JP2016131459A - 自動列車運転装置、自動列車制御方法及びプログラム - Google Patents

自動列車運転装置、自動列車制御方法及びプログラム Download PDF

Info

Publication number
JP2016131459A
JP2016131459A JP2015004938A JP2015004938A JP2016131459A JP 2016131459 A JP2016131459 A JP 2016131459A JP 2015004938 A JP2015004938 A JP 2015004938A JP 2015004938 A JP2015004938 A JP 2015004938A JP 2016131459 A JP2016131459 A JP 2016131459A
Authority
JP
Japan
Prior art keywords
speed
vehicle
target
pattern
target speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015004938A
Other languages
English (en)
Other versions
JP2016131459A5 (ja
JP6547222B2 (ja
Inventor
法貴 ▲柳▼井
法貴 ▲柳▼井
Noritaka Yanai
一幸 若杉
Kazuyuki Wakasugi
一幸 若杉
裕 宮嶋
Yu Miyajima
裕 宮嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015004938A priority Critical patent/JP6547222B2/ja
Priority to EP15877983.5A priority patent/EP3238980B1/en
Priority to CA2973667A priority patent/CA2973667C/en
Priority to PCT/JP2015/084211 priority patent/WO2016114032A1/ja
Publication of JP2016131459A publication Critical patent/JP2016131459A/ja
Publication of JP2016131459A5 publication Critical patent/JP2016131459A5/ja
Application granted granted Critical
Publication of JP6547222B2 publication Critical patent/JP6547222B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0062On-board target speed calculation or supervision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/26Vehicle weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/02Vehicle mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】自動列車の乗り心地を良くし、走行時間も短くできる自動列車運転装置を提供する。【解決手段】速度制御部104aは、停止限界位置に自車両が接近したことの通知を外部装置より受けた場合であって、車両の速度と当該速度時に回生ブレーキの最大ブレーキ力で減速制御した場合の単位時間当たりの減少速度との関係を示すブレーキ力特性において回生ブレーキのブレーキ力特性がブレーキ力特性減少速度以上となることにより減少する当該ブレーキ力特性減少速度以上で自車両が走行している場合において、回生ブレーキのブレーキ力特性を用いて算出した目標速度パターンに基づく車両の速度に応じた回生ブレーキのみの制動力を用いて車両の速度の減速を制御する。【選択図】図4

Description

本発明は、自動列車運転装置、自動列車制御方法及びプログラムに関する。
所定の速度を超えるとATP(Automatic Train Protection)地上子からの指令に基づいて自動的にブレーキを作動させるATP装置を備えた車両が存在する。
特許文献1には、関連する技術として、複数のブレーキノッチを切り替えて良好な停止精度や乗り心地を実現する技術が記載されている。
特開2011−87364号公報
ところで、鉄道システムにおいて、ATP地上子と通信するATP装置(車上子)を備える車両は、一般的に、ATP装置が車両の現在位置を基準とした軌道上の各位置に対して設定した速度上限を目標速度パターンとし、その速度パターンに追従するための加速度を特定する。そして、車両は、特定した加速度に対してモータ性能に基づく上下限の制限と、最低限の乗り心地を確保するために変化率の制限(ジャークリミット、車両の加速度の変化率の限界)を掛けている。しかしながら、このような制限を掛けた場合、実際には、車両の加速度の変化率は頻繁に限界に到達し、車両の乗り心地が良いとは言えない。また、これらの制限により車両の速度変化において、高速から低速へ変化する際に目標とする低速を低速側に超える速度となるアンダーシュートや低速から高速へ変化する際に目標とする高速を高速側に超える速度となるオーバーシュートが発生する。そのため、車両の乗り心地が悪くなり、車両の走行時間も増大してしまう。
そこで、自動列車の乗り心地を良くし、走行時間も短くできる技術が求められていた。
そこでこの発明は、上記の課題を解決することのできる自動列車運転装置、自動列車制御方法及びプログラムを提供することを目的としている。
本発明の第1の態様によれば、自動列車運転装置は、停止限界位置に自車両が接近したことの通知を外部装置より受けた場合であって、車両の速度と当該速度時に回生ブレーキの最大ブレーキ力で減速制御した場合の単位時間当たりの減少速度との関係を示すブレーキ力特性において回生ブレーキのブレーキ力特性がブレーキ力特性減少速度以上となることにより減少する当該ブレーキ力特性減少速度以上で自車両が走行している場合において、回生ブレーキのブレーキ力特性を用いて算出した目標速度パターンに基づく車両の速度に応じた回生ブレーキのみの制動力を用いて車両の速度の減速を制御する速度制御部、を備える。
本発明の第2の態様によれば、上述の自動列車運転装置において、前記速度制御部は、前記車両の速度が前記ブレーキ力特性減少速度以上の速度上限に達する間は前記目標速度パターンに基づく回生ブレーキのみの制動力を用いて前記車両の速度の減速を制御し、前記速度上限に達した場合には前記回生ブレーキとそれ以外の制動手段を用いて前記車両の速度の減速を制御する。
本発明の第3の態様によれば、上述の自動列車運転装置において、前記速度制御部は、前記速度上限を外部装置から取得し、当該速度上限よりも低い速度の目標速度パターンを算出し、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記目標速度パターンに一致するよう前記目標時刻までの時間よりも短い処理サイクル時間毎に前記車両の制御遷移パターンを算出し、算出した算出結果に基づいて次タイミングにおける前記車両の加速度を決定する。
本発明の第4の態様によれば、上述の自動列車運転装置において、前記速度制御部は、前記速度上限よりも低い目標速度パターンとして一定速度で走行する第一目標速度パターンを算出し、前記速度上限よりも低い目標速度パターンとして停止限界位置に向けて減速走行する第二目標速度パターンを算出し、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記第一目標速度パターンに一致する次タイミングの車両の第一目標速度パターンを算出し、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記第二目標速度パターンに一致する次タイミングの車両の第二目標速度パターンを算出し、第一制御遷移パターンと第二制御遷移パターンについて次制御ステップにおける加速度を比較し、低い方の加速度を車両の加速度とする。
本発明の第5の態様によれば、上述の自動列車運転装置において、前記速度制御部は、前記車両の加速度と前記車両の質量とに基づいて、実効トルクを算出する。
本発明の第6の態様によれば、上述の自動列車運転装置において、前記速度制御部は、前記加速度がマイナスの加速度である場合には、前記回生ブレーキと前記回生ブレーキ以外の制動手段のうちの少なくとも一方を用いて前記車両の速度を制御する。
本発明の第7の態様によれば、上述の自動列車運転装置は、前記実効トルクと速度変化とに基づいて、走行抵抗を推定する外乱推定部、を備える。
本発明の第8の態様によれば、自動列車運転装置は、回生ブレーキの減少速度と速度との関係を示すブレーキ力特性を用いて算出した目標速度パターンに基づく車両の速度に応じた回生ブレーキの制動力を用いて車両の速度の減速を制御する速度制御部を備え、前記速度制御部は、速度上限を外部装置から取得し、前記速度上限よりも低い目標速度パターンとして一定速度で走行する第一目標速度パターンを算出し、前記速度上限よりも低い目標速度パターンとして停止限界位置に向けて減速走行する第二目標速度パターンを算出し、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記第一目標速度パターンに一致する次タイミングの車両の第一目標速度パターンを算出し、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記第二目標速度パターンに一致する次タイミングの車両の第二目標速度パターンを算出し、第一制御遷移パターンと第二制御遷移パターンについて次制御ステップにおける加速度を比較し、低い方の加速度を車両の加速度とする。
本発明の第9の態様によれば、自動列車制御方法において、速度制御部は、回生ブレーキの減少速度と速度との関係を示すブレーキ力特性において、所定の減少速度以下の減少速度に対応する速度以上の高速で駅間の停止しなければならない非開通エリアに接近した場合に、機械ブレーキを使用することなく車両の速度の減速を制御する。
本発明の第10の態様によれば、プログラムは、コンピュータを、回生ブレーキの減少速度と速度との関係を示すブレーキ力特性において、所定の減少速度以下の減少速度に対応する速度以上の高速で駅間の停止しなければならない非開通エリアに接近した場合に、機械ブレーキを使用することなく車両の速度の減速を制御する速度制御部、として機能させる。
本発明の実施形態による走行制御装置によれば、自動列車の乗り心地を良くし、走行時間も短くできる。
本発明の第一の実施形態による自動列車運転装置を備える車両を示す図である。 自動列車運転装置が生成する目標速度遷移パターンを示す図である。 第一の実施形態による速度制御部を備える自動列車運転装置の処理フローを示す図である。 本発明の第二の実施形態による自動列車運転装置を備える車両を示す図である。 一般的なモータの回生ブレーキの特性の一例を示す図である。 自動列車運転装置が生成する目標速度遷移パターンの一例を示す図である。 第二の実施形態による速度制御部を備える自動列車運転装置の処理フローを示す図である。 本発明の第三の実施形態による自動列車運転装置を備える車両を示す図である。 第三の実施形態による自動列車運転装置の処理フローを示す図である。
<第一の実施形態>
まず、本発明の第一の実施形態による自動列車運転装置102を備える車両10について説明する。
図1は、本発明の第一の実施形態による自動列車運転装置102を備える車両10の一例を示す図である。
図1で示すように、第一の実施形態による車両10は、速度計101と、自動列車運転装置102と、モータ103と、ATP(Automatic Train Protection)装置20を備える。
車両10が備える速度計101は、車両10の速度vを計測する。
自動列車運転装置102は、速度制御部104を備える。
速度制御部104は、速度上限目標速度生成部105と、減速目標速度生成部106と、最小値選択部(図1において、minと記載)107と、質量乗算部(図1において、質量と記載)108と、牽引力制限部(図1において、上下限と記載)109と、モータ指令生成部110と、を備える。
速度制御部104が備える速度上限目標速度生成部105は、現在の速度vと、現在の速度上限vlと、現在の位置と、前回算出した目標加速度に基づいて到達した現在の加速度と、に基づいて、車両10の目標加速度a1を算出する。なお、目標加速度の算出に用いる位置は、ATP装置20がATP地上子から取得する後述する減速度完了位置xb0など基準となる位置の情報と速度vの積算値とに基づいて算出する位置であってよい。また、目標加速度の算出に用いる位置は、出発点からの速度vの積算値に基づき算出した位置であってもよい。また、目標加速度の算出に用いる位置は、車両10の車輪の径と回転数に基づいて算出した位置であってもよい。
減速目標速度生成部106は、現在の速度vと、現在の速度vにおける減速度βと、ATP地上子の位置と、前回算出した目標加速度と、に基づいて、車両10の加速度a2を算出する。
最小値選択部107は、速度上限目標速度生成部105が算出した加速度a1と、減速目標速度生成部106が算出した加速度a2と、を比較し、最も小さい加速度である目標加速度aoを出力する。
質量乗算部108は、最小値選択部107が出力した目標加速度aoに車両10の質量を乗算し、牽引力pwrを算出する。
牽引力制限部109は、質量乗算部108が算出した牽引力pwrとモータ103の性能に基づいて、牽引力pwrを制限する。
モータ指令生成部110は、牽引力制限部109が出力する牽引力pwrに基づいて、モータ103が所望のトルクを発生するよう駆動するモータ指令を生成する。
上述の速度制御部104が備える速度上限目標速度生成部105、減速目標速度生成部106、最小値選択部107、質量乗算部108、牽引力制限部109、モータ指令生成部110の各機能部により、速度制御部104は、ATP装置20が停止限界位置(例えば、駅間の停止しなければならない非開通エリア)に車両10が接近したことの通知をATP地上子より受けた場合であって、車両10の速度と車両10の速度が当該速度時に回生ブレーキの最大ブレーキ力で減速制御した場合の単位時間当たりの減少速度との関係を示すブレーキ力特性を用いて算出した回生ブレーキのブレーキ力特性を用いて算出した理想的な目標速度遷移パターンB(B1、B2)(目標速度パターン)に基づく車両10の速度に応じた回生ブレーキの制動力を用いて車両10の速度の減速を制御する。
また、速度制御部104は、速度上限vlをATP装置20から取得する。速度制御部104は、当該速度上限vlよりも低い速度の目標速度遷移パターンBを算出する。速度制御部104は、速度制御部104は、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が目標速度遷移パターンBに一致するよう目標時刻までの時間よりも短い処理サイクル時間毎に車両10の制御遷移パターンC(C1、C2)を算出する。速度制御部104は、算出した算出結果に基づいて次タイミングにおける車両10の加速度を決定する。
また、速度制御部104は、速度上限vlよりも低い目標速度遷移パターンBとして一定速度で走行する第一目標速度遷移パターンB1(第一目標速度パターン)を算出する。速度制御部104は、速度上限vlよりも低い目標速度遷移パターンBとして停止限界位置に向けて減速走行する第二目標速度遷移パターンB2(第二目標速度パターン)を算出する。速度制御部104は、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が第一目標速度遷移パターンB1に一致する次タイミングの車両10の第一目標速度遷移パターンを算出する。速度制御部104は、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が第二目標速度遷移パターンB2に一致する次タイミングの車両10の第二目標速度遷移パターンを算出する。速度制御部104は、第一制御遷移パターンと第二制御遷移パターンについて次制御ステップにおける加速度を比較し、低い方の加速度を車両10の加速度とする。
また、速度制御部104は、車両10の加速度と車両10の質量とに基づいて、実効トルクを算出する。
また、速度制御部104は、加速度がマイナスの加速度である場合には、回生ブレーキと回生ブレーキ以外の制動手段のうちの少なくとも一方を用いて車両10の速度vを制御する。
また、速度制御部104は、ATP装置20から速度上限vlと減速度βに係る情報を取得する。速度制御部104は、取得した速度上限vlと減速度βに係る情報に基づいて現在位置を算出する。例えば、速度上限vlと減速度βに係る情報は、上限速度開始位置、減速度完了位置及び減速度βである。
モータ103は、モータ指令生成部110が生成したモータ指令に基づいて動作する。
ATP装置20は、ATP地上子から速度上限vlと減速度βに係る情報を受信する。ATP装置20は、自動列車運転装置102が備える速度制御部104に速度上限vlと減速度βに係る情報を送信する。
次に、本発明の第一の実施形態による自動列車運転装置102が生成する目標速度遷移パターンBについて説明する。
図2は、自動列車運転装置102が生成する目標速度遷移パターンBの一例を示す図である。
図2において横軸は列車の現在位置を基準とした軌道上の位置x、縦軸はその位置における速度vを示している。また、xb0は減速度完了位置を示している。例えば、減速度完了位置xb0は、列車が渋滞しているときに前方を走行中の列車の最後尾車両の位置や停止現示信号の手前などであり、ATP装置20がATP地上子から受信する。ATP装置20は、ATP地上子から受信した情報を自動列車運転装置102に送信する。自動列車運転装置102は、ATP装置20から受信した情報(速度上限vl、減速度完了位置xb0、減速度β)に基づいて、ATP装置20から指令された指令速度上限を示す指令速度遷移パターンA1、指令速度遷移パターンA2(図2)の情報を算出する。具体的には、自動列車運転装置102は、現在の速度上限vlに基づいてその速度で等速走行する場合の指令速度遷移パターンA1の情報を算出する。また、自動列車運転装置102は、減速度完了位置xb0と減速度βとに基づいて、当該減速度完了位置xb0を基準としてその位置で車両10が停止し、かつその位置まで減速度βで減速する場合の車両10の位置と速度の関係を示す指令速度遷移パターンA2の情報を算出する。そして、自動列車運転装置102は、車両10の現在位置から指令速度遷移パターンA1と指令速度遷移パターンA2とが交わる位置までの区間の指令速度遷移パターンA1と、当該交わる位置以降の減速度完了位置xb0までの区間の指令速度遷移パターンA2とを、ATPパターンAと決定する。自動列車運転装置102は、このATPパターンAが示す速度に達した場合には、機械ブレーキなどを用いて制動制御を行う。なお、ATP装置20がATP地上子より受信した情報に基づいて自動列車運転装置102がATPパターンAを算出することについて説明したが、自動列車運転装置102はこのATPパターンAが示す位置と速度の関係の情報をATP装置20がATP地上子から全て受信するようにしてもよい。また、自動列車運転装置102は、指令速度遷移パターンA1と指令速度遷移パターンA2とが交差するか否かを判定し、交差しない場合には、指令速度遷移パターンA2のみをATPパターンAと決定してもよい。指令速度遷移パターンA1と指令速度遷移パターンA2とが交差しない場合は、例えば、減速度完了位置xb0が間近であるなどの緊急時に発生する事象であり、一定速度の走行なしに直ちに減速することが求められる場合の速度遷移を示している。
なお、列車の現在位置を基準とした軌道上の各位置における速度をATPパターンAが示す速度vに対して余裕をもって減速することで非常ブレーキを発生させることなく快適な運転を実現することができる。速度制御部104は、回生ブレーキのブレーキ力特性を用いて算出した目標速度遷移パターンBに基づく車両10の速度vに応じた回生ブレーキのみの制動力を用いて車両10の速度vの減速を制御し、車両10の速度vが非常ブレーキがかかりそうな高速である場合には回生ブレーキ以外の機械ブレーキなどの制動手段を用いて車両10の速度vの減速を制御するものであってもよい。
ATPパターンAを決定すると、次に自動列車運転装置102は、回生ブレーキのブレーキ力特性を用いて算出した回生ブレーキのみの制動力を用いた場合の車両10の速度で追従できる理想的な目標速度遷移パターンB1(目標速度パターンの1つであり、以下、「目標速度遷移パターンB1」と記載)と回生ブレーキのブレーキ力特性を用いて算出した回生ブレーキのみの制動力を用いた場合の車両10の速度で追従できる理想的な目標速度遷移パターンB2(目標速度パターンの1つであり、以下、「目標速度遷移パターンB2」と記載)とを算出する(図2参照)。目標速度遷移パターンB1は、指令速度遷移パターンA1に基づいて各位置の速度を一定速度遅くした等速度の車両10の位置と当該位置における速度の遷移を示している。ATP装置20は、減速度完了位置xb0よりも所定距離近い目標減速度完了位置xを演算や計測器などの誤差が含まれても減速度完了位置xb0までに減速できるマージンを持たせて決定する。そして、自動列車運転装置102は、減速度完了位置xb0と減速度βとに基づいて、当該減速度完了位置xb0を基準としてその位置で車両10が停止し、かつその位置まで減速度βで減速する場合の車両10の位置xと速度vの関係を示す目標速度遷移パターンB2の情報を算出する。そして、自動列車運転装置102は、車両10の現在位置から目標速度遷移パターンB1と目標速度遷移パターンB2とが交わる位置までの区間の目標速度遷移パターンB1と、当該交わる位置以降の目標減速度完了位置xまでの区間の目標速度遷移パターンB2とを、目標速度遷移パターンB(B1、B2)と決定する。自動列車運転装置102は、この目標速度遷移パターンB(B1、B2)を上限とし、各位置においてこの目標速度遷移パターンB(B1、B2)が示す速度を超えないよう車両10の速度vを制御する。なお、自動列車運転装置102は、上述の処理において車両10の現在位置から指令速度遷移パターンA1と指令速度遷移パターンA2とが交わらない場合には、目標速度遷移パターンB2のみを算出して、そのパターンが示す位置xと速度vの関係を、目標速度遷移パターンBとすればよい。
そして、自動列車運転装置102は、上述のような目標速度遷移パターンB(B1、B2)を算出すると、現在の車両10の速度に基づいて、当該速度が、予め定めた予測期間が示す時間後の車両10の位置において目標速度遷移パターンB(B1、B2)が示す速度に自車両10の速度が一致するような、車両10の今後の位置と各位置における速度の遷移パターンを示す制御遷移パターンC(C1、C2)の情報を算出する。予測期間は、現在からT秒後に目標速度遷移パターンBに滑らかにつながるまでの期間である。
ここで、制御遷移パターンの算出処理について詳しく説明する。
まず、予測期間T秒後までにおける各時刻での車両10の速度は、
Figure 2016131459
で示すような多項式(この例では、3次関数)で表すことができる。この式(1)より、予測期間(目標時刻までの時間)T秒後までにおける各時刻での車両10の加速度は、式(1)を微分して
Figure 2016131459
で表すことができる。また、予測期間T秒後までにおける各時刻での車両10の位置は、式(1)を積分して
Figure 2016131459
で表すことができる。
そして、自動列車運転装置102は、第一の制御遷移パターンC1の算出処理として、予測期間が示す時間T秒後の車両10の位置において目標速度遷移パターンB1が示す速度に自車両10の速度が一致する第一制御遷移パターンを示す位置と速度の関係を算出する。具体的には、車両10の現在速度をv、車両10の現在加速度をaとし、車両10の時刻tにおける速度がv(t)、車両10の時刻tにおける加速度がa(t)で表されるとすると、
Figure 2016131459
Figure 2016131459
となる。
また予測期間が示す時間T秒後における速度と加速度は、
Figure 2016131459
Figure 2016131459
となる。なお、vは予測期間が示す時間T秒後における車両10の予測位置での目標速度遷移パターンB1における速度である。また、目標速度遷移パターンB1は等速度であるため加速度は0であるからa(T)=0となっている。
そして、式(4)〜式(7)を式(1)、式(2)に代入することにより、
Figure 2016131459
Figure 2016131459
Figure 2016131459
Figure 2016131459
が得られる。そして、自動列車運転装置102は、式(8)〜式(11)で示す連立方程式を解き、k〜kを算出する。そして、自動列車運転装置102は、式(3)にk〜kを代入して、第一の制御遷移パターンC1を算出する。
また、自動列車運転装置102は、式(1)が示す多項式を積分した現在位置に対する位置(距離)により示される第二の制御遷移パターンC2の導出処理として、予測期間が示す時間T秒後の車両10の位置において目標速度遷移パターンB2が示す速度に自車両10の速度が一致する第二制御遷移パターンを示す位置と速度の関係を算出する。具体的には、目標速度遷移パターンB2が、
Figure 2016131459
を満足する曲線であるものとし、車両10の現在速度をv、車両10の現在加速度をaとし、車両10の時刻tにおける速度がv(t)、車両10の時刻tにおける加速度がa(t)で表されるとすると、
Figure 2016131459
Figure 2016131459
となる。
また予測期間が示す時間T秒後における加速度a(T)と位置x(T)は、
Figure 2016131459
Figure 2016131459
となる。なお、−βは、予測期間が示す時間T秒後における車両10の予測位置での目標速度遷移パターンB1における減速度βである。また、目標速度遷移パターンB1は式(12)を満足する曲線であるため位置は式(16)となっている。
そして、式(13)、式(14)を式(1)に代入し、式(15)を式(2)に代入し、式(16)を式(3)に代入することにより、
Figure 2016131459
Figure 2016131459
Figure 2016131459
Figure 2016131459
が得られる。そして、自動列車運転装置102は、式(17)〜式(20)で示す連立方程式を解き、k〜kを算出する。そして、自動列車運転装置102は、式(3)にk〜kを代入して、第二の制御遷移パターンC2を算出する。
なお、速度制御部104は、予測期間Tよりも短い期間毎に上述の係数の算出を繰り返し行う。例えば、速度制御部104は、予測期間T=5秒の場合、100ミリ秒毎に多項式の係数の算出を繰り返す。
以上の処理により、制御遷移パターン(C1、C2)の算出処理を終了する。
次に、自動列車運転装置102が備える速度上限目標速度生成部105は、第一の制御遷移パターンC1が示す位置と速度の関係に基づいて、次のタイミング(100ミリ秒後)の位置において第一の制御遷移パターンC1が示す速度まで自車両10が到達するまでの加速度axを算出する。また、自動列車運転装置102が備える減速目標速度生成部106は、第二の制御遷移パターンC2が示す位置と速度の関係に基づいて、次のタイミング(100ミリ秒後)の位置において第二の制御遷移パターンC2が示す速度まで自車両10が到達するまでの加速度ayを算出する。そして、自動列車運転装置102が備える最小値選択部107は、算出した加速度axと加速度ayとを比較して、小さい値を出力する。
次に、第一の実施形態による速度制御部104を備える自動列車運転装置102が行う処理について説明する。
図3は、第一の実施形態による速度制御部104を備える自動列車運転装置102の処理フローの一例を示す図である。
車両10の走行中に、自動列車運転装置102が備える速度制御部104の速度上限目標速度生成部105は、車両10が備える速度計101から速度を取得する。また、車両10の走行中に、ATP装置20はATP地上子の直上を通過する際に、ATP地上子から位置とその位置における速度上限との対応関係を示す情報と、ATP地上子の位置と、を含む情報を取得する。ATP装置20は、速度上限目標速度生成部105に取得した情報を送信する。速度上限目標速度生成部105は、取得したATP地上子の位置を基準として速度の累積値から現在位置を算出する。そして、速度上限目標速度生成部105は、位置と速度上限との対応関係を示す情報と、現在位置とに基づいて、現在から予測期間Tの経過後までの各時刻における速度を示すATPパターンAの一部となる図2における指令速度遷移パターンA1を生成する(ステップS1)。
速度上限目標速度生成部105は、指令速度遷移パターンA1の各位置における速度より遅い目標速度遷移パターンBの一部となる目標速度遷移パターンB1を生成する(ステップS2)。速度上限目標速度生成部105は、例えば、指令速度遷移パターンA1の各位置における速度より5キロメートル毎時遅い目標速度遷移パターンB1を生成する。
速度上限目標速度生成部105は、予測期間Tの経過後に目標速度遷移パターンB1に滑らかにつながるときの係数k〜kを算出し、第一の制御遷移パターンC1を示す多項式を導出する(ステップS3)。例えば、速度v(t)が式(1)で示す3次関数の多項式であるとすると、速度上限目標速度生成部105は、最小値選択部107が出力する前回算出した目標加速度(初回はゼロ)を入力し、上述の式(1)、式(2)、式(4)〜式(11)のように演算する。そして、速度上限目標速度生成部105は、式(8)〜式(11)の連立方程式を解くことで、k〜kの係数を算出する。
速度上限目標速度生成部105は、ステップS3の処理により加速度a1を導出するための係数を算出したことになる。速度上限目標速度生成部105は、算出した加速度a1を最小値選択部107に出力する。
また、車両10の走行中に、自動列車運転装置102が減速目標速度生成部106は、車両10が備える速度計101から速度vを取得する。また、車両10の走行中に、ATP装置20は、ATP地上子の直上を通過する際に、ATP地上子からATP地上子の位置と減速度βとの対応関係に係る情報と、を含む情報を取得する。ATP装置20は、減速目標速度生成部106に取得した情報を送信する。減速目標速度生成部106は、取得したATP地上子の位置を基準として速度の累積値から現在位置を算出する。そして、減速目標速度生成部106は、位置と減速度βとの対応関係に係る情報と現在位置とから、現在位置を基準とした位置と減速度βとの対応関係を示すATPパターンAの一部となる図2において指令速度遷移パターンA2を生成する(ステップS4)。例えば、減速目標速度生成部106は、位置と減速度βとの対応関係に係る情報として、位置と減速度βとの関係を示す式(12)と目標減速度完了位置xとを含む情報を取得する。そして、減速目標速度生成部106は、現在位置を基準とした目標減速度完了位置xを算出し、指令速度遷移パターンA2として式(12)を生成する。
減速目標速度生成部106は、図2において指令速度遷移パターンA2の各位置における速度より目標速度遷移パターンBの一部となる目標速度遷移パターンB2を生成する(ステップS5)。減速目標速度生成部106は、例えば、指令速度遷移パターンA2の各位置における速度より5キロメートル毎時遅い目標速度遷移パターンB2を生成する。
減速目標速度生成部106は、予測期間Tの経過後に目標速度遷移パターンB2に滑らかにつながる第二の制御遷移パターンC2を示す多項式を導出する(ステップS6)。例えば、速度v(t)が式(1)で示す3次関数の多項式であるとすると、減速目標速度生成部106は、最小値選択部107が出力する前回算出した目標加速度を入力し、上述の式(1)〜式(3)、式(13)〜式(20)のように演算する。そして、減速目標速度生成部106は、式(17)〜式(20)の連立方程式を解くことで、k〜kの係数を算出する。
減速目標速度生成部106は、ステップS6の処理により加速度を算出したことになる。減速目標速度生成部106は、算出した加速度を最小値選択部107に出力する。
最小値選択部107は、速度上限目標速度生成部105が算出した加速度と、減速目標速度生成部106が算出した加速度と、を入力すると、入力した2つの加速度の大きさを比較する。最小値選択部107は、比較した加速度のうち最も小さい加速度を目標加速度ao(現在の加速度の目標値)として、速度上限目標速度生成部105と、減速目標速度生成部106と、質量乗算部108と、に出力する(ステップS7)。なお、最小値選択部107は、初期値としてゼロを出力する。
質量乗算部108は、最小値選択部107から目標加速度aoを入力すると、入力した目標加速度aoに車両10の予め定められた質量を乗算する(ステップS8)。質量乗算部108が行う乗算の乗算結果は、牽引力pwrを示す。
質量乗算部108は、牽引力pwrを牽引力制限部109に出力する。
牽引力制限部109は、質量乗算部108から牽引力pwrを入力すると、モータの性能に基づいて決定された上限と下限の間の範囲内に入力した牽引力を制限する(ステップS9)。具体的には、牽引力制限部109は、質量乗算部108から入力した牽引力pwrと、モータの性能に基づいて決定された牽引力の範囲を示す上下限値とを比較する。そして、牽引力制御部109は、入力した牽引力pwrが牽引力pwrの上限値を上回っている場合には上限値を下回り、下限値を上回るように牽引力pwrを制限する。また、牽引力制御部109は、入力した牽引力pwrが牽引力pwrの下限値を下回っている場合には下限値を上回り、上限値を下回るように牽引力pwrを制限する。また、牽引力制御部109は、牽引力制限部109は、制限した牽引力pwrをモータ指令生成部110に出力する。
モータ指令生成部110は、牽引力制限部109から牽引力pwrを入力すると、入力した牽引力pwrに基づいて、モータ103のモータ指令を生成する。例えば、モータ指令生成部110は、モータ103が入力した牽引力pwrに対応するトルクを実現するモータ指令を生成する(ステップS10)。
モータ指令生成部110は、生成したモータ指令をモータ103に出力する(ステップS11)。
モータ103は、モータ指令生成部110からモータ指令を入力すると、入力したモータ指令に基づいて動作する。
ここで、モータ103がモータ指令生成部110から入力するモータ指令は、速度上限目標速度生成部105及び減速目標速度生成部106が、図2に示したように、予測期間Tが経過した時に目標速度遷移パターンB1に滑らかにつながる第一の制御遷移パターンC1を示す多項式または目標速度遷移パターンB2に滑らかにつながる第二の制御遷移パターンC2を示す多項式のうち小さい値を示す多項式に基づいて生成されたモータ指令である。そのため、急激な加速が少なく乗り心地が向上する。また、モータ指令に対応する目標速度遷移パターンB1またはB2は、非常ブレーキが掛からないようにATPパターンAに対して遅い速度で安全性を向上させたうえで、可能な限り高速な速度v(t)を示す曲線であるため、車両10の走行時間に遅延が生じ難くなる。また、自動列車運転装置102は、予測期間Tの経過後を予測してモータ指令を生成するため、制御遅れによる速度オーバが発生し難く、速度追従精度が向上する。
以上、本発明の第一の実施形態による速度制御部104を備える自動列車運転装置102が行う処理について説明した。上述の自動列車運転装置102において、速度制御部104は、停止限界位置に自車両が接近したことの通知をATP装置20がATP地上子より受けた場合であって、車両10の速度と車両10の速度が当該速度時に回生ブレーキの最大ブレーキ力で減速制御した場合の単位時間当たりの減少速度との関係を示すブレーキ力特性において回生ブレーキのブレーキ力特性を用いて算出した目標速度遷移パターンBに基づく車両10の速度に応じた回生ブレーキの制動力を用いて車両10の速度の減速を制御し、速度上限に達する手前の速度に達した場合には回生ブレーキ以外の機械ブレーキなどの制動手段を用いて車両10の速度の減速を制御する。
また、速度制御部104は、速度上限vlをATP装置20から取得し、取得した速度上限vlよりも低い速度の目標速度遷移パターンBを算出する。そして、速度制御部104は、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が目標速度遷移パターンBに一致するよう目標時刻までの時間よりも短い処理サイクル時間毎に車両10の制御遷移パターンBを算出し、算出した算出結果に基づいて次タイミングにおける車両10の加速度を決定する。
また、速度制御部104は、速度上限vlよりも低い目標速度遷移パターンBとして一定速度で走行する第一目標速度遷移パターンB1を算出し、目標速度遷移パターンB1の上限よりも低い目標速度遷移パターンとして停止限界位置に向けて減速走行する第二目標速度遷移パターンB2を算出する。速度制御部104は、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が第一目標速度遷移パターンB1に一致する次タイミングの車両10の第一目標速度遷移パターンを算出し、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が第二目標速度遷移パターンB2に一致する次タイミングの車両10の第二目標速度遷移パターンを算出する。そして、速度制御部104は、第一制御遷移パターンと第二制御遷移パターンについて次制御ステップにおける加速度を比較し、低い方の加速度を車両10の加速度とする。
また、速度制御部104は、車両10の加速度と車両10の質量とに基づいて、実効トルクを算出する。
また、速度制御部104は、加速度がマイナスの加速度である場合には、回生ブレーキと回生ブレーキ以外の制動手段のうちの少なくとも一方を用いて車両10の速度を制御する。
また、速度制御部104は、ATP装置20から速度上限vlと減速度βに係る情報を取得する。速度制御部104は、取得した速度上限vlと減速度βに係る情報に基づいて、現在位置を算出する。
このようにすれば、車両10は、予測期間Tが経過した時に目標速度遷移パターンB1に滑らかにつながる第一の制御遷移パターンC1を示す多項式または目標速度遷移パターンB2に滑らかにつながる第二の制御遷移パターンC2を示す多項式のうち小さい値を示す多項式に基づいて生成されたモータ指令によって動作する。そのため、車両10は、急激な加速が少なく乗り心地が向上する。また、車両10は、ATPパターンAに対して非常ブレーキがかからないように遅い速度で安全性を向上させたうえで、可能な限り高速な速度v(t)を示す目標速度遷移パターンBに基づいて生成されたモータ指令によって動作する。そのため、車両10は、走行時間に遅延が生じ難くなる。また、車両10は、予測期間Tの経過後を予測して自動列車運転装置102が生成したモータ指令によって動作する。そのため、車両10は、制御遅れによる速度オーバが発生し難く、速度追従精度が向上する。
<第二の実施形態>
次に、本発明の第二の実施形態による自動列車運転装置102aを備える車両10aについて説明する。
図4は、本発明の第二の実施形態による自動列車運転装置102aを備える車両10aの一例を示す図である。
図4で示すように、第二の実施形態による車両10aは、速度計101と、自動列車運転装置102aと、モータ103と、ATP装置20と、を備える。
第二の実施形態による車両10aは、第二の実施形態による自動列車運転装置102aが備える速度制御部104aが回生ブレーキ目標速度生成部111を備える点で第一の実施形態による車両10と異なる。また、第二の実施形態による車両10aは、速度上限目標速度生成部105、減速目標速度生成部106及び回生ブレーキ目標速度生成部111が算出した加速度のうち最も小さい加速度を最小値選択部107aが出力する点で第一の実施形態による車両10と異なる。
自動列車運転装置102aは、速度制御部104aを備える。
速度制御部104aは、速度上限目標速度生成部105と、減速目標速度生成部106と、最小値選択部107aと、質量乗算部108と、牽引力制限部109と、モータ指令生成部110と、回生ブレーキ目標速度生成部111と、を備える。
回生ブレーキ目標速度生成部111は、速度vと、減速度βと、位置と、前回算出した目標加速度と、モータ103に係る情報と、に基づいて、車両10aの加速度a3を算出する。
最小値選択部107aは、速度上限目標速度生成部105が算出した加速度a1と、減速目標速度生成部106が算出した加速度a2と、回生ブレーキ目標速度生成部111が算出した加速度a3と、を比較し、最も小さい加速度を出力する。
速度制御部104aが備える速度上限目標速度生成部105、減速目標速度生成部106、最小値選択部107、質量乗算部108、牽引力制限部109、モータ指令生成部110、回生ブレーキ目標速度生成部111の各機能部により、速度制御部104aは、ATP装置20が停止限界位置に車両10が接近したことの通知をATP地上子より受けた場合であって、車両10aの速度と当該速度時に回生ブレーキの最大ブレーキ力で減速制御した場合の単位時間当たりの減少速度との関係を示すブレーキ力特性において回生ブレーキのブレーキ力特性がブレーキ力特性減少速度以上となることにより減少する当該ブレーキ力特性減少速度以上で車両10aが走行している場合において、車両10aの速度に応じた回生ブレーキのブレーキ力特性を用いて算出した理想的な目標速度遷移パターンBに基づく車両10aの速度に応じた回生ブレーキの制動力を用いて車両10aの速度の減速を制御する。
次に、一般的なモータの回生ブレーキの特性について説明する。
図5は、一般的なモータの回生ブレーキの特性の一例を示す図である。
図5において横軸は速度v、縦軸はその速度における減速度βを示している。図5に示すように、一般的なモータは、ある速度vを超えると、最大の力でブレーキをかけた際の単位時間当たりの減速度β(単位時間当たりの速度の減少割合)が低下する。
次に、本発明の第二の実施形態による自動列車運転装置102aが生成する目標速度遷移パターンBについて説明する。
図6は、自動列車運転装置102aが生成する目標速度遷移パターンBの一例を示す図である。
図6において横軸は列車の現在位置を基準とした軌道上の位置x、縦軸はその位置xにおける車両の速度vを示している。また、xb0はATP装置20がATP地上子から受信した減速完了位置を示している。例えば、減速完了位置xb0は、列車が渋滞しているときに前方を走行中の列車の最後尾から所定距離手前の位置や停止現示信号の手前などである。
図6に示す指令速度遷移パターンA1、指令速度遷移パターンA2、目標速度遷移パターンB1及び目標速度遷移パターンB2については、図2と同様である。
図6に示す目標速度遷移パターンB3は、列車の現在位置を基準とした軌道上の各位置における速度が指令速度遷移パターンA1及び指令速度遷移パターンA2よりも遅い速度を示している。ここで、目標速度遷移パターンB3は、車両10aの速度が速度v以上の速度である場合の減速度βが、車両10aの速度が速度v未満の速度である場合の減速度βよりも低下することを考慮して、速度遷移パターンA2における速度v以上の部分の減速度βを、減速度βに置き換えて新たに算出した回生ブレーキのブレーキ力特性を用いて算出した回生ブレーキのみの制動力を用いた場合の車両10aの速度で追従できる理想的な目標速度遷移パターンB3(目標速度パターンの1つであり、以下、「目標速度遷移パターンB3」と記載)を含む目標速度遷移パターンB(B1〜B3)(目標速度パターンであり、以下、「目標速度遷移パターンB」と記載)を示している。このような目標速度遷移パターンBに基づいて車両10aの速度を制御することにより、高速なv以上の速度で車両10aが走行していたとしても、回生ブレーキのみの制動力を用いた場合の車両10aの速度で目標速度遷移パターンBを追従できることとなる。目標速度遷移パターンB3で走行すると算出された車両10aの走行区間を減速度低下区間Pと呼ぶこととする。
ここで減速度β=βは、
Figure 2016131459
と近似することができる。したがって、加速度a(T)は、式(21)を式(15)に代入して、
Figure 2016131459
と表すことができる。
また、T秒後の車両10aの位置x(T)は、式(21)を式(16)に代入して、
Figure 2016131459
と表すことができる。
また、車両10aの現在速度をv、車両10aの現在加速度をaとし、車両10aの時刻tにおける速度がv(t)、車両10aの時刻tにおける加速度がa(t)で表されるとすると、
Figure 2016131459
Figure 2016131459
となる。
回生ブレーキ目標速度生成部111は、式(22)〜式(25)の連立方程式を解くことで、k〜kの係数を算出する。そして、回生ブレーキ目標速度生成部111は、式(3)にk〜kを代入して、第三の制御遷移パターンC3を算出する。
なお、上述の例における減速度βは式(21)のように一次近似としたが、複雑な式を用いてもよい。
次に、第二の実施形態による速度制御部104aを備える自動列車運転装置102aが行う処理について説明する。
図7は、第二の実施形態による速度制御部104aを備える自動列車運転装置102aの処理フローの一例を示す図である。
第二の実施形態による速度制御部104aの処理は、回生ブレーキ目標速度生成部111がステップS12〜ステップS14の処理を行い、最小値選択部107aがステップS7aの処理を行う点で第一の実施形態による速度制御部104の処理と異なる。
ここでは、ステップS12〜ステップS14の処理と、ステップS7aの処理についてのみ説明する。
回生ブレーキ目標速度生成部111は、速度上限目標速度生成部105及び減速目標速度生成部106と同様に、図2において目標速度遷移パターンB1及び目標速度遷移パターンB2を生成する(ステップS12)。なお、回生ブレーキ目標速度生成部111は、速度上限目標速度生成部105から目標速度遷移パターンB1を取得し、減速目標速度生成部106から目標速度遷移パターンB2を取得してもよい。
回生ブレーキ目標速度生成部111は、モータ103から減速度βの情報を取得する(ステップS13)。
回生ブレーキ目標速度生成部111は、予測期間Tの経過後に目標速度遷移パターンB1及び目標速度遷移パターンB2に滑らかにつながる目標速度遷移パターンB3を生成する(ステップS14)。例えば、回生ブレーキ目標速度生成部111は、取得した減速度βを式(15)、式(16)に代入して、予測期間Tの経過後の加速度a(T)と位置x(T)とを算出する。例えば、減速度βが式(21)で表される場合、回生ブレーキ目標速度生成部111は、予測期間T経過後の加速度a(T)を式(22)のように算出する。また、回生ブレーキ目標速度生成部111は、予測期間Tの経過後の位置x(T)を式(23)のように算出する。また、回生ブレーキ目標速度生成部111は、現在の速度v(0)を式(24)のように算出し、また加速度a(0)を式(25)のように算出する。そして、回生ブレーキ目標速度生成部111は、式(22)〜式(25)の連立方程式を解くことで、k〜kの係数を算出する。
回生ブレーキ目標速度生成部111は、ステップS14の処理により、目標速度遷移パターンB3を示す多項式を導出し、加速度を算出したことになる。回生ブレーキ目標速度生成部111は、算出した加速度を最小値選択部107aに出力する。そして、回生ブレーキ目標速度生成部111は、式(3)にk〜kを代入して、第三の制御遷移パターンC3を示す多項式を導出する(ステップS15)。
最小値選択部107aは、速度上限目標速度生成部105が算出した加速度と、減速目標速度生成部106が算出した加速度と、回生ブレーキ目標速度生成部111が算出した加速度と、を入力すると、入力した3つの加速度の予測期間Tが経過した時の大きさを比較する。最小値選択部107aは、比較した加速度のうち最も小さい加速度を目標加速度ao(現在の加速度の目標値)として、速度上限目標速度生成部105と、減速目標速度生成部106と、質量乗算部108と、回生ブレーキ目標速度生成部111と、に出力する(ステップS7a)。なお、最小値選択部107は、初期値としてゼロを出力する。
以上、本発明の第二の実施形態による速度制御部104aを備える自動列車運転装置102aが行う処理について説明した。上述の自動列車運転装置102aにおいて、回生ブレーキ目標速度生成部111は、速度vと、減速度βと、位置と、前回算出した目標加速度と、モータ103の回生ブレーキに係る情報と、に基づいて、車両10aの加速度を算出する。最小値選択部107aは、速度上限目標速度生成部105が算出した加速度と、減速目標速度生成部106が算出した加速度と、回生ブレーキ目標速度生成部111が算出した加速度と、を比較し、最も小さい加速度を出力する。そして、速度制御部104aが備える速度上限目標速度生成部105、減速目標速度生成部106、最小値選択部107、質量乗算部108、牽引力制限部109、モータ指令生成部110、回生ブレーキ目標速度生成部111の各機能部により、速度制御部104aは、ATP装置20が停止限界位置に車両10aが接近したことの通知をATP地上子より受けた場合であって、車両10aの速度と当該速度時に回生ブレーキの最大ブレーキ力で減速制御した場合の単位時間当たりの減少速度との関係を示すブレーキ力特性において回生ブレーキのブレーキ力特性がブレーキ力特性減少速度以上となることにより減少する当該ブレーキ力特性減少速度以上で車両10aが走行している場合において、車両10aの速度に応じた回生ブレーキのブレーキ力特性を用いて算出した理想的な目標速度遷移パターンBに基づく車両10aの速度に応じた回生ブレーキの制動力を用いて車両10aの速度の減速を制御する。
このようにすれば、車両10aは、モータ103の回生ブレーキのみで予測期間Tが経過した時に目標速度遷移パターンB1に滑らかにつながる第一の制御遷移パターンC1を示す多項式、目標速度遷移パターンB2に滑らかにつながる第二の制御遷移パターンC2を示す多項式、目標速度遷移パターンB3に滑らかにつながる第三の制御遷移パターンC3を示す多項式のうち最も小さい値を示す多項式に基づいて生成されたモータ指令によって動作する。そのため、車両10aは、急激な加速が少なく乗り心地が向上する。また、車両10aは、モータ103の回生ブレーキのみでATPパターンAに対して非常ブレーキがかからないように遅い速度で安全性を向上させたうえで、可能な限り高速な速度v(t)を示す目標速度遷移パターンBに基づいて生成されたモータ指令によって動作する。そのため、車両10aは、走行時間に遅延が生じ難くなる。また、車両10aは、モータ103の回生ブレーキのみで予測期間Tの経過後を予測して自動列車運転装置102aが生成したモータ指令によって動作する。そのため、車両10aは、制御遅れによる速度オーバが発生し難く、速度追従精度が向上する。
<第三の実施形態>
次に、本発明の第三の実施形態による自動列車運転装置102bを備える車両10bについて説明する。
図8は、本発明の第三の実施形態による自動列車運転装置102bを備える車両10bの一例を示す図である。
図8で示すように、第三の実施形態による車両10bは、速度計101と、自動列車運転装置102bと、モータ103と、ATP装置20と、を備える。
第三の実施形態による車両10bは、第三の実施形態による自動列車運転装置102bが外乱推定部112を備える点で第二の実施形態による車両10aと異なる。
自動列車運転装置102bは、速度制御部104aと、外乱推定部112と、を備える。
外乱推定部112は、速度と、モータ103が実際に発生したトルクを示す実効トルクとに基づいて、走行抵抗cを推定する。外乱推定部112は、推定した走行抵抗bを牽引力制限部109に出力する。
次に、本発明の第三の実施形態による外乱推定部112が行う外乱の推定方法について説明する。
外乱推定部112が行う外乱の推定方法は、例えば、次に示す式(26)を用いて算出する方法である。
Figure 2016131459
外乱推定部112は、モータ103から実効トルクを取得する。また、外乱推定部112は、微小時間ΔTの周期で速度計101から速度を取得する。そして、外乱推定部112は、式(26)を用いて、微小時間ΔTの間の速度変化をその微小時間ΔTで除算し車両質量を乗じたものを、実効トルクから減じることで走行抵抗bを算出する。外乱推定部112は、この走行抵抗bにより外乱(走行抵抗c)を相殺する。
次に、第三の実施形態による自動列車運転装置102bが行う処理について説明する。
図9は、第三の実施形態による自動列車運転装置102bの処理フローの一例を示す図である。
第三の実施形態による自動列車運転装置102bが行う処理は、外乱推定部112がステップS16及びステップS17の処理を行い、牽引力制限部109がステップS9aの処理を行い、モータ指令生成部110がステップS10aの処理を行う点で、第二の実施形態による自動列車運転装置102aの処理と異なる。
ここでは、ステップS16、ステップS17、ステップS9a及びステップS10aの処理についてのみ説明する。
質量乗算部108は、ステップS8の処理により、入力した目標加速度aoに車両10bの質量を乗算する。質量乗算部108が行う乗算の乗算結果は、牽引力pwrを示す。
質量乗算部108は、牽引力pwrを牽引力制限部109に出力する。
外乱推定部112は、速度と、モータ103が実際に発生したトルクを示す実効トルクとに基づいて、走行抵抗cを推定する(ステップS16)。外乱推定部112は、推定した走行抵抗bを牽引力制限部109に出力する。
牽引力制限部109は、質量乗算部108から牽引力pwrを入力し、外乱推定部112から走行抵抗bを入力すると、外乱と牽引力pwrと走行抵抗bとを加算すると、走行抵抗bにより外乱が相殺される(ステップS17)。そして、牽引力制限部109は、モータの性能に基づいて決定された上限と下限の間の範囲内に牽引力pwrを制限する(ステップS9a)。牽引力制限部109は、牽引力pwrをモータ指令生成部110に出力する。
モータ指令生成部110は、牽引力制限部109から牽引力pwrを入力すると、入力した牽引力pwrに基づいて、モータ103のモータ指令を生成する(ステップS10a)。
なお、外乱推定部112が行う外乱の推定方法は、例えば、外乱推定器を用いる方法であってもよい。
例えば、速度制御部104aにおける外乱である走行抵抗cを直接測定できない場合、外乱推定部112において、質量乗算部108の特性をモデル化した質量乗算部モデルと、牽引力制限部109とモータ指令生成部110の逆方向の情報処理をモデル化したモータ指令生成逆モデルとを構成する。外乱推定部112が備える質量乗算部モデルは最小値選択部107aから目標加速度aoを入力する。モータ指令生成逆モデルは、モータ103から実効トルクを入力する。そして、外乱推定部112は、モータ指令生成逆モデルが出力する実効トルクに寄与する牽引力から質量乗算部モデルが出力する目標加速度に車両10bの質量を乗算した牽引力を減じて外乱である走行抵抗cを走行抵抗bと算出する。
外乱推定部112は、この走行抵抗bを速度上限目標速度生成部105と、減速目標速度生成部106と、回生ブレーキ目標速度生成部111と、に出力する。速度上限目標速度生成部105、減速目標速度生成部106及び回生ブレーキ目標速度生成部111のそれぞれは、外乱推定部112から走行抵抗bを入力し、入力した走行抵抗bに基づいて、外乱を相殺するように目標速度遷移パターンBを補正する。
このように、外乱推定部112が現代制御理論に基づいて外乱を推定し、速度上限目標速度生成部105、減速目標速度生成部106及び回生ブレーキ目標速度生成部111のそれぞれが外乱を相殺するように目標速度遷移パターンBを補正することで、外乱を相殺するものであってもよい。
以上、本発明の第三の実施形態による速度制御部104aを備える自動列車運転装置102bが行う処理について説明した。上述の自動列車運転装置102bにおいて、外乱推定部112は、速度と、モータ103が実際に発生したトルクを示す実効トルクとに基づいて、走行抵抗cを推定する。モータ指令生成部110は、走行抵抗bにより外乱を相殺した牽引力に基づいて、モータ指令を生成する。
このようにすれば、車両10bは、走行抵抗cを正確に補正することができる。そのため、車両10bは、速度追従性能がより向上する。また、車両10bは、車両10bの重量による制御誤差を走行抵抗cの一部として推定し相殺することができる。そのため、車両10bは、列車荷重センサを使用して重量を計測し制御誤差を補正するという手間や費用を削減することができる。
なお、上述の実施形態において、自動列車運転装置102、102a、102bは、ATP装置20からATPパターンAを取得し、取得したATPパターンAに基づいて目標速度遷移パターンBを算出し、最終的に制御遷移パターンを算出するものとして説明したが、それに限定するものではない。例えば、ATP装置20は、ATP地上子から目標速度遷移パターンB自体を受信する。ATP装置20は、ATP地上子から受信した目標速度遷移パターンBを自動列車運転装置102、102a、102bに送信する。そして、自動列車運転装置102、102a、102bは、ATP装置20から目標速度遷移パターンB自体も取得できるものであってもよい。
なお、本発明の実施形態について説明したが、上述の速度制御部104、104a、自動列車運転装置102、102a、102b、ATP装置20は内部に、コンピュータシステムを有している。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定するものではない。また、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができるものである。
10、10a、10b・・・車両
20・・・ATP(Automatic Train Protection)装置
101・・・速度計
102、102a、102b・・・自動列車運転装置
103・・・モータ
104、104a・・・速度制御部
105・・・速度上限目標速度生成部
106・・・減速目標速度生成部
107、107a・・・最小値選択部
108・・・質量乗算部
109・・・牽引力制限部
110・・・モータ指令生成部
111・・・回生ブレーキ目標速度生成部
112・・・外乱推定部

Claims (10)

  1. 停止限界位置に自車両が接近したことの通知を外部装置より受けた場合であって、車両の速度と当該速度時に回生ブレーキの最大ブレーキ力で減速制御した場合の単位時間当たりの減少速度との関係を示すブレーキ力特性において回生ブレーキのブレーキ力特性がブレーキ力特性減少速度以上となることにより減少する当該ブレーキ力特性減少速度以上で自車両が走行している場合において、回生ブレーキのブレーキ力特性を用いて算出した目標速度パターンに基づく車両の速度に応じた回生ブレーキのみの制動力を用いて車両の速度の減速を制御する速度制御部、
    を備える自動列車運転装置。
  2. 前記速度制御部は、
    前記車両の速度が前記ブレーキ力特性減少速度以上の速度上限に達する間は前記目標速度パターンに基づく回生ブレーキのみの制動力を用いて前記車両の速度の減速を制御し、前記速度上限に達した場合には前記回生ブレーキとそれ以外の制動手段を用いて前記車両の速度の減速を制御する、
    請求項1に記載の自動列車運転装置。
  3. 前記速度制御部は、
    前記速度上限を外部装置から取得し、当該速度上限よりも低い速度の目標速度パターンを算出し、現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記目標速度パターンに一致するよう前記目標時刻までの時間よりも短い処理サイクル時間毎に前記車両の制御遷移パターンを算出し、算出した算出結果に基づいて次タイミングにおける前記車両の加速度を決定する、
    請求項2に記載の自動列車運転装置。
  4. 前記速度制御部は、
    前記速度上限よりも低い目標速度パターンとして一定速度で走行する第一目標速度パターンを算出し、前記速度上限よりも低い目標速度パターンとして停止限界位置に向けて減速走行する第二目標速度パターンを算出し、
    現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記第一目標速度パターンに一致する次タイミングの車両の第一目標速度パターンを算出し、
    現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記第二目標速度パターンに一致する次タイミングの車両の第二目標速度パターンを算出し、
    第一制御遷移パターンと第二制御遷移パターンについて次制御ステップにおける加速度を比較し、低い方の加速度を車両の加速度とする、
    請求項3に記載の自動列車運転装置。
  5. 前記速度制御部は、
    前記車両の加速度と前記車両の質量とに基づいて、実効トルクを算出する、
    請求項3または請求項4に記載の自動列車運転装置。
  6. 前記速度制御部は、
    前記加速度がマイナスの加速度である場合には、前記回生ブレーキと前記回生ブレーキ以外の制動手段のうちの少なくとも一方を用いて前記車両の速度を制御する、
    請求項5に記載の自動列車運転装置。
  7. 前記実効トルクと速度変化とに基づいて、走行抵抗を推定する外乱推定部、
    を備える請求項5または請求項6に記載の自動列車運転装置。
  8. 回生ブレーキの減少速度と速度との関係を示すブレーキ力特性を用いて算出した目標速度パターンに基づく車両の速度に応じた回生ブレーキの制動力を用いて車両の速度の減速を制御する速度制御部を備え、
    前記速度制御部は、
    速度上限を外部装置から取得し、
    前記速度上限よりも低い目標速度パターンとして一定速度で走行する第一目標速度パターンを算出し、前記速度上限よりも低い目標速度パターンとして停止限界位置に向けて減速走行する第二目標速度パターンを算出し、
    現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記第一目標速度パターンに一致する次タイミングの車両の第一目標速度パターンを算出し、
    現在時刻を基準とした所定の目標時刻までの時間以後において列車速度が前記第二目標速度パターンに一致する次タイミングの車両の第二目標速度パターンを算出し、
    第一制御遷移パターンと第二制御遷移パターンについて次制御ステップにおける加速度を比較し、低い方の加速度を車両の加速度とする、
    自動列車運転装置。
  9. 速度制御部は、回生ブレーキの減少速度と速度との関係を示すブレーキ力特性において、所定の減少速度以下の減少速度に対応する速度以上の高速で駅間の停止しなければならない非開通エリアに接近した場合に、機械ブレーキを使用することなく車両の速度の減速を制御する、
    自動列車制御方法。
  10. コンピュータを、
    回生ブレーキの減少速度と速度との関係を示すブレーキ力特性において、所定の減少速度以下の減少速度に対応する速度以上の高速で駅間の停止しなければならない非開通エリアに接近した場合に、機械ブレーキを使用することなく車両の速度の減速を制御する速度制御部、
    として機能させるプログラム。
JP2015004938A 2015-01-14 2015-01-14 自動列車運転装置、自動列車制御方法及びプログラム Active JP6547222B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015004938A JP6547222B2 (ja) 2015-01-14 2015-01-14 自動列車運転装置、自動列車制御方法及びプログラム
EP15877983.5A EP3238980B1 (en) 2015-01-14 2015-12-04 Automatic train operating device, automatic train control method, and program
CA2973667A CA2973667C (en) 2015-01-14 2015-12-04 Automatic train driving apparatus, automatic train control method, and program
PCT/JP2015/084211 WO2016114032A1 (ja) 2015-01-14 2015-12-04 自動列車運転装置、自動列車制御方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004938A JP6547222B2 (ja) 2015-01-14 2015-01-14 自動列車運転装置、自動列車制御方法及びプログラム

Publications (3)

Publication Number Publication Date
JP2016131459A true JP2016131459A (ja) 2016-07-21
JP2016131459A5 JP2016131459A5 (ja) 2018-02-22
JP6547222B2 JP6547222B2 (ja) 2019-07-24

Family

ID=56405588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004938A Active JP6547222B2 (ja) 2015-01-14 2015-01-14 自動列車運転装置、自動列車制御方法及びプログラム

Country Status (4)

Country Link
EP (1) EP3238980B1 (ja)
JP (1) JP6547222B2 (ja)
CA (1) CA2973667C (ja)
WO (1) WO2016114032A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111806241A (zh) * 2020-06-28 2020-10-23 同济大学 一种轨道交通列车再生电能回收空间确定方法
JP2021101613A (ja) * 2017-06-14 2021-07-08 日本信号株式会社 自動列車運転システムの車上装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7390156B2 (ja) * 2019-10-17 2023-12-01 ナブテスコ株式会社 滑走予測装置
CZ309568B6 (cs) * 2021-01-14 2023-04-19 ŠKODA ELECTRIC a.s Způsob regulace a omezení rychlosti a řízení zrychlení elektrických pozemních vozidel
EP4122793A1 (de) * 2021-07-22 2023-01-25 Siemens Mobility GmbH Verfahren und zugsicherungseinrichtung zur rechnergestützten ermittlung einer betrieblichen höchstgeschwindigkeit eines spurgebundenen fahrzeugs
CN113879368B (zh) * 2021-09-28 2022-12-02 卡斯柯信号有限公司 一种支持多级减速的列车制动控制方法、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261903A (ja) * 1999-03-12 2000-09-22 Mitsubishi Electric Corp 電気車制御装置
JP2005333734A (ja) * 2004-05-20 2005-12-02 Fuji Electric Systems Co Ltd 車両用制御装置
JP2009027784A (ja) * 2007-07-17 2009-02-05 Mitsubishi Electric Corp 自動列車運転装置
JP2009055694A (ja) * 2007-08-27 2009-03-12 Mitsubishi Electric Corp 列車速度制御装置
JP2009296733A (ja) * 2008-06-03 2009-12-17 Hitachi Ltd 定位置自動停止制御手段を備えた電気車両の制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010044448A1 (ja) * 2008-10-16 2012-03-15 株式会社東芝 車両運転装置
KR101256315B1 (ko) * 2011-10-18 2013-04-18 엘에스산전 주식회사 열차속도 제어장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261903A (ja) * 1999-03-12 2000-09-22 Mitsubishi Electric Corp 電気車制御装置
JP2005333734A (ja) * 2004-05-20 2005-12-02 Fuji Electric Systems Co Ltd 車両用制御装置
JP2009027784A (ja) * 2007-07-17 2009-02-05 Mitsubishi Electric Corp 自動列車運転装置
JP2009055694A (ja) * 2007-08-27 2009-03-12 Mitsubishi Electric Corp 列車速度制御装置
JP2009296733A (ja) * 2008-06-03 2009-12-17 Hitachi Ltd 定位置自動停止制御手段を備えた電気車両の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021101613A (ja) * 2017-06-14 2021-07-08 日本信号株式会社 自動列車運転システムの車上装置
JP7535970B2 (ja) 2017-06-14 2024-08-19 日本信号株式会社 自動列車運転システムの車上装置
CN111806241A (zh) * 2020-06-28 2020-10-23 同济大学 一种轨道交通列车再生电能回收空间确定方法

Also Published As

Publication number Publication date
EP3238980B1 (en) 2020-10-21
EP3238980A1 (en) 2017-11-01
CA2973667C (en) 2021-01-19
WO2016114032A1 (ja) 2016-07-21
JP6547222B2 (ja) 2019-07-24
EP3238980A4 (en) 2018-08-01
CA2973667A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6547222B2 (ja) 自動列車運転装置、自動列車制御方法及びプログラム
JP6233420B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP6135775B2 (ja) 電動車両の制御装置および電動車両の制御方法
US10858010B2 (en) Control method for electric vehicle and control device for electric vehicle
KR101583878B1 (ko) 열차속도 제어장치
CN109070765A (zh) 列车控制装置、方法以及程序
EP3575133B1 (en) Electric vehicle control method and control device
KR20170080168A (ko) 제동 특성을 고려한 철도 차량의 속도 제어 시스템
KR101866610B1 (ko) 철도 차량에서의 제한속도 초과 경고 장치
CN108099875A (zh) 一种轨道车辆自适应摩擦系数的制动控制方法
JP6237789B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP2011087364A (ja) 自動列車運転装置,定位置停止装置
JP2012039738A (ja) 自動列車運転装置
JP5914374B2 (ja) 自動列車運転装置
JP6366559B2 (ja) 自動列車運転装置
JP2019193426A (ja) 列車制御装置および列車制御方法
JP6880674B2 (ja) 電動車両の制御方法、及び、電動車両の制御装置
US20170096153A1 (en) Regenerative power-amount estimation device and brake plan plotting device
JP7078756B2 (ja) 列車制御システムおよび列車制御方法
JP2018085901A (ja) 電動車両の制御方法、及び、電動車両の制御装置
JP5703618B2 (ja) 電動車両のトルク異常判定装置
JP7413177B2 (ja) 運転曲線作成装置、運転支援装置および運転制御装置
KR101234912B1 (ko) 열차 속도 제어 장치 및 방법
JP6846946B2 (ja) 車両制御装置、車両制御方法、プログラム
JP2017046419A (ja) 電動車両の制御方法、及び、制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190607

R150 Certificate of patent or registration of utility model

Ref document number: 6547222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350