JP2016144176A - 信号処理装置および方法 - Google Patents

信号処理装置および方法 Download PDF

Info

Publication number
JP2016144176A
JP2016144176A JP2015021075A JP2015021075A JP2016144176A JP 2016144176 A JP2016144176 A JP 2016144176A JP 2015021075 A JP2015021075 A JP 2015021075A JP 2015021075 A JP2015021075 A JP 2015021075A JP 2016144176 A JP2016144176 A JP 2016144176A
Authority
JP
Japan
Prior art keywords
signal
local
unit
frequency
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015021075A
Other languages
English (en)
Inventor
智宏 松本
Tomohiro Matsumoto
智宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2015021075A priority Critical patent/JP2016144176A/ja
Priority to US15/547,167 priority patent/US10461698B2/en
Priority to PCT/JP2016/051800 priority patent/WO2016125600A1/ja
Publication of JP2016144176A publication Critical patent/JP2016144176A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • H03D7/166Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature using two or more quadrature frequency translation stages
    • H03D7/168Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature using two or more quadrature frequency translation stages using a feedback loop containing mixers or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1466Passive mixer arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1483Balanced arrangements with transistors comprising components for selecting a particular frequency component of the output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K21/00Details of pulse counters or frequency dividers
    • H03K21/02Input circuits
    • H03K21/023Input circuits comprising pulse shaping or differentiating circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/017Adjustment of width or dutycycle of pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • H03K5/15013Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs
    • H03K5/1506Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with parallel driven output stages; with synchronously driven series connected output stages
    • H03K5/15093Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with parallel driven output stages; with synchronously driven series connected output stages using devices arranged in a shift register
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0084Lowering the supply voltage and saving power
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0086Reduction or prevention of harmonic frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

【課題】消費電力の増大を抑制しながらハーモニックリジェクション比をより高くすることができるようにする。【解決手段】本技術の一側面は、差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、その2つのローカル信号の混合結果の差分を算出する。本技術は、例えば、信号処理装置、送信装置、受信装置、通信装置、送信機能、受信機能、若しくは通信機能を備える電子機器、または、これらを制御するコンピュータ等に適用することができる。【選択図】図6

Description

本技術は、信号処理装置および方法に関し、特に、消費電力の増大を抑制しながらハーモニックリジェクション比(HRR(Harmonic Rejection Ratio))をより高くすることができるようにした信号処理装置および方法に関する。
従来、Low-IF型またはZero-IF型の受信機において、所望のLO信号の周波数に存在するRF信号だけでなく、奇数倍のLO信号の周波数に存在するRF信号も同じベースバンド周波数にダウンコンバートされてしまうおそれがあった。例えば、800MHzのTV RF信号に対して2.4GHzのWLAN(Wireless Local Area Network)の信号がちょうど3倍の周波数となる。そのため、TV信号を受信する際に、WLANの信号が混信してしまうおそれがあった。
そのため、受信機において、本来の所望のLO信号周波数からのダウンコンバート成分と意図しないLO信号周波数の3倍、5倍の周波数からのダウンコンバート成分の比であるハーモニックリジェクション比(Harmonic Rejection Ratio)をより大きな値とすることが求められた。
例えば、ゲインとLO信号の位相をずらした3つの信号パスの加算によりLO信号の3倍や5倍の周波数のRF信号のダウンコンバートを抑制する方法があるが、この方法の場合、十分な性能を得るために大きな電流が必要となり、消費電力が増大するおそれがあった。
また、ミキサのスイッチの直後にLO信号の4倍の周波数で共振する並列LC共振器を設け、RF信号に含まれる、LO信号の周波数の3倍や5倍の周波数成分のダウンコンバートを抑制するレゾネータミキサ(Resonator Mixer)が考えられた(例えば、非特許文献1参照)。
Fabiano I, Sosio M, Liscidini A, Castello R, "SAW-Less Analog Front-End Receivers for TDD and FDD", Solid-State Circuits, IEEE Journal of Volume: 48 , Issue: 12 2013, Page(s): 3067 - 3079.
しかしながら、例えばシリコンチューナの場合、40dB程度のハーモニックリジェクション比が必要になるが、非特許文献1に開示されたレゾネータミキサでは、20dB以上のハーモニックリジェクション比を確保することが困難であった。
本技術は、このような状況に鑑みて提案されたものであり、消費電力の増大を抑制しながらハーモニックリジェクション比をより高くすることができるようにすることを目的とする。
本技術の一側面は、差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出する差動構成の混合部を備える信号処理装置である。
前記混合部により前記ローカル信号を混合された前記差動信号に対して所定の共振周波数で共振する共振部をさらに備えることができる。
前記共振部は、前記ローカル信号の6倍の周波数で共振することができる。
前記共振部は、並列LC回路を含むようにすることができる。
前記共振周波数は、可変であるようにすることができる。
前記差動信号に対して電圧を電流に変換する電圧電流変換部をさらに備え、前記混合部は、前記電圧電流変換部より出力される前記差動信号に前記ローカル信号を混合することができる。
前記電圧電流変換部の出力とグランド電位との間にキャパシタをさらに備えることができる。
前記混合部により前記ローカル信号を混合された前記差動信号を増幅する差動増幅部をさらに備えることができる。
前記混合部は、IチャンネルのパスとQチャンネルのパスを有し、前記差動信号の前記Iチャンネルと前記Qチャンネルに対して、互いの位相差が90度の前記ローカル信号を混合することができる。
前記ローカル信号を生成するローカル信号生成部をさらに備え、前記混合部は、前記差動信号に、前記ローカル信号生成部により生成された前記ローカル信号を混合することができる。
本技術の一側面は、また、差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出する信号処理方法である。
本技術の他の側面は、差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成する生成部を備える信号処理装置である。
前記生成部は、互いに直列にリング状に接続される複数のフリップフロップと、それぞれの前記フリップフロップの入力と出力との論理和を算出する演算部とを有することができる。
前記生成部は、入力されるクロック信号に従って、各フリップフロップに値「1」を順次保持させることができる。
前記クロック信号の周波数は、前記ローカル信号の周波数の6倍であり、前記生成部は、6つの前記フリップフロップと6つの前記演算部とからなるリング構成を有し、互いに3つ離れた2つの前記演算部の出力を、2つの前記ローカル信号として出力することができる。
前記生成部は、前記リング構成を2組有し、一方の前記リング構成によりIチャンネル用の前記ローカル信号を生成し、他方の前記リング構成により、前記Iチャンネル用の前記ローカル信号との位相差が90度の、Qチャンネル用の前記ローカル信号を生成することができる。
前記生成部は、周波数が前記ローカル信号の3倍のクロック信号に対して、周波数およびデューティ比を3分の1にして前記ローカル信号を生成する分周部を有することができる。
前記分周部は、前記クロック信号をカウントするカウンタと、前記カウンタの出力の値が「3」に達した場合、前記カウンタを「0」にリセットするリセット制御部と、前記カウンタの値が「2」の場合、値「1」を出力し、前記カウンタの出力の値が「1」若しくは「0」の場合、値「0」を出力する出力制御部とを有することができる。
前記差動信号のそれぞれについて、前記生成部が生成した前記ローカル信号を混合する混合部をさらに備えることができる。
本技術の他の側面は、また、差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成する信号処理方法である。
本技術の一側面においては、差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号が混合され、その2つのローカル信号の混合結果の差分が算出される。
本技術の他の側面においては、差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号が生成される。
本技術によれば、信号を処理することが出来る。また本技術によれば、消費電力の増大を抑制しながらハーモニックリジェクション比をより高くすることができる。
周波数変換の様子の例を示す図である。 不要な周波数成分の抑制の様子の例を示す図である。 ミキサの回路例を示す図である。 位相ずれとスルーレートの関係を説明する図である。 レゾネータミキサの構成例を示す図である。 周波数変換装置の主な構成例を示す図である。 周波数変換装置の主な構成例を示す図である。 1/3dutyLO信号生成部の主な構成例を示す図である。 1/3dutyLO信号生成部の初期状態の例を示す図である。 混合部のIQチャネルに供給されるLO信号の位相の例を示す図である。 1/3dutyLO信号生成部の主な構成例を示す図である。 シミュレーション結果の例を説明する図である。 混合部の状態の例を示す図である。 混合部の状態の例を示す図である。 混合部の状態の例を示す図である。 周波数変換装置の主な構成例を示す図である。 1/3dutyLO信号生成部の主な構成例を示す図である。 1/3dutyLO信号生成部が生成する信号の波形例を示す図である。 混合部の主な構成例を示す図である。 混合部の主な構成例を示す図である。
以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
1.信号の周波数変換
2.第1の実施の形態(周波数変換装置)
3.第2の実施の形態(周波数変換装置)
4.第3の実施の形態(ローカル信号生成部)
5.第4の実施の形態(ローカル信号生成部)
6.第5の実施の形態(周波数変換装置)
<1.信号の周波数変換>
<ミキサを用いた周波数変換>
信号処理において、処理対象の信号の周波数を所望の周波数に変換する周波数変換が行われる場合がある。例えば、受信機において、受信信号(RF信号)に周波数の異なるローカル信号(LO信号)を混合することにより、周波数を中間周波数にダウンコンバートする(IF信号に変換する)ことが一般的に行われている。
例えば、図1Aの周波数変換装置10は、増幅部11とミキサ12を有し、増幅部11において入力されたRF信号を増幅し、ミキサ12においてその増幅されたRF信号に周波数の異なるLO信号を混合し、所望の周波数(ベースバンド周波数)のBB信号を出力する。
このような構成の周波数変換装置10の場合、図1の下側に示されるように、デューティ比が50%の矩形波のLO信号がLO信号の奇数倍(3、5、7・・・)の周波数の高調波成分を含むため、所望のLO信号の周波数に存在するRF信号だけでなく、本来不要なLO信号の奇数倍の周波数に存在するRF信号も同じベースバンド周波数にダウンコンバートされ、BB信号に含まれてしまうおそれがあった。
例えば800MHzのテレビジョン(TV)信号のRF信号に対して、2.4GHzのWLAN(Wireless Local Area Network)の信号がちょうど3倍の周波数となる。したがって、このWLANの信号が非常に大きい場合、このテレビジョン信号(TV RF信号)の受信機において、このWLANの信号がIF信号に含まれてしまうおそれがあった。
<ハーモニックリジェクションミキサ>
そこで、図1Bに示される周波数変換装置20のように、ゲイン(Gain)とLO信号の位相をずらした3つの信号パスの加算により、LO信号の3倍と5倍の周波数のRF信号のダウンコンバートを抑制する方法が考えられた。この周波数変換装置20(ハーモニックリジェクションミキサ(Harmonic Rejection Mixer))は、増幅部21−1とミキサ22−1とからなるパスと、増幅部21−2とミキサ22−2とからなるパスと、増幅部21−3とミキサ22−3とからなるパスとを有する。増幅部21−1は、RF信号を√2倍に増幅し、ミキサ22−1は、LO信号を混合する。増幅部21−2は、RF信号を1倍に増幅し、ミキサ22−2は、ミキサ22−1において混合されるLO信号に対して位相が+45degずれたLO信号を混合する。増幅部21−3は、RF信号を1倍に増幅し、ミキサ22−3は、ミキサ22−1において混合されるLO信号に対して位相が-45degずれたLO信号を混合する。
なお、増幅部21−1乃至増幅部21−3を互いに区別して説明する必要が無い場合、増幅部21と称する。また、ミキサ22−1乃至ミキサ22−3を互いに区別して説明する必要が無い場合、ミキサ22と称する。
このようにすると、RF信号に含まれる、LO信号の周波数の1倍の周波数成分については、図2Aに示されるベクトル31乃至ベクトル33のようにベクトル加算される。ベクトル31は、増幅部21−1とミキサ22−1とからなるパスで生成されるBB信号を示し、ベクトル32は、増幅部21−2とミキサ22−2とからなるパスで生成されるBB信号を示し、ベクトル33は、増幅部21−3とミキサ22−3とからなるパスで生成されるBB信号を示す。したがって、RF信号に含まれる、LO信号の周波数の1倍の周波数成分は、各パスの信号同士で打ち消し合わず、BB信号に含まれる。
これに対して、RF信号に含まれる、LO信号の周波数の3倍の周波数成分については、図2Bに示されるベクトル31乃至ベクトル33のようにベクトル加算される。したがって、RF信号に含まれる、LO信号の周波数の3倍の周波数成分は、各パスの信号同士で打ち消し合い、BB信号に含まれない。理想的にはこの周波数成分をBB信号から完全に除去することができる。
同様に、RF信号に含まれる、LO信号の周波数の5倍の周波数成分については、図2Cに示されるベクトル31乃至ベクトル33のようにベクトル加算される。したがって、RF信号に含まれる、LO信号の周波数の5倍の周波数成分は、各パスの信号同士で打ち消し合い、BB信号に含まれない。理想的にはこの周波数成分を完全に除去することができる。
<数式表現>
振幅が1でありデューティ比(duty)がdの矩形波のフーリエ変換は、式(1)のように表すことができる。
Figure 2016144176
・・・(1)
図1Bに示される周波数変換装置20(ハーモニックリジェクションミキサ)のように、この矩形波のゲイン(Gain)と位相をずらした信号(つまり、各パスの信号)f1(t)、f2(t)、f3(t)は、式(2)乃至式(4)のように表すことができる。
Figure 2016144176
・・・(2)
Figure 2016144176
・・・(3)
Figure 2016144176
・・・(4)
デューティ比が0.5(d=0.5(Duty=50%))の場合、式(5)乃至式(7)に示されるように、LO信号の3、5倍の周波数成分が0になることがわかる。
Figure 2016144176
・・・(5)
Figure 2016144176
・・・(6)
Figure 2016144176
・・・(7)
周波数変換装置20(ハーモニックリジェクションミキサ)のより詳細な回路例を図3に示す。図3に示されるように、各パス用のLO信号(位相ずれが0deg、+45deg、-45degのLO信号)は、LO信号生成部52により、発振器51において生成された信号を用いて生成され、インバータ53乃至インバータ55を介して、ミキサ22−1乃至ミキサ22−3に供給される。
ミキサ22から出力される差動信号は、差動増幅部61において増幅されて出力される。差動増幅部61には、抵抗62−1、抵抗62−2、キャパシタ63−1、キャパシタ63−2が並列に接続されている。なお、抵抗62−1および抵抗62−2を互いに区別して説明する必要が無い場合、抵抗62と称する。また、キャパシタ63−1およびキャパシタ63−2を互いに区別して説明する必要が無い場合、キャパシタ63と称する。
以上のように、周波数変換装置20(ハーモニックリジェクションミキサ)多くの回路により構成されるが、各回路には互いにばらつき(回路ばらつき)が存在するため、図2に示されるようなベクトル加算は理想的に行うことができない。つまり、RF信号の、LO信号の周波数の3倍や5倍の周波数成分を完全に打ち消すことができず、意図しない周波数成分がダウンコンバートされるおそれがあった。
本来の所望のLO信号周波数からのダウンコンバート成分と意図しないLO信号周波数の3倍や5倍の周波数からのダウンコンバート成分の比であるハーモニックリジェクション比(HRR(Harmonic Rejection Ratio))の値は、大きければ大きいほど良い。
<ばらつきの抑制とスルーレート>
つまり、ハーモニックリジェクション比には、この回路ばらつきが影響する。回路ばらつきは、ゲイン成分(図4の点線71で囲まれる部分)と位相成分(図3の点線72で囲まれる部分)とを含む。特に高い周波数では、1周期(T)が短くなるため、固定の時間ばらつき(t)であっても位相成分(位相ばらつき)(2π×t/T)への影響が大きくなる。
したがって、この位相ばらつきを小さくするためには、図3の点線72で囲まれた部分のロジック(Logic)回路の設計に注意が必要となる。位相ばらつきはロジックトランジスタ(Logic Tr)の閾値ずれ÷スルーレートで見積もることができ、位相ばらつきを小さくするためには、スルーレートを高くする必要がある。
例えば、図4Aに示されるような回路により、入力信号のエッジを立てるとすると、入力時(Input)の点線で示されるような位相ばらつきによる、出力時(Output)の位相ばらつきは、スルーレートが高い場合(図4B)の方が、スルーレートが低い場合(図4C)よりも小さくなる(点線間の幅が狭くなる)。
しかしながら、スルーレートを高くするためには、大きな電流が必要となり、消費電力が増大するおそれがあった。
<レゾネータミキサ>
消費電力を増大させずにハーモニックリジェクション比を増大させる方法として、例えば、非特許文献1に記載されるようなレゾネータミキサ(Resonator Mixer)が考えられた。図5にそのレゾネータミキサの主な構成例を示す。
図5に示されるように、レゾネータミキサ80は、電圧電流変換部81、混合部82、並列LC共振器83、増幅部84、LO信号生成部85、キャパシタ86−1、キャパシタ86−2を有する。
電圧電流変換部81は、相互コンダクタンスGmで、入力された差動信号の電圧に応じた電流の差動信号を出力する。電圧電流変換部81は、図3の増幅部21と同様の回路である。
混合部82は、電圧電流変換部81から出力される差動信号に、LO信号生成部85において生成されたLO信号を混合し、その混合結果を出力する。混合部82は、図3のミキサ22と同様の回路である。
並列LC共振器83は、混合部82から出力される差動信号に対して、LO信号の周波数の4倍の周波数で共振する。並列LC共振器83は、並列に接続されたインダクタ91−1、インダクタ91−2、キャパシタ92−1、キャパシタ92−2を有する。なお、インダクタ91−1およびインダクタ91−2を互いに区別して説明する必要が無い場合、インダクタ91と称する。また、キャパシタ92−1およびキャパシタ92−2を互いに区別して説明する必要が無い場合、キャパシタ92と称する。
増幅部84は、並列LC共振器83から出力される差動信号を増幅し、出力する。増幅部84は、図3の場合と同様に、互いに並列に接続される差動増幅部61、抵抗62、およびキャパシタ63を有する。
LO信号生成部85は、差動信号に混合するLO信号を生成し、混合部82に供給する。
キャパシタ86−1およびキャパシタ86−2は、電圧電流変換部81の各出力とグランド電位との間に設けられている。なお、キャパシタ86−1およびキャパシタ86−2を互いに区別して説明する必要が無い場合、キャパシタ86と称する。
並列LC共振器83がLO信号の周波数の4倍の周波数で共振することにより、混合部82によるインピーダンス周波数変換により、混合部82の入力側から見ると3倍(4*fLO-fLO、fLOはLO信号の周波数)、5倍(4*fLO+fLO)のLO信号の周波数でインピーダンスが非常に大きくなる。そのため、これらの周波数成分は、電圧電流変換部81の出力からキャパシタ86を介してグランド電位に流出する。その結果、1つの信号パスでもLO信号周波数の3倍、5倍の周波数からのダウンコンバート成分を小さくすることができる。
しかしながら、このレゾネータミキサ80は、現実的には、ハーモニックリジェクション比を20dB以上確保することが困難であった。キャパシタ86の容量を大きくする程LO信号周波数の3倍、5倍の周波数からのダウンコンバート成分が小さくなるが、それと同時に、所望のLO信号周波数のダウンコンバートゲイン(Gain)も小さくなってしまうからである。そのため、キャパシタ86の容量を無制限に増大させることができず、ハーモニックリジェクション比を十分に高くすることが困難であった。例えば、シリコンチューナの場合、40dB程度のハーモニックリジェクション比が必要になるため、レゾネータミキサ80では、十分なハーモニックリジェクション比を得ることが困難であった。
<デューティ比が3分の1のローカル信号と差動構成の混合部>
そこで、差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、その2つのローカル信号の混合結果の差分を算出するようにする。
例えば、信号処理装置において、差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、その2つのローカル信号の混合結果の差分を算出する差動構成の混合部を備えるようにする。
このようにすることにより、消費電力を増大させずに、入力信号の、ローカル信号の周波数の2倍乃至4倍の周波数成分のダウンコンバートを抑制することができる。つまり、消費電力の増大と、変換後の信号における不要な周波数成分とをより抑制するように、周波数変換を行うことができる。これにより、所望の周波数以外の周波数成分がより抑制された信号を得ることができる。換言するに、消費電力の増大を抑制しながらハーモニックリジェクション比をより高くすることができる。
なお、信号処理装置が、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成するローカル信号生成部をさらに備え、混合部が、差動信号に対して、ローカル信号生成部により生成されたローカル信号を混合するようにしてもよい。
<2.第1の実施の形態>
<周波数変換装置>
上述した式(1)から、デューティ比d=0.5(50%)の場合、基本波(n=1)のk倍の周波数(n=k)の振幅比(ハーモニックリジェクション比)をHRR_kとすれば、HRR_2=∞、HRR_3=9.54dB、HRR_4=∞、HRR_5=13.98dB、HRR_6=∞、HRR_7=16.9dBとなる。したがって、デューティ比(duty)を50%とすることにより偶数次の成分が略0になる。また、デューティ比d=1/3(33.33・・%)とすれば、HRR_2=6.02dB、HRR_3=∞、HRR_4=12.04dB、HRR_5=13.98dB、HRR_6=∞、HRR_7=16.9dBとなり、基本波の3倍の周波数成分が略0になる。
すなわち、図6の例のようにこれらを組み合わせることにより、式(8)および式(9)に示されるように、理想的には、HRR_2乃至HRR_4(より正確にはHRR_6, HRR_8, …等も)をHRR=∞とすることができる。
Figure 2016144176
・・・(8)
Figure 2016144176
・・・(9)
このような信号処理装置の一実施の形態である周波数変換装置の主な構成例を図6Aに示す。図6Aに示される周波数変換装置100は、入力される差動信号の周波数を変換する装置である。周波数変換装置100は、入力される差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、その2つのローカル信号の混合結果の差分を算出する。周波数変換装置100は、発振部101、1/3dutyLO信号生成部102、および混合部103を有する。
発振部101は、所望の周波数のクロック信号を生成し、それを1/3dutyLO信号生成部102に供給する。例えば、発振部101は、混合部103に供給されるローカル信号(LO信号)の6倍の周波数のクロック信号を生成する。
1/3dutyLO信号生成部102は、発振部101から供給されるクロック信号を用いて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号(LO信号)を生成する。これらのローカル信号の周波数は任意である。ただし、各ローカル信号の周波数は互いに同一である。図6Bにこのローカル信号の波形の例を示す。図6Bに示されるように、1/3dutyLO信号生成部102により生成される2つのローカル信号(f(t),f(t-Ts/2))は、デューティ比が3分の1であり、位相が互いに半周期(Ts/2)ずれている。1/3dutyLO信号生成部102は、生成したローカル信号を混合部103に供給する。
混合部103は、入力信号に、1/3dutyLO信号生成部102から供給されるローカル信号を混合する。混合部103は、差動構成を形成し、入力された差動信号の各信号に対して、1/3dutyLO信号生成部102から供給される2つのローカル信号(f(t),f(t-Ts/2))を混合し、それらの混合結果の差分を算出する(式(9))。混合部103は、その算出結果である差動信号を出力する。
混合部103は、図6Aのように配置された増幅部111−1乃至増幅部111−4、スイッチ部112−1乃至スイッチ部112−4、演算部113−1および演算部113−2を有する。なお、以下において、増幅部111−1乃至増幅部111−4を互いに区別して説明する必要が無い場合、増幅部111と称する。また、スイッチ部112−1乃至スイッチ部112−4を互いに区別して説明する必要が無い場合、スイッチ部112と称する。さらに、演算部113−1および演算部113−2を互いに区別して説明する必要が無い場合、演算部113と称する。
増幅部111は、入力された差動信号を増幅し、スイッチ部112に供給する。スイッチ部112は、入力と出力の接続を、1/3dutyLO信号生成部102から供給されるローカル信号に基づいて接続・切断することにより、増幅部111から供給される信号にローカル信号を混合する。スイッチ部112−1は、増幅部111−1において増幅された差動信号の正側の信号にローカル信号f(t)を混合し、混合結果の信号を演算部113−1に供給する。スイッチ部112−2は、増幅部111−2において増幅された差動信号の正側の信号にローカル信号f(t-Ts/2)を混合し、混合結果を演算部113−2に供給する。スイッチ部112−3は、増幅部111−3において増幅された差動信号の負側の信号にローカル信号f(t-Ts/2)を混合し、混合結果の信号を演算部113−1に供給する。スイッチ部112−4は、増幅部111−4において増幅された差動信号の負側の信号にローカル信号f(t)を混合し、混合結果を演算部113−2に供給する。
演算部113は、スイッチ部112から供給される2信号を合成し、その合成結果の信号を出力する。演算部113に供給される2信号は、正負が互いに逆である(差動信号の互いに逆の信号に対応する)ので、両信号を合成する演算は、式(9)のようにローカル信号f(t)とローカル信号f(t-Ts/2)との減算により表される。
演算部113−1は、スイッチ部112−1から供給される信号とスイッチ部112−3から供給される信号とを合成し、その合成結果の信号を周波数変換後の差動信号(IF信号)の正側の信号として出力する。つまり、演算部113−1は、スイッチ部112−1から供給される信号とスイッチ部112−3から供給される信号との差分を出力する。演算部113−2は、スイッチ部112−2から供給される信号とスイッチ部112−4から供給される信号とを合成し、その合成結果の信号を周波数変換後の差動信号(IF信号)の負側の信号として出力する。つまり、演算部113−2は、スイッチ部112−2から供給される信号とスイッチ部112−4から供給される信号との差分を出力する。
このようにすることにより、周波数変換装置100は、式(8)および式(9)を用いて上述したように、消費電力の増大を抑制しながらハーモニックリジェクション比をより高くすることができる。
<3.第2の実施の形態>
<周波数変換装置>
本技術を適用する周波数変換装置の構成は、図6の例に限定されない。例えば、図7に示されるように、レゾネータミキサに適用するようにしてもよい。
つまり、混合部によりローカル信号を混合された差動信号に対して所定の共振周波数で共振する共振部を備えるようにしてもよい。そして、その共振部が、ローカル信号の6倍の周波数で共振するようにしてもよい。なお、その共振部の構成は任意であるが、例えば並列LC回路を含むようにしてもよい。また、共振部の共振周波数は、可変であるようにしてもよい。
また、差動信号に対して電圧を電流に変換する電圧電流変換部を備えるようにしてもよい。そして、混合部が、その電圧電流変換部より出力される差動信号にローカル信号を混合するようにしてもよい。また、その電圧電流変換部の出力とグランド電位との間にキャパシタをさらに備えるようにしてもよい。
また、混合部によりローカル信号を混合された差動信号を増幅する差動増幅部を備えるようにしてもよい。
さらに、ローカル信号を生成するローカル信号生成部を備えるようにしてもよい。そして、混合部が、差動信号に、そのローカル信号生成部により生成されたローカル信号を混合するようにしてもよい。
<構成>
図7に示される周波数変換装置150は、図6Aの周波数変換装置100と同様に、入力される差動信号の周波数を変換する装置である。つまり、周波数変換装置150は、入力される差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、その2つのローカル信号の混合結果の差分を算出する。図7に示されるように、周波数変換装置150は、電圧電流変換部151、混合部152、共振部153、増幅部154、発振部155、1/3dutyLO信号生成部156、キャパシタ157−1、キャパシタ157−2、バイアス印加部158、抵抗159−1、抵抗159−2、キャパシタ160−1、キャパシタ160−2を有する。
電圧電流変換部151は、相互コンダクタンスGmで、入力された差動信号の電圧に応じた電流の差動信号を出力する。電圧電流変換部151は、図5の電圧電流変換部81と同様の回路である。
混合部152は、電圧電流変換部151から出力される差動信号に、1/3dutyLO信号生成部156において生成されたローカル信号(LO信号)を混合し、その混合結果を周波数変換された差動信号として出力する。
共振部153は、混合部152から出力される差動信号に対して、所定の周波数で共振する。共振部153は、図5の並列LC共振器83と同様の回路である。つまり、共振部153は、並列に接続されたインダクタ91とキャパシタ92を有する。
増幅部154は、共振部153から出力される差動信号を増幅し、出力する。増幅部154は、図5の増幅部84と同様の回路である。すなわち、増幅部154は、互いに並列に接続される差動増幅部61、抵抗62、およびキャパシタ63を有する。
発振部155は、所望の周波数のクロック信号を生成し、それを1/3dutyLO信号生成部156に供給する。発振部155は、図6の発振部101と同様の回路である。発振部155は、例えば、混合部152に供給されるローカル信号(LO信号)の6倍の周波数のクロック信号を生成する。
1/3dutyLO信号生成部156は、発振部155から供給されるクロック信号を用いて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号(LO信号)を生成する。これらのローカル信号の周波数は任意である。ただし、各ローカル信号の周波数は互いに同一である。1/3dutyLO信号生成部156は、図6の1/3dutyLO信号生成部102と同様の処理部である。1/3dutyLO信号生成部156は、生成したローカル信号を、キャパシタ157−1およびキャパシタ157−2を介して混合部152に供給する。キャパシタ157−1とキャパシタ157−2とを互いに区別して説明する必要が無い場合、キャパシタ157と称する。
バイアス印加部158は、所定のバイアスを、抵抗159−1および抵抗159−2を介して混合部152に印加する。抵抗159−1と抵抗159−2とを互いに区別して説明する必要が無い場合、抵抗159と称する。
キャパシタ160−1およびキャパシタ160−2は、電圧電流変換部151の各出力とグランド電位との間に設けられている。なお、キャパシタ160−1およびキャパシタ160−2を互いに区別して説明する必要が無い場合、キャパシタ160と称する。
<ローカル信号と差動構成>
このような構成の周波数変換装置150において、1/3dutyLO信号生成部156は、図6Bに示されるような波形の、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号(f(t),f(t-Ts/2))を生成し、キャパシタ157を介して混合部152に供給する。これにより、上述したように、HRR_3=∞とすることができ、基本波の3倍の周波数成分が略0になる。
また、混合部152は、スイッチ171−1乃至スイッチ171−4を有し、それらが図6の混合部103と同様に差動構成を形成する。なお、スイッチ171−1乃至スイッチ171−4を互いに区別して説明する必要が無い場合、スイッチ171と称する。スイッチ171は、例えばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)により構成される。
スイッチ171は、ソース・ドレイン間の電流をゲートに供給されるローカル信号に基づいて制御する(ソース・ドレイン間を接続・切断する)ことにより、電圧電流変換部151から供給される信号にそのローカル信号を混合する。
例えば、スイッチ171−1は、電圧電流変換部151から供給される差動信号の負側の信号にローカル信号f(t)を混合し、混合結果の信号を周波数変換後の差動信号の負側の信号として混合部152の外部に出力する(共振部153(のインダクタ91−1およびキャパシタ92−1)に供給する)。また、例えば、スイッチ171−2は、電圧電流変換部151から供給される差動信号の正側の信号にローカル信号f(t-Ts/2)を混合し、混合結果の信号を周波数変換後の差動信号の負側の信号として混合部152の外部に出力する(共振部153(のインダクタ91−1およびキャパシタ92−1)に供給する)。
つまり、混合部152から出力される周波数変換後の差動信号の負側の信号は、スイッチ171−1から出力される信号とスイッチ171−2から出力される信号との合成信号である。スイッチ171−1とスイッチ171−2においてローカル信号に混合する信号の正負が互いに逆なので、この合成信号(つまり、混合部152から出力される周波数変換後の差動信号の負側の信号)は式(9)のような減算で表すことができる。
また、例えば、スイッチ171−3は、電圧電流変換部151から供給される差動信号の負側の信号にローカル信号f(t-Ts/2)を混合し、混合結果の信号を周波数変換後の差動信号の正側の信号として混合部152の外部に出力する(共振部153(のインダクタ91−2およびキャパシタ92−2)に供給する)。また、例えば、スイッチ171−4は、電圧電流変換部151から供給される差動信号の正側の信号にローカル信号f(t)を混合し、混合結果の信号を周波数変換後の差動信号の正側の信号として混合部152の外部に出力する(共振部153(のインダクタ91−2およびキャパシタ92−2)に供給する)。
つまり、混合部152から出力される周波数変換後の差動信号の負側の信号は、スイッチ171−3から出力される信号とスイッチ171−4から出力される信号との合成信号である。スイッチ171−3とスイッチ171−4においてローカル信号に混合する信号の正負が互いに逆なので、この合成信号(つまり、混合部152から出力される周波数変換後の差動信号の負側の信号)は式(9)のような減算で表すことができる。
このようにすることにより、周波数変換装置150は、周波数変換装置100の場合と同様に、式(8)および式(9)を用いて上述したように、消費電力の増大を抑制しながらハーモニックリジェクション比をより高くすることができる。
なお、図7においては、スイッチ171としてn型のMOSFETを用いる例を示しているが、これに限らず、スイッチ171としてp型のMOSFETを用いるようにしてもよい。その場合、各スイッチ171のソースとドレインは、図7の例とは逆に接続される。
<共振周波数>
ここで、基本波の5倍と7倍の周波数の振幅比であるHRR_5とHRR_7を改善する(値を大きくする)ために、共振部153の共振周波数を、1/3dutyLO信号生成部156が生成し、混合部152に供給するローカル信号(LO信号)の周波数の6倍に設定する。この設定により、混合部152の入力側からみると、5倍(6*fLO-fLO、fLOはLO信号の周波数)、7倍(6*fLO+fLO)のLO信号の周波数でインピーダンスが非常に大きくなる。そのため、これらの周波数成分は、電圧電流変換部151の出力からキャパシタ160を介してグランド電位に流出する。その結果、1つの信号パスでもLO信号周波数の5倍、7倍の周波数からのダウンコンバート成分を小さくすることができる。つまり、HRR_5、HRR_7を改善する(値を大きくする)ことができる。
LC並列共振器の共振周波数とインダクタ(L)、容量(C)との関係を式(10)に示す。
Figure 2016144176
・・・(10)
上述したように、共振部153は、ローカル信号の周波数の6倍の周波数で共振するため、式(10)から、仮に容量の値が一定であれば、インダクタ91のサイズを小さくすることができる。これにより、周波数変換装置150の回路規模の増大を抑制することができ、設計の難易度を低減させることができるとともに、コストの増大を抑制することができる。
なお、上述したようにレゾネータミキサの効果は20dB程度のため、40dBという値をHRR_5で達成するためには性能が僅かに足りないようにも思えるが、ローカル信号周波数の5倍や7倍の周波数成分では、周波数変換装置150より前段に一般的に設けられる帯域フィルタの効果を見込めるため、十分な性能となる。
なお、この共振部153の共振周波数は可変としてもよい。例えば、共振部153内のインダクタ(L)や容量(C)を変更することができるようにしてもよい。例えばシリコンチューナの場合、RF受信周波数は40MHz乃至1GHzと広帯域である。したがって、受信周波数に応じて共振部153の共振周波数を変更することができるようにしてもよい。その際、容量を可変とするようにしてもよい。
<4.第3の実施の形態>
<ローカル信号生成部>
次にローカル信号を生成する信号処理装置について説明する。上述したように、ローカル信号(LO信号)のデューティ比を3分の1とすることにより、HRR_3=∞とすることができる。そこで、差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成するようにしてもよい。
例えば、信号処理装置において、差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成する生成部を備えるようにしてもよい。
このようにすることにより、HRR_3を改善する(値を大きくする)ことができ、消費電力の増大を抑制しながらハーモニックリジェクション比をより高くすることができる。
なお、生成部が、互いに直列にリング状に接続される複数のフリップフロップと、それぞれのフリップフロップの入力と出力との論理和を算出する演算部とを有するようにしてもよい。また、生成部が、入力されるクロック信号に従って、各フリップフロップに値「1」を順次保持させるようにしてもよい。
また、クロック信号の周波数は、ローカル信号の周波数の6倍であり、生成部が、6つのフリップフロップと6つの演算部とからなるリング構成を有し、互いに3つ離れた2つの演算部の出力を、2つのローカル信号として出力するようにしてもよい。
<構成>
このような生成部の例として、図7の1/3dutyLO信号生成部156の主な構成例を図8に示す。図8の例の場合、1/3dutyLO信号生成部156は、互いに直列にリング状に接続される6つのD-フリップフロップ201と、それぞれのD-フリップフロップ201の入力と出力との論理和を算出する6つのORゲート202とを有する。
リセット(Reset)時(すなわち初期状態)には、図9のように1つのD-フリップフロップ201に値「1」がセットされ、その他のD-フリップフロップ201には値「0」がセットされる。図8に示されるように、1/3dutyLO信号生成部156に、ローカル信号の周波数(つまり所望の周波数)の6倍の周波数(例えば6GHz)のクロック信号が入力される(A)と、そのクロック信号に同期して、値「1」が、隣のD-フリップフロップ201に転送される。同じ要領で値「1」がリング状に接続された各D-フリップフロップ201を巡回する(各D-フリップフロップ201が順次値「1」を保持する)。
各ORゲート202は、対応するD-フリップフロップ201の入力(B)と出力(C)の論理和(D)を算出する。この論理和は、図8の上側に示されるように、デューティ比が3分の1の所望の周波数の信号となる。したがって、これらの6つのORゲートの内、所望の位相に対応するORゲート202の出力(論理和)がローカル信号として読み出される。
例えば図8の0°のORゲート202の出力と180°のORゲート202の出力とが読み出されると、図6Bに示されるような波形の、すなわち、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号が得られる。
このようにすることにより、1/3dutyLO信号生成部156は、差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成することができる。したがって、消費電力の増大を抑制しながらハーモニックリジェクション比をより高くすることができる。特に、1/3dutyLO信号生成部156は、図8の例のようにすることにより、より容易に、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成することができる。
もちろん、2つのローカル信号の位相が互いに半周期ずれていればよいので、互いに3つ離れた2つのORゲート202の出力を、2つのローカル信号として出力すればよい。例えば、図8の60°のORゲート202の出力と240°のORゲート202の出力とを読み出すようにしてもよいし、図8の120°のORゲート202の出力と300°のORゲート202の出力とを読み出すようにしてもよい。
また、図8の例では、1/3dutyLO信号生成部156は、上述した6つのD-フリップフロップ201並びに6つのORゲート202からなるリング構成を2つ有しており、クロック信号の逆位相を利用することにより、一方のリング構成のORゲート202は、0°、60°、120°、180°、240°、300°に対応し、他方のリング構成のORゲート202は、30°、90°、150°、210°、270°、330°に対応している。したがって、図8の30°のORゲート202の出力と210°のORゲート202の出力とを読み出すようにしてもよいし、図8の90°のORゲート202の出力と270°のORゲート202の出力とを読み出すようにしてもよいし、図8の150°のORゲート202の出力と330°のORゲート202の出力とを読み出すようにしてもよい。
なお、1/3dutyLO信号生成部156の構成は任意であり、図8や図9の例に限定されない。例えば、上述したD-フリップフロップ201の代わりに、他のフリップフロップを適用するようにしてもよい。また、D-フリップフロップ201やORゲート202の数は、クロック信号の周波数に対応している限り任意である。つまり、入力されるクロック信号の周波数が所望の周波数の6倍以外であれば、それに応じて、D-フリップフロップ201やORゲート202の数を変えることができる。
<IQチャンネル>
また、混合部が、IチャンネルのパスとQチャンネルのパスを有し、差動信号のIチャンネルとQチャンネルに対して、互いの位相差が90度のローカル信号を混合するようにしてもよい。
また、生成部が、上述したリング構成を2組有し、一方のリング構成によりIチャンネル用のローカル信号を生成し、他方のリング構成により、Iチャンネル用のローカル信号との位相差が90度の、Qチャンネル用のローカル信号を生成するようにしてもよい。
例えば、図10Aに示される混合部152−Iは、図7に示される周波数変換装置150の混合部152のIチャンネルのパス(I-Path)である。また、図10Bに示される混合部152−Qは、図7に示される周波数変換装置150の混合部152のQチャンネルのパス(Q-Path)である。
図8の例の1/3dutyLO信号生成部156は、30°単位で所望の位相のローカル信号を生成することができるので、容易に、混合部152−Iに対して0°と180°の位相の1/3dutyのローカル信号を供給し、混合部152−Qに対して、90°と270°のローカル信号を供給することができる。
もちろん、Iチャンネルのパスに供給するローカル信号とQチャンネルのパスに供給するローカル信号とは互いの位相差が90°であればよいので、1/3dutyLO信号生成部156は、上述した例以外の位相のローカル信号を供給することもできる。例えば、混合部152−Iに対して30°と210°の位相の1/3dutyのローカル信号を供給し、混合部152−Qに対して、120°と300°のローカル信号を供給することもできる。
また、1/3dutyLO信号生成部156を、周波数変換装置150から独立した装置として構成するようにしてもよい。また、その1/3dutyLO信号生成部156を含む装置に、混合部152が含まれるようにしてもよい。
以上においては、図7の1/3dutyLO信号生成部156について説明したが、この説明は、図6の1/3dutyLO信号生成部102にも適用することができる。例えば、1/3dutyLO信号生成部102の構成を、図8等の例のようにしてもよい。
<5.第4の実施の形態>
<ローカル信号生成部>
なお、ローカル信号を生成する信号処理装置の構成は、第3の実施の形態において説明した例に限定されない。例えば、生成部が、周波数がローカル信号の3倍のクロック信号に対して、周波数およびデューティ比を3分の1にしてローカル信号を生成する分周部を有するようにしてもよい。また、その分周部が、クロック信号をカウントするカウンタと、カウンタの出力の値が「3」に達した場合、カウンタを「0」にリセットするリセット制御部と、カウンタの値が「2」の場合、値「1」を出力し、カウンタの出力の値が「1」若しくは「0」の場合、値「0」を出力する出力制御部とを有するようにしてもよい。
<構成>
1/3dutyLO信号生成部156の他の構成例を図11Aに示す。図11Aの例の場合、1/3dutyLO信号生成部156は、カウンタ251、出力制御部252、リセット制御部253、および演算部254を有する。
カウンタ251は、クロック信号(CLK)をカウントし、クロック信号の1周期毎にカウント値を0、1、2のようにインクリメントする。より具体的には、カウンタ251は、演算部254の出力を保持し、その値をクロック信号に同期して更新している。カウンタ251は、そのカウント値(保持している値)を出力制御部252乃至演算部254に供給する。
出力制御部252は、カウンタ251から供給されるカウント値が「2」の場合、値「1」を出力し、カウンタ251から供給されるカウント値が「1」若しくは「0」の場合、値「0」を出力する(OUT)。
リセット制御部253は、カウンタ251から供給されるカウント値が「3」の場合、カウンタ251のカウント値(保持している値)をリセット(初期化)する。例えば、リセット制御部253は、カウンタ251のカウント値を値「0」にする。
演算部254は、カウンタ251から供給されるカウント値に「1」を加算する。つまり、カウント値をインクリメントする。演算部254は、加算結果(すなわち、更新されたカウント値)をカウンタ251に供給し、保持させる。
このような構成の1/3dutyLO信号生成部156により、図11Bに示されるような、デューティ比が3分の1のローカル信号(OUT)が得られる。また、このクロック信号の逆位相を利用することにより、1/3dutyLO信号生成部156は、図11Bに示されるローカル信号と位相差が2分の1周期のローカル信号を容易に生成することができる。
<シミュレーション結果>
図8の例の構成の1/3dutyLO信号生成部156により生成したローカル信号を用いて周波数変換を行った場合のデューティ比のシミュレーション結果の例を図12に示す。
図12に示されるように、ほとんどの周波数帯域、特に基本波の周波数に近い周波数帯域において、ハーモニックリジェクション比(HRR)を46dB以上にすることができる。このように、本技術を適用することにより、消費電力の増大を抑制しながらハーモニックリジェクション比をより高くすることができる。
<6.第5の実施の形態>
<ローカル信号がローの場合の電流制御>
例えば、図7の周波数変換装置150において、1/3dutyLO信号生成部156が生成し、混合部152のスイッチ171−1およびスイッチ171−4に供給するローカル信号をLOP(f(t))とし、1/3dutyLO信号生成部156が生成し、混合部152のスイッチ171−2およびスイッチ171−3に供給するローカル信号をLON(f(t-Ts/2))とする。
ローカル信号LOPおよびローカル信号LONは、ともにデューティ比が3分の1であり、位相が互いに半周期ずれている。したがって、ローカル信号LOPがハイ(High)でローカル信号LONがロー(Low)の場合と、ローカル信号LOPがロー(Low)でローカル信号LONがハイ(High)の場合とに加え、ローカル信号LOPもローカル信号LONもロー(Low)の場合が存在する。
例えば、図13Aに示されるように、ローカル信号LOPがハイ(High)でローカル信号LONがロー(Low)である状態の場合、図13Bに示されるように、混合部152においてスイッチ171−1およびスイッチ171−4がオン(ON)状態となるので、RF側から混合部152に流れ込む電流は、スイッチ171−1およびスイッチ171−4を介してIF側に流れる(出力端子IFOUTNや出力端子IFOUTPから後段に出力される)。
また、例えば、図14Aに示されるように、ローカル信号LOPがロー(Low)でローカル信号LONがハイ(High)である状態の場合、図14Bに示されるように、混合部152においてスイッチ171−2およびスイッチ171−3がオン(ON)状態となるので、RF側から混合部152に流れ込む電流は、スイッチ171−2およびスイッチ171−3を介してIF側に流れる(出力端子IFOUTNや出力端子IFOUTPから後段に出力される)。
しかしながら、例えば、図15Aに示されるように、ローカル信号LOPもローカル信号LONもロー(Low)である状態の場合、図15Bに示されるように、混合部152において全てのスイッチ171がオフ(OFF)状態となるので、RF側から混合部152に流れ込む電流が、IF側に流れることができずに(出力端子IFOUTNや出力端子IFOUTPから後段に出力することができずに)、RF側(入力端子RFINNや入力端子RFINPから前段)に反射(リターン)したり、寄生成分やバイアス抵抗に漏れたりすることが有り得る。そして、そのような電流の反射や漏れが波形を乱す要因となり、ハーモニックリジェクション比を高くすることができない原因となる可能性がある。
そこで、この混合部において、2つのローカル信号の両方がロー(Low)の場合、入力された差動信号を伝送する信号線を所定の電位に短絡させるか、若しくは、入力された差動信号を伝送する信号線同士を短絡させるようにする。
このようにすることにより、RF側に反射(リターン)したり、寄生成分やバイアス抵抗に漏れたりすることを抑制することができる。すなわち、差動信号の波形の乱れを抑制することができる。したがって、ハーモニックリジェクション比をより高くすることができる。
<周波数変換装置>
図16に示される周波数変換装置300は、図7に示される周波数変換装置150と同様に、入力される差動信号の周波数を変換する装置である。つまり、周波数変換装置300は、入力される差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、その2つのローカル信号の混合結果の差分を算出する。また、周波数変換装置300は、上述したように、2つのローカル信号の両方がロー(Low)の場合、入力された差動信号を伝送する信号線を所定の電位に短絡させるか、若しくは、入力された差動信号を伝送する信号線同士を短絡させる。
図16に示されるように、周波数変換装置300は、電圧電流変換部151、混合部312、共振部153、増幅部154、発振部155、1/3dutyLO信号生成部311、キャパシタ160−1、およびキャパシタ160−2を有する。なお、周波数変換装置300が、図7の周波数変換装置150と同様に、キャパシタ157、バイアス印加部158、および抵抗159を有するようにしてもよい。
1/3dutyLO信号生成部311は、1/3dutyLO信号生成部156と同様に、発振部155から供給されるクロック信号を用いて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号(LOPおよびLON)を生成する。これらのローカル信号の周波数は任意である。ただし、各ローカル信号の周波数は互いに同一である。つまり、1/3dutyLO信号生成部156は、図6の1/3dutyLO信号生成部102と同様の機能を有する。1/3dutyLO信号生成部311は、生成した2つローカル信号(LOPおよびLON)を混合部312に供給する。
1/3dutyLO信号生成部311は、さらに、2つのローカル信号の両方がロー(Low)の場合、入力された差動信号を伝送する信号線を所定の電位に短絡させるか、若しくは、入力された差動信号を伝送する信号線同士を短絡させるように制御する制御信号を生成する。1/3dutyLO信号生成部311は、生成したその制御信号を混合部312に供給する。
混合部312は、図7の混合部152と同様に、電圧電流変換部151から出力される差動信号に、1/3dutyLO信号生成部311において生成されたローカル信号(LOPおよびLON)を混合し、その混合結果を出力する。
混合部312はさらに、1/3dutyLO信号生成部311から供給される制御信号に基づいて、2つのローカル信号(LOPおよびLON)の両方がロー(Low)の場合(すなわち、ローカル信号LOPおよびローカル信号LONの両方がロー(Low)の期間)、入力された差動信号を伝送する信号線を所定の電位に短絡させるか、若しくは、入力された差動信号を伝送する信号線同士を短絡させる。
<1/3dutyLO信号生成部の構成>
1/3dutyLO信号生成部311の主な構成例を図17に示す。図17の例の場合、1/3dutyLO信号生成部311は、D-フリップフロップ321−1乃至D-フリップフロップ321−6を有する。D-フリップフロップ321−1乃至D-フリップフロップ321−6を互いに区別して説明する必要が無い場合、D-フリップフロップ321と称する。
D-フリップフロップ321−1乃至D-フリップフロップ321−3が互いに直列にリング状に接続されている。D-フリップフロップ321−1乃至D-フリップフロップ321−3には、デューティ比が2分の1で周波数がローカル信号の3倍のクロック信号(3*fLO)が供給される。D-フリップフロップ321−1乃至D-フリップフロップ321−3のいずれか1つに値「1」がセットされ(保持され)ており、このクロック信号に従って、その値「1」がD-フリップフロップ321−1乃至D-フリップフロップ321−3を巡回する(クロック信号の周期毎に次のD-フリップフロップ321に転送される)。
そして、いずれかのD-フリップフロップ321(例えばD-フリップフロップ321−1)の出力がローカル信号LOPとして混合部312に供給される。このリングは、3つのD-フリップフロップ321により形成されるので、クロック信号の3周期の内1周期においてローカル信号LOPがハイ(High)となる。したがって、ローカル信号LOPのデューティ比が3分の1となる。
同様に、D-フリップフロップ321−4乃至D-フリップフロップ321−6も互いに直列にリング状に接続されている。1/3dutyLO信号生成部311は、さらに、NOTゲート322を有する。デューティ比が2分の1で周波数がローカル信号の3倍のクロック信号(3*fLO)は、このNOTゲート322を介してD-フリップフロップ321−4乃至D-フリップフロップ321−6のそれぞれに供給される。つまり、D-フリップフロップ321−4乃至D-フリップフロップ321−6には、このクロック信号の論理否定(すなわち、位相が半周期ずれたクロック信号)が供給される。この位相が半周期ずれたクロック信号に従って、その値「1」がD-フリップフロップ321−4乃至D-フリップフロップ321−6を巡回する(クロック信号の周期毎に次のD-フリップフロップ321に転送される)。
そして、いずれかのD-フリップフロップ321(例えばD-フリップフロップ321−5)の出力が、デューティ比3分の1のローカル信号LONとして混合部312に供給される。このリングは、3つのD-フリップフロップ321により形成されるので、クロック信号の3周期の内1周期においてローカル信号LONがハイ(High)となる。したがって、ローカル信号LONのデューティ比が3分の1となる。
なお、D-フリップフロップ321−4乃至D-フリップフロップ321−6のリングにおいて、出力信号がローカル信号LONとして取り出されるD-フリップフロップ321は、D-フリップフロップ321−1乃至D-フリップフロップ321−3のリングにおいて、出力信号がローカル信号LOPとして取り出されるD-フリップフロップ321に応じて決定される。つまり、ローカル信号LOPに対して半周期ずれたローカル信号LONが得られるD-フリップフロップ321の出力が選択される。
図17の例の場合、D-フリップフロップ321−1乃至D-フリップフロップ321−3のリングにおいて、D-フリップフロップ321−1の出力がローカル信号LOPとして選択されているので、D-フリップフロップ321−4乃至D-フリップフロップ321−6のリングにおいては、D-フリップフロップ321−5の出力がローカル信号LONとして選択されている。D-フリップフロップ321−5は、位置がD-フリップフロップ321−1に対してローカル信号の周期の3分の1周期分ずれており、かつ、動作がローカル信号の周期の6分の1周期(3*fLOの半周期)ずれている。したがって、D-フリップフロップ321−5の出力は、D-フリップフロップ321−1の出力に対してローカル信号の半周期ずれている。
なお、ローカル信号LOPおよびローカル信号LONを生成する構成は、任意であり、図17の例に限定されない。例えば、図8や図9を参照して説明したような構成であってもよいし、図11を参照して説明した構成を用いるようにしてもよい。また、例えば、上述したD-フリップフロップ321の代わりに、他のフリップフロップを適用するようにしてもよい。
1/3dutyLO信号生成部311は、さらに、NORゲート323を有する。NORゲート323は、ローカル信号LOPとローカル信号LONの論理否定和を算出する。1/3dutyLO信号生成部311は、その算出結果を制御信号Shuntとして混合部312に供給する。つまり、NORゲート323は、制御信号Shuntを生成する。
この制御信号Shuntの値は、図18に示される例のように、ローカル信号LOPとローカル信号LONの両方がロー(Low)の期間にハイ(High)となり、それ以外の期間はロー(Low)となる。
なお、図18に示されるような波形の制御信号Shuntを生成することができるのであれば制御信号Shuntの生成方法は任意であり、NORゲート323以外の構成によって制御信号Shuntを生成するようにしてもよい。
<混合部>
混合部312の主な構成例を図19に示す。図19に示されるように、この場合、混合部312は、図7の混合部152の場合と同様の構成のスイッチ171−1乃至スイッチ171−4を有し、さらに、スイッチ331およびスイッチ332を有する。
スイッチ331は、1/3dutyLO信号生成部311から供給される制御信号Shuntに基づいて、混合部312に入力される差動信号の負側の信号を伝送する、スイッチ171−1およびスイッチ171−3より入力側(RF側)の信号線(すなわち入力端子RFINN)をグランド電位に短絡させる。つまり、スイッチ331は、ローカル信号LOPとローカル信号LONの両方がロー(Low)の期間、差動信号の負側の信号を伝送するRF側の信号線をグランド電位(GND)に短絡させる。これにより、RF側から混合部152に流れ込む電流は、GNDに流れることができるので、電流のRF側(入力端子RFINNから前段)への反射や寄生成分やバイアス抵抗への漏れが抑制される。
同様に、スイッチ332は、1/3dutyLO信号生成部311から供給される制御信号Shuntに基づいて、混合部312に入力される差動信号の正側の信号を伝送する、スイッチ171−2およびスイッチ171−4より入力側(RF側)の信号線(すなわち入力端子RFINP)をグランド電位に短絡させる。つまり、スイッチ332は、ローカル信号LOPとローカル信号LONの両方がロー(Low)の期間、差動信号の正側の信号を伝送するRF側の信号線をグランド電位(GND)に短絡させる。これにより、RF側から混合部152に流れ込む電流は、GNDに流れることができるので、電流のRF側(入力端子RFINPから前段)への反射や寄生成分やバイアス抵抗への漏れが抑制される。
以上のように、2つのローカル信号の両方がロー(Low)の場合、混合部312が、入力された差動信号を伝送するRF側の信号線をグランド電位に短絡させることにより、波形の乱れが抑制されるので、周波数変換装置300は、ハーモニックリジェクション比をより高くすることができる。
なお、スイッチ331およびスイッチ332が、入力された差動信号を伝送するRF側の信号線を短絡させる先の電位は任意でありグランド電位以外であってもよい。例えば、スイッチ331が、1/3dutyLO信号生成部311から供給される制御信号Shuntに基づいて、ローカル信号LOPとローカル信号LONの両方がロー(Low)の期間、差動信号の負側の信号を伝送するRF側の信号線を所定のコモン電位に短絡させるようにしてもよい。また、例えば、スイッチ332が、1/3dutyLO信号生成部311から供給される制御信号Shuntに基づいて、ローカル信号LOPとローカル信号LONの両方がロー(Low)の期間、差動信号の正側の信号を伝送するRF側の信号線をその所定のコモン電位に短絡させるようにしてもよい。
<混合部>
混合部312の他の構成例を図20に示す。図20に示されるように、この場合、混合部312は、図7の混合部152の場合と同様の構成のスイッチ171−1乃至スイッチ171−4を有し、さらに、スイッチ333を有する。
スイッチ333は、1/3dutyLO信号生成部311から供給される制御信号Shuntに基づいて、混合部312に入力される差動信号の負側の信号を伝送する、スイッチ171−1およびスイッチ171−3より入力側(RF側)の信号線(すなわち入力端子RFINN)と、混合部312に入力される差動信号の正側の信号を伝送する、スイッチ171−2およびスイッチ171−4より入力側(RF側)の信号線(すなわち入力端子RFINP)とを短絡させる。つまり、スイッチ333は、ローカル信号LOPとローカル信号LONの両方がロー(Low)の期間、差動信号を伝送するRF側の信号線同士を短絡させる。これにより、RF側から混合部152に流れ込む正側の電流と負側の電流とが互いに打ち消し合うので、電流のRF側(入力端子RFINNや入力端子RFINPから前段)への反射や寄生成分やバイアス抵抗への漏れが抑制される。
以上のように、2つのローカル信号の両方がロー(Low)の場合、混合部312が、入力された差動信号を伝送する信号線同士を短絡させることにより、波形の乱れが抑制されるので、周波数変換装置300は、ハーモニックリジェクション比をより高くすることができる。
<1/3dutyLO信号生成部による電流制御>
以上のように、1/3dutyLO信号生成部311は、混合部312を制御して、2つのローカル信号の両方がロー(Low)の場合、入力された差動信号を伝送する信号線をグランド電位に短絡させるか、若しくは、入力された差動信号を伝送する信号線同士を短絡させることができる。これにより、周波数変換装置300は、ハーモニックリジェクション比をより高くすることができる。
換言するに、1/3dutyLO信号生成部311は、2つのローカル信号の両方がロー(Low)の場合、入力された差動信号を伝送する信号線を所定の電位に短絡させるか、若しくは、入力された差動信号を伝送する信号線同士を短絡させるように混合部312を制御する制御信号を生成することができる。
なお、周波数変換装置300の1/3dutyLO信号生成部311および混合部312以外の構成は任意であり、図16の例に限定されない。例えば、図6Aに示される周波数変換装置100の混合部103において、2つのローカル信号の両方がロー(Low)の場合、入力された差動信号を伝送する信号線(すなわち、各スイッチ部112側よりRF側の信号線)を所定の電位に短絡させるか、若しくは、入力された差動信号を伝送する信号線同士(すなわち、各スイッチ部112側よりRF側の信号線同士)を短絡させるようにしてもよい。
このようにすることにより、周波数変換装置100に本実施の形態において説明した技術を適用することができ、ハーモニックリジェクション比をより高くすることができる。
<その他>
また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、本技術は、これに限らず、このような装置またはシステムを構成する装置に搭載するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。
なお、本技術は以下のような構成も取ることができる。
(1) 差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出する差動構成の混合部を備える
信号処理装置。
(2) 前記混合部により前記ローカル信号を混合された前記差動信号に対して所定の共振周波数で共振する共振部をさらに備える
(1)に記載の信号処理装置。
(3) 前記共振部は、前記ローカル信号の6倍の周波数で共振する
(2)に記載の信号処理装置。
(4) 前記共振部は、並列LC回路を含む
(2)または(3)に記載の信号処理装置。
(5) 前記共振周波数は、可変である
(2)乃至(4)のいずれかに記載の信号処理装置。
(6) 前記差動信号に対して電圧を電流に変換する電圧電流変換部をさらに備え、
前記混合部は、前記電圧電流変換部より出力される前記差動信号に前記ローカル信号を混合する
(2)乃至(5)のいずれかに記載の信号処理装置。
(7) 前記電圧電流変換部の出力とグランド電位との間にキャパシタをさらに備える
(6)に記載の信号処理装置。
(8) 前記混合部により前記ローカル信号を混合された前記差動信号を増幅する差動増幅部をさらに備える
(1)乃至(7)のいずれかに記載の信号処理装置。
(9) 前記混合部は、IチャンネルのパスとQチャンネルのパスを有し、前記差動信号の前記Iチャンネルと前記Qチャンネルに対して、互いの位相差が90度の前記ローカル信号を混合する
(1)乃至(8)のいずれかに記載の信号処理装置。
(10) 前記ローカル信号を生成するローカル信号生成部をさらに備え、
前記混合部は、前記差動信号に、前記ローカル信号生成部により生成された前記ローカル信号を混合する
(1)乃至(9)のいずれかに記載の信号処理装置。
(11) 差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出する
信号処理方法。
(12) 差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成する生成部を備える
信号処理装置。
(13) 前記生成部は、
互いに直列にリング状に接続される複数のフリップフロップと、
それぞれの前記フリップフロップの入力と出力との論理和を算出する演算部と
を有する
(12)に記載の信号処理装置。
(14) 前記生成部は、入力されるクロック信号に従って、各フリップフロップに値「1」を順次保持させる
(13)に記載の信号処理装置。
(15) 前記クロック信号の周波数は、前記ローカル信号の周波数の6倍であり、
前記生成部は、6つの前記フリップフロップと6つの前記演算部とからなるリング構成を有し、互いに3つ離れた2つの前記演算部の出力を、2つの前記ローカル信号として出力する
(12)乃至(14)のいずれかに記載の信号処理装置。
(16) 前記生成部は、前記リング構成を2組有し、一方の前記リング構成によりIチャンネル用の前記ローカル信号を生成し、他方の前記リング構成により、前記Iチャンネル用の前記ローカル信号との位相差が90度の、Qチャンネル用の前記ローカル信号を生成する
(15)に記載の信号処理装置。
(17) 前記生成部は、周波数が前記ローカル信号の3倍のクロック信号に対して、周波数およびデューティ比を3分の1にして前記ローカル信号を生成する分周部を有する
(12)乃至(16)のいずれかに記載の信号処理装置。
(18) 前記分周部は、
前記クロック信号をカウントするカウンタと、
前記カウンタの出力の値が「3」に達した場合、前記カウンタを「0」にリセットするリセット制御部と、
前記カウンタの値が「2」の場合、値「1」を出力し、前記カウンタの出力の値が「1」若しくは「0」の場合、値「0」を出力する出力制御部と
を有する
(17)に記載の信号処理装置。
(19) 前記差動信号のそれぞれについて、前記生成部が生成した前記ローカル信号を混合する混合部をさらに備える
(12)乃至(18)のいずれかに記載の信号処理装置。
(20) 差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成する
信号処理方法。
(21) 差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出する差動構成の混合部を備え、
前記混合部は、前記2つのローカル信号の両方がロー(Low)の場合、入力された前記差動信号を伝送する信号線を所定の電位に短絡させる
信号処理装置。
(22) 前記混合部は、
前記差動信号の負側の信号にデューティ比が3分の1の第1のローカル信号を混合する第1のスイッチと、
前記差動信号の正側の信号にデューティ比が3分の1であり、かつ、前記第1のローカル信号に対して位相が半周期ずれた第2のローカル信号を混合する第2のスイッチと、
前記差動信号の負側の信号に前記第2のローカル信号を混合する第3のスイッチと、
前記差動信号の正側の信号に前記第1のローカル信号を混合する第4のスイッチと
を備え、
前記第1のスイッチから出力される信号と、前記第2のスイッチから出力される信号とを合成して差動信号の負側の信号として出力し、
前記第3のスイッチから出力される信号と、前記第4のスイッチから出力される信号とを合成して差動信号の正側の信号として出力する
(21)に記載の信号処理装置。
(23) 前記混合部は、
前記2つのローカル信号の両方がロー(Low)の場合、入力された前記差動信号の負側の信号を伝送する、前記第1のスイッチおよび前記第3のスイッチより入力側の信号線を前記所定の電位に短絡させる第5のスイッチと、
前記2つのローカル信号の両方がロー(Low)の場合、入力された前記差動信号の正側の信号を伝送する、前記第2のスイッチおよび前記第4のスイッチより入力側の信号線を前記所定の電位に短絡させる第6のスイッチと
をさらに備える(22)に記載の信号処理装置。
(24) 前記2つのローカル信号を生成する生成部をさらに備える
(23)に記載の信号処理装置。
(25) 前記生成部は、前記第5のスイッチおよび第6のスイッチを制御する制御信号をさらに生成する
(24)に記載の信号処理装置。
(26) 前記生成部は、生成した前記2つのローカル信号の値の否定論理和を示す信号を、前記制御信号として生成する
(25)に記載の信号処理装置。
(27) 前記所定の電位は、グランド電位である
(21)乃至(26)のいずれかに記載の信号処理装置。
(28) 前記所定の電位は、任意のコモン電位である
(21)乃至(26)のいずれかに記載の信号処理装置。
(29) 差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出し、
前記2つのローカル信号の両方がロー(Low)の場合、入力された前記差動信号を伝送する信号線を前記所定の電位に短絡させる
信号処理方法。
(30) 差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出する差動構成の混合部を備え、
前記混合部は、前記2つのローカル信号の両方がロー(Low)の場合、入力された前記差動信号を伝送する信号線同士を短絡させる
信号処理装置。
(31) 前記混合部は、
前記差動信号の負側の信号にデューティ比が3分の1の第1のローカル信号を混合する第1のスイッチと、
前記差動信号の正側の信号にデューティ比が3分の1であり、かつ、前記第1のローカル信号に対して位相が半周期ずれた第2のローカル信号を混合する第2のスイッチと、
前記差動信号の負側の信号に前記第2のローカル信号を混合する第3のスイッチと、
前記差動信号の正側の信号に前記第1のローカル信号を混合する第4のスイッチと
を備え、
前記第1のスイッチから出力される信号と、前記第2のスイッチから出力される信号とを合成して差動信号の負側の信号として出力し、
前記第3のスイッチから出力される信号と、前記第4のスイッチから出力される信号とを合成して差動信号の正側の信号として出力する
(30)に記載の信号処理装置。
(32) 前記混合部は、
前記2つのローカル信号の両方がロー(Low)の場合、入力された前記差動信号の負側の信号を伝送する、前記第1のスイッチおよび前記第3のスイッチより入力側の信号線と、入力された前記差動信号の正側の信号を伝送する、前記第2のスイッチおよび前記第4のスイッチより入力側の信号線とを短絡させる第5のスイッチをさらに備える
(31)に記載の信号処理装置。
(33) 前記2つのローカル信号を生成する生成部をさらに備える
(32)に記載の信号処理装置。
(34) 前記生成部は、前記第5のスイッチを制御する制御信号をさらに生成する
(33)に記載の信号処理装置。
(35) 前記生成部は、生成した前記2つのローカル信号の値の否定論理和を示す信号を、前記制御信号として生成する
(34)に記載の信号処理装置。
(36) 差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出し、
前記2つのローカル信号の両方がロー(Low)の場合、入力された前記差動信号を伝送する信号線同士を短絡させる
信号処理方法。
100 周波数変換装置, 101 発振部, 102 1/3dutyLO信号生成部, 103 混合部, 111 増幅部, 112 スイッチ部, 113 演算部, 150 周波数変換装置, 151 電圧電流変換部, 152 混合部, 153 共振部, 154 増幅部, 155 発振部, 156 1/3dutyLO信号生成部, 160 キャパシタ、 171 スイッチ, 201 D-フリップフロップ, 202 ORゲート, 251 カウンタ, 252 出力制御部, 253 リセット制御部, 254 演算部, 300 周波数変換装置, 311 1/3dutyLO信号生成部, 312 混合部, 321 D-フリップフロップ, 322 NOTゲート, 323 NORゲート, 331 スイッチ, 332 スイッチ, 333 スイッチ

Claims (20)

  1. 差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出する差動構成の混合部を備える
    信号処理装置。
  2. 前記混合部により前記ローカル信号を混合された前記差動信号に対して所定の共振周波数で共振する共振部をさらに備える
    請求項1に記載の信号処理装置。
  3. 前記共振部は、前記ローカル信号の6倍の周波数で共振する
    請求項2に記載の信号処理装置。
  4. 前記共振部は、並列LC回路を含む
    請求項2に記載の信号処理装置。
  5. 前記共振周波数は、可変である
    請求項2に記載の信号処理装置。
  6. 前記差動信号に対して電圧を電流に変換する電圧電流変換部をさらに備え、
    前記混合部は、前記電圧電流変換部より出力される前記差動信号に前記ローカル信号を混合する
    請求項2に記載の信号処理装置。
  7. 前記電圧電流変換部の出力とグランド電位との間にキャパシタをさらに備える
    請求項6に記載の信号処理装置。
  8. 前記混合部により前記ローカル信号を混合された前記差動信号を増幅する差動増幅部をさらに備える
    請求項1に記載の信号処理装置。
  9. 前記混合部は、IチャンネルのパスとQチャンネルのパスを有し、前記差動信号の前記Iチャンネルと前記Qチャンネルに対して、互いの位相差が90度の前記ローカル信号を混合する
    請求項1に記載の信号処理装置。
  10. 前記ローカル信号を生成するローカル信号生成部をさらに備え、
    前記混合部は、前記差動信号に、前記ローカル信号生成部により生成された前記ローカル信号を混合する
    請求項1に記載の信号処理装置。
  11. 差動信号のそれぞれについて、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を混合し、前記2つのローカル信号の混合結果の差分を算出する
    信号処理方法。
  12. 差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成する生成部を備える
    信号処理装置。
  13. 前記生成部は、
    互いに直列にリング状に接続される複数のフリップフロップと、
    それぞれの前記フリップフロップの入力と出力との論理和を算出する演算部と
    を有する
    請求項12に記載の信号処理装置。
  14. 前記生成部は、入力されるクロック信号に従って、各フリップフロップに値「1」を順次保持させる
    請求項13に記載の信号処理装置。
  15. 前記クロック信号の周波数は、前記ローカル信号の周波数の6倍であり、
    前記生成部は、6つの前記フリップフロップと6つの前記演算部とからなるリング構成を有し、互いに3つ離れた2つの前記演算部の出力を、2つの前記ローカル信号として出力する
    請求項13に記載の信号処理装置。
  16. 前記生成部は、前記リング構成を2組有し、一方の前記リング構成によりIチャンネル用の前記ローカル信号を生成し、他方の前記リング構成により、前記Iチャンネル用の前記ローカル信号との位相差が90度の、Qチャンネル用の前記ローカル信号を生成する
    請求項15に記載の信号処理装置。
  17. 前記生成部は、周波数が前記ローカル信号の3倍のクロック信号に対して、周波数およびデューティ比を3分の1にして前記ローカル信号を生成する分周部を有する
    請求項12に記載の信号処理装置。
  18. 前記分周部は、
    前記クロック信号をカウントするカウンタと、
    前記カウンタの出力の値が「3」に達した場合、前記カウンタを「0」にリセットするリセット制御部と、
    前記カウンタの値が「2」の場合、値「1」を出力し、前記カウンタの出力の値が「1」若しくは「0」の場合、値「0」を出力する出力制御部と
    を有する
    請求項17に記載の信号処理装置。
  19. 前記差動信号のそれぞれについて、前記生成部が生成した前記ローカル信号を混合する混合部をさらに備える
    請求項12に記載の信号処理装置。
  20. 差動信号に混合する、デューティ比が3分の1であり位相が互いに半周期ずれた2つのローカル信号を生成する
    信号処理方法。
JP2015021075A 2015-02-05 2015-02-05 信号処理装置および方法 Pending JP2016144176A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015021075A JP2016144176A (ja) 2015-02-05 2015-02-05 信号処理装置および方法
US15/547,167 US10461698B2 (en) 2015-02-05 2016-01-22 Signal processing apparatus and method
PCT/JP2016/051800 WO2016125600A1 (ja) 2015-02-05 2016-01-22 信号処理装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021075A JP2016144176A (ja) 2015-02-05 2015-02-05 信号処理装置および方法

Publications (1)

Publication Number Publication Date
JP2016144176A true JP2016144176A (ja) 2016-08-08

Family

ID=56563951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021075A Pending JP2016144176A (ja) 2015-02-05 2015-02-05 信号処理装置および方法

Country Status (3)

Country Link
US (1) US10461698B2 (ja)
JP (1) JP2016144176A (ja)
WO (1) WO2016125600A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502717B2 (en) * 2021-01-22 2022-11-15 Qualcomm Incoporated Multiple element mixer with digital local oscillator synthesis
WO2023062770A1 (ja) * 2021-10-14 2023-04-20 ソニーセミコンダクタソリューションズ株式会社 信号処理回路および受信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975903A (en) * 1984-05-07 1990-12-04 David Systems, Inc. Digital timeslot and signaling bus in a digital PBX switch
JP4281365B2 (ja) * 2003-01-21 2009-06-17 パナソニック株式会社 高周波信号受信装置
JP2010147988A (ja) * 2008-12-22 2010-07-01 Toshiba Corp 増幅回路および無線受信機
JP5436455B2 (ja) * 2009-01-29 2014-03-05 パナソニック株式会社 ハーモニックリジェクションミキサ
KR101651201B1 (ko) * 2009-07-07 2016-08-25 삼성전자주식회사 고조파 제거 믹서 및 그 방법
JP2012065017A (ja) * 2010-09-14 2012-03-29 Renesas Electronics Corp ハーモニックリジェクションミキサ及び位相調整方法
TWI441461B (zh) * 2011-05-20 2014-06-11 Sunplus Technology Co Ltd 具可適應性濾波器的通用接收裝置
US8526907B2 (en) * 2011-11-30 2013-09-03 St-Ericsson Sa Power consumption reduction technique for integrated wireless radio receiver front-ends
US8912849B2 (en) * 2013-04-30 2014-12-16 Mstar Semiconductor, Inc. Adaptive operational amplifier bias current
US9692473B2 (en) * 2014-05-16 2017-06-27 Analog Devices, Inc. Offset compensation in a receiver
CN106208968B (zh) * 2015-05-07 2019-04-02 澜起科技股份有限公司 信号混频方法以及混频器
KR101902093B1 (ko) * 2017-01-03 2018-09-28 (주)에프씨아이 Lo 생성 시스템 및 그 생성 방법

Also Published As

Publication number Publication date
US20180019707A1 (en) 2018-01-18
US10461698B2 (en) 2019-10-29
WO2016125600A1 (ja) 2016-08-11

Similar Documents

Publication Publication Date Title
US9641316B2 (en) Frequency divider and radio communications device
US9191127B2 (en) Signal filtering
US8938204B2 (en) Signal generator circuit and radio transmission and reception device including the same
US20100119022A1 (en) Calibration-free local oscillator signal generation for a harmonic-rejection mixer
CN111211737B (zh) 高谐波抑制比混频电路
US10447250B2 (en) Multi-stage frequency dividers and poly-phase signal generators
TWI619349B (zh) 時脈產生器以及時脈產生方法
EP1351378B1 (en) Quadrature divider
US7085548B1 (en) Harmonic mixer
WO2016125600A1 (ja) 信号処理装置および方法
Razavi The harmonic-rejection mixer [a circuit for all seasons]
Meng et al. 2.4/5.7-GHz CMOS dual-band low-IF architecture using Weaver–Hartley image-rejection techniques
US9680461B1 (en) Generating local oscillator signals in a wireless sensor device
Idachaba et al. Analysis of a Weaver, Hartley and Saw-filter based, image reject architectures for radio receiver design
Tran et al. Pass-band gain improvement technique for passive RC polyphase filter in Bluetooth low-IF receiver using two RC band-stop filters
US6970687B1 (en) Mixer
TWI517551B (zh) 具低轉換損耗之奇數多倍頻裝置
US11190167B2 (en) Discrete time charge sharing IIR bandpass filter incorporating clock phase reuse
Korotkov et al. Passive Mixer with Guard Intervals of the Local Oscillator Signal and the Resonance Circuit of the Input Impedance
CN116405025B (zh) 本振信号产生电路、产生方法及无线通信系统
US20230155552A1 (en) Apparatus Comprising a Local Oscillator for Driving a Mixer
Bonehi et al. Gain and noise optimization of a passive sliding IF architecture
US11677390B2 (en) Multimode frequency multiplier
EP2980987B1 (en) Frequency down-conversion
JP2012217157A (ja) ミキサ回路