JP2016131131A - 固体電解質形燃料電池の製造方法 - Google Patents

固体電解質形燃料電池の製造方法 Download PDF

Info

Publication number
JP2016131131A
JP2016131131A JP2015005505A JP2015005505A JP2016131131A JP 2016131131 A JP2016131131 A JP 2016131131A JP 2015005505 A JP2015005505 A JP 2015005505A JP 2015005505 A JP2015005505 A JP 2015005505A JP 2016131131 A JP2016131131 A JP 2016131131A
Authority
JP
Japan
Prior art keywords
flow path
carbon
path forming
fuel cell
containing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015005505A
Other languages
English (en)
Other versions
JP6503746B2 (ja
Inventor
和英 高田
Kazuhide Takada
和英 高田
裕亮 山田
Hiroaki Yamada
裕亮 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2015005505A priority Critical patent/JP6503746B2/ja
Publication of JP2016131131A publication Critical patent/JP2016131131A/ja
Application granted granted Critical
Publication of JP6503746B2 publication Critical patent/JP6503746B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 流路形成用消失材の膨張率を抑え、流路を形成するリブやセパレータのクラックの発生を抑えた固体電解質形燃料電池の製造方法を提供する。
【解決手段】 固体電解質形燃料電池の製造方法であって、固体電解質形燃料電池100の構成部材を積層して圧着する積層圧着工程と、構成部材を共焼結することによって一体化する焼成工程とを含み、積層圧着工程において、前記焼成工程において共焼結時の加熱により消失する流路形成用消失材70を、酸化剤ガス流路12aおよび燃料ガス流路52aの側壁部を形成する流路形成部材12、52の間に配置し、流路形成用消失材70の膨張率が最大となる温度において、流路形成用消失材70の厚みと流路形成部材12、52の厚みとの差を、流路形成部材12、52の厚みを基準として5%以下とすることを特徴とする
【選択図】 図2

Description

この発明は、固体電解質形燃料電池の製造方法に関し、詳しくは、ガス流路を有する固体電解質形燃料電池の製造方法に関する。
固体電解質形燃料電池(固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)ともいう)は、燃料極(アノード):H+O2−→HO+2e、空気極(カソード):(1/2)O+2e→O2−の反応により、電気エネルギーを取り出す装置である。電気エネルギーを連続的に取り出すため、反応を連続的に行う必要があり、そのため、アノードガスとしての燃料ガス(例えばH)およびカソードに供給されるカソードガスとしての空気(O)等の酸化剤ガスを連続して供給する。
このような燃料電池では、両極にガスを供給するガス流路が必要である。ガス流路の形成方法としては、燃料電池セルを形成する各部材を積層した積層体を一体焼成させて固体電解質形燃料電池を作製する際に、ガス流路を形成する箇所に流路形成用消失材(カーボン粉末からなるシートやカーボンペースト)を配置し、また、ガス流路の隔壁を形成する箇所にリブ形成材(リブ形成用シート)を配置して、焼成により流路形成用消失材を消失させて酸化剤ガス流路および燃料ガス流路を形成することが提案されている(例えば、特許文献1〜3参照)。
特開2009−252474号公報 特開2008−53032号公報 特開2012−109251号公報
しかしながら、前記の流路を構成するリブやセパレータには、一体焼成時にクラックが発生するという問題がある。その一要因としては、流路形成用消失材の膨張率が、リブ形成用シートの膨張率より大きいことが考えられる。
本発明は上記問題点を解決するものであり、流路形成用消失材の膨張率を抑え、クラックの発生を抑えた固体電解質形燃料電池の製造方法を提供することを目的とする。
上記目的を達成するために、本発明の固体電解質形燃料電池の製造方法は、空気極層、固体電解質層および燃料極層の積層体から構成される発電要素と、
前記空気極層の表面に酸化剤ガスを供給するために配置された、酸化剤ガス流路と、
前記燃料極層の表面に燃料ガスを供給するために配置された、燃料ガス流路と
を備える固体電解質形燃料電池の製造方法であって、
前記固体電解質形燃料電池の構成部材を積層して圧着する積層圧着工程と、
前記構成部材を共焼結することによって一体化する焼成工程とを含み、
前記積層圧着工程において、前記焼成工程において共焼結時の加熱により消失する流路形成用消失材を、前記酸化剤ガス流路および前記燃料ガス流路の側壁部を形成する流路形成部材の間に配置し、
前記流路形成用消失材の膨張率が最大となる温度において、前記流路形成用消失材の厚みと前記流路形成部材の厚みとの差を、前記流路形成部材の厚みを基準として5%以下とすることを特徴とする。
本発明の固体電解質形燃料電池の製造方法において、前記流路形成用消失材は、カーボン含有層と有機材料層との積層体であって、前記有機材料の重量減少開始温度が前記カーボン含有層の膨張開始温度よりも低いことが好ましい。
本発明の固体電解質形燃料電池の製造方法において、前記流路形成用消失材は、カーボン含有層と有機材料層との積層体であって、前記有機材料の消失温度が、前記カーボン含有層の膨張率が最大となる温度よりも低いことが好ましい。
本発明の固体電解質形燃料電池の製造方法において、前記流路形成用消失材は、カーボン含有層と有機材料層との積層体であって、前記有機材料層の総厚みが、前記カーボン含有層の総厚みの5%以上30%以下の範囲内であることが好ましい。
本発明の固体電解質形燃料電池の製造方法において、前記流路形成用消失材は、カーボン含有層を含んでおり、前記カーボン含有層に含まれるカーボンの結晶化度が48%以下であることが好ましい。
本発明の固体電解質形燃料電池の製造方法において、前記流路形成用消失材は、250℃以下における膨張率が2.8%以下であることが好ましい。
本発明の固体電解質形燃料電池の製造方法において、前記流路形成用消失材は、カーボン含有層を含んでおり、前記カーボン含有層に含まれる樹脂成分の含有量が55vol%以下であることが好ましい。ここで樹脂成分とは、バインダー、可塑剤および分散剤である。
本発明の固体電解質形燃料電池の製造方法によれば、流路形成用消失材の膨張率を抑え、流路を形成するリブやセパレータのクラック発生を抑えた固体電解質形燃料電池を提供することができる。
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。
図1は、本発明の固体電解質形燃料電池の製造方法によって得られる固体電解質形燃料電池の一例であって、固体電解質形燃料電池を構成する部材の積み重ねられた状態を分解して示す分解斜視図である。 図2は、ガス流路の形成方法を説明する分解斜視図である。 図3は、ガス流路の形成時における流路形成用消失材の配置位置を説明する平面図である。 図4は、熱機械分析装置(TMA)を用いて測定したカーボン含有層の加熱時寸法変化(膨張率)のグラフの一例である。 図5は、実施例1および比較例1のシート圧着体について、熱機械分析装置(TMA)を用いて加熱時寸法変化(膨張率)を測定した結果である。 図6は、熱機械分析装置(TMA)を用いて測定したカーボン含有層の加熱時寸法変化(膨張率)のグラフの他の例である。
以下、この発明の実施の形態を、図面を参照しながら説明する。ただし、本発明は、以下の例に限定および制限されない。なお、以下で参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。また、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。同様の構成による同様の作用効果については実施形態ごとには逐次言及しない。
図1は、本発明の固体電解質形燃料電池の製造方法によって得られる固体電解質形燃料電池の一例であって、固体電解質形燃料電池を構成する部材の積み重ねられた状態を分解して示す分解斜視図である。
固体電解質形燃料電池100は、例えば、第1のセパレータ10と、発電要素30と、第2のセパレータ50とを有する。発電要素30は、順に積層された空気極層32、固体電解質層31および燃料極層33の積層体から構成される。空気極層32は空気極32aを、燃料極層33は燃料極33aを有している。第1のセパレータ10には、空気極32aに酸化剤ガスを供給するための複数の酸化剤ガス流路12aが形成されている。また、第2のセパレータ50には、燃料極33aに燃料ガスを供給するための複数の燃料ガス流路52aが形成されている。固体電解質形燃料電池100では、第1のセパレータ10と、発電要素30と、第2のセパレータ50とがこの順番で積層されている。
なお、本実施形態の固体電解質形燃料電池100は、発電要素30をひとつのみ有している。ただし、本発明においては、この構成に限定されない。本発明の燃料電池は、例えば、発電要素を複数有していてもよい。その場合、隣り合う発電要素は、セパレータにより隔離される。
本発明の固体電解質形燃料電池の製造方法は、前記の固体電解質形燃料電池の構成部材を積層して圧着する積層圧着工程と、前記構成部材を共焼結することによって一体化する焼成工程とを含む。そして、前記積層圧着工程において、流路形成用消失材を、酸化剤ガス流路12aおよび燃料ガス流路52aの側壁部を形成する流路形成部材の間に配置する。このとき、前記流路形成用消失材として、前記焼成工程において共焼結時の加熱により消失する材料を用いることで、酸化剤ガス流路12aおよび燃料ガス流路52aを形成する。また、前記流路形成用消失材として、圧着時に厚みが変化しないものを用いることが好ましい。
図2は、ガス流路の形成方法を説明する分解斜視図であり、図3は、ガス流路の形成時における流路形成用消失材の配置位置を説明する平面図である。図2および図3においては、図1の固体電解質形燃料電池100における第2の流路形成部材52の燃料ガス流路52aの形成方法を例示しているが、第1の流路形成部材12の燃料ガス流路12aの形成方法も同様である。
図2および図3において、(a)に流路形成用消失材70、(b)および(c)に第2の流路形成部材52を示す。図2は斜視図、図3は平面図であり、各図の(a)〜(c)は、対応する部材を示している。流路形成用消失材70は、第2の流路形成部材52を構成する線状凸部52cを囲むように、燃料ガス流路52aに対応する形状となっている。流路形成用消失材70および第2の流路形成部材52を、1枚のシート状となるように組み合わせた状態の斜視図を、図2(d)に示す。この1枚のシート状となった流路形成用消失材70を含む第2の流路形成部材52のグリーンシートを、発電要素30のグリーンシートと第2のセパレータ本体51のグリーンシートとの間となるように、また、同様にして1枚のシート状とした流路形成用消失材70を含む第1の流路形成部材12のグリーンシートを、発電要素30のグリーンシートと第1のセパレータ本体11のグリーンシートとの間となるようにして、各部材を図1に示す順に積層して圧着する。圧着後の積層体を焼成して、共焼結させることで一体化する。流路形成用消失材70は共焼結時の加熱により消失する材料を用いているので、図2(d)のシートは、焼成後には、図2(e)で示すように、流路形成部材52のみが残った状態となる。同様に、流路形成用消失材70を含む第1の流路形成部材12のグリーンシートも、流路形成部材12のみが残った状態となる。
流路形成用消失材70としては、流路形成用消失材の膨張率が最大となる温度において、前記流路形成用消失材の厚みと、酸化剤ガス流路12aおよび燃料ガス流路52aの側壁部を形成する流路形成部材12および52の厚みとの差が、5%以下となる材料を用いる。前記共焼結時の加熱により各部材には熱膨張が起こるが、カーボン含有層を単独で流路形成用消失材として用いる場合に、例えば、積層圧着工程において流路の側壁部を形成する材料(流路形成部材)と略同一厚みのものを用いると、リブやセパレータの形成材料よりも膨張が大きいためにクラックが発生してしまう。ここで、カーボン含有層は、主としてカーボン粉末、バインダー、可塑剤および分散剤の混合物からなるシートを使用できる。
カーボン含有層を加熱していくと、まず可塑剤等の成分が消失し、次いでバインダーおよび分散剤成分が消失し、高温領域でカーボンが消失する。カーボン含有層の場合、バインダー成分が消失する温度からカーボンが消失する温度の間の温度領域で、膨張率が最大となる傾向にある。そこで、膨張率が最大となる温度における流路形成用消失材70の厚みと側壁部を形成する流路形成部材52の厚みとの差が、流路形成部材52の厚みを基準として5%以下となるように、積層圧着工程において用意する流路形成用消失材70と流路形成部材52との厚みを決定する。流路形成用消失材70の膨張率が最大、すなわち、厚みが最大となる状態で、隣接して形成されている流路形成部材52との厚みの差が5%以下であると、流路を形成するリブやセパレータのクラックの発生を抑えることができる。
あるいは、流路形成用消失材70として膨張率変化が小さい材料を用いることで、流路形成用消失材70と流路形成部材52との前記厚みの差を5%以下としてもよい。
流路形成用消失材70としては、カーボン含有層としてカーボンシート等のシート状の材料を使用することができるが、カーボンペースト等のペースト状の材料を印刷して形成することもできる。流路形成用消失材70には、カーボン含有層を単独で用いてもよいし、カーボン含有層と有機材料層との積層体を用いてもよい。有機材料層のみで流路形成用消失材を形成した場合、ある温度領域で一気に消失が起こり、この急激な熱分解や燃焼により、燃料電池を形成するセルが破壊される場合があるので、カーボン等の消失温度の異なる材料を混合して用いることが好ましい。
カーボン含有層に用いるカーボンとしては、グラファイト、カーボンブラック、ハードカーボン等の粉末が挙げられるが、膨張率が小さい材料が望ましい。
図4に、熱機械分析装置(TMA)を用いて測定したカーボン含有層の加熱時寸法変化(膨張率)のグラフの一例を示す。カーボン含有層としては、カーボン粉末に分散剤、ポリビニルブチラール系バインダー、可塑剤およびエタノール系溶媒を混合してスラリーを調製し、ドクターブレード法により作製したグリーンシートを用いている。
図4において、AおよびBはカーボン粉末としてグラファイトを用いたものである。Aに使用したグラファイト1は、Bに使用したグラファイト2に比べて膨張率が小さい。Cはカーボンブラック、Dはハードカーボンを、それぞれカーボン粉末として用いたものである。比較のためにEとしてリブを形成する流路形成部材での測定結果を示す。
図4に示すように、用いるカーボン粉末によって、加熱時の寸法変化の挙動が異なることがわかる。グラファイトを用いたグリーンシート(A、B)は、450℃以上で5〜30%膨張していることがわかる。カーボンブラック(C)およびハードカーボン(D)は膨張が起こりにくいため、好ましく使用できる。
グラファイトを使用する場合には、グラファイトが膨張する温度よりも低温で消失する樹脂成分との混合比を調整して、膨張率が低くなるような構成とする。例えば、グラファイトを使用する場合は、カーボンブラック等を使用する場合と比べて、樹脂比率を増やすとよい。樹脂比率を増やすことで、グラファイトが膨張する温度よりも低温で消失する部分が増え、前記樹脂が消失した隙間を、グラファイトの膨張分の隙間として確保することができる。したがって、グラファイトの膨張に起因した、流路を形成するリブやセパレータのクラックの発生を抑えることができる。
流路形成用消失材70として、カーボン含有層と有機材料層との積層体を用いる場合、有機材料層としては、重量減少開始温度がカーボン含有層の膨張開始温度よりも低い材料を用いることが好ましい。カーボン含有層の膨張開始温度よりも低い温度で消失する材料を挿入することによって、カーボン含有層の膨張時には有機材料の消失によって空間が生じるので、この空間によってカーボン含有層の膨張分の隙間を形成でき、カーボン含有層の膨張に起因する流路形成部材の破壊を抑制することができる。また、カーボンの燃焼時にはガス置換が容易に行われるため、燃焼効率が高まる。このため、カーボンの急燃焼や爆ぜを抑制できる。また、燃焼を行う時間も短縮できる。
また、流路形成用消失材70は、有機材料の消失温度が、カーボン含有層の膨張率が最大となる温度よりも低いことが好ましい。有機材料の消失により形成される空間はカーボン含有層の膨張を吸収することができるとよいからである。
このような有機材料層を構成する450℃以下で消失する材料としては、樹脂、セルロース、ワックス、スターチ、紙などの有機材料を使用することができる。樹脂としては、流路形成部材等を形成するセラミックシートのバインダーと同じ材料を使用して成形できる樹脂粉末を好適に用いることができる。汎用樹脂であるポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)やポリエチレンテレフタレート(PET)、アクリル等は入手しやすく、安価である。また、これらの熱分解温度はバインダーと同等もしくはそれ以上であることから、消失するまで形状を保つことができる。
流路形成用消失材70が、カーボン含有層と有機材料層との積層体であるとき、有機材料層の総厚みは、カーボン含有層の総厚みの5%以上30%以下の範囲内であることが好ましく、より好ましくは7%以上15%以下の範囲内である。有機材料層の割合を増やしすぎると、有機材料の熱膨張によるクラックの発生や、有機材料の急激な熱分解や燃焼により、燃料電池を形成するセルが破壊される場合がある。カーボンに関しても燃焼時にガスを発生するが、流路の外側に形成されるセパレータ等のセル構成部材の脱脂(脱バインダー)が完了した後であり、空隙が多くガスの抜け道が多いためセルが破壊されにくい。
また、上記のように流路形成部材(リブ)のクラックを抑制することで、流路高さが安定するとともに、流路間のガスの拡散が無くなり、燃料電池セルにおける流量ばらつきを低減することができる。流量ばらつきが低減されると燃料利用率が向上し、結果として発電効率も向上する。
カーボン含有層と有機材料層とで積層体を形成する場合、有機材料層としては、薄く形成し、挿入箇所を多くするほど有効である。ただし、この場合は作製が複雑になる。有機材料層の挿入量や挿入箇所は、カーボンと有機材料との含有比率のバランスから判断することが望ましいが、有機材料層をカーボン含有層の中間に、1箇所配置するだけでも効果が得られる。
流路形成用消失材70としては、800℃未満の温度で消失する材料を用いることが好ましい。より好ましくは、600℃未満で消失する材料であるとよい。固体電解質形燃料電池を構成するセラミックス材料は、焼成時、800℃付近で収縮が始まる。そのため、800℃付近で流路形成用消失材70が消失していると、収縮にムラが起こりにくくなるため好ましい。
流路形成用消失材70に含まれるカーボン含有層は、結晶化度が48%以下であるカーボンを含むことが好ましい。ここで、結晶化度とは、ラマン分光法によって、グラフェン構造起因のピークとアモルファスカーボン起因のピークとを検出し、そのピーク面積比をそれぞれS1,S2としたときに、S1/(S1+S2)によって算出した値である。結晶化が進んでいる材料は膨張しやすく、アモルファス材料は膨張しにくい傾向にあるが、結晶化度が48%以下であるカーボンであると、400℃以上における膨張率を良好な範囲とすることができ、流路形成用消失材70の設計の自由度を向上させることができるため、本発明に好適に使用することができる。前記結晶化度は低ければ低いほど好ましい。
また、流路形成用消失材70は、250℃以下における膨張率が2.8%以下であることが好ましく、0%以下であることがより好ましい。図4に示すように、流路形成用消失材70は、250℃以下において、可塑剤等の添加物の脱離に起因する膨張率変化が発生する。この膨張は樹脂含有量が多いほど大きくなると推測され、例えば、75vol%の場合には、250℃で取り出した時点で表層から確認できるクラックが発生することが確認された。したがって、流路形成用消失材70に含まれるカーボン含有層は、樹脂成分(バインダー、可塑剤および分散剤)の含有量が55vol%以下であることが好ましく、38vol%以上55vol%以下の範囲内にあることがより好ましい。
なお、前記積層圧着工程における圧着のプレス圧は、例えば、900kgf/cm以上1800kgf/cm以下の範囲で行われ、また、前記焼成工程における焼成温度は、例えば、1000℃以上1300℃以下の範囲で行われる。
固体電解質形燃料電池100の構成部材は、以下のものを用いることができる。各構成部材を、以下に示す材料をバインダーおよび溶媒と混合、成形して、所定の形状のグリーンシートとして準備する。これらグリーンシートを積層して圧着する積層圧着工程と、得られた積層体を共焼結することによって一体化する焼成工程を経て、固体電解質形燃料電池を得ることができる。
[発電要素30]
発電要素30は、酸化剤ガス流路(酸化剤ガス用マニホールド)61から供給される酸化剤ガスと、燃料ガス流路(燃料ガス用マニホールド)62から供給される燃料ガスとが反応し、発電が行われる部分である。ここで、酸化剤ガスは、例えば、空気や酸素ガス等の有酸素ガスにより構成することができる。また、燃料ガスは、水素ガスや、一酸化炭素ガスなどの炭化水素ガス等を含むガスとすることができる。
[固体電解質層31]
発電要素30は、固体電解質層31を備えている。固体電解質層31は、イオン導電性が高いものであることが好ましい。固体電解質層31は、例えば、安定化ジルコニアや、部分安定化ジルコニアなどにより形成することができる。安定化ジルコニアの具体例としては、10mol%イットリア安定化ジルコニア(10YSZ)、11mol%スカンジア安定化ジルコニア(11ScSZ)等が挙げられる。部分安定化ジルコニアの具体例としては、3mol%イットリア部分安定化ジルコニア(3YSZ)、等が挙げられる。また、固体電解質層31は、例えば、SmやGd等がドープされたセリア系酸化物や、LaGaOを母体とし、LaとGaとの一部をそれぞれSrおよびMgで置換したLa0.8Sr0.2Ga0.8Mg0.2(3−δ)などのペロブスカイト型酸化物などにより形成することもできる。
固体電解質層31は、空気極層32と燃料極層33とにより挟持されている。すなわち、固体電解質層31の一主面の上に空気極層32が形成されており、他主面の上に燃料極層33が形成されている。
[空気極層32]
空気極層32は、空気極32aを有する。空気極32aは、カソードである。空気極32aにおいては、酸素が電子を取り込んで、酸素イオンが形成される。空気極32aは、多孔質で、伝導率が高く、かつ、高温において固体電解質層31等と固体間反応を起こしにくいものであることが好ましい。空気極32aは、例えば、スカンジア安定化ジルコニア(ScSZ)、Snをドープした酸化インジウム、PrCoO系酸化物、LaCoO系酸化物、LaMnO系酸化物などにより形成することができる。LaMnO系酸化物の具体例としては、例えば、La0.8Sr0.2MnO(通称:LSM)、La0.8Sr0.2Co0.2Fe0.8(通称:LSCF)や、La0.6Ca0.4MnO(通称:LCM)等が挙げられる。空気極32aは、上記材料の2種以上を混合した混合材料により構成されていてもよい。
[燃料極層33]
燃料極層33は、燃料極33aを有する。燃料極33aは、アノードである。燃料極33aにおいては、酸素イオンと燃料ガスとが反応して電子を放出する。燃料極33aは、多孔質で、電子伝導性が高く、かつ、高温において固体電解質層31等と固体間反応を起こしにくいものであることが好ましい。燃料極33aは、例えば、NiO、イットリア安定化ジルコニア(YSZ)・ニッケル金属の多孔質サーメットや、スカンジア安定化ジルコニア(ScSZ)・ニッケル金属の多孔質サーメット等により構成することができる。燃料極層33は、上記材料の2種以上を混合した混合材料により構成されていてもよい。
[第1のセパレータ10]
発電要素30の空気極層32の上には、第1のセパレータ本体11と、第1の流路形成部材12とにより構成されている第1のセパレータ10が配置されている。第1のセパレータ10には、空気極32aに酸化剤ガスを供給するための酸化剤ガス流路12aが形成されている。この酸化剤ガス流路12aは、酸化剤ガス用マニホールド61からx方向のx1側からx2側に向かって延びている。酸化剤ガス流路12aは、x方向に沿って延びる複数の線状凸部12cによって、酸化剤ガス流路12aの幅方向であるy方向において複数に区画されている。
第1のセパレータ本体11および第1の流路形成部材12の材料は、特に限定されない。第1のセパレータ本体11および第1の流路形成部材12のそれぞれは、例えば、イットリア安定化ジルコニアなどの安定化ジルコニアや、部分安定化ジルコニア等により形成することができる。また、第1のセパレータ本体11および第1の流路形成部12のそれぞれは、例えば、希土類金属が添加されたランタンクロマイトやチタン酸ストロンチウムなどの導電性セラミックスやアルミナやケイ酸ジルコニウムなどの絶縁性セラミックスなどによっても形成することができる。
複数の線状凸部12cのそれぞれには、複数のビアホール電極12c1が埋設されている。複数のビアホール電極12c1は、複数の線状凸部12cをz方向に貫通するように形成されている。また、第1のセパレータ本体11には、複数のビアホール電極12c1の位置に対応して複数のビアホール電極11cが形成されている。複数のビアホール電極11cは、第1のセパレータ本体11を貫通するように形成されている。これら複数のビアホール電極11cおよび複数のビアホール電極12c1により、線状凸部12cの第1のセパレータ本体11とは反対側の表面から第1のセパレータ本体11の線状凸部12cとは反対側の表面にまで至る複数のビアホール電極が構成されている。
ビアホール電極11cおよびビアホール電極12c1の材質は、特に限定されない。ビアホール電極11cおよびビアホール電極12c1のそれぞれは、例えば、Ag−Pd合金、Ag−Pt合金、アルカリ土類金属を添加したランタンクロマイト(LaCrO)、ランタンフェレート(LaFeO)や、ランタンストロンチウムマンガナイト(LSM:Lanthanum Strontium Manganite)等により形成することができる。
[第2のセパレータ50]
発電要素30の燃料極層33の上には、第2のセパレータ本体51と、第2の流路形成部材52とにより構成されている第2のセパレータ50が配置されている。第2のセパレータ50には、燃料極33aに燃料ガスを供給するための燃料ガス流路52aが形成されている。この燃料ガス流路52aは、燃料ガス用マニホールド62からy方向のy1側からy2側に向かって延びている。燃料ガス流路52aは、y方向に沿って延びる複数の線状凸部52cによって、燃料ガス流路52aの幅方向であるx方向において複数に区画されている。
第2のセパレータ本体51および第2の流路形成部材52の材料は、特に限定されない。第2のセパレータ本体51および第2の流路形成部材52のそれぞれは、例えば、安定化ジルコニアや、部分安定化ジルコニア等により形成することができる。また、第2のセパレータ本体51および第2の流路形成部材52のそれぞれは、例えば、希土類金属が添加されたランタンクロマイトやチタン酸ストロンチウムなどの導電性セラミックス、アルミナやケイ酸ジルコニウムなどの絶縁性セラミックスなどによっても形成することができる。
複数の線状凸部52cのそれぞれには、複数のビアホール電極52c1が埋設されている。複数のビアホール電極52c1は、複数の線状凸部52cをz方向に貫通するように形成されている。また、第2のセパレータ本体51には、複数のビアホール電極52c1の位置に対応して複数のビアホール電極51cが形成されている。複数のビアホール電極51cは、第2のセパレータ本体51を貫通するように形成されている。これら複数のビアホール電極51cおよび複数のビアホール電極52c1により、線状凸部52cの第2のセパレータ本体51とは反対側の表面から第2のセパレータ本体51の線状凸部52cとは反対側の表面にまで至る複数のビアホール電極が構成されている。
ビアホール電極51cおよびビアホール電極52c1の材質は、特に限定されない。ビアホール電極51cおよびビアホール電極52c1のそれぞれは、例えば、Ag−Pd合金、Ag−Pt合金、ニッケル金属、イットリア安定化ジルコニア(YSZ)・ニッケル金属や、スカンジア安定化ジルコニア(ScSZ)・ニッケル金属等により形成することができる。
[カーボンの結晶化度の測定方法]
カーボンの結晶化度は、ラマン分光装置(日本分光株式会社製 NRS−3300)を用いてグラフェン構造起因のピークとアモルファスカーボン起因のピークとを検出し、そのピーク面積比をそれぞれS1,S2としたときに、S1/(S1+S2)によって算出した値である。
[カーボン含有層の作製]
カーボン粉末(グラファイト、カーボンブラック、ハードカーボン)、ポリスチレン粉末、ポリエチレン粉末、アクリル系ポリマー粉末に対して、分散剤、ポリビニルブチラール系バインダーおよびエタノール系溶媒を混合してスラリーを作製し、ドクターブレード法によりグリーンシートを作製し、カーボン含有層とした。樹脂成分は、バインダー、可塑剤DOP(フタル酸ジオクチル)および分散剤の混合体である。樹脂成分のうち、バインダーとDOPとの体積比は2:1である。
[有機材料層の作製]
ポリスチレン粉末、ポリエチレン粉末、アクリル系ポリマー粉末に対して、ポリビニルブチラール系バインダーおよびエタノール系溶媒を混合してスラリーを作製し、ドクターブレード法によりグリーンシートを作製し、有機材料層とした。樹脂成分は、バインダーと可塑剤DOP(フタル酸ジオクチル)の混合体で体積比は2:1である。有機材料層は、各ポリマーの粉末71vol%および前記樹脂成分29vol%からなる。
[流路形成用消失材シート圧着体(膨張、収縮挙動測定用)の作製]
前記のカーボン含有層および有機材料層を積み重ねて生厚みの合計が420μmおよび450μmの積層体と、カーボン含有層のみを積み重ねて生厚みの合計が900μmの積層体とを形成し、静水圧プレスによって圧着して流路形成用消失材シート圧着体を作製した。プレス時の温度は60℃、圧力は98MPa、圧着時間は1minとした。
[膨張、収縮挙動の測定方法]
前記圧着体を加熱した時の寸法変化は、熱機械分析装置(TMA8311、株式会社リガク)を用いて測定した。
[リブ形成シートの作製]
添加量3モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(イットリア安定化ジルコニア:YSZ)と分散剤、ポリビニルブチラール系バインダー、可塑剤、トルエン/エタノール系溶媒を混合してスラリーを作製した後、減圧脱泡で粘度調整を行った。ドクターブレード方式でキャリアフィルム上にスラリーを塗工し、乾燥することで評価用のグリーンシートを作製した(焼成後0.14mm厚)。樹脂成分は、バインダー、可塑剤DOP(フタル酸ジオクチル)および分散剤の混合体であり、バインダーとDOPとの体積比は2:1である。リブ形成シートは、前記安定化ジルコニア54vol%および前記樹脂成分46vol%からなる。
[セル作製]
各種グリーンシートを積層し、78MPaで圧着、1150℃で焼成を行なうことで発電面積65×65mmの平板形セル(85mm、1mm厚)を作製した。電解質、空気極、燃料極を備えた発電膜の上下にリブと流路から成るガス流路構造部を形成し、さらにその上下にセパレータを形成することで発電が可能なセルを得た。なお、セパレータとリブとは同一材料から成る。
[流量測定方法]
燃料極側のマニホールドに4L/minのNガスを流した際に、各流路から出てくるガス量を流量計で測定した。
(実施例1)
カーボン含有層を積層し、層間に有機材料層としてポリスチレン粉末を使用したグリーンシートを挟んで圧着したものを作製した。カーボン含有層は、カーボン粉末として、結晶化度が84%のグラファイト1を用いた。カーボン含有層は、グラファイト1が62vol%および前記樹脂成分が38vol%からなる。カーボン含有層は厚み60μmのものを6層積層した。ポリスチレン粉末を使用したグリーンシートは厚み60μmのものを1層挟んだ。各層をカーボンシートを3層、ポリスチレンシート、カーボンシート3層の順で積層して、上記の方法で圧着して流路形成用消失材シート圧着体を作製した。圧着後は厚みが約10%減となった。使用したポリスチレン粉末の重量減少開始温度は200℃であり、消失温度は350℃であった。前記流路形成用消失材シート圧着体の膨張開始温度は450℃であり、それ以上の温度域での最大膨張率は0%未満であった。また、得られた流路形成用消失材シート圧着体の250℃以下における膨張率は、0.6%であった。
(実施例2)
有機材料層としてポリエチレン粉末を使用したグリーンシートを用いた以外は、実施例1と同様にして流路形成用消失材シート圧着体を作製した。使用したポリエチレン粉末の重量減少開始温度は200℃であり、消失温度は350℃であった。前記流路形成用消失材シート圧着体の膨張開始温度は450℃であり、それ以上の温度域での最大膨張率は0%未満であった。また、得られた流路形成用消失材シート圧着体の250℃以下における膨張率は、0.6%であった。
(実施例3)
有機材料層としてアクリル系ポリマー粉末を使用したグリーンシートを用いた以外は、実施例1と同様にして流路形成用消失材シート圧着体を作製した。使用したアクリル系ポリマー粉末の重量減少開始温度は200℃であり、消失温度は350℃であった。前記流路形成用消失材シート圧着体の膨張開始温度は450℃であり、それ以上の温度域での最大膨張率は0%未満であった。また、得られた流路形成用消失材シート圧着体の250℃以下における膨張率は、0.6%であった。
(比較例1)
有機材料層を使用せず、カーボン含有層のみを積層した以外は、実施例1と同様にして流路形成用消失材シート圧着体を作製した。
実施例1〜3および比較例1の流路形成用消失材シート圧着体について、TMAで膨張率(ΔT(%))を調べた。結果を表1および図5に示す。カーボン含有層のみを用いた比較例1では、450℃以上(高温)における最大膨張率が6.3%と大きくなったが、実施例1〜3の流路形成用消失材シート圧着体では、膨張は観察されなかった。室温以上250℃以下(低温)における最大膨張率は全ての条件で0.6%であった。なお、ここで「最大膨張率」は、流路形成用部材の厚みを基準とした流路形成用消失材の厚みと流路形成部材との厚みの差を示している。
Figure 2016131131
(実施例4)
発電面積65×65mmの平板形燃料電池セルを作製した。セパレータ厚みは300μm、電解質、空気極、燃料極を備えた発電膜の厚みは200μmの厚みとした。リブおよび流路の幅は0.8mmで交互に配置した。流路長さは61.5mmである。カーボンシートは、結晶化度84%のグラファイト1を用いた。カーボン含有層は、グラファイト1が62vol%および前記樹脂成分が38vol%からなる。カーボン含有層の厚みは390μm、ポリスチレン粉末を使用した有機材料層の厚みは60μmとした。流路高さは450μmであった。上記の方法で圧着、焼成して平板形セルを作製した。作製したセル内部のクラックを観察したところ、クラックは発見されなかった。
(比較例2)
カーボン含有層の厚みを450μmとして、ポリスチレン粉末を使用した有機材料層を使用しなかった以外は実施例4と同様に平板形セルを作製した。作製したセル内部のクラックを観察したところ、クラックが見られた。
(比較例3)
カーボン含有層の厚みを390μmとし、流路高さを390μmとした以外は比較例2と同様に平板形セルを作製した。作製したセル内部のクラックを観察したところ、クラックが見られた。
実施例4および比較例2、3の平板形セル作製の結果を表2に示す。カーボン含有層のみを用いた比較例2および比較例3では、450℃以上(高温)における最大膨張率が6.3%と大きくなったが、実施例4の流路形成用消失材シート圧着体では、膨張は観察されなかった。室温以上250℃以下(低温)における最大膨張率は全ての条件で0.6%であった。
Figure 2016131131
(実施例5)
発電面積65×65mmの平板形燃料電池セルを作製した。セパレータ厚みは300μm、電解質、空気極、燃料極を備えた発電膜の厚みは200μmの厚みとした。リブおよび流路の幅は0.8mmで交互に配置した。流路長さは61.5mmである。カーボン含有層には、結晶化度45%のカーボンブラックを用いた。カーボン含有層は、結晶化度45%のカーボンブラックが62vol%および前記樹脂成分が38vol%からなる。カーボン含有層の厚みは450μm、(流路高さは450μm)であった。上記の方法で圧着、焼成して平板形セルを作製した。作製したセル内部のクラックを観察したところ、クラックは発見されなかった。図4に、得られた流路形成用消失材シート圧着体のTMAの測定結果を示す(図4中C)。
(実施例6)
カーボン含有層には、結晶化度48%のハードカーボンを用い、実施例5と同様にセルを作製した。作製したセル内部を観察したところ、クラックは発見されなかった。図4に、得られた流路形成用消失材シート圧着体のTMAの測定結果を示す(図4中D)。
(実施例7)
カーボン含有層には、結晶化度84%のグラファイト1を用いた。カーボン含有層の樹脂成分含有量を48vol%とした以外は、実施例5と同様にセルを作製した。作製したセル内部を観察したところ、クラックは発見されなかった。また、図6に、得られた流路形成用消失材シート圧着体のTMAの測定結果を示す(図6中F)。450℃以上の最大膨張率は5.0%であった。
(実施例8)
カーボン含有層には、結晶化度84%のグラファイト1を用い、カーボン含有層の樹脂成分含有量を55vol%とした以外は、実施例5と同様にセルを作製した。作製したセル内部を観察したところ、クラックは発見されなかった。図6に、得られた流路形成用消失材シート圧着体のTMAの測定結果を示す(図6中G)。450℃以上の最大膨張率は3.4%であった。
(比較例4)
カーボン含有層には結晶化度が84%のグラファイト1を用い、実施例5と同様にセルを作製した。焼成後のセルを観察したところ外観上確認できるクラックが見つかった。図4に、得られた流路形成用消失材シート圧着体のTMAの測定結果を示す(図4中A)。450℃以上の最大膨張率は6.3%であった。
(比較例5)
カーボン含有層には結晶化度が83%のグラファイト2を用い、実施例5と同様にセルを作製した。焼成後のセルを観察したところ外観上確認できるクラックが見つかった。図4に、得られた流路形成用消失材シート圧着体のTMAの測定結果を示す(図4中B)。450℃以上の最大膨張率は27.5%であった。
表3に各流路形成用消失材シート圧着体の室温以上250℃以下(低温)における最大膨張率、450℃以上(高温)における最大膨張率、各流路形成用消失材シート圧着体を用いたセルのクラック発生の有無、および流量ばらつきの測定結果を示す。流量ばらつきCVは、実施例6および比較例4のセルについて、流量計を用いて流路1本ずつの流量を測定し、標準偏差/平均×100(%)を算出した。
Figure 2016131131
比較例4(A)の最大膨張率は6.3%となり、第1のリブ形成シート(E)の膨張率よりも大きくなった。一方、カーボンブラックを使用した実施例5(C)とハードカーボンを使用した実施例6(D)は、殆ど膨張することなく焼失した。比較例4と同じくグラファイト材を使用した比較例5(B)の最大膨張率は27.5%となり、結晶化が進んでいる材料は膨張しやすく、アモルファス材は膨張しにくい傾向が見られた。
また、膨張の見られなかった流路形成用消失材シート圧着体を用いた実施例5および実施例6で得られたセルでは、クラックが発生しなかった。比較例4と同じグラファイト材を使用した場合でも、実施例7や実施例8のように、樹脂成分の含有量を増やして膨張率を下げることで、クラックの無いセルを作製することができ、高温側の膨張率5.0%以下でクラックが発生しないことが確認できた。また、高温側の膨張率5.0%以下の場合において、低温側の膨張率は2.8%以下でクラックが発生しないことが確認できた。さらに、実施例6で得られたセルは、比較例4で得られたセルに比べて、流量ばらつきが小さくなっていることがわかる。
このように、流路形成用消失材として特定の物性を示すものを用いて固体電解質形燃料電池の製造を行うことで、クラックの発生を抑えた固体電解質形燃料電池を得ることができることがわかる。このような製造方法を採用することにより、劣化を起こしにくい固体電解質形燃料電池を得ることができる。
100 固体電解質形燃料電池
10 第1のセパレータ
11 第1のセパレータ本体
11c ビアホール電極
12 第1の流路形成部材
12a 酸化剤ガス流路
12c 線状凸部
12c1 ビアホール電極
30 発電要素
31 固体電解質層
32 空気極層
32a 空気極
33 燃料極層
33a 燃料極
50 第2のセパレータ
51 第2のセパレータ本体
51c ビアホール電極
52 第2の流路形成部材
52a 燃料ガス流路
52c 線状凸部
52c1 ビアホール電極
61 酸化剤ガス用マニホールド
62 燃料ガス用マニホールド
70 流路形成用消失材

Claims (7)

  1. 空気極層、固体電解質層および燃料極層の積層体から構成される発電要素と、
    前記空気極層の表面に酸化剤ガスを供給するために配置された、酸化剤ガス流路と、
    前記燃料極層の表面に燃料ガスを供給するために配置された、燃料ガス流路と
    を備える固体電解質形燃料電池の製造方法であって、
    前記固体電解質形燃料電池の構成部材を積層して圧着する積層圧着工程と、
    前記構成部材を共焼結することによって一体化する焼成工程とを含み、
    前記積層圧着工程において、前記焼成工程において共焼結時の加熱により消失する流路形成用消失材を、前記酸化剤ガス流路および前記燃料ガス流路の側壁部を形成する流路形成部材の間に配置し、
    前記流路形成用消失材の膨張率が最大となる温度において、前記流路形成用消失材の厚みと前記流路形成部材の厚みとの差を、前記流路形成部材の厚みを基準として5%以下とすることを特徴とする固体電解質形燃料電池の製造方法。
  2. 前記流路形成用消失材は、カーボン含有層と有機材料層との積層体であって、
    前記有機材料の重量減少開始温度が前記カーボン含有層の膨張開始温度よりも低いことを特徴とする、請求項1記載の固体電解質形燃料電池の製造方法。
  3. 前記流路形成用消失材は、カーボン含有層と有機材料層との積層体であって、
    前記有機材料の消失温度が、前記カーボン含有層の膨張率が最大となる温度よりも低いことを特徴とする、請求項1または2記載の固体電解質形燃料電池の製造方法。
  4. 前記流路形成用消失材は、カーボン含有層と有機材料層との積層体であって、
    前記有機材料層の総厚みが、前記カーボン含有層の総厚みの5%以上30%以下の範囲内であることを特徴とする、請求項1から3のいずれか一項に記載の固体電解質形燃料電池の製造方法。
  5. 前記流路形成用消失材は、カーボン含有層を含んでおり、
    前記カーボン含有層に含まれるカーボンの結晶化度が48%以下であることを特徴とする、請求項1から4のいずれか一項に記載の固体電解質形燃料電池の製造方法。
  6. 前記流路形成用消失材は、250℃以下における膨張率が2.8%以下であることを特徴とする、請求項1から5のいずれか一項に記載の固体電解質形燃料電池の製造方法。
  7. 前記流路形成用消失材は、カーボン含有層を含んでおり、
    前記カーボン含有層に含まれる樹脂成分の含有量が55vol%以下であることを特徴とする、請求項1から6のいずれか一項に記載の固体電解質形燃料電池の製造方法。
JP2015005505A 2015-01-15 2015-01-15 固体電解質形燃料電池の製造方法 Expired - Fee Related JP6503746B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015005505A JP6503746B2 (ja) 2015-01-15 2015-01-15 固体電解質形燃料電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015005505A JP6503746B2 (ja) 2015-01-15 2015-01-15 固体電解質形燃料電池の製造方法

Publications (2)

Publication Number Publication Date
JP2016131131A true JP2016131131A (ja) 2016-07-21
JP6503746B2 JP6503746B2 (ja) 2019-04-24

Family

ID=56415621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015005505A Expired - Fee Related JP6503746B2 (ja) 2015-01-15 2015-01-15 固体電解質形燃料電池の製造方法

Country Status (1)

Country Link
JP (1) JP6503746B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325994A (ja) * 1992-05-28 1993-12-10 Murata Mfg Co Ltd 固体電解質型燃料電池
JPH07335239A (ja) * 1994-06-08 1995-12-22 Ngk Insulators Ltd 接合体の製造方法
JP2005228740A (ja) * 2004-01-16 2005-08-25 Mitsubishi Materials Corp 固体酸化物形燃料電池の製造方法
JP2008218324A (ja) * 2007-03-07 2008-09-18 Ngk Insulators Ltd 電極の製造方法
WO2013012009A1 (ja) * 2011-07-21 2013-01-24 株式会社村田製作所 固体酸化物形燃料電池用電気的接続材、固体酸化物形燃料電池、固体酸化物形燃料電池モジュール及び固体酸化物形燃料電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325994A (ja) * 1992-05-28 1993-12-10 Murata Mfg Co Ltd 固体電解質型燃料電池
JPH07335239A (ja) * 1994-06-08 1995-12-22 Ngk Insulators Ltd 接合体の製造方法
JP2005228740A (ja) * 2004-01-16 2005-08-25 Mitsubishi Materials Corp 固体酸化物形燃料電池の製造方法
JP2008218324A (ja) * 2007-03-07 2008-09-18 Ngk Insulators Ltd 電極の製造方法
WO2013012009A1 (ja) * 2011-07-21 2013-01-24 株式会社村田製作所 固体酸化物形燃料電池用電気的接続材、固体酸化物形燃料電池、固体酸化物形燃料電池モジュール及び固体酸化物形燃料電池の製造方法

Also Published As

Publication number Publication date
JP6503746B2 (ja) 2019-04-24

Similar Documents

Publication Publication Date Title
KR101175599B1 (ko) 인터커넥터용 재료, 셀간 분리 구조체 및 고체 전해질형 연료 전지
US9070946B2 (en) Electrolyte-electrode joined assembly and method for producing the same
JP5435385B2 (ja) 固体酸化物型燃料電池及び固体酸化物型燃料電池の製造方法
JP5744348B1 (ja) セル、セルスタック装置、モジュールおよびモジュール収容装置
WO2014208730A1 (ja) セル、セルスタック装置、モジュールおよびモジュール収納装置
JP4923407B2 (ja) 固体酸化物形燃料電池の製造方法
JP5686190B2 (ja) 固体酸化物形燃料電池用接合材、固体酸化物形燃料電池の製造方法、固体酸化物形燃料電池モジュールの製造方法、固体酸化物形燃料電池及び固体酸化物形燃料電池モジュール
JP5105840B2 (ja) 平板型燃料電池のインターコネクタ及びその製法、平板型燃料電池、平板型燃料電池スタック並びにその製法
JP2012212541A (ja) 電解質・電極接合体及びその製造方法
JP5377599B2 (ja) 燃料電池セルならびにそれを用いたセルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2012181928A (ja) 固体酸化物形燃料電池セルおよび燃料電池モジュール
JP5489673B2 (ja) 燃料電池セルならびにそれを備えるセルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5888420B2 (ja) 燃料電池
JP6039459B2 (ja) 固体酸化物形燃料電池セル
WO2014210494A1 (en) Solid oxide fuel cell having a dense barrier layer
JP6180628B2 (ja) 多孔質のガス誘導チャネル層を備えた高温型単電池
JP6044717B2 (ja) 電気化学素子用セラミック基体及びその製造方法並びに燃料電池及び燃料電池スタック
JP4984802B2 (ja) 固体電解質形燃料電池用セパレータ
JP2015082389A (ja) セル、セルスタック装置、モジュールおよびモジュール収納装置
JP6277897B2 (ja) 固体酸化物形燃料電池セル
JP6503746B2 (ja) 固体電解質形燃料電池の製造方法
JP2013084528A (ja) 固体酸化物形燃料電池のガスセパレート材及び固体酸化物形燃料電池
JP5062786B1 (ja) 燃料電池の構造体
JP2015128024A (ja) 固体電解質形燃料電池の製造方法
JP2012156107A (ja) 固体酸化物形燃料電池セル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171011

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6503746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees