat insulating material used for forming a vacuum heat insulating material.
近年、物品の省エネルギー化を目的として、真空断熱材が用いられている。真空断熱材は、外包材の袋体内に芯材が配置され、上記袋体内が大気圧よりも圧力が低い真空状態に保持されている部材であり、内部の熱対流が抑制されるため、良好な断熱性能を発揮することができる。なお、真空断熱材に用いられる外包材のことを、真空断熱材用外包材、または単に外包材と称して説明する。 In recent years, vacuum heat insulating materials have been used for the purpose of energy saving of articles. The vacuum heat insulating material is a member in which the core material is arranged in the bag body of the outer packaging material, and the bag body is held in a vacuum state in which the pressure is lower than the atmospheric pressure, and the internal heat convection is suppressed. Can exhibit excellent heat insulation performance. In addition, the outer packaging material used for a vacuum heat insulating material is called and called the outer packaging material for vacuum heat insulating materials, or just an outer packaging material.
真空断熱材用外包材は、真空断熱材内部の真空状態を長期間保持するために、酸素や水蒸気等のガスの透過を抑制するためのガスバリア性、端部を接合して袋体を形成し、芯材を封入密閉するための熱溶着性等の物性が要求される。これらの物性を満たすため、外包材としては、一般に、ガスバリア層および熱溶着可能なフィルムを構成部材として含む積層体が採用されている(特許文献1〜4)。 The outer packaging material for vacuum heat insulating material forms a bag body by joining gas barrier properties to suppress the permeation of gas such as oxygen and water vapor, and end parts in order to maintain the vacuum state inside the vacuum heat insulating material for a long period of time. Further, physical properties such as heat-welding property for sealing and sealing the core material are required. In order to satisfy these physical properties, a laminate including a gas barrier layer and a heat-weldable film as constituent members is generally used as the outer packaging material (Patent Documents 1 to 4).
外包材の熱溶着可能なフィルムとしては、熱溶着が容易である等の理由から、ポリエチレン(PE)フィルムが主に用いられている。しかし、PEフィルムは耐熱性が低く熱劣化し易いため、熱溶着可能なフィルムがPEフィルムである外包材は、高温環境での長期使用を想定した真空断熱材の形成には不向きである。一方で、ポリプロピレン(PP)フィルムは、ポリエチレンよりも高耐熱性を有し、熱溶着が比較的容易である。このため、熱溶着可能なフィルムがPPフィルムである外包材は、高温環境での長期使用を想定した真空断熱材の形成に好適に用いることができる。 A polyethylene (PE) film is mainly used as a heat-weldable film for the outer packaging material because it is easy to heat-seal. However, since the PE film has low heat resistance and is likely to be thermally deteriorated, the outer packaging material in which the heat-weldable film is a PE film is not suitable for forming a vacuum heat insulating material intended for long-term use in a high-temperature environment. On the other hand, a polypropylene (PP) film has higher heat resistance than polyethylene and is relatively easy to heat weld. For this reason, the outer packaging material in which the heat-weldable film is a PP film can be suitably used for forming a vacuum heat insulating material assuming long-term use in a high-temperature environment.
ところで、図4(a)〜(d)に例示するように、2枚の外包材10の端部12を接合して形成した袋体の中に芯材11を挿入し、内部を減圧Aした後開口を封止して真空断熱材20を形成する際に、熱溶着可能なフィルムと芯材とが接触して擦れる、芯材の材料が熱溶着可能なフィルムに突き刺さりピンホールが発生する、等により破損する場合がある。真空断熱材を構成する外包材が破損すると、破損部分からガスが侵入し、真空断熱材の内部の真空状態が損なわれるため、真空断熱材は断熱性能を長期間発揮することが困難となる。 By the way, as illustrated in FIGS. 4A to 4D, the core material 11 is inserted into the bag formed by joining the end portions 12 of the two outer packaging materials 10, and the inside is decompressed A. When the rear opening is sealed to form the vacuum heat insulating material 20, the thermally weldable film and the core material come into contact and rub, the core material is pierced into the thermally weldable film and a pinhole is generated. It may be damaged by such as. When the outer packaging material that constitutes the vacuum heat insulating material is damaged, gas enters from the damaged portion, and the vacuum state inside the vacuum heat insulating material is impaired. Therefore, it is difficult for the vacuum heat insulating material to exhibit the heat insulating performance for a long time.
本開示は、真空断熱材を形成する際に、芯材との接触により破損しにくい真空断熱材用外包材、およびこれを用いた真空断熱材、ならびに真空断熱材付き物品を提供することを主目的とする。 The present disclosure mainly provides an outer packaging material for a vacuum heat insulating material that is not easily damaged by contact with a core material when forming a vacuum heat insulating material, a vacuum heat insulating material using the same, and an article with a vacuum heat insulating material. Objective.
本開示は、熱溶着可能なフィルムおよびガスバリア層を少なくとも有する真空断熱材用外包材であって、上記熱溶着可能なフィルムが、ポリプロピレンフィルムであり、上記熱溶着可能なフィルムの上記ガスバリア層とは反対側の面の動摩擦係数が0.5以下であり、かつ、押し込み弾性率が1.0GPa以上である、真空断熱材用外包材を提供する。 The present disclosure is an outer packaging material for a vacuum heat insulating material having at least a heat-weldable film and a gas barrier layer, wherein the heat-weldable film is a polypropylene film, and the gas barrier layer of the heat-weldable film is Provided is an outer packaging material for a vacuum heat insulating material, in which the dynamic friction coefficient of the opposite surface is 0.5 or less and the indentation elastic modulus is 1.0 GPa or more.
また、本開示は、芯材と、上記芯材が封入された外包材とを有する真空断熱材であって、上記外包材が上述した真空断熱材用外包材である、真空断熱材を提供する。 Moreover, this indication is a vacuum heat insulating material which has a core material and the outer packaging material with which the said core material was enclosed, Comprising: The said outer packaging material provides the vacuum heat insulating material which is the outer packaging material for vacuum heat insulating materials mentioned above. .
また、本開示は、熱絶縁領域を有する物品、および真空断熱材を備える真空断熱材付き物品であって、上記真空断熱材は、芯材と、上記芯材が封入された外包材とを有し、上記外包材が上述した真空断熱材用外包材である、真空断熱材付き物品を提供する。 Further, the present disclosure is an article having a heat insulating region and an article with a vacuum heat insulating material including a vacuum heat insulating material, the vacuum heat insulating material having a core material and an outer packaging material in which the core material is enclosed. And the articles | goods with a vacuum heat insulating material whose said outer packaging material is the outer packaging material for vacuum heat insulating materials mentioned above are provided.
本開示によれば、真空断熱材を形成する際に、芯材との接触により破損しにくい真空断熱材用外包材を提供することができる。 According to this indication, when forming a vacuum heat insulating material, the envelope material for vacuum heat insulating materials which cannot be easily damaged by contact with a core material can be provided.
本開示は、真空断熱材用外包材、真空断熱材、および真空断熱材付き物品を実施形態に含む。以下、本開示の実施の形態を、図面等を参照しながら説明する。但し、本開示は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実施の態様に比べ、各部の幅、厚み、形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。また、説明の便宜上、上方又は下方という語句を用いて説明する場合があるが、上下方向が逆転してもよい。 The present disclosure includes an outer packaging material for a vacuum heat insulating material, a vacuum heat insulating material, and an article with a vacuum heat insulating material in embodiments. Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. However, the present disclosure can be implemented in many different modes and should not be construed as being limited to the description of the embodiments exemplified below. Further, in order to clarify the explanation, the drawings may be schematically represented with respect to the width, thickness, shape, and the like of each part as compared to the embodiment, but are merely examples and limit the interpretation of the present disclosure. Not what you want. In addition, in the present specification and each drawing, elements similar to those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description may be omitted as appropriate. Further, for convenience of explanation, the description may be made using the terms “upper” or “lower”, but the vertical direction may be reversed.
また、本明細書において、ある部材又はある領域等のある構成が、他の部材又は他の領域等の他の構成の「上に(又は下に)」あるとする場合、特段の限定がない限り、これは他の構成の直上(又は直下)にある場合のみでなく、他の構成の上方(又は下方)にある場合を含み、すなわち、他の構成の上方(又は下方)において間に別の構成要素が含まれている場合も含む。 Further, in this specification, when a certain configuration such as a certain member or a certain region is “above (or below)” another configuration such as another member or another region, there is no particular limitation. As long as this is not just above (or directly below) other configurations, but also above (or below) other configurations, i.e. Including the case where the above-mentioned components are included.
I.真空断熱材用外包材
本開示の真空断熱材用外包材は、熱溶着可能なフィルムおよびガスバリア層を少なくとも有する真空断熱材用外包材であって、上記熱溶着可能なフィルムが、ポリプロピレン(PP)フィルムであり、上記熱溶着可能なフィルムの上記ガスバリア層とは反対側の面の動摩擦係数が0.5以下であり、かつ、押し込み弾性率が1.0GPa以上である。
I. The outer packaging material for vacuum heat insulating material The outer packaging material for vacuum heat insulating material of the present disclosure is an outer packaging material for vacuum heat insulating material having at least a heat-weldable film and a gas barrier layer, and the heat-weldable film is polypropylene (PP) The dynamic friction coefficient of the surface opposite to the gas barrier layer of the heat-weldable film is 0.5 or less, and the indentation elastic modulus is 1.0 GPa or more.
図1は、本開示の真空断熱材用外包材の一例を示す概略断面図である。本開示の外包材10は、熱溶着可能なフィルム1およびガスバリア層2を有する。図1におけるガスバリア層2は、樹脂基材3と、樹脂基材3の少なくとも一方の面側に配置されるガスバリア膜4とを有するガスバリアフィルムである。熱溶着可能なフィルム1は、PPフィルムであり、ガスバリア層2とは反対側の面の動摩擦係数が所定の範囲内にあり、かつ、押し込み弾性率が所定の範囲内にある。 FIG. 1 is a schematic cross-sectional view illustrating an example of an outer packaging material for a vacuum heat insulating material according to the present disclosure. The outer packaging material 10 of the present disclosure includes a heat-weldable film 1 and a gas barrier layer 2. The gas barrier layer 2 in FIG. 1 is a gas barrier film having a resin base material 3 and a gas barrier film 4 disposed on at least one surface side of the resin base material 3. The heat-weldable film 1 is a PP film, the dynamic friction coefficient of the surface opposite to the gas barrier layer 2 is within a predetermined range, and the indentation elastic modulus is within a predetermined range.
本開示の真空断熱材用外包材によれば、熱溶着可能なフィルムとして用いるPPフィルムの、ガスバリア層とは反対側の面、すなわち、真空断熱材を形成する際に芯材と接する面の動摩擦係数が、所定の範囲内にあることで、外包材の袋体の中に芯材を挿入する際に、外包材と芯材との間の滑り性が良好となり、擦れによる外包材の破損を抑制することができる。また、熱溶着可能なフィルムとして用いるPPフィルムの押し込み弾性率が、所定の範囲内にあることで、芯材の材料が熱溶着可能なフィルムに突き刺さってもピンホールが生じにくく破損を抑制することができる。このように、本開示の真空断熱材用外包材は、熱溶着可能なフィルムであるPPフィルムが、ガスバリア層とは反対側の面において所定の動摩擦係数を有し、かつ上記PPフィルムが所定の押し込み弾性率を有することで、真空断熱材を形成する際の芯材との接触による破損を防ぐことができ、得られる真空断熱材の断熱性能の低下を防ぐことができる。 According to the outer packaging material for a vacuum heat insulating material of the present disclosure, the dynamic friction of the surface opposite to the gas barrier layer of the PP film used as a heat-weldable film, that is, the surface in contact with the core material when forming the vacuum heat insulating material. When the coefficient is within the predetermined range, when the core material is inserted into the bag body of the outer packaging material, the slipping property between the outer packaging material and the core material becomes good, and the outer packaging material is damaged by rubbing. Can be suppressed. In addition, the indentation elastic modulus of the PP film used as a heat-weldable film is within a predetermined range, so that even if the core material pierces the heat-weldable film, pinholes are unlikely to occur and damage is suppressed. Can do. Thus, the outer packaging material for a vacuum heat insulating material according to the present disclosure is such that the PP film, which is a heat-weldable film, has a predetermined dynamic friction coefficient on the surface opposite to the gas barrier layer, and the PP film has a predetermined By having indentation elastic modulus, the damage by contact with the core material at the time of forming a vacuum heat insulating material can be prevented, and the heat insulation performance of the obtained vacuum heat insulating material can be prevented from being lowered.
以下、本開示の真空断熱材用外包材の構成、特性について詳細に説明する。 Hereinafter, the configuration and characteristics of the vacuum insulation outer packaging material of the present disclosure will be described in detail.
A.熱溶着可能なフィルム
本開示の外包材における熱溶着可能なフィルムは、PPフィルムであり、上記熱溶着可能なフィルムの上記ガスバリア層とは反対側の面の動摩擦係数が0.5以下であり、かつ、押し込み弾性率が1.0GPa以上である。本開示の外包材は、熱溶着可能なフィルムの一方の面側にガスバリア層が1つ以上積層されることから、熱溶着可能なフィルムのガスバリア層とは反対側の面とは、ガスバリア層が積層されない面であり、すなわち外包材の厚み方向における一方の最表面である。
A. Heat-weldable film The heat-weldable film in the outer packaging material of the present disclosure is a PP film, and the dynamic friction coefficient of the surface opposite to the gas barrier layer of the heat-weldable film is 0.5 or less, The indentation elastic modulus is 1.0 GPa or more. Since the outer packaging material of the present disclosure has one or more gas barrier layers laminated on one side of the heat-weldable film, the gas barrier layer is opposite to the surface opposite to the gas barrier layer of the heat-weldable film. It is a surface that is not laminated, that is, one outermost surface in the thickness direction of the outer packaging material.
1.特性
本開示の外包材における熱溶着可能なフィルムは、ガスバリア層とは反対側の面の動摩擦係数が所定の範囲内にあり、かつ、押し込み弾性率が所定の範囲内にある。
1. Characteristics The heat-weldable film in the outer packaging material of the present disclosure has a dynamic friction coefficient on a surface opposite to the gas barrier layer within a predetermined range, and an indentation elastic modulus within a predetermined range.
(1)動摩擦係数
本開示の外包材における熱溶着可能なフィルムは、ガスバリア層とは反対側の面の動摩擦係数が0.5以下である。中でも上記動摩擦係数は0.45以下とすることができ、特に0.4以下とすることができる。また、上記動摩擦係数は0.15以上とすることができ、中でも0.2以上とすることができる。熱溶着可能なフィルムの、ガスバリア層とは反対側の面の動摩擦係数を上記の範囲内とすることで、外包材の袋体の中に芯材を挿入する際に、外包材と芯材との間の滑り性が良好となり、挿入の際の、芯材と外包材との擦れによる破損を抑制することができる。
(1) Coefficient of dynamic friction The heat-weldable film in the outer packaging material of the present disclosure has a coefficient of dynamic friction on the surface opposite to the gas barrier layer of 0.5 or less. Among them, the dynamic friction coefficient can be set to 0.45 or less, particularly 0.4 or less. Further, the dynamic friction coefficient can be set to 0.15 or more, and more preferably to 0.2 or more. When the core material is inserted into the bag body of the outer packaging material by setting the dynamic friction coefficient of the surface of the thermally weldable film opposite to the gas barrier layer within the above range, the outer packaging material and the core material The slipperiness between the core material and the outer packaging material at the time of insertion can be suppressed.
動摩擦係数はJIS K7125:1999(摩擦係数試験方法)に準拠した方法により測定することができる。動摩擦係数の測定方法は、例えば、荷重変動型摩擦摩耗試験システム(新東科学(株)社製 HEIDON Type HHS2000)や引張試験機(テンシロン万能試験機「RTC−1250A」)を用いて、直径10mmのステンレス剛球を用い、荷重200g、速度5mm/secの条件で測定することができる。動摩擦係数の値は、熱溶着可能なフィルムのガスバリア層とは反対側の面において、異なる位置で5点測定し、当該測定値の平均値とする。 The dynamic friction coefficient can be measured by a method based on JIS K7125: 1999 (Friction coefficient test method). The method for measuring the dynamic friction coefficient is, for example, using a load-fluctuating friction and wear test system (HEIDON Type HHS2000 manufactured by Shinto Kagaku Co., Ltd.) or a tensile tester (Tensilon Universal Tester “RTC-1250A”). This can be measured under the conditions of a load of 200 g and a speed of 5 mm / sec. The value of the dynamic friction coefficient is measured at five points at different positions on the surface opposite to the gas barrier layer of the heat-weldable film, and is taken as an average value of the measured values.
なお、本開示の外包材が用いられた真空断熱材の場合、熱溶着可能なフィルムの、ガスバリア層とは反対側の面の動摩擦係数は、上記真空断熱材において外包材が熱溶着されていない領域(例えば、芯材と接する領域)から所望の大きさに試験片をサンプリングして、上記試験片における熱溶着可能なフィルムの、ガスバリア層とは反対側の面に対し、上述した測定方法により測定することができる。 In the case of a vacuum heat insulating material using the outer packaging material of the present disclosure, the dynamic friction coefficient of the surface of the heat-weldable film on the side opposite to the gas barrier layer is such that the outer packaging material is not thermally welded in the vacuum heat insulating material. The test piece is sampled to a desired size from the area (for example, the area in contact with the core material), and the above-described measurement method is applied to the surface of the heat-weldable film on the test piece opposite to the gas barrier layer. Can be measured.
(2)押し込み弾性率
本開示の外包材における熱溶着可能なフィルムは、押し込み弾性率が1.0GPa以上である。また、上記押し込み弾性率は10.0GPa以下とすることができ、中でも5.0GPa以下とすることができる。熱溶着可能なフィルムの押し込み弾性率を上記の範囲内とすることで、芯材の材料が熱溶着可能なフィルムに突き刺さっても、ピンホールが生じにくく破損を抑制することができる。また、真空断熱材用外包材を折り曲げたときに、折り曲げ部分に応力が掛かることによるクラックの発生を防ぐことができる。
(2) Indentation elastic modulus The heat-weldable film in the outer packaging material of the present disclosure has an indentation elastic modulus of 1.0 GPa or more. The indentation elastic modulus can be 10.0 GPa or less, and can be 5.0 GPa or less. By setting the indentation elastic modulus of the heat-weldable film within the above range, even if the core material is pierced into the heat-weldable film, pinholes hardly occur and damage can be suppressed. Moreover, when the outer packaging material for a vacuum heat insulating material is bent, it is possible to prevent the occurrence of cracks due to stress applied to the bent portion.
押し込み弾性率は、ISO 14577:2015に準拠する方法により、超微小負荷硬さ試験機を用いて測定することができる。測定は、外包材から所望のサイズのサンプルを切り出し、熱溶着可能なフィルムの、ガスバリア層とは反対側の面または厚み方向の断面に対して、ビッカース圧子(対面角136°の正四角錐のダイヤモンド圧子)を装着させた超微小負荷硬さ試験機を用いて、押し込み速度0.1μm/秒、押し込み深さ2μm、保持時間5秒間、引き抜き速度0.1μm/秒の条件で行う。上記測定は、温度23℃±2℃、湿度60%RH±5%RHの条件で行う。超微小硬さ試験機は、例えばピコデンターHM500(フィッシャー・インストルメンツ社製)を用いることができる。熱溶着可能なフィルムの断面において押し込み弾性率を測定する場合は、上記サンプルの外周を硬化樹脂で固めて固定し、固定したサンプルをダイヤモンドナイフで厚み方向に切断して、露出した熱溶着可能なフィルムの断面を測定する。また、熱溶着可能なフィルムのガスバリア層とは反対側の面において押し込み弾性率を測定する場合は、外包材の、熱溶着可能なフィルムと反対側の最外面を、硬化樹脂系接着剤で厚み1.1mmの平坦なガラス板に固定して、熱溶着可能なフィルムの表面を測定する。押し込み弾性指数を算出する際の層の厚みは、切削断面の光学顕微鏡観察の計測により測定することができる。1つの条件では、外包材から切り出した1つのサンプルにおいて、熱溶着可能なフィルムのガスバリア層とは反対側の面または断面において、少なくとも異なる5箇所で測定し、それらの測定値の平均を、熱溶着可能なフィルムのその条件での押し込み弾性率の値とする。 The indentation elastic modulus can be measured by using a method of conforming to ISO 14577: 2015 using an ultra micro load hardness tester. The measurement is performed by cutting a sample of a desired size from the outer packaging material and applying a Vickers indenter (a square pyramid diamond with a face angle of 136 ° to the cross section in the thickness direction or the surface opposite to the gas barrier layer of the heat-weldable film. Using an ultra-micro load hardness tester equipped with an indenter), the indentation speed is 0.1 μm / second, the indentation depth is 2 μm, the holding time is 5 seconds, and the drawing speed is 0.1 μm / second. The above measurement is performed under conditions of a temperature of 23 ° C. ± 2 ° C. and a humidity of 60% RH ± 5% RH. As the ultra micro hardness tester, for example, Picodenter HM500 (manufactured by Fisher Instruments) can be used. When measuring the indentation elastic modulus in the cross section of the heat-weldable film, the outer periphery of the sample is fixed with a cured resin and fixed, and the fixed sample is cut in the thickness direction with a diamond knife, and the exposed heat-weldable Measure the cross section of the film. In addition, when measuring the indentation elastic modulus on the surface opposite to the gas barrier layer of the heat weldable film, the outermost surface of the outer packaging material opposite to the heat weldable film is thickened with a cured resin adhesive. It is fixed to a 1.1 mm flat glass plate and the surface of a film that can be heat-welded is measured. The thickness of the layer when calculating the indentation elasticity index can be measured by measurement with an optical microscope of the cut section. Under one condition, in one sample cut out from the outer packaging material, measurement is performed at at least five different points on the surface or cross section opposite to the gas barrier layer of the heat-weldable film, and the average of these measured values is measured. It is set as the value of the indentation elastic modulus of the weldable film under the conditions.
(3)他の特性
本開示の外包材における熱溶着可能なフィルムは、上述した2つの特性を具備すればよいが、さらに、以下の特性を具備することができる。
(3) Other characteristics Although the film which can be heat-welded in the outer packaging material of this indication should just have the two characteristics mentioned above, it can further have the following characteristics.
(a)静摩擦係数
本開示の外包材における熱溶着可能なフィルムは、上記ガスバリア層とは反対側の面の静摩擦係数が、0.15以上であることが好ましく、中でも0.2以上とすることができ、特に0.25以上とすることができる。また、上記静摩擦係数の上限は特に限定されないが、例えば0.5以下とすることができる。熱溶着可能なフィルムの、ガスバリア層とは反対側の面の静摩擦係数を上記の範囲内とすることで、外包材の袋体の中に芯材を挿入する際に、外包材と芯材との間の滑り性が良好となり、挿入の際の、芯材と外包材との擦れや芯材の材料が外包材を突き刺すことによる破損を抑制することができる。
(A) Static friction coefficient The heat-weldable film in the outer packaging material of the present disclosure preferably has a static friction coefficient of 0.15 or more on the surface opposite to the gas barrier layer, and more preferably 0.2 or more. In particular, 0.25 or more. Moreover, the upper limit of the static friction coefficient is not particularly limited, but can be, for example, 0.5 or less. When the core material is inserted into the bag body of the outer packaging material by setting the coefficient of static friction of the surface opposite to the gas barrier layer in the heat-weldable film within the above range, the outer packaging material and the core material The slippage between the core material and the outer packaging material at the time of insertion and the damage due to the core material piercing the outer packaging material can be suppressed.
静摩擦係数は、JIS K7125:1999(摩擦係数試験方法)に準拠した方法により測定することができる。測定は、荷重変動型摩擦摩耗試験システム(新東科学(株)社製 HEIDON Type HHS2000)や、引張試験機(テンシロン万能試験機「RTC−1250A」)を用いて、直径10mmのステンレス剛球を用い、荷重200g、速度5mm/secにて静摩擦係数を測定することができる。静摩擦係数の値は、熱溶着可能なフィルムのガスバリア層とは反対側の面において、異なる位置で5点測定し、当該測定値の平均値とする。 The static friction coefficient can be measured by a method based on JIS K7125: 1999 (Friction coefficient test method). The measurement is carried out using a stainless steel hard ball having a diameter of 10 mm using a load-fluctuating friction and wear test system (HEIDON Type HHS2000 manufactured by Shinto Kagaku Co., Ltd.) and a tensile tester (Tensilon universal tester “RTC-1250A”). The static friction coefficient can be measured at a load of 200 g and a speed of 5 mm / sec. The value of the static friction coefficient is measured at five points at different positions on the surface opposite to the gas barrier layer of the heat-weldable film, and is taken as an average value of the measured values.
なお、本開示の外包材が用いられた真空断熱材の場合、熱溶着可能なフィルムの、ガスバリア層とは反対側の面の静摩擦係数は、上記真空断熱材において外包材が熱溶着されていない領域(例えば、芯材と接する領域)から所望の大きさに試験片をサンプリングして、上記試験片における熱溶着可能なフィルムの、ガスバリア層とは反対側の面に対し、上述した測定方法により測定することができる。 In the case of a vacuum heat insulating material using the outer packaging material of the present disclosure, the static friction coefficient of the surface of the heat-weldable film on the side opposite to the gas barrier layer is such that the outer packaging material is not thermally welded in the vacuum heat insulating material. The test piece is sampled to a desired size from the area (for example, the area in contact with the core material), and the above-described measurement method is applied to the surface of the heat-weldable film on the test piece opposite to the gas barrier layer. Can be measured.
2.PPフィルム
本開示の外包材において、熱溶着可能なフィルムはPPフィルムである。PPフィルムは、ポリプロピレン樹脂を主成分とする樹脂フィルムである。なお、「主成分」とは、PPフィルムの全質量に占めるポリプロピレン樹脂の割合が90質量%以上であることを意味し、好ましくは95質量%以上である。
2. PP film In the outer packaging material of the present disclosure, the heat-weldable film is a PP film. The PP film is a resin film mainly composed of polypropylene resin. The “main component” means that the proportion of the polypropylene resin in the total mass of the PP film is 90% by mass or more, and preferably 95% by mass or more.
PPフィルムのポリプロピレン樹脂としては、例えば、プロピレン単独重合体であるホモポリプロピレン樹脂(ホモPP)であってもよく、プロピレンとα‐オレフィンとのランダム共重合体であるランダムポリプロピレン樹脂(ランダムPP)であってもよく、ブロック共重合体であるブロックポリプロピレン樹脂(ブロックPP)であってもよい。上記PPフィルムは、上述した各種ポリプロピレン樹脂の1種単独または2種以上含んでいてもよい。中でも、上述した特性を具備し易く、揮発ガス量が少ないことから、PPフィルムは、ホモポリプロピレン樹脂を主成分とすること、すなわち熱溶着可能なフィルムがホモポリプロピレンフィルムであることが好ましい。 The polypropylene resin of the PP film may be, for example, a homopolypropylene resin (homo PP) that is a propylene homopolymer, or a random polypropylene resin (random PP) that is a random copolymer of propylene and an α-olefin. It may be a block polypropylene resin (block PP) which is a block copolymer. The PP film may contain one or more of the various polypropylene resins described above. Among these, the PP film is preferably composed mainly of a homopolypropylene resin, that is, the film capable of being thermally welded is preferably a homopolypropylene film, because the above-described characteristics are easily provided and the amount of volatile gas is small.
PPフィルムは、ポリプロピレン樹脂の他に、アンチブロッキング剤、滑剤、難燃化剤、有機充填剤等の添加剤を含んでいてもよい。上記添加剤の含有量は例えばPPフィルムの全質量100質量%に対して3質量%以下とすることができる。 The PP film may contain additives such as an antiblocking agent, a lubricant, a flame retardant, and an organic filler in addition to the polypropylene resin. The content of the additive can be, for example, 3% by mass or less with respect to 100% by mass of the total mass of the PP film.
PPフィルムは、延伸されていてもよく、無延伸であってもよい。中でもヒートシール性に優れている観点から、延伸PPフィルム(CPPフィルム)であることが好ましい。 The PP film may be stretched or non-stretched. Among these, a stretched PP film (CPP film) is preferable from the viewpoint of excellent heat sealability.
PPフィルムの厚みは、所望の特性や機能を発揮可能であれば特に限定されないが、例えば20μm以上100μm以下とすることができ、中でも25μm以上90μm以下とすることができ、特に30μm以上80μm以下とすることができる。上記厚みが上記範囲よりも大きいと、本開示の外包材を用いた真空断熱材において、接合端部の側面からガスが侵入しやすくなり、真空断熱材内部の真空度が損なわれる場合がある。一方、上記厚みが上記範囲よりも小さいと、接合部分において所望の接着力が得られない場合がある。 The thickness of the PP film is not particularly limited as long as the desired properties and functions can be exhibited. For example, the thickness can be 20 μm or more and 100 μm or less, particularly 25 μm or more and 90 μm or less, and particularly 30 μm or more and 80 μm or less. can do. When the thickness is larger than the above range, in the vacuum heat insulating material using the outer packaging material of the present disclosure, gas may easily enter from the side surface of the joint end portion, and the degree of vacuum inside the vacuum heat insulating material may be impaired. On the other hand, if the thickness is smaller than the above range, a desired adhesive force may not be obtained at the joint portion.
PPフィルムは、ガスバリア層とは反対側の面において上述した動摩擦係数を具備可能となるように、表面処理がされていてもよい。表面処理の方法としては、一般に樹脂フィルムの表面改質に用いられる表面処理方法を用いることができ、例えば、コロナ処理、プラズマ処理等が挙げられる。 The PP film may be subjected to a surface treatment so that the dynamic friction coefficient described above can be provided on the surface opposite to the gas barrier layer. As the surface treatment method, a surface treatment method generally used for surface modification of a resin film can be used, and examples thereof include corona treatment and plasma treatment.
B.ガスバリア層
本開示の外包材におけるガスバリア層は、熱溶着可能なフィルムの一方の面側に配置される。上記ガスバリア層としては、ガスバリア性能を発揮可能な層であれば特に限定されず、例えば、金属箔、樹脂基材および上記樹脂基材の一方の面側に配置されたガスバリア膜を有するガスバリアフィルムが挙げられる。ガスバリア膜としては、ガスバリア性を発揮可能な薄膜であればよく、例えば、金属薄膜、無機化合物膜、有機−無機ハイブリッド膜等が挙げられる。金属箔、ならびにガスバリアフィルムにおける樹脂基材およびガスバリア膜は、公知のものを用いることができる。
B. Gas Barrier Layer The gas barrier layer in the outer packaging material of the present disclosure is disposed on one surface side of a heat-weldable film. The gas barrier layer is not particularly limited as long as it is a layer capable of exhibiting gas barrier performance. For example, a gas barrier film having a metal foil, a resin base material, and a gas barrier film disposed on one surface side of the resin base material may be used. Can be mentioned. The gas barrier film may be a thin film that can exhibit gas barrier properties, and examples thereof include a metal thin film, an inorganic compound film, and an organic-inorganic hybrid film. As the metal foil and the resin base material and gas barrier film in the gas barrier film, known ones can be used.
C.保護フィルム
本開示の外包材は、上述した熱溶着可能なフィルムおよびガスバリア層の他に、保護フィルムを有することができる。上記保護フィルムは、上記熱溶着可能なフィルムから最も離れた位置にあるガスバリア層の、熱溶着可能なフィルムとは反対側に有することができ、本開示の外包材の厚み方向(積層方向)において、熱溶着可能なフィルムとは反対側の最外面を担う層とすることができる。これにより、保護フィルム以外の外包材の構成部材を損傷や劣化から保護することができる。保護フィルムとしては、汎用の樹脂フィルムを用いることができ、中でも、熱溶着可能なフィルムよりも高融点の樹脂フィルムを用いることができる。
C. Protective film The outer packaging material of this indication can have a protective film other than the heat-weldable film and gas barrier layer mentioned above. The protective film may have a gas barrier layer located farthest from the heat-weldable film on the side opposite to the heat-weldable film, and in the thickness direction (lamination direction) of the outer packaging material of the present disclosure , It can be a layer that bears the outermost surface opposite to the heat-weldable film. Thereby, the structural member of outer packaging materials other than a protective film can be protected from damage and deterioration. As the protective film, a general-purpose resin film can be used, and among them, a resin film having a higher melting point than a heat-weldable film can be used.
D.接着層
本開示の外包材は、外包材を構成する部材間に接着層を有することができる。外包材を構成する部材間としては、例えば、熱溶着可能なフィルムとガスバリア層との間、ガスバリア層と、それに隣接する他のガスバリア層との間、ガスバリア層と保護フィルムとの間等が挙げられる。上記接着層は、ラミネートに用いられる公知の接着剤を用いて形成することができる。上記接着剤としては、特に限定されないが、例えば感圧性接着剤、熱可塑性接着剤、硬化性接着剤等が挙げられる。
D. Adhesive Layer The outer packaging material of the present disclosure can have an adhesive layer between members constituting the outer packaging material. Examples of the members constituting the outer packaging material include, for example, between a heat-weldable film and a gas barrier layer, between a gas barrier layer and another gas barrier layer adjacent thereto, and between a gas barrier layer and a protective film. It is done. The adhesive layer can be formed using a known adhesive used for lamination. Although it does not specifically limit as said adhesive agent, For example, a pressure sensitive adhesive, a thermoplastic adhesive, a curable adhesive etc. are mentioned.
E.その他
本開示の外包材は、熱溶着可能なフィルムの一方の面側において、ガスバリア層を1つ以上有し、上述した特性を具備することが可能であれば、ガスバリア層の数(積層数)は特に限定されず、ガスバリア層の種類、仕様等に応じて適宜設定することができる。
E. Others The outer packaging material of the present disclosure has one or more gas barrier layers on one side of a heat-weldable film, and the number of gas barrier layers (the number of stacked layers) as long as the above-described characteristics can be achieved. Is not particularly limited, and can be set as appropriate according to the type and specification of the gas barrier layer.
本開示の外包材の厚みは、上述した特性を有することが可能であれば特に限定されず、例えば30μm以上200μm以下、好ましくは50μm以上150μm以下とすることができる。 The thickness of the outer packaging material of the present disclosure is not particularly limited as long as it can have the above-described characteristics, and may be, for example, 30 μm to 200 μm, preferably 50 μm to 150 μm.
本開示の外包材は、水蒸気透過度が低いほど好ましく、例えば水蒸気透過度が0.1g/(m2・day)以下であることが好ましく、中でも0.05g/(m2・day)以下、特に0.01g/(m2・day)以下とすることができる。 Outer cover material of the present disclosure, the lower the water vapor permeability preferably, for example, preferably water vapor permeability is 0.1g / (m 2 · day) or less, preferably 0.05g / (m 2 · day) or less, In particular, it can be 0.01 g / (m 2 · day) or less.
水蒸気透過度は、ISO 15106−5:2015(差圧法)に準拠して、水蒸気透過度測定装置を用いて、温度40℃、相対湿度差90%RHの条件で測定することができる。測定は、所望のサイズに切り取った外包材の、厚み方向に対向する2つの最外面を担う層のうち、一方の最外層である熱溶着可能なフィルムとは反対側の最外層の表面が高湿度側(水蒸気供給側)となるようにして、上記装置の上室と下室との間に装着し、透過面積約50cm2(透過領域:直径8cmの円形)として、温度40℃、相対湿度差90%RHの条件で行う。水蒸気透過度測定装置は、例えば、英国Technolox社製の「DELTAPERM」を用いることができる。水蒸気透過度の測定は、1つの条件で少なくとも3つのサンプルについて行い、それらの測定値の平均をその条件での水蒸気透過度の値とする。 The water vapor transmission rate can be measured using a water vapor transmission rate measuring device in accordance with ISO 15106-5: 2015 (differential pressure method) under conditions of a temperature of 40 ° C. and a relative humidity difference of 90% RH. The measurement is carried out by measuring the outermost layer on the opposite side to the heat-weldable film that is one of the outermost layers facing the thickness direction of the outer packaging material cut to a desired size. Mounted between the upper chamber and lower chamber of the apparatus so as to be on the humidity side (water vapor supply side), with a permeation area of about 50 cm 2 (permeation region: a circle with a diameter of 8 cm), a temperature of 40 ° C., a relative humidity The difference is 90% RH. As the water vapor transmission rate measuring apparatus, for example, “DELTAPERM” manufactured by Technolox, UK can be used. The measurement of water vapor permeability is performed on at least three samples under one condition, and the average of the measured values is taken as the value of water vapor permeability under that condition.
本開示の外包材は、酸素透過度が低いほど好ましく、例えば酸素透過度が0.1cc/(m2・day・atm)以下であることが好ましく、中でも0.05cc/(m2・day・atm)以下とすることができる。 The outer packaging material of the present disclosure is preferably as the oxygen permeability is low. For example, the oxygen permeability is preferably 0.1 cc / (m 2 · day · atm) or less, and in particular, 0.05 cc / (m 2 · day · atm) or less.
酸素透過度は、JIS K7126−2:2006(プラスチック−フィルム及びシート−ガス透過度試験方法−第2部:等圧法、付属書A:電解センサ法による酸素ガス透過度の試験方法)を参考に、酸素ガス透過度測定装置を用いて、温度23℃、湿度60%RHの条件で測定することができる。酸素ガス透過度測定装置としては、例えば、米国MOCON社製の「OXTRAN」を用いることができる。測定は、所望のサイズに切り取った外包材の、厚み方向に対向する2つの最外面を担う層のうち、一方の最外層である熱溶着可能なフィルムとは反対側の最外層の表面が酸素ガスに接するようにして上記装置内に装着し、透過面積約50cm2(透過領域:直径8cmの円形)として、キャリアガスおよび試験ガスの状態を温度23℃、湿度60%RHの条件として測定を行う。上記測定の際、上記装置内にキャリアガスを流量10cc/分で60分以上供給してパージする。上記キャリアガスは5%程度水素を含む窒素ガスを用いることができる。パージ後、上記装置内に試験ガスを流し、流し始めてから平衡状態に達するまでの時間として12時間を確保した後に測定する。試験ガスは少なくとも99.5%の乾燥酸素を用いる。酸素透過度の測定は、1つの条件で少なくとも3つのサンプルについて行い、それらの測定値の平均をその条件での酸素透過度の値とする。 For oxygen permeability, refer to JIS K7126-2: 2006 (Plastics-Film and sheet-Gas permeability test method-Part 2: Isobaric method, Appendix A: Test method of oxygen gas permeability by electrolytic sensor method) Using an oxygen gas permeability measuring device, it can be measured under conditions of a temperature of 23 ° C. and a humidity of 60% RH. As the oxygen gas permeability measuring device, for example, “OXTRAN” manufactured by MOCON of the United States can be used. The measurement is carried out by measuring the outermost layer on the opposite side of the outermost layer, which is one of the outermost layers facing the thickness direction, of the outer packaging material that is cut to a desired size. Mounted in the apparatus so as to be in contact with the gas, and measured with a permeation area of about 50 cm 2 (permeation region: circular with a diameter of 8 cm) under conditions of a carrier gas and a test gas at a temperature of 23 ° C. and a humidity of 60% RH. Do. During the measurement, the carrier gas is purged by supplying the carrier gas at a flow rate of 10 cc / min for 60 minutes or more. As the carrier gas, nitrogen gas containing about 5% hydrogen can be used. After purging, the test gas is allowed to flow through the apparatus, and measurement is performed after 12 hours have been secured as the time from the start of flowing until the equilibrium state is reached. The test gas uses at least 99.5% dry oxygen. The measurement of oxygen permeability is performed for at least three samples under one condition, and the average of those measured values is taken as the value of oxygen permeability under that condition.
本開示の外包材の製造方法としては、例えば、予め製造した各フィルムを上述した接着層を介して貼り合せる方法が挙げられる。また、熱溶融させた各フィルムの原材料をTダイ等で順次押出しして積層して外包材を製造してもよい。 As a manufacturing method of the outer packaging material of this indication, the method of bonding each film manufactured previously through the adhesive layer mentioned above is mentioned, for example. Alternatively, the raw material of each film that has been heat-melted may be sequentially extruded with a T-die or the like and laminated to produce an outer packaging material.
本開示の外包材は、真空断熱材に用いることができる。真空断熱材において、本開示の外包材は、熱溶着可能なフィルムが芯材側となるようにして、芯材を介して対向して配置して用いることができる。 The outer packaging material of this indication can be used for a vacuum heat insulating material. In the vacuum heat insulating material, the outer packaging material of the present disclosure can be used by being disposed so as to face each other through the core material such that the heat-weldable film is on the core material side.
II.真空断熱材
本開示の真空断熱材は、芯材と、上記芯材を封入する外包材とを有する真空断熱材であって、上記外包材が上述した「I.真空断熱材用外包材」の項で説明したものであることを特徴とする。
II. Vacuum heat insulating material The vacuum heat insulating material of the present disclosure is a vacuum heat insulating material having a core material and an outer packaging material that encloses the core material, and the outer packaging material is the above-mentioned “I. External packaging material for vacuum heat insulating material”. It is what was demonstrated by the term.
図2(a)および(b)は、本開示の真空断熱材の一例を示す概略斜視図およびX−X線断面図である。図2(a)および(b)に例示する真空断熱材20は、芯材11と、芯材11を封入する外包材10とを有し、外包材10が、図1で説明した真空断熱材用外包材10である。真空断熱材20は、2枚の外包材10が、それぞれの熱溶着可能なフィルムが向き合うように対向し、端部12を熱溶着により接合した袋体となっており、袋体の中に芯材11が封入され、袋体内部が減圧されている。 2A and 2B are a schematic perspective view and a cross-sectional view taken along the line XX showing an example of the vacuum heat insulating material of the present disclosure. The vacuum heat insulating material 20 illustrated in FIGS. 2A and 2B includes a core material 11 and an outer packaging material 10 that encloses the core material 11, and the outer packaging material 10 is the vacuum heat insulating material described in FIG. It is the outer packaging material 10. The vacuum heat insulating material 20 is a bag body in which two outer packaging materials 10 face each other so that the respective heat-weldable films face each other, and end portions 12 are joined by heat welding. The material 11 is enclosed, and the bag body is depressurized.
本開示の真空断熱材によれば、芯材を封入する外包材が、上述した「I.真空断熱材用外包材」の項で説明した真空断熱材用外包材であり、外包材が芯材との接触により破損しにくいため、長期間、良好な断熱性能を発揮することができる。 According to the vacuum heat insulating material of the present disclosure, the outer packaging material that encloses the core material is the outer packaging material for vacuum heat insulating material described in the above-mentioned section “I. External packaging material for vacuum heat insulating material”, and the outer packaging material is the core material. It is difficult to break due to contact with the surface, so that good heat insulation performance can be exhibited for a long time.
以下、本開示の真空断熱材について、構成ごとに説明する。 Hereinafter, the vacuum heat insulating material of the present disclosure will be described for each configuration.
1.外包材
本開示の真空断熱材における外包材は、芯材を封入する部材であり、上述の「I.真空断熱材用外包材」の項で説明した真空断熱材用外包材と同じであるため、ここでの説明は省略する。
1. Outer packaging material The outer packaging material in the vacuum heat insulating material of the present disclosure is a member that encloses a core material, and is the same as the outer packaging material for vacuum heat insulating material described in the above-mentioned section “I. Outer packaging material for vacuum heat insulating material”. Explanation here is omitted.
2.芯材
本開示の真空断熱材における芯材は、外包材により封入される部材である。なお、封入されるとは、外包材を用いて形成された袋体の内部に密封されることをいう。
2. Core material The core material in the vacuum heat insulating material of this indication is a member enclosed with an outer packaging material. The term “enclosed” refers to sealing inside a bag formed using an outer packaging material.
上記芯材は、熱伝導率が低い材料であればよく、例えば、粉粒体、発泡樹脂、繊維等が挙げられる。上記芯材は、上述した材料のうち1つの材料で形成されていてもよく、2以上の材料を混合して形成された複合材であってもよい。また、上記芯材は、無機材料からなるものであってもよく、有機材料からなるものであってもよく、有機材料からなるものと無機材料からなるものとの混合物であってもよい。 The said core material should just be a material with low heat conductivity, for example, a granular material, foamed resin, a fiber, etc. are mentioned. The core material may be formed of one of the materials described above, or may be a composite material formed by mixing two or more materials. The core material may be made of an inorganic material, may be made of an organic material, or may be a mixture of an organic material and an inorganic material.
上記芯材は、粉粒体、発泡樹脂、繊維等の材料が外包材の袋体内に直接封入された非成形体であってもよく、粉粒体、発泡樹脂、繊維等の材料を所望の形状に成形した成形体であってもよい。中でも上記芯材は成形体であることが好ましく、成形体の中でも特にシート状であることが好ましい。シート状の芯材は、取り扱いが容易であるが、外包材を用いて形成された袋体に挿入する際に、外包材の熱溶着可能なフィルムの表面との接触面積が大きく、熱溶着可能なフィルムと芯材との接触による破損が生じやすい。このため、熱溶着可能なフィルムとの間の滑り性が特に要求され、「I.真空断熱材用外包材」の項で説明した真空断熱材用外包材を用いることの効果がより発揮されるからである。 The core material may be a non-molded body in which materials such as powder, foamed resin, and fiber are directly enclosed in a bag body of an outer packaging material, and materials such as powder, foamed resin, and fiber are desired. It may be a molded body formed into a shape. Among these, the core material is preferably a molded body, and particularly preferably a sheet shape among the molded bodies. Sheet-like core material is easy to handle, but when inserted into a bag formed using outer packaging material, it has a large contact area with the surface of the outer packaging material that can be heat-welded and can be heat-welded Damage is likely to occur due to contact between a thin film and a core material. For this reason, the slip property between the heat-weldable film is particularly required, and the effect of using the vacuum insulation material outer packaging material described in the section “I. Vacuum insulation material outer packaging material” is more exhibited. Because.
シート状の芯材とは、上述した材料をシート状に成形した成形体をいい、例えば、繊維を絡み合わせた繊維シート、発泡樹脂を発泡して形成した発泡シート、粉粒体を熱圧成形して形成した粉粒体シート等が挙げられる。中でも繊維シートが好ましい。真空断熱材の熱伝導率が低くできるからである。シート状の芯材の1つあたりの厚みについて、真空断熱材の断熱性能やシート状の芯材の積層数に応じて適宜設定することができる。 The sheet-like core material refers to a molded body obtained by molding the above-described material into a sheet shape. For example, a fiber sheet in which fibers are entangled, a foamed sheet formed by foaming a foamed resin, and a powdered body are hot-press molded. The granular material sheet | seat etc. which were formed in this way are mentioned. Among these, a fiber sheet is preferable. This is because the thermal conductivity of the vacuum heat insulating material can be lowered. About the thickness per sheet-like core material, it can set suitably according to the heat insulation performance of a vacuum heat insulating material, or the number of lamination | stacking of a sheet-like core material.
本開示の真空断熱材は、シート状の芯材が1以上封入されていればよく、真空断熱材におけるシート状の芯材は、1つであってもよく、2つ以上であってもよい。シート状の芯材が2つ以上の場合は、本開示の真空断熱材は、上記2つ以上のシート状の芯材を積層した積層体を封入することができ、2つ以上のシート状の芯材からなる積層体の積層数は、真空断熱材に要求される断熱性能や、シート状の芯材の1つあたりの厚みに応じて適宜設定することができる。 The vacuum heat insulating material of the present disclosure only needs to contain one or more sheet-shaped core materials, and the number of sheet-shaped core materials in the vacuum heat insulating material may be one or two or more. . When there are two or more sheet-shaped core materials, the vacuum heat insulating material of the present disclosure can enclose a laminate in which the two or more sheet-shaped core materials are stacked, and the two or more sheet-shaped core materials can be encapsulated. The number of laminated layers made of the core material can be appropriately set according to the heat insulating performance required for the vacuum heat insulating material and the thickness per sheet-shaped core material.
3.真空断熱材
本開示の真空断熱材は、外包材の内部に芯材が封入され、上記内部が減圧されて真空状態となっている。真空断熱材内部の真空度は、例えば5Pa以下であることが好ましい。内部に残存する空気の対流による熱伝導を低くすることができ、優れた断熱性を発揮することが可能となるからである。
3. Vacuum heat insulating material As for the vacuum heat insulating material of this indication, a core material is enclosed with the inside of an outer packaging material, and the above-mentioned inside is decompressed and it is in a vacuum state. The degree of vacuum inside the vacuum heat insulating material is preferably 5 Pa or less, for example. This is because heat conduction by convection of air remaining inside can be lowered, and excellent heat insulation can be exhibited.
真空断熱材の熱伝導率は、低い程好ましく、例えば、熱伝導率が5mW/(mK)以下であることが好ましい。真空断熱材が熱を外部に伝導しにくくなり、高い断熱効果を奏することができるからである。中でも上記熱伝導率は、4mW/(mK)以下であることがより好ましく、3mW/(mK)以下であることがさらに好ましい。 The heat conductivity of the vacuum heat insulating material is preferably as low as possible. For example, the heat conductivity is preferably 5 mW / (mK) or less. This is because the vacuum heat insulating material is difficult to conduct heat to the outside, and a high heat insulating effect can be achieved. Among these, the thermal conductivity is more preferably 4 mW / (mK) or less, and further preferably 3 mW / (mK) or less.
熱伝導率は、JIS A1412−2:1999(熱絶縁材の熱抵抗及び熱伝導率の測定方法−第2部:熱流計法(HFM法))に準拠し、熱伝導率測定装置を用いて熱流計法により測定された値とすることができる。上記熱伝導率測定装置は、例えば、熱伝導率測定装置オートラムダ(製品名:HC−074、英弘精機製)を用いることができる。測定は、以下の条件で、測定試料(真空断熱材)の両方の主面が上下方向を向くように配置して行う。熱伝導率測定前に、測定試料の温度が測定環境温度と等しくなっているかを、熱流計などを使用して予め測定しておくことが好ましい。1つの条件では少なくとも3つのサンプルを測定し、それらの測定値の平均をその条件の熱伝導率の値とする。
(熱伝導率の測定条件)
・測定試料:幅29cm±0.5cm、長さ30cm±0.5cm
・試験の定常に要する時間:15分以上
・標準板の種類:EPS
・高温面の温度:30℃
・低温面の温度:10℃
・測定試料の平均温度:20℃
The thermal conductivity conforms to JIS A1412-2: 1999 (Method for measuring thermal resistance and thermal conductivity of thermal insulation material-Part 2: Heat flow meter method (HFM method)), and uses a thermal conductivity measuring device. It can be a value measured by a heat flow meter method. As the thermal conductivity measuring device, for example, a thermal conductivity measuring device Auto Lambda (product name: HC-074, manufactured by Eihiro Seiki Co., Ltd.) can be used. The measurement is performed under the following conditions so that both main surfaces of the measurement sample (vacuum heat insulating material) are directed in the vertical direction. Before measuring the thermal conductivity, it is preferable to measure in advance using a heat flow meter or the like whether the temperature of the measurement sample is equal to the measurement environment temperature. Under one condition, at least three samples are measured, and the average of the measured values is taken as the thermal conductivity value of the condition.
(Measurement conditions for thermal conductivity)
・ Measurement sample: width 29cm ± 0.5cm, length 30cm ± 0.5cm
・ Time required for steady state of test: 15 minutes or more ・ Type of standard plate: EPS
・ Hot surface temperature: 30 ℃
・ Cold surface temperature: 10 ℃
-Average temperature of measurement sample: 20 ° C
4.その他
本開示の真空断熱材の製造方法は、一般的な真空断熱材の製造方法を用いることができる。例えば、上述した「I.真空断熱材用外包材」の項で説明した真空断熱材用外包材を2枚準備し、それぞれの熱溶着可能なフィルム同士を向き合わせて重ね、三辺の外縁を熱溶着し、一辺が開口する袋体を得る。この袋体に、開口から芯材を入れた後、上記開口から空気を吸引し、袋体の内部が減圧された状態で開口を封止することで、真空断熱材を得ることができる。
4). Others The manufacturing method of the vacuum heat insulating material of this indication can use the manufacturing method of a general vacuum heat insulating material. For example, two outer packaging materials for vacuum heat insulating material described in the section of “I. Vacuum insulating material outer packaging material” described above are prepared, the respective heat-weldable films are faced to each other, and the outer edges of the three sides are overlapped. The bag body which heat-welds and opens one side is obtained. After putting the core material into the bag body from the opening, the vacuum heat insulating material can be obtained by sucking air from the opening and sealing the opening in a state where the inside of the bag body is decompressed.
III.真空断熱材付き物品
本開示の真空断熱材付き物品は、熱絶縁領域を有する物品および真空断熱材を備える真空断熱材付き物品であって、上記真空断熱材が、芯材と、芯材が封入された外包材とを有し、上記外包材が、上述の「I.真空断熱材用外包材」の項で説明したものである。
III. Article with vacuum heat insulating material Article with vacuum heat insulating material of the present disclosure is an article with a heat insulating region and an article with a vacuum heat insulating material provided with a vacuum heat insulating material, wherein the vacuum heat insulating material includes a core material and a core material enclosed The outer packaging material is the one described in the above-mentioned section “I. Outer packaging material for vacuum heat insulating material”.
本開示の真空断熱材付き物品によれば、物品に用いられる真空断熱材を構成する外包材が、「I.真空断熱材用外包材」の項で説明した真空断熱材用外包材であり、上記真空断熱材は、外包材が芯材との接触により破損しにくいため、長期間良好な断熱性能を発揮することが可能である。物品がこのような真空断熱材を備えることで、高温高湿環境となる物品や物品が用いられる対象物の省エネルギー化を達成することができる。 According to the article with a vacuum heat insulating material of the present disclosure, the outer packaging material constituting the vacuum heat insulating material used for the article is the outer packaging material for vacuum heat insulating material described in the section of “I. The vacuum heat insulating material can exhibit good heat insulating performance for a long period of time because the outer packaging material is not easily damaged by contact with the core material. By providing the article with such a vacuum heat insulating material, it is possible to achieve energy saving of the article used in the article or article that becomes a high-temperature and high-humidity environment.
本開示における真空断熱材、およびそれに用いられる外包材については、上述した「II.真空断熱材」および「I.真空断熱材用外包材」の項で詳細に説明したため、ここでの説明は省略する。 Since the vacuum heat insulating material and the outer packaging material used in the present disclosure have been described in detail in the above-mentioned sections of “II. Vacuum heat insulating material” and “I. Vacuum heat insulating material outer packaging material”, description thereof is omitted here. To do.
本開示における物品は、熱絶縁領域を有する。ここで上記熱絶縁領域とは、真空断熱材により熱絶縁された領域であり、例えば、保温や保冷された領域、熱源や冷却源を取り囲んでいる領域、熱源や冷却源から隔離されている領域である。これらの領域は、空間であっても物体であってもよい。上記物品として、例えば、冷蔵庫、冷凍庫、保温器、保冷器等の電気機器、保温容器、保冷容器、輸送容器、コンテナ、貯蔵容器等の容器、車両、航空機、船舶等の乗り物、家屋、倉庫等の建築物、壁材、床材等の建築資材等が挙げられる。 The article in the present disclosure has a thermally insulating region. Here, the heat insulating region is a region that is thermally insulated by a vacuum heat insulating material, for example, a region that is kept warm or cold, a region that surrounds a heat source or a cooling source, or a region that is isolated from a heat source or a cooling source. It is. These areas may be spaces or objects. Examples of the above-mentioned articles include, for example, electric devices such as refrigerators, freezers, heat insulators, and coolers, heat insulation containers, cold insulation containers, transport containers, containers, containers such as storage containers, vehicles such as vehicles, airplanes, and ships, houses, warehouses, etc. Building materials such as building materials, wall materials and floor materials.
以下に実施例および比較例を示して、本発明をさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples and comparative examples.
[準備]
実施例1〜5および比較例1〜2で用いた各部材の詳細は下記の通りである。
・熱溶着可能なフィルムA:無延伸PPフィルム(厚み:50μm、製品名:SC、三井化学東セロ社製)
・熱溶着可能なフィルムB:無延伸PPフィルム(厚み:50μm、製品名:P1128、東洋紡社製)
・熱溶着可能なフィルムC:無延伸PPフィルム(厚み:50μm、製品名:P1111、東洋紡社製)
・熱溶着可能なフィルムD:無延伸PPフィルム(厚み:50μm、製品名:GLC、三井化学東セロ社製)
・熱溶着可能なフィルムE:無延伸PPフィルム(厚み:50μm、製品名:トレファン3301、東レフィルム加工社製)
・熱溶着可能なフィルムF:無延伸PPフィルム(厚み:50μm、製品名:トレファン3951、東レフィルム加工社製)
・熱溶着可能なフィルムG:無延伸PPフィルム(厚み:50μm、製品名:RXC-22、三井化学東セロ社製)
・ガスバリア層A:アルミニウム箔(厚み6μm、製品名:8021、UACJ製箔社製)
・保護フィルムA:ナイロンフィルム(厚み:25μm、製品名:エンブレムONBC、ユニチカ社製)
・保護フィルムB:PETフィルム(厚み:12μm、製品名:エンブレットPTMB、ユニチカ社製)
・接着剤A:ポリエステルを主成分とする主剤、脂肪族系ポリイソシアネートを含む硬化剤、および酢酸エチルを、重量配合比が主剤:硬化剤:酢酸エチル=10:1:10となるように混合した、2液硬化型接着剤
[Preparation]
The detail of each member used in Examples 1-5 and Comparative Examples 1-2 is as follows.
-Film A that can be heat-welded: Unstretched PP film (thickness: 50 μm, product name: SC, manufactured by Mitsui Chemicals, Inc.)
-Film B that can be heat-welded: Unstretched PP film (thickness: 50 μm, product name: P1128, manufactured by Toyobo Co., Ltd.)
Heat-weldable film C: Unstretched PP film (thickness: 50 μm, product name: P1111, manufactured by Toyobo Co., Ltd.)
Heat-weldable film D: Unstretched PP film (thickness: 50 μm, product name: GLC, manufactured by Mitsui Chemicals, Inc.)
-Film E that can be heat-welded: Unstretched PP film (thickness: 50 μm, product name: Treffan 3301, manufactured by Toray Film Processing Co., Ltd.)
Heat-weldable film F: Unstretched PP film (thickness: 50 μm, product name: Treffan 3951, manufactured by Toray Film Processing Co., Ltd.)
Heat-weldable film G: Unstretched PP film (thickness: 50 μm, product name: RXC-22, manufactured by Mitsui Chemicals, Inc.)
Gas barrier layer A: aluminum foil (thickness 6 μm, product name: 8021, manufactured by UACJ Foil Company)
Protective film A: Nylon film (thickness: 25 μm, product name: Emblem ONBC, manufactured by Unitika)
Protective film B: PET film (thickness: 12 μm, product name: Emblet PTMB, manufactured by Unitika)
Adhesive A: A main component mainly composed of polyester, a curing agent containing an aliphatic polyisocyanate, and ethyl acetate are mixed so that the weight ratio is main agent: curing agent: ethyl acetate = 10: 1: 10. Two-part curable adhesive
[実施例1]
熱溶着可能なフィルムA、ガスバリア層A、保護フィルムA、保護フィルムBをこの順で積層して外包材を得た。隣接する2つの部材間は、外包材において熱溶着可能なフィルム側となる一方の部材の面上に接着剤Aを塗布量3.5g/m2となるようにダイコーターを用いて塗布して乾燥して接着層を形成し、他方の部材をラミネートすることにより積層した。
[Example 1]
A heat-weldable film A, a gas barrier layer A, a protective film A, and a protective film B were laminated in this order to obtain an outer packaging material. Adhesive A is applied between two adjacent members using a die coater so that the coating amount is 3.5 g / m 2 on the surface of one member on the outer packaging material on the side of the heat-weldable film. It dried and formed the contact bonding layer, and laminated | stacked by laminating the other member.
(真空断熱材の作製)
得られた外包材を2枚重ねて、矩形の3方向をヒートシールして1方向のみが開口した袋体を作成した。芯材として300mm×300mm×30mmのグラスウールを用い、乾燥処理を行った後、上記袋体に上記芯材を収納して、上記袋体内部を真空排気した。その後、上記袋体の開口部分をヒートシールにより密封して、真空断熱材を得た。到達圧力は0.05Paとした。
(Preparation of vacuum insulation)
Two sheets of the obtained outer packaging material were stacked and heat sealed in the three directions of the rectangle to create a bag body opened in only one direction. 300 mm × 300 mm × 30 mm glass wool was used as the core material, and after drying, the core material was housed in the bag body and the bag body was evacuated. Then, the opening part of the said bag body was sealed by heat sealing, and the vacuum heat insulating material was obtained. The ultimate pressure was 0.05 Pa.
[実施例2]
熱溶着可能なフィルムAに代えて熱溶着可能なフィルムBを用いたこと以外は、実施例1と同様の方法で外包材を作製し、得られた外包材を用いて実施例1と同様にして真空断熱材を作製した。
[Example 2]
An outer packaging material was prepared in the same manner as in Example 1 except that a thermally weldable film B was used in place of the thermally weldable film A, and the obtained outer packaging material was used in the same manner as in Example 1. A vacuum heat insulating material was prepared.
[実施例3]
熱溶着可能なフィルムAに代えて熱溶着可能なフィルムCを用いたこと以外は、実施例1と同様の方法で外包材を作製し、得られた外包材を用いて実施例1と同様にして真空断熱材を作製した。
[Example 3]
An outer packaging material was prepared in the same manner as in Example 1 except that a thermally weldable film C was used in place of the thermally weldable film A, and the obtained outer packaging material was used in the same manner as in Example 1. A vacuum heat insulating material was prepared.
[実施例4]
熱溶着可能なフィルムAに代えて熱溶着可能なフィルムDを用いたこと以外は、実施例1と同様の方法で外包材を作製し、得られた外包材を用いて実施例1と同様にして真空断熱材を作製した。
[Example 4]
An outer packaging material was prepared in the same manner as in Example 1 except that a thermally weldable film D was used in place of the thermally weldable film A, and the obtained outer packaging material was used in the same manner as in Example 1. A vacuum heat insulating material was prepared.
[実施例5]
熱溶着可能なフィルムAに代えて熱溶着可能なフィルムEを用いたこと以外は、実施例1と同様の方法で外包材を作製し、得られた外包材を用いて実施例1と同様にして真空断熱材を作製した。
[Example 5]
An outer packaging material was prepared in the same manner as in Example 1 except that a thermally weldable film E was used in place of the thermally weldable film A, and the obtained outer packaging material was used in the same manner as in Example 1. A vacuum heat insulating material was prepared.
[比較例1]
熱溶着可能なフィルムAに代えて熱溶着可能なフィルムFを用いたこと以外は、実施例1と同様の方法で外包材を作製し、得られた外包材を用いて実施例1と同様にして真空断熱材を作製した。
[Comparative Example 1]
An outer packaging material was prepared in the same manner as in Example 1 except that the thermally weldable film F was used in place of the thermally weldable film A, and the obtained outer packaging material was used in the same manner as in Example 1. A vacuum heat insulating material was prepared.
[比較例2]
熱溶着可能なフィルムAに代えて熱溶着可能なフィルムGを用いたこと以外は、実施例1と同様の方法で外包材を作製し、得られた外包材を用いて実施例1と同様にして真空断熱材を作製した。
[Comparative Example 2]
An outer packaging material was prepared in the same manner as in Example 1 except that a thermally weldable film G was used in place of the thermally weldable film A, and the obtained outer packaging material was used in the same manner as in Example 1. A vacuum heat insulating material was prepared.
[評価1:摩擦係数の測定]
実施例1〜5および比較例1〜2で得た外包材について、熱溶着可能なフィルムのガスバリア層とは反対側の面の動摩擦係数および静摩擦係数を測定した。動摩擦係数および静摩擦係数の測定はそれぞれ、JIS K7125:1999(摩擦係数試験方法)に準拠した方法により、荷重変動型摩擦摩耗試験システム(新東科学(株)社製 HEIDON Type HHS2000)を用い、直径10mmのステンレス剛球を用い、荷重200g、速度5mm/secの条件で測定した。動摩擦係数および静摩擦係数の値は、それぞれ熱溶着可能なフィルムのガスバリア層とは反対側の面において、異なる位置で5点測定し、当該測定値の平均値とした。結果を表1に示す。
[Evaluation 1: Measurement of friction coefficient]
About the outer packaging material obtained in Examples 1-5 and Comparative Examples 1-2, the dynamic friction coefficient and static friction coefficient of the surface on the opposite side to the gas barrier layer of the film which can be heat-welded were measured. The dynamic friction coefficient and the static friction coefficient were measured using a load-variable friction and wear test system (HEIDON Type HHS2000, manufactured by Shinto Kagaku Co., Ltd.) in accordance with JIS K7125: 1999 (friction coefficient test method). The measurement was carried out using a 10 mm stainless hard sphere under the conditions of a load of 200 g and a speed of 5 mm / sec. The values of the dynamic friction coefficient and the static friction coefficient were measured at five points at different positions on the surface opposite to the gas barrier layer of the heat-weldable film, and the average value of the measured values was used. The results are shown in Table 1.
[評価2:押し込み弾性率の測定]
実施例1〜5および比較例1〜2で得た外包材について、熱溶着可能なフィルムの押し込み弾性率を測定した。押し込み弾性率は、ISO 14577:2015に準拠する方法により、超微小負荷硬さ試験機・ピコデンターHM500(フィッシャー・インストルメンツ社製)で、測定は外包材からサンプルを切り出し、熱溶着可能なフィルムのガスバリア層とは反対側の面に対して、ビッカース圧子(対面角136°の正四角錐のダイヤモンド圧子)を用いて、温度23℃±2℃、湿度60%RH±5%RHで、押し込み速度0.1μm/秒、押し込み深さ2μm、保持時間5秒間、引き抜き速度0.1μm/秒の条件にて、異なる位置で5点測定し、当該測定値の平均値とした。結果を表1に示す。
[Evaluation 2: Measurement of indentation elastic modulus]
About the outer packaging material obtained in Examples 1-5 and Comparative Examples 1-2, the indentation elastic modulus of the heat-weldable film was measured. The indentation elastic modulus is a film that can be heat-welded by cutting out a sample from the outer packaging material with an ultra-micro load hardness tester / Picodenter HM500 (manufactured by Fischer Instruments Co., Ltd.) according to a method based on ISO 14577: 2015. Using a Vickers indenter (a regular quadrangular pyramid diamond indenter with a facing angle of 136 °) against the surface opposite to the gas barrier layer at a temperature of 23 ° C. ± 2 ° C. and a humidity of 60% RH ± 5% RH Five points were measured at different positions under the conditions of 0.1 μm / second, indentation depth of 2 μm, holding time of 5 seconds, and drawing speed of 0.1 μm / second to obtain an average value of the measured values. The results are shown in Table 1.
[評価3:熱伝導率の測定]
実施例1〜5および比較例1〜2で得た真空断熱材について、「II.真空断熱材」の項で説明した方法に従い、熱伝導率(初期)を測定した。1つの条件では3つのサンプルを測定し、それらの測定値の平均を熱伝導率の値とした。結果を表2に示す。また、実施例1、5および比較例1〜2で得た真空断熱材について、「II.真空断熱材」の項で説明した方法に従い、温度90℃、湿度無管理の環境下で、0時間から1000時間までの保持過程に置き、上記保持過程中100時間ごとに熱伝導率を経時で測定した。1つの条件では3つのサンプルを測定し、それらの測定値の平均を熱伝導率の値とした。結果を図3に示す。
[Evaluation 3: Measurement of thermal conductivity]
About the vacuum heat insulating material obtained in Examples 1-5 and Comparative Examples 1-2, thermal conductivity (initial stage) was measured according to the method demonstrated in the term of "II. Vacuum heat insulating material." Under one condition, three samples were measured, and the average of the measured values was taken as the value of thermal conductivity. The results are shown in Table 2. Moreover, about the vacuum heat insulating material obtained in Examples 1 and 5 and Comparative Examples 1 and 2, according to the method described in the section of “II. Vacuum heat insulating material”, the temperature is 90 ° C. and the humidity is not controlled for 0 hours. The thermal conductivity was measured over time every 100 hours during the holding process. Under one condition, three samples were measured, and the average of the measured values was taken as the value of thermal conductivity. The results are shown in FIG.
[考察]
評価3の結果から、表2に示すように、実施例1〜5で得た真空断熱材の熱伝導率(初期)は、比較例1〜2で得た真空断熱材の熱伝導率(初期)よりも低い値を示した。また、図3に示すように、実施例1、5で得た真空断熱材は、比較例1〜2で得た真空断熱材と比較して、温度90℃、湿度無管理の環境下での経時での熱伝導率の上昇が抑えられ、同じ経過時間において低い熱伝導率を示す結果が得られた。
[Discussion]
From the results of evaluation 3, as shown in Table 2, the thermal conductivity (initial) of the vacuum heat insulating materials obtained in Examples 1 to 5 is the thermal conductivity (initial value) of the vacuum heat insulating materials obtained in Comparative Examples 1 and 2. ) Was lower. Moreover, as shown in FIG. 3, the vacuum heat insulating materials obtained in Examples 1 and 5 were compared with the vacuum heat insulating materials obtained in Comparative Examples 1 and 2 in an environment where the temperature was 90 ° C. and humidity was not controlled. An increase in thermal conductivity over time was suppressed, and a result showing low thermal conductivity over the same elapsed time was obtained.
実施例1〜5の真空断熱材と比較例1〜2の真空断熱材とは、真空断熱材を構成する外包材の熱溶着可能なフィルムが、実施例1〜5では、動摩擦係数および押し込み弾性率がそれぞれ所定の範囲にあるPPフィルムを用いたのに対し、比較例1〜2では、動摩擦係数および押し込み弾性率の少なくとも一方が所定の範囲にないPPフィルムを用いた点で相違する。よって、評価3の結果は、熱溶着可能なフィルムとして用いたPPフィルムの特性によるものと推量される。すなわち、実施例1〜5では、外包材におけるPPフィルムの動摩擦係数を0.5以下とすることで、真空断熱材の製造時に外包材の袋体の中に芯材を挿入する際に、擦れによる外包材の破損が抑制され、また、PPフィルムの押し込み弾性率を1.0GPa以上とすることで、芯材がPPフィルムに突き刺さってもピンホールが生じにくくなったと推量される。そして、外包材の熱溶着可能なフィルムの表面の動摩擦係数および押し込み弾性率がそれぞれ所定の範囲である実施例1〜5においては、真空断熱材の製造時に熱溶着可能なフィルムと芯材との接触による欠陥が生じにくいことから、初期および経時での欠陥部分からのガスの侵入が抑制され、真空断熱材の内部の真空度の低下を長期間防ぐことができたと推量される。 The vacuum heat insulating materials of Examples 1 to 5 and the vacuum heat insulating materials of Comparative Examples 1 and 2 are films capable of being thermally welded as outer packaging materials constituting the vacuum heat insulating materials. Whereas PP films having respective rates within a predetermined range were used, Comparative Examples 1 and 2 differ in that at least one of a dynamic friction coefficient and an indentation elastic modulus was used within a predetermined range. Therefore, the result of evaluation 3 is presumed to be due to the characteristics of the PP film used as a heat-weldable film. That is, in Examples 1 to 5, the dynamic friction coefficient of the PP film in the outer packaging material is set to 0.5 or less, so that when the core material is inserted into the bag body of the outer packaging material at the time of manufacturing the vacuum heat insulating material, it is rubbed. It is presumed that pinholes are less likely to be generated even if the core material is pierced into the PP film by suppressing the damage of the outer packaging material due to the above, and by setting the indentation elastic modulus of the PP film to 1.0 GPa or more. And in Examples 1-5 in which the dynamic friction coefficient and the indentation elastic modulus of the surface of the heat-weldable film of the outer packaging material are each in a predetermined range, the film and the core material that can be heat-welded at the time of manufacturing the vacuum heat insulating material Since defects due to contact are less likely to occur, it is presumed that invasion of gas from the defective portion at the initial stage and over time is suppressed, and a decrease in the degree of vacuum inside the vacuum heat insulating material can be prevented for a long period of time.
1 … 熱溶着可能なフィルム
2 … ガスバリア層
3 … 樹脂基材
4 … ガスバリア膜
10 … 真空断熱材用外包材
11 … 芯材
12 … 端部
20 … 真空断熱材
DESCRIPTION OF SYMBOLS 1 ... Film which can be heat-welded 2 ... Gas barrier layer 3 ... Resin base material 4 ... Gas barrier film 10 ... Outer packaging material for vacuum heat insulating materials 11 ... Core material 12 ... End part 20 ... Vacuum heat insulating material
Claims (4)
前記熱溶着可能なフィルムが、ポリプロピレンフィルムであり、
前記熱溶着可能なフィルムの前記ガスバリア層とは反対側の面の動摩擦係数が0.5以下であり、且つ、押し込み弾性率が1.0GPa以上である、真空断熱材用外包材。 An outer packaging material for a vacuum heat insulating material having at least a heat-weldable film and a gas barrier layer,
The heat-weldable film is a polypropylene film,
An outer packaging material for a vacuum heat insulating material, wherein a coefficient of dynamic friction on a surface opposite to the gas barrier layer of the heat-weldable film is 0.5 or less and an indentation elastic modulus is 1.0 GPa or more.
前記外包材が請求項1に記載の真空断熱材用外包材である、真空断熱材。 A vacuum heat insulating material having a core material and an outer packaging material in which the core material is enclosed,
The vacuum heat insulating material whose said outer packaging material is the outer packaging material for vacuum heat insulating materials of Claim 1.
前記真空断熱材は、芯材と、前記芯材が封入された外包材とを有し、
前記外包材が請求項1に記載の真空断熱材用外包材である、真空断熱材付き物品。 An article having a thermal insulation region, and an article with a vacuum insulation comprising a vacuum insulation,
The vacuum heat insulating material has a core material and an outer packaging material in which the core material is enclosed,
An article with a vacuum heat insulating material, wherein the outer packaging material is the vacuum heat insulating material outer packaging material according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017143754A JP2019027444A (en) | 2017-07-25 | 2017-07-25 | External packaging material for vacuum heat insulation material, vacuum heat insulation material and article with vacuum heat insulation material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017143754A JP2019027444A (en) | 2017-07-25 | 2017-07-25 | External packaging material for vacuum heat insulation material, vacuum heat insulation material and article with vacuum heat insulation material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019027444A true JP2019027444A (en) | 2019-02-21 |
Family
ID=65475894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017143754A Pending JP2019027444A (en) | 2017-07-25 | 2017-07-25 | External packaging material for vacuum heat insulation material, vacuum heat insulation material and article with vacuum heat insulation material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019027444A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021160289A (en) * | 2020-03-31 | 2021-10-11 | 大日本印刷株式会社 | Molded body, transfer sheet and manufacturing method of molded body |
JP7447675B2 (en) | 2020-05-25 | 2024-03-12 | 大日本印刷株式会社 | Outer packaging material for vacuum insulation materials, vacuum insulation materials, and articles with vacuum insulation materials |
-
2017
- 2017-07-25 JP JP2017143754A patent/JP2019027444A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021160289A (en) * | 2020-03-31 | 2021-10-11 | 大日本印刷株式会社 | Molded body, transfer sheet and manufacturing method of molded body |
JP7524582B2 (en) | 2020-03-31 | 2024-07-30 | 大日本印刷株式会社 | Molded body, transfer sheet, and method for producing molded body |
JP7447675B2 (en) | 2020-05-25 | 2024-03-12 | 大日本印刷株式会社 | Outer packaging material for vacuum insulation materials, vacuum insulation materials, and articles with vacuum insulation materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6202174B1 (en) | Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation | |
JP6187718B1 (en) | Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation | |
JP2018189163A (en) | Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material | |
JP7271919B2 (en) | Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation | |
JP2019027444A (en) | External packaging material for vacuum heat insulation material, vacuum heat insulation material and article with vacuum heat insulation material | |
JP6880630B2 (en) | Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and articles with vacuum heat insulating material | |
JP6471734B2 (en) | Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation | |
JP2018059524A (en) | Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material | |
JP6149997B1 (en) | Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation | |
JP6245332B1 (en) | Vacuum insulation outer packaging, vacuum insulation, and articles with vacuum insulation | |
JP2020008084A (en) | Outer packaging material for vacuum insulation material, vacuum heat insulation material, and articles with vacuum insulation material | |
JP7056029B2 (en) | Outer packaging material for vacuum heat insulating material, vacuum heat insulating material, and articles with vacuum heat insulating material | |
JP2018189227A (en) | Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material | |
JP2018059625A (en) | Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material | |
JP7447675B2 (en) | Outer packaging material for vacuum insulation materials, vacuum insulation materials, and articles with vacuum insulation materials | |
WO2016157931A1 (en) | Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member | |
JP7305922B2 (en) | Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation | |
JP2019095066A (en) | Outer packaging material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material | |
JP7106942B2 (en) | Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation | |
JP2023065501A (en) | External capsule material for vacuum heat insulating material, vacuum heat insulating material, and article with vacuum heat insulating material | |
WO2020262668A1 (en) | Outer packaging material for vacuum insulation panel, vacuum insulation panel, and article equipped with vacuum insulation panel | |
JP2018059557A (en) | Outer packaging material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material | |
WO2024090166A1 (en) | Outer packaging material for vacuum thermal insulation materials, vacuum thermal insulation material, and article with vacuum thermal insulation material | |
JP7106941B2 (en) | Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation | |
JP2018059533A (en) | Outer packing material for vacuum heat insulation material, vacuum heat insulation material, and article with vacuum heat insulation material |