JP2016115725A - Electromagnetic shield sheet and printed wiring board - Google Patents

Electromagnetic shield sheet and printed wiring board Download PDF

Info

Publication number
JP2016115725A
JP2016115725A JP2014251240A JP2014251240A JP2016115725A JP 2016115725 A JP2016115725 A JP 2016115725A JP 2014251240 A JP2014251240 A JP 2014251240A JP 2014251240 A JP2014251240 A JP 2014251240A JP 2016115725 A JP2016115725 A JP 2016115725A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
electromagnetic wave
conductive fine
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014251240A
Other languages
Japanese (ja)
Other versions
JP6028290B2 (en
Inventor
努 早坂
Tsutomu Hayasaka
努 早坂
祥太 森
Shota Mori
祥太 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2014251240A priority Critical patent/JP6028290B2/en
Publication of JP2016115725A publication Critical patent/JP2016115725A/en
Application granted granted Critical
Publication of JP6028290B2 publication Critical patent/JP6028290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave shield sheet, the step followability and conductivity of which are compatible when it is thermo-compression bonded to a wiring board having a step.SOLUTION: In an electromagnetic wave shield sheet including a conductive layer containing flake-like conductive fine grains and binder resin, and an isolating layer, average aspect ratio of the flake-like conductive fine grains on the cut surface of the conductive layer is 7-15, the area occupied by the components other than the conductive fine grains is 55-80 when the cross-sectional area of the conductive layer before thermo-compression bonding is 100, and the difference of area occupied by the components other than the conductive fine grains is 5-25 before and after the electromagnetic wave shield sheet is subjected to thermo-compression bonding for 30 minutes at 150°C and 2 MPa.SELECTED DRAWING: Figure 2

Description

本発明は、電磁波を遮蔽する電磁波シールドシートに関する。   The present invention relates to an electromagnetic wave shielding sheet that shields electromagnetic waves.

電子機器等に使用されているプリント基板の中でもフレキシブルプリント基板(以下、FPCという)は、曲げることが出来る機能を活用して、プリント基板同士の接続配線および液晶パネルとプリント基板との接続配線などに使用されており携帯電話、スマートフォン、タブレット端末等のモバイル機器の高機能化・多機能化に役立っている。そして、電子機器の外部および内部部品から発生する電磁波が電子機器の誤作動の原因となっているため、FPCに電磁波シールド層を形成することが一般的である。この電磁波シールド層は、電磁波シールドシートをFPCに加熱圧着して形成することが一般的である。   Among the printed boards used in electronic devices, flexible printed boards (hereinafter referred to as FPCs) utilize the functions that can be bent, connecting wiring between printed boards and connecting wiring between liquid crystal panels and printed boards, etc. It is used for mobile devices such as mobile phones, smartphones, tablet terminals, etc. Since electromagnetic waves generated from the outside and internal parts of the electronic device cause malfunction of the electronic device, it is common to form an electromagnetic wave shielding layer on the FPC. This electromagnetic wave shielding layer is generally formed by heat-pressing an electromagnetic wave shielding sheet to an FPC.

モバイル機器は、カメラ機能、GPS機能などの多機能を実現するためにプリント配線板の高密度化を行なっており、更なる多機能化を進めるためには、配線回路をさらに高密度化する必要がある。しか、モバイル機器自体の大きさを無制限に拡大することは現実的ではないためプリント配線板の厚さを薄く設計することで高密度化を実現する必要がある。この薄さの追求は、電磁波シールド層として使用する電磁波シールドシートも例外ではない。
しかし、一般的に電磁波シールドシートの厚さを薄くすると段差があるFPCに熱圧着すると、当該段差部で導電層が過剰に伸びて厚さが薄くなり電気抵抗値が増加することで所望の導電性が得られない場合や、電磁波シールドシート自体が破断する場合があった。
Mobile devices are increasing the density of printed wiring boards in order to realize multiple functions such as camera functions and GPS functions. To further increase the number of functions, it is necessary to further increase the density of wiring circuits. There is. However, since it is not realistic to increase the size of the mobile device without limitation, it is necessary to realize a high density by designing the printed wiring board to be thin. The pursuit of this thinness is no exception to the electromagnetic shielding sheet used as the electromagnetic shielding layer.
However, in general, when the thickness of the electromagnetic wave shielding sheet is reduced, when thermocompression bonding is applied to an FPC having a step, the conductive layer extends excessively at the stepped portion, the thickness is reduced, and the electric resistance value is increased. In some cases, the property could not be obtained, or the electromagnetic wave shield sheet itself was broken.

そこで特許文献1は、絶縁層に溶剤可溶性ポリイミドを使用した電磁波シールドシートが開示されている   Therefore, Patent Document 1 discloses an electromagnetic wave shielding sheet using a solvent-soluble polyimide for the insulating layer.

特開2013−65675号公報JP 2013-65675 A

しかし、従来の電磁波シールドシートは、熱圧着の際、絶縁層の段差追従性は良好であったが導電層の段差追従性が不足しているため段差で導電層が伸び過ぎて薄くなり過ぎて、破断が生じ電磁波シールド層全体で均一なシールド性が得難い問題があった。   However, the conventional electromagnetic wave shielding sheet has good step followability of the insulating layer at the time of thermocompression bonding, but the conductive layer is insufficient in step followability of the conductive layer, so the conductive layer is excessively elongated at the step and becomes too thin. There was a problem that it was difficult to obtain a uniform shielding property over the entire electromagnetic wave shielding layer due to breakage.

本発明は、段差を有する配線板に加熱圧着したときの段差追従性と導電性を両立した電磁波シールドシートの提供を目的とする。   An object of the present invention is to provide an electromagnetic wave shielding sheet that achieves both step followability and conductivity when heat-pressed on a wiring board having a step.

本発明の電磁波シールドシートは、フレーク状導電性微粒子とバインダー樹脂とを含む導電層、および絶縁層を備えた電磁波シールドシートであって、
前記導電層の切断面における前記フレーク状導電性微粒子の平均アスペクト比が7〜15であり、
加熱圧着前の前記導電層の断面積を100としたときの導電性微粒子以外の成分が占める面積が55〜80であり、
前記電磁波シールドシートを150℃、2MPa、30分間の条件で加熱圧着前後の導電性微粒子以外の成分が占める面積の差が5〜25であることを特徴とする。
The electromagnetic wave shielding sheet of the present invention is an electromagnetic wave shielding sheet comprising a conductive layer containing flaky conductive fine particles and a binder resin, and an insulating layer,
The average aspect ratio of the flaky conductive fine particles at the cut surface of the conductive layer is 7 to 15,
The area occupied by components other than the conductive fine particles when the cross-sectional area of the conductive layer before thermocompression bonding is 100 is 55 to 80,
The electromagnetic wave shielding sheet is characterized in that the difference in area occupied by components other than the conductive fine particles before and after thermocompression bonding is 5 to 25 under the conditions of 150 ° C., 2 MPa, and 30 minutes.

上記の本発明によれば、電磁波シールドシートを厚さ方向に切断した断面において、導電層内で特定のアスペクト比を有するフレーク状導電性微粒子が重なり合った状態で存在し、熱圧着前にフレーク状導電性微粒子間に密度が低い状態で存在していたフレーク状導電性微粒子以外の成分(主に熱硬化性樹脂)は、電磁波シールドシートを所定の条件で熱圧着すると導電層が圧縮されてフレーク状導電性微粒子の間隔が狭まり、かつフレーク状導電性微粒子が高密度で充填された微粒子の重なりが密な導電層が得られる。この様な特性を備えた導電層を有する電磁波シールドシートは、例えば、段差を有するプリント配線板に積層した場合、段差の角部分において導電層が伸びた場合にフレーク状導電性微粒子の重なりが当該伸びに追従しフレーク状導電性微粒子の重なりが過度に少ない部分が生じ難いため、段差部で抵抗値が悪化し難くシールド性の低下が起こりにくい。さらにフレーク状導電性微粒子間に導電性微粒子以外の成分(主にバインダー樹脂)も高密度で充填されるため、加熱圧着時に段差の角部に対してバインダー樹脂がよく追従することで導電層が破断し難い効果が得られた。   According to the present invention, in the cross-section cut in the thickness direction of the electromagnetic wave shielding sheet, the flaky conductive fine particles having a specific aspect ratio are overlapped in the conductive layer, and the flaky shape is formed before thermocompression bonding. Components other than the flaky conductive fine particles (mainly thermosetting resin) that existed in a state of low density between the conductive fine particles are compressed into flakes when the electromagnetic wave shield sheet is thermocompression bonded under predetermined conditions. A conductive layer in which the interval between the fine conductive particles is reduced and the fine particles filled with the flaky conductive fine particles are densely packed is obtained. For example, when an electromagnetic wave shielding sheet having a conductive layer having such characteristics is laminated on a printed wiring board having a step, the conductive flakes are overlapped when the conductive layer extends at the corner of the step. A portion where the overlap of the flaky conductive fine particles follows the elongation is hardly generated, so that the resistance value is hardly deteriorated at the step portion, and the shielding property is hardly lowered. In addition, since the components other than the conductive fine particles (mainly binder resin) are also filled at high density between the flaky conductive fine particles, the conductive layer can be formed by the binder resin following the corners of the step well during thermocompression bonding. The effect that it was hard to break was obtained.

本発明により、段差を有する配線板に熱圧着したときの段差追従性と導電性を両立した電磁波シールドシートを提供できる
を提供できる。
According to the present invention, it is possible to provide an electromagnetic wave shield sheet that has both step following ability and conductivity when thermocompression bonded to a wiring board having a step.

電磁波シールドシートの加熱圧着前後の断面写真Cross-sectional photograph of electromagnetic shielding sheet before and after thermocompression bonding 電磁波シールドシートの層構成を例示した断面図Cross-sectional view illustrating the layer structure of the electromagnetic shielding sheet 段差試験を説明する断面図。Sectional drawing explaining a level | step difference test. 接続抵抗値および折り曲げ試験の測定用試料の作成方法を説明した断面図Sectional drawing explaining how to create a sample for measurement of connection resistance and bending test

本発明を説明する前に用語を定義する。まず、電磁波シールドシートは、プリント配線板等の相手方に加熱圧着することで電磁波シールド層を形成する。またシートは、フィルムおよびテープと同義語である。また電磁波シールド層の平面方向とは、厚さ方向ではない方向である。またアスペクト比とは、粒子に長軸長さと短軸長さが存在する場合、長軸長さを短軸長さで除した数値である。またフレーク状とは、葉状、鱗片状、板状、円盤状等を含む概念である。なお、図面の説明の際、上方向を上、下方向を下とする。   Before describing the present invention, terms will be defined. First, an electromagnetic wave shielding sheet forms an electromagnetic wave shielding layer by heat-pressing on the other party, such as a printed wiring board. Sheet is synonymous with film and tape. The plane direction of the electromagnetic wave shielding layer is a direction that is not the thickness direction. The aspect ratio is a numerical value obtained by dividing the major axis length by the minor axis length when the major axis length and the minor axis length exist in the particle. The flake shape is a concept including leaf shape, scale shape, plate shape, disk shape and the like. In the description of the drawings, the upward direction is upward and the downward direction is downward.

本発明の電磁波シールドシートは、フレーク状導電性微粒子とバインダー樹脂を含む導電層と、絶縁層とを備えている。
導電層の切断面におけるフレーク状導電性微粒子の平均アスペクト比が7〜15であり、
加熱圧着前の導電層の断面積を100としたときの導電性微粒子以外の成分が占める面積が55〜80であり、
電磁波シールドシートを150℃、2MPa、30分間の条件で加熱圧着前後の導電性微粒子以外の成分が占める面積の差が5〜25であることを特徴とする。
すなわち、本発明の電磁波シールドシートは、加熱圧着後に導電層が適度な範囲で薄くなることで段差追従性が向上する。なお、電磁波シールドシートは、加熱圧着後に電磁波シールド層になる。
The electromagnetic wave shielding sheet of the present invention includes a conductive layer containing flaky conductive fine particles and a binder resin, and an insulating layer.
The average aspect ratio of the flaky conductive fine particles at the cut surface of the conductive layer is 7 to 15,
The area occupied by components other than the conductive fine particles when the cross-sectional area of the conductive layer before thermocompression bonding is 100 is 55-80,
The electromagnetic wave shielding sheet is characterized in that the difference in area occupied by components other than the conductive fine particles before and after thermocompression bonding under conditions of 150 ° C. and 2 MPa for 30 minutes is 5 to 25.
That is, in the electromagnetic wave shielding sheet of the present invention, the step following property is improved by thinning the conductive layer within an appropriate range after thermocompression bonding. The electromagnetic wave shielding sheet becomes an electromagnetic wave shielding layer after thermocompression bonding.

具体的には、加熱圧着前の導電層の断面積を100としたときの導電性微粒子以外の成分が占める面積が55〜80であり、加熱圧着前後の導電性微粒子以外の成分が占める面積の差が5〜25であることを特徴とする。
本発明の電磁波シールドシートは、加熱圧着すると導電層の導電性微粒子以外の成分が占める断面積55〜80が5〜25減少する。かかる断面積減少を実現するためには、フレーク状導電性微粒子の断面の平均アスペクト比が7〜15である必要がある。この断面積減少は、まず加熱圧着前の導電層中において、平均アスペクト比が7〜15である。すなわち厚さが薄く水平方向に長い形状のフレーク状導電性微粒子同士の重なりが密であり、かつフレーク状導電性微粒子間にバインダー樹脂が充填される。次いで電磁波シールドシートを段差があるプリント配線板等に加熱圧着するときに、従来であれば段差の角部で導電層は、薄く伸びてしまい導電性微粒子の重なり途切れがちになることで、導電性が低下し易いが、本願発明は、厚さが薄く水平方向に長い形状のフレーク状導電性微粒子を含むため微粒子同士の重なりが維持し易く、導電層中に空隙が生じ難い。さらに、バインダー樹脂が電磁波シールドシートの伸びに良く追従できるので導電層が破断しに難く、かつ導電性が維持できる。これにより電磁波シールド層のシールド性が低下し難い効果が得られた。なお、導電性微粒子以外の成分が占める断面積の加熱圧着前後の差を「断面積差」ともいう。
図1を用いて本発明の電磁波シールドシートの加熱圧着前後の導電層の変化の1例を説明する。図1(1)は、加熱圧着前の電磁波シールドシートの電子顕微鏡写真で絶縁層1および導電層2を備えた電磁波シールドシートと、剥離性シート3との積層体である。図1(2)は、前記積層体を加熱圧着することで導電層2のフレーク状導電性微粒子間の空隙が埋まり、微粒子の配列が密になることで、フレーク状導電性微粒子以外の成分が占める面積が加熱圧着前と比較して減少していることが分かる。なお、本半発明が、図1の実施態様に限定されないことはいうまでもない。
Specifically, the area occupied by components other than the conductive fine particles when the cross-sectional area of the conductive layer before thermocompression bonding is 100 is 55 to 80, and the area occupied by components other than the conductive fine particles before and after thermocompression bonding is The difference is 5-25.
When the electromagnetic wave shielding sheet of the present invention is heat-pressed, the cross-sectional area 55-80 occupied by components other than the conductive fine particles of the conductive layer is reduced by 5-25. In order to realize such a reduction in the cross-sectional area, the average aspect ratio of the cross section of the flaky conductive fine particles needs to be 7 to 15. This reduction in cross-sectional area has an average aspect ratio of 7 to 15 in the conductive layer before thermocompression bonding. That is, the overlapping of the flake-shaped conductive fine particles having a small thickness and a long shape in the horizontal direction is dense, and the binder resin is filled between the flake-shaped conductive fine particles. Next, when the electromagnetic wave shielding sheet is heat-pressed to a printed wiring board or the like having a step, the conductive layer is thinned at the corners of the step, and the conductive fine particles tend to be interrupted. However, since the present invention includes flaky conductive fine particles that are thin and long in the horizontal direction, it is easy to maintain the overlap between the fine particles, and voids are not easily generated in the conductive layer. Furthermore, since the binder resin can follow the elongation of the electromagnetic wave shielding sheet well, the conductive layer is hardly broken and the conductivity can be maintained. Thereby, the effect that the shielding property of the electromagnetic wave shielding layer is hardly lowered was obtained. The difference between the cross-sectional areas occupied by components other than the conductive fine particles before and after thermocompression bonding is also referred to as “cross-sectional area difference”.
An example of the change of the conductive layer before and after thermocompression bonding of the electromagnetic wave shielding sheet of the present invention will be described with reference to FIG. FIG. 1 (1) is a laminate of an electromagnetic shielding sheet provided with an insulating layer 1 and a conductive layer 2 and a peelable sheet 3 in an electron micrograph of the electromagnetic shielding sheet before thermocompression bonding. In FIG. 1 (2), the laminate is heated and pressure-bonded to fill the gaps between the flaky conductive fine particles of the conductive layer 2 and the fine particle arrangement becomes dense, so that components other than the flaky conductive fine particles are present. It can be seen that the occupied area is reduced as compared with that before the thermocompression bonding. Needless to say, the present invention is not limited to the embodiment shown in FIG.

<導電層>
導電層は、導電性樹脂組成物を使用して形成できる。導電性樹脂組成物は、フレーク状導電性微粒子およびフレーク状導電性微粒子以外の成分を含む。
<Conductive layer>
The conductive layer can be formed using a conductive resin composition. The conductive resin composition contains components other than flaky conductive fine particles and flaky conductive fine particles.

フレーク状導電性微粒子は、断面の平均アスペクト比(縦/横)が7〜15であり、10〜14がより好ましい。フレーク状導電性微粒子のアスペクト比が7〜15であることで、加熱圧着時の導電層の伸びと導電性を両立できる。   The flaky conductive fine particles have a cross-sectional average aspect ratio (vertical / horizontal) of 7 to 15, and more preferably 10 to 14. When the aspect ratio of the flaky conductive fine particles is 7 to 15, both the elongation of the conductive layer and the conductivity during thermocompression bonding can be achieved.

フレーク状導電性微粒子の素材は、例えば金、白金、銀、銅およびニッケル等の導電性金属ならびにその合金、ならびに導電性ポリマーの微粒子が好ましい。またフレーク状導電性微粒子は、単一組成の微粒子のみならず金属や樹脂を核体とし、核体の表面を被覆する被覆層を核体より導電性が高い素材で形成した複合微粒子を使用することも好ましい。これによりコストダウンがし易くなる。
核体は、ニッケル、シリカ、銅および樹脂等から選択することが好ましく、導電性の金属およびその合金がより好ましい。
被覆層は、導電性が優れる素材であればよく、導電性金属または導電性ポリマーが好ましい。導電性金属は、例えば、金、白金、銀、錫、マンガン、およびインジウム等、ならびにこれらの合金が挙げられる。また導電性ポリマーは、ポリアニリン、ポリアセチレン等が挙げられる。これらの中でも導電性の面から銀が好ましい。
As the material for the flaky conductive fine particles, for example, conductive metals such as gold, platinum, silver, copper and nickel, alloys thereof, and conductive polymer fine particles are preferable. The flaky conductive fine particles use not only fine particles of a single composition but also composite fine particles in which a metal or a resin is used as a core, and a coating layer covering the surface of the core is formed of a material having higher conductivity than the core. It is also preferable. This facilitates cost reduction.
The core is preferably selected from nickel, silica, copper, resin, and the like, more preferably a conductive metal and an alloy thereof.
The covering layer may be a material having excellent conductivity, and is preferably a conductive metal or a conductive polymer. Examples of the conductive metal include gold, platinum, silver, tin, manganese, indium, and the like, and alloys thereof. Examples of the conductive polymer include polyaniline and polyacetylene. Among these, silver is preferable from the viewpoint of conductivity.

複合微粒子は、核体100重量部に対して、1〜40重量部の割合で被覆層を有するのが好ましく、3〜30重量部がより好ましい。1〜40重量部で被覆すると、導電性を維持しながら、よりコストダウンができる。   The composite fine particles preferably have a coating layer at a ratio of 1 to 40 parts by weight, more preferably 3 to 30 parts by weight, with respect to 100 parts by weight of the nucleus. Covering with 1 to 40 parts by weight can further reduce the cost while maintaining conductivity.

核体と被覆層からなる導電性微粒子は、被覆層が核体で完全に覆うことが好ましい。しかし、実際には、核体の一部が露出する場合がある。このような場合でも核体表面面積の70%以上を導電性物質が覆っていれば、導電性を維持しやすい。   It is preferable that the conductive fine particles composed of the nucleus and the coating layer are completely covered with the nucleus. However, in practice, a part of the nucleus may be exposed. Even in such a case, if the conductive material covers 70% or more of the core surface area, the conductivity is easily maintained.

フレーク状導電性微粒子の形状は、フレーク状であるが、微粒子全体としてフレーク状であればよく、楕円状、円状または微粒子の周囲に切れ込み等が存在しても良い。   The shape of the flaky conductive fine particles is a flaky shape, but may be a flaky shape as a whole of the fine particles, and may be elliptical, circular or notched around the fine particles.

フレーク状導電性微粒子は、平均粒子径1〜100μmが好ましく、3〜50μmがより好ましい。平均粒子径が1〜100μmであることで導電層の導電性と薄さがより向上する。なお、平均粒子径とは、レーザー回折・散乱法粒度分布測定装置LS 13320(ベックマン・コールター社製)を使用し、トルネードドライパウダーサンプルモジュールにて、導電性微粒子を測定して得たD50平均粒子径であり、粒子径累積分布における累積値が50%の粒子径である。なお、測定の際、フレーク状導電性微粒子の屈折率の設定は1.6とした。
また導電性微粒子の平均粒子径は、電子顕微鏡の拡大画像(約千倍〜1万倍)から無作為に選定した20個程度の微粒子を平均した数値から求めることもできる。この場合の平均粒子径も1〜100μmが好ましく、3〜50μmがより好ましい。
The flaky conductive fine particles preferably have an average particle diameter of 1 to 100 μm, more preferably 3 to 50 μm. The electroconductivity and thinness of a conductive layer improve more because an average particle diameter is 1-100 micrometers. The average particle diameter is a D50 average particle obtained by measuring conductive fine particles with a tornado dry powder sample module using a laser diffraction / scattering particle size distribution analyzer LS 13320 (manufactured by Beckman Coulter, Inc.). It is a particle diameter, and the cumulative value in the particle diameter cumulative distribution is a particle diameter of 50%. In the measurement, the refractive index of the flaky conductive fine particles was set to 1.6.
The average particle diameter of the conductive fine particles can also be obtained from a numerical value obtained by averaging about 20 fine particles randomly selected from an enlarged image (about 1,000 to 10,000 times) of an electron microscope. In this case, the average particle size is also preferably 1 to 100 μm, and more preferably 3 to 50 μm.

導電性樹脂組成物には、本発明の課題を解決できる範囲内であれば、フレーク状導電性微粒子以外に他の形状の導電性微粒子を配合できる。他の形状の導電性微粒子を配合することで接着力がより向上する。   If it is in the range which can solve the subject of this invention in the conductive resin composition, in addition to the flaky conductive fine particles, conductive fine particles of other shapes can be blended. Adhesive strength is further improved by blending conductive fine particles of other shapes.

他の形状の導電性微粒子として、例えば樹枝状、球状等の導電性微粒子が挙げられる。他の形状の導電性微粒子の形状以外の組成等は、フレーク状導電性微粒子と同様である。なおフレーク状導電性微粒子と他の形状の導電性微粒子とを併用した場合、加熱圧着前の導電層の断面積を100としたときの導電性微粒子以外の成分が占める面積が55〜80に関して、導電性微粒子以外の成分は、フレーク状導電性微粒子および他の形状の導電性微粒子以外の成分を示す。また電磁波シールドシートを150℃、2MPa、30分間の条件で加熱圧着前後の導電性微粒子以外の成分が占める面積の差が5〜25であるに関しても導電性微粒子以外の成分は、フレーク状導電性微粒子および他の形状の導電性微粒子以外の成分を示す。   Examples of the conductive fine particles having other shapes include dendritic and spherical conductive fine particles. The composition other than the shape of the conductive fine particles having other shapes is the same as that of the flaky conductive fine particles. When the flaky conductive fine particles and other shapes of conductive fine particles are used in combination, the area occupied by components other than the conductive fine particles when the cross-sectional area of the conductive layer before thermocompression bonding is 100 is about 55 to 80. Components other than the conductive fine particles indicate components other than the flaky conductive fine particles and the conductive fine particles of other shapes. In addition, regarding the electromagnetic shielding sheet at 150 ° C., 2 MPa, for 30 minutes, the difference in area occupied by components other than the conductive fine particles before and after thermocompression bonding is 5 to 25. Components other than fine particles and other shapes of conductive fine particles are shown.

フレーク状導電性微粒子以外の成分は、バインダー樹脂を含む。バインダー樹脂は、ガラス転移温度(以下、Tgという)が−20〜100℃が好ましく、0〜80℃がより好ましい。バインダー樹脂は、単独または2種類以上併用できる。なお、2種類以上併用する場合は、Tgが−20〜100℃のバインダー樹脂を主成分とすることが好ましい。   Components other than the flaky conductive fine particles include a binder resin. The binder resin preferably has a glass transition temperature (hereinafter referred to as Tg) of -20 to 100 ° C, more preferably 0 to 80 ° C. Binder resins can be used alone or in combination of two or more. In addition, when using 2 or more types together, it is preferable that Tg is -20-100 degreeC binder resin as a main component.

バインダー樹脂は、本発明の課題を解決できる範囲で選択すれば良く熱可塑性樹脂および熱硬化性樹脂から適宜選択できる。また、バインダー樹脂は、加熱圧着の後工程においてリフロー工程等の加熱工程が無い用途においては、熱可塑性樹脂が好ましい。一方、加熱圧着の後工程においてリフロー工程等の加熱工程がある場合は熱硬化性樹脂が好ましい。熱硬化性樹脂は、自己架橋性タイプおよび硬化剤反応タイプが使用できる。硬化剤反応タイプのバインダー樹脂としては、硬化剤と反応可能な反応性官能基を有する熱硬化性樹脂が好適である。   The binder resin may be selected as long as the problem of the present invention can be solved, and can be appropriately selected from a thermoplastic resin and a thermosetting resin. Further, the binder resin is preferably a thermoplastic resin in applications where there is no heating process such as a reflow process in the post-process of thermocompression bonding. On the other hand, when there is a heating process such as a reflow process in the subsequent process of thermocompression bonding, a thermosetting resin is preferable. As the thermosetting resin, a self-crosslinking type and a curing agent reaction type can be used. As the curing agent reaction type binder resin, a thermosetting resin having a reactive functional group capable of reacting with the curing agent is suitable.

熱硬化性樹脂は、例えばエポキシ、アクリル、ウレタン、ポリスチレン、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリエステルアミド、ポリエーテルエステル、ウレタンウレア、付加型ポリエステル、縮合型ポリエステルおよびポリイミド等が挙げられる。熱硬化性樹脂は、通常、自己架橋可能な官能基、または硬化剤と反応可能な官能基を有している。これらの中でも例えば、リフロー工程での温度条件を考慮すると、熱硬化性樹脂は、エポキシ、付加型ポリエステル、縮合型ポリエステル、ウレタン、ウレタンウレア、およびポリアミドのうちの少なくとも1つを含んでいることが好ましい。また、リフロー工程に耐え得る範囲であれば、熱硬化性樹脂と熱可塑性樹脂を併用できる。   Examples of the thermosetting resin include epoxy, acrylic, urethane, polystyrene, polycarbonate, polyamide, polyamideimide, polyesteramide, polyether ester, urethane urea, addition-type polyester, condensation-type polyester, and polyimide. The thermosetting resin usually has a functional group capable of self-crosslinking or a functional group capable of reacting with a curing agent. Among these, for example, considering the temperature conditions in the reflow process, the thermosetting resin may contain at least one of epoxy, addition type polyester, condensation type polyester, urethane, urethane urea, and polyamide. preferable. Moreover, if it is the range which can endure a reflow process, a thermosetting resin and a thermoplastic resin can be used together.

硬化剤は、熱硬化性樹脂の反応性官能基と反応可能な官能基を複数有している。硬化剤は、エポキシ化合物、酸無水物基含有化合物、イソシアネート化合物、アジリジン化合物、ジシアンジアミドアミン化合物、フェノール化合物等が好ましい。   The curing agent has a plurality of functional groups capable of reacting with the reactive functional group of the thermosetting resin. The curing agent is preferably an epoxy compound, an acid anhydride group-containing compound, an isocyanate compound, an aziridine compound, a dicyandiamidoamine compound, a phenol compound, or the like.

硬化剤は、熱硬化性樹脂100質量部に対して1〜50質量部含むことが好ましく、3〜30重量部がより好ましく、3〜20重量部がさらに好ましい。   It is preferable that 1-50 mass parts is included with respect to 100 mass parts of thermosetting resins, as for a hardening | curing agent, 3-30 weight part is more preferable, and 3-20 weight part is further more preferable.

熱可塑性樹脂は、例えばポリエステル、アクリル、ポリエーテル、ウレタン、スチレンエラストマー、ポリカーボネート、ブタジエン、ポリアミド、エステルアミド、イソプレン、およびセルロース等が挙げられる。   Examples of the thermoplastic resin include polyester, acrylic, polyether, urethane, styrene elastomer, polycarbonate, butadiene, polyamide, ester amide, isoprene, and cellulose.

フレーク状導電性微粒子は、バインダー樹脂100重量部に対して、50〜1500重量部を配合することが好ましく、100〜600重量部がより好ましい。50〜1500重量部配合することで、導電性と接着性をより両立しやすくなる。   The flaky conductive fine particles are preferably blended in an amount of 50 to 1500 parts by weight, more preferably 100 to 600 parts by weight with respect to 100 parts by weight of the binder resin. By mix | blending 50-1500 weight part, it becomes easy to make electroconductivity and adhesiveness compatible more.

また、他の形状の導電性微粒子は、バインダー樹脂100重量部に対して、5〜300重量部を配合することが好ましく、10〜250重量部がより好ましい。   Moreover, it is preferable to mix | blend 5-300 weight part with respect to 100 weight part of binder resin, and, as for the conductive fine particle of another shape, 10-250 weight part is more preferable.

導電性樹脂組成物は、イオンキャッチャー剤を含むことが好ましい。イオンキャッチャー剤を配合すると、フレーク状導電性微粒子が金属を含む場合、解離した金属イオンに起因した導電性および密着性の経時低下をより抑制できる。イオンキャッチャー剤は、例えば、N−サリシロイル−N’−アルデヒドラジン、N,N−ジベンザル(オキザルヒドラジド)、イソフタリック酸ビス(2−フェノキシプロピオニルヒドラジン)、[3−(N−サリチロイル)アミノ−1,2,4−ヒドロキシフェニル)プロピオニル]ヒドラジン等が挙げられる。これらの中でもデカメチレンカルボン酸ジサリチロイルヒドラジドおよびN,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジンは捕捉効果が高いため好ましい。   The conductive resin composition preferably contains an ion catcher agent. When the ion catcher agent is blended, when the flaky conductive fine particles contain a metal, it is possible to further suppress the deterioration of the conductivity and adhesion due to dissociated metal ions over time. Examples of the ion catcher agent include N-salicyloyl-N′-aldehyderazine, N, N-dibenzal (oxal hydrazide), bis (2-phenoxypropionylhydrazine) isophthalic acid, [3- (N-salicyloyl) amino-1 , 2,4-hydroxyphenyl) propionyl] hydrazine and the like. Among these, decamethylene carboxylic acid disalicyloyl hydrazide and N, N′-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine are preferable because of their high scavenging effect.

イオンキャッチャー剤は、フレーク状導電性微粒子100重量部に対して、0.5〜30重量部配合することが好ましく、1〜20重量部がより好ましい。0.5〜30重量部配合することで導電性および密着性の経時低下をより抑制できる。   The ion catcher agent is preferably blended in an amount of 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight with respect to 100 parts by weight of the flaky conductive fine particles. By blending 0.5 to 30 parts by weight, it is possible to further suppress the deterioration of conductivity and adhesion over time.

導電性樹脂組成物は、増粘剤を含むことが好ましい。増粘剤を含むことで導電性樹脂組成物中のフレーク状導電性微粒子の分散安定性を向上する。増粘剤は、例えばポリカルボン酸化合物、ポリウレタン化合物、ウレア化合物、ポリアミド化合物等が挙げられる。   The conductive resin composition preferably contains a thickener. By containing a thickener, the dispersion stability of the flaky conductive fine particles in the conductive resin composition is improved. Examples of the thickener include polycarboxylic acid compounds, polyurethane compounds, urea compounds, polyamide compounds, and the like.

導電性樹脂組成物は、他の任意成分としてシランカップリング剤、防錆剤、還元剤、酸化防止剤、顔料、染料、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤、充填剤、難燃剤などを配合できる。   The conductive resin composition includes silane coupling agents, rust inhibitors, reducing agents, antioxidants, pigments, dyes, tackifying resins, plasticizers, ultraviolet absorbers, antifoaming agents, leveling regulators as other optional components. , Fillers and flame retardants can be blended.

導電性樹脂組成物は、フレーク状導電性微粒子とバインダー樹脂とを混合し攪拌して得ることができる。攪拌は、ディスパーやホモジナイザー等の公知の攪拌装置を使用できる。   The conductive resin composition can be obtained by mixing and stirring the flaky conductive fine particles and the binder resin. For the stirring, a known stirring device such as a disper or a homogenizer can be used.

導電層の形成は、導電性樹脂組成物を剥離性シートに塗工することで形成できる。または、Tダイ成形機等の押出成形機、またはカレンダー成形等により、シート状に導電層を形成することもできる。   The conductive layer can be formed by applying a conductive resin composition to a peelable sheet. Alternatively, the conductive layer can be formed into a sheet shape by an extrusion molding machine such as a T-die molding machine or calendar molding.

塗工は、例えば、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレード方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピンコート方式、ディップコート方式等の公知の塗工方法を使用できる。塗工の際、必要に応じて乾燥工程ができる。乾燥工程は、熱風乾燥機および赤外線ヒーター等公知の乾燥装置が使用できる。   Coating, for example, gravure coating method, kiss coating method, die coating method, lip coating method, comma coating method, blade method, roll coating method, knife coating method, spray coating method, bar coating method, spin coating method, dip coating method A known coating method such as can be used. During the coating, a drying process can be performed as necessary. In the drying step, a known drying device such as a hot air dryer or an infrared heater can be used.

導電層の厚みは、1〜100μmが好ましく、3〜50μmがより好ましく、4〜15μmがさらに好ましい。厚みが1〜100μmの範囲にあることで導電性と、その他の物性を両立しやすくなる。   1-100 micrometers is preferable, as for the thickness of a conductive layer, 3-50 micrometers is more preferable, and 4-15 micrometers is further more preferable. It becomes easy to make electroconductivity and other physical properties compatible because thickness exists in the range of 1-100 micrometers.

<絶縁層>
絶縁層は、絶縁性樹脂組成物を使用して形成できる。絶縁性樹脂組成物は、バインダー樹脂を含む。
<Insulating layer>
The insulating layer can be formed using an insulating resin composition. The insulating resin composition includes a binder resin.

バインダー樹脂は、導電層で説明したバインダー樹脂を使用できる。絶縁層および導電層に使用するバインダー樹脂は、同一または異なっていてもよい   As the binder resin, the binder resin described in the conductive layer can be used. The binder resin used for the insulating layer and the conductive layer may be the same or different.

絶縁性樹脂組成物には、必要に応じてシランカップリング剤、酸化防止剤、顔料、染料、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤、充填剤、無機フィラー、難燃剤等を添加しても良い。なお、無機フィラーは、フレーク状導電性微粒子とは異なる。   Insulating resin compositions include silane coupling agents, antioxidants, pigments, dyes, tackifying resins, plasticizers, ultraviolet absorbers, antifoaming agents, leveling regulators, fillers, inorganic fillers as necessary. A flame retardant or the like may be added. The inorganic filler is different from the flaky conductive fine particles.

絶縁層の形成は、絶縁性樹脂組成物を使用して導電層と同様の方法で形成できる。   The insulating layer can be formed in the same manner as the conductive layer using the insulating resin composition.

絶縁層の厚みは、用途に応じて適宜設計できるが、0.5μm〜25μmが好ましく、2μm〜15μmがより好ましい。絶縁層の厚みが、0.5μm〜25μmであることで耐熱性がより向上する。   Although the thickness of an insulating layer can be designed suitably according to a use, 0.5 micrometers-25 micrometers are preferable and 2 micrometers-15 micrometers are more preferable. Heat resistance improves more because the thickness of an insulating layer is 0.5 micrometer-25 micrometers.

<電磁波シールドシート>
本発明の電磁波シールドシートは、導電層、および絶縁層を備えている。この電磁波シールドシートは、例えば、導電層に、予め絶縁性樹脂組成物を成形した絶縁層を貼り合わせることで製造できる。または、予め形成した導電層に、別途剥離性シート上に形成した絶縁層を貼り合わせることで製造することもできる。または、導電層に直接絶縁性樹脂組成物を塗工することで絶縁層を形成することでも製造できる。前記絶縁層には、さらに他の機能層を積層することもできる。他の機能層とは、ハードコート性、遮光性、放熱性、水蒸気バリア性、酸素バリア性、低誘電率、高誘電率性または耐熱性等の機能を有する層である。
<Electromagnetic wave shield sheet>
The electromagnetic wave shielding sheet of the present invention includes a conductive layer and an insulating layer. This electromagnetic wave shielding sheet can be manufactured, for example, by bonding an insulating layer obtained by previously molding an insulating resin composition to a conductive layer. Or it can also manufacture by bonding the insulating layer separately formed on the peelable sheet to the conductive layer previously formed. Or it can also manufacture by forming an insulating layer by coating an insulating resin composition directly on a conductive layer. Another functional layer can be further laminated on the insulating layer. The other functional layer is a layer having functions such as hard coat property, light shielding property, heat dissipation property, water vapor barrier property, oxygen barrier property, low dielectric constant, high dielectric constant property or heat resistance.

本発明の電磁波シールドシートは、導電層、金属薄膜層、絶縁層を順次積層した構成も好ましい。金属薄膜層は、金、白金、銀、錫、マンガン、およびインジウム等、ならびにその合金が好ましく、価格および導電性の面で銅が好ましい。銅は、電解銅箔および圧延銅箔が好ましい。金属薄膜層が金属箔の場合、0.1から20μmが好ましく、0.5〜10μmがより好ましい。金属薄膜層が、蒸着膜の場合0.001〜5μmが好ましく、0.002〜2μmがより好ましい。また金属薄膜層が、スパッタ膜の場合、0.001〜1.0μmが好ましく、0.002〜0.5μmがより好ましい。また金属薄膜層が、導電性ペーストで形成した被膜の場合、0.1〜20μmが好ましく、0.5〜10μmがより好ましい。   The electromagnetic shielding sheet of the present invention preferably has a configuration in which a conductive layer, a metal thin film layer, and an insulating layer are sequentially laminated. The metal thin film layer is preferably made of gold, platinum, silver, tin, manganese, indium, and the like, and alloys thereof, and copper is preferred in terms of cost and conductivity. Copper is preferably an electrolytic copper foil and a rolled copper foil. When the metal thin film layer is a metal foil, 0.1 to 20 μm is preferable, and 0.5 to 10 μm is more preferable. When the metal thin film layer is a deposited film, 0.001 to 5 μm is preferable, and 0.002 to 2 μm is more preferable. When the metal thin film layer is a sputtered film, 0.001 to 1.0 μm is preferable, and 0.002 to 0.5 μm is more preferable. Moreover, when the metal thin film layer is a film formed of a conductive paste, 0.1 to 20 μm is preferable, and 0.5 to 10 μm is more preferable.

本発明の電磁波シールドシートの層構成を図2を用いて説明する。図2(1)は、絶縁層1、導電層2の順に積層した構成の断面図である。図2(2)は、絶縁層1、金属薄膜層4、導電層2の順に積層した構成の断面図である。なお、本発明の電磁波シールドシートは、前記3つの層以外に他の層が積層されてもよい。   The layer structure of the electromagnetic wave shielding sheet of the present invention will be described with reference to FIG. FIG. 2A is a cross-sectional view of a configuration in which an insulating layer 1 and a conductive layer 2 are stacked in this order. FIG. 2B is a cross-sectional view of a configuration in which the insulating layer 1, the metal thin film layer 4, and the conductive layer 2 are laminated in this order. In the electromagnetic wave shielding sheet of the present invention, other layers may be laminated in addition to the three layers.

剥離性シートは、紙またはプラスチックの基材の少なくとも一方に公知の剥離処理を行ったシートである。   The peelable sheet is a sheet obtained by performing a known peeling treatment on at least one of a paper or plastic substrate.

なお電磁波シールドシートは、導電層または絶縁層の保護および取り扱いを容易にするため使用する直前まで剥離性シートを貼り付けた状態で保存する場合が一般的である。   In general, the electromagnetic wave shielding sheet is stored in a state where a peelable sheet is pasted until just before use in order to facilitate the protection and handling of the conductive layer or the insulating layer.

本発明の電磁波シールドシートは、フレキシブルプリント基板、リジッドプリント基板、リジッドフレキシルブル基板等に貼り付けて加熱圧着することで、電磁波シールド層として使用できる。加熱圧着の一般的な条件は、温度は150〜180℃、圧力は10〜60kg/cm2、時間は3〜60分間程度で適宜選択できる。
本発明では電磁波シールドシートを150℃、2MPa、30分間の条件で加熱圧着した後に、加熱圧着前の導電層の切断面を100としたときの導電性微粒子以外の成分が占める面積55〜80が、加熱圧着前後で5〜25分減少する。このような導電層を有している本発明の電磁波シールドシートは、フレーク状導電性微粒子間の導電パスが途切れ難く、かつバインダー樹脂の延びに対する追従性が良いため、例えば段差を有するプリント配線板に加熱圧着して電磁波シールド層を形成した場合、プリント配線板の平坦部とほほ同等のシールド性が段差部でも得られる。
The electromagnetic wave shielding sheet of the present invention can be used as an electromagnetic wave shielding layer by being attached to a flexible printed circuit board, a rigid printed circuit board, a rigid flexible substrate, etc. and thermocompression bonded. The general conditions for thermocompression bonding can be appropriately selected from a temperature of 150 to 180 ° C., a pressure of 10 to 60 kg / cm 2 , and a time of about 3 to 60 minutes.
In the present invention, the area 55 to 80 occupied by components other than the conductive fine particles when the electromagnetic shield sheet is thermocompression bonded under conditions of 150 ° C., 2 MPa, 30 minutes, and the cut surface of the conductive layer before thermocompression bonding is defined as 100. It decreases for 5 to 25 minutes before and after thermocompression bonding. In the electromagnetic wave shielding sheet of the present invention having such a conductive layer, the conductive path between the flaky conductive fine particles is not easily interrupted, and the followability to the extension of the binder resin is good. When the electromagnetic wave shielding layer is formed by thermocompression bonding, a shielding property substantially equivalent to that of the flat portion of the printed wiring board can be obtained even at the step portion.

導電層の切断面を観察する方法を説明する。
まず導電層を切断し断面を露出させる方法は、割断法、機械研磨法、ミクロトーム法、FIB(集束イオンビーム)法等公知の方法がある。しかし、導電層のように硬さが異なる異種材料(フレーク状導電性微粒子とバインダー樹脂)を含む層は、断面作製の際に、異種界面の剥離や空隙の変形などの構造変形、いわゆるアーティファクトが生じてしまい、真の断面構造が得られないことがある。一方、CP(クロスセクションポリッシャ)法はブロードなAr(アルゴン)イオンビームを用いた断面作製方法であり、金属、半導体、セラミックス、及びそれらの複合材料でも、平滑で歪みのない試料断面を作成することができる。すなわち本発明では、導電層を切断する方法は、CP法が好ましい。
A method for observing the cut surface of the conductive layer will be described.
First, there are known methods such as a cleaving method, a mechanical polishing method, a microtome method, and a FIB (focused ion beam) method for cutting the conductive layer and exposing the cross section. However, layers containing different materials with different hardness (flaky conductive fine particles and binder resin), such as conductive layers, have structural deformations such as peeling of different interfaces and deformation of voids, so-called artifacts, during cross-section preparation. This may occur and a true cross-sectional structure may not be obtained. On the other hand, the CP (cross section polisher) method is a cross-section preparation method using a broad Ar (argon) ion beam, and even a metal, a semiconductor, a ceramic, and a composite material thereof create a smooth and undistorted sample cross section. be able to. That is, in the present invention, the method of cutting the conductive layer is preferably the CP method.

次に導電層に切断面においてフレーク状導電性微粒子およびフレーク状導電性微粒子以外の成分の画像を得る方法を説明する。
導電層の切断面について走査型電子顕微鏡(SEM)を使用して観察する。
切断面を垂直方向からSEMで観察すると、切断面の表面が均一に金属蒸着されている場合、原子番号効果により樹脂層と金属層でコントラスト差が生まれ金属の形状を認識することができる。具体的には、金属は白色、樹脂層は灰色から黒色に色分けされるため、樹脂の部分と金属の部分を区別して見分けることができる。
画像解析フリーソフト「GIMP2.6.11」では、このSEM画像を簡便に黒と白に2値化することが可能である。同時に黒と白のピクセル数をカウントすることでピクセル数の割合から、導電層のフレーク状導電性微粒子の面積とフレーク状導電性微粒子以外の成分(主成分は、バインダー樹脂)の面積比を算出できる。
Next, a method for obtaining an image of components other than the flaky conductive fine particles and the flaky conductive fine particles on the cut surface of the conductive layer will be described.
The cut surface of the conductive layer is observed using a scanning electron microscope (SEM).
When the cut surface is observed by SEM from the vertical direction, when the surface of the cut surface is uniformly deposited by metal, a contrast difference is generated between the resin layer and the metal layer by the atomic number effect, and the shape of the metal can be recognized. Specifically, since the metal is white and the resin layer is color-coded from gray to black, the resin portion and the metal portion can be distinguished and distinguished.
With the image analysis free software “GIMP 2.6.11”, this SEM image can be easily binarized into black and white. At the same time, by counting the number of black and white pixels, the ratio of the area of the flaky conductive fine particles of the conductive layer and the area other than the flaky conductive fine particles (the main component is the binder resin) is calculated from the ratio of the number of pixels. it can.

導電層の切断面におけるフレーク状導電性微粒子の平均アスペクト比は、上記と同様の方法で導電層を切断しSEMにより観察する。観察する際の拡大倍率は、フレーク状導電性微粒子が30個以上確認できる倍率を任意に設定する。その後、Mac-View Ver.4(マウンテック社)の解析ソフトを用いて、導電性微粒子のSEM画像を読み込み、微粒子の上限値側15%および下限値側15%を排除し、粒子径の中心域約20個を手動認識モードで選択する。なお、切断面で導電性微粒子を選択する際は、微粒子同士が重なっていない形状全体が確認できる微粒子を対象とし、観察視点から平面板が垂直になる角度の微粒子を約30個抽出した後、微粒子の選択を行なう。微粒子の平均アスペクト比は、投影面積円相当径、分布は体積分布の設定として算出する。   The average aspect ratio of the flaky conductive fine particles on the cut surface of the conductive layer is observed by SEM after cutting the conductive layer by the same method as described above. The magnification at the time of observation is arbitrarily set at a magnification at which 30 or more flaky conductive fine particles can be confirmed. Then, using the analysis software of Mac-View Ver.4 (Mounttech), read the SEM image of the conductive fine particles, eliminate the upper limit side 15% and the lower limit side 15% of the fine particles, the central region of the particle diameter Select about 20 in manual recognition mode. When selecting the conductive fine particles on the cut surface, for the fine particles that can confirm the entire shape in which the fine particles do not overlap each other, after extracting about 30 fine particles at an angle at which the plane plate is perpendicular from the observation viewpoint, Select fine particles. The average aspect ratio of the fine particles is calculated as a projected area equivalent circle diameter, and the distribution is calculated as a volume distribution setting.

本発明の電磁波シールドシートは、電磁波をシールドする必要がある様々な用途に使用できる。例えば、リジッドプリント配線板、フレキシブルプリント配線板、COF、TAB、フレキシブルコネクタ、液晶ディスプレイ、タッチパネル等に使用できる。また、携帯電話、スアートフォン、タブレット端末およびパソコン等のケース、建材の壁および窓ガラス等の建材、車両、船舶、航空機等の電磁波を遮蔽する部材としても使用できる。   The electromagnetic wave shielding sheet of the present invention can be used for various applications where electromagnetic waves need to be shielded. For example, it can be used for rigid printed wiring boards, flexible printed wiring boards, COF, TAB, flexible connectors, liquid crystal displays, touch panels, and the like. It can also be used as a member for shielding electromagnetic waves from cases such as mobile phones, smartphones, tablet terminals and personal computers, building materials such as walls of building materials and window glass, vehicles, ships and aircraft.

本発明のプリント配線板は、カバーレイ層、信号配線、および絶縁性基材を備えた配線板に対して、電磁波シールドシートがカバーレイ層または絶縁性基材側の少なくとも一方に加熱圧着されていることが好ましく、図2の(2)のようにカバーレイ層側(ポリイミドフィルム15)に使用することがより好ましい。本発明のプリント配線板は、段差追従性良好な電磁波シールドシートを使用しているため段差の角部において導電性の低下が抑制されている。
なお信号配線は、グランド配線およびチップに電気信号を伝送する配線回路を含む。また、絶縁性基材は、リジッド配線板ではガラスエポキシ、FPCではポリイミド等を使用することが多い。
In the printed wiring board of the present invention, an electromagnetic wave shielding sheet is heat-pressed to at least one of the cover lay layer or the insulating base material side with respect to the wiring board provided with the cover lay layer, the signal wiring, and the insulating base material. It is preferable that it is used on the coverlay layer side (polyimide film 15) as shown in (2) of FIG. Since the printed wiring board of the present invention uses an electromagnetic wave shielding sheet with good step followability, the decrease in conductivity is suppressed at the corners of the steps.
The signal wiring includes a ground wiring and a wiring circuit that transmits an electric signal to the chip. In addition, as the insulating substrate, glass epoxy is often used for rigid wiring boards, and polyimide is often used for FPC.

以下、実施例により本発明をさらに具体的に説明するが、実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における「部」は「重量部」、「%」は「重量%」を表す。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the examples do not limit the scope of rights of the present invention. In the examples, “part” represents “part by weight” and “%” represents “% by weight”.

実施例で使用した導電性微粒子を表1に示す。導電性微粒子1は樹枝状の複合微粒子(核体を銅、被覆層を銀で構成した。D50平均粒子径:11μm 福田金属箔粉工業社製)を使用した。   The conductive fine particles used in the examples are shown in Table 1. The conductive fine particles 1 used were dendritic composite fine particles (the core was made of copper and the coating layer was made of silver. D50 average particle size: 11 μm, manufactured by Fukuda Metal Foil Powder Co., Ltd.).

<導電性微粒子2〜6の製造例>
導電性微粒子1(100.0部)とオレイン酸(1.0部)を原料が均一になるように攪拌混合した後、混合物をジルコニアビーズと共に卓上ボールミルに投入し、分散行程を行うことでフレーク状導電性微粒子を作成した。分散時間を順次延ばすことで、異なる経平均アスペクト比を有する導電性微粒子2〜6をそれぞれ得た。さらに得られた導電性微粒子は、ジルコニアビーズを取り除き、ふるいで粗大粒子を除去した。
なお、切断面の平均アスペクト比は後述する方法で測定した。
<Production example of conductive fine particles 2 to 6>
After stirring and mixing the conductive fine particles 1 (100.0 parts) and oleic acid (1.0 parts) so that the raw materials become uniform, the mixture is put into a table ball mill together with zirconia beads, and the dispersion process is performed to obtain flakes. Conductive fine particles were prepared. By sequentially extending the dispersion time, conductive fine particles 2 to 6 having different trans-mean aspect ratios were obtained. Further, from the obtained conductive fine particles, zirconia beads were removed and coarse particles were removed by sieving.
The average aspect ratio of the cut surface was measured by the method described later.

実施例で使用したバインダー樹脂を以下に示す。
ウレタン樹脂:熱硬化性ウレタン樹脂(トーヨーケム社製)
ポリエステル樹脂:付加型ポリエステル樹脂(トーヨーケム社製)
ポリアミド樹脂:熱硬化性ポリアミド樹脂(トーヨーケム社製)
The binder resin used in the examples is shown below.
Urethane resin: Thermosetting urethane resin (Toyochem)
Polyester resin: addition-type polyester resin (manufactured by Toyochem)
Polyamide resin: Thermosetting polyamide resin (Toyochem)

<実施例1>
ウレタン樹脂を100部、導電性微粒子4を450部、硬化剤としてエポキシ化合物(ビスフェノールA型エポキシ樹脂、エポキシ当量=189g/eq、「JER828」、三菱化学社製)15部およびアジリジン化合物(日本触媒製「ケミタイトPZ−33」)2.0部を容器に仕込み、不揮発分が40%になるようトルエン:イソプロピルアルコール(重量比2:1)の混合溶剤を加えディスパーで10分攪拌した後、剥離性シートに、乾燥厚みが10μmになるようにバーコーターを使用して塗工し、100℃の電気オーブンで2分間乾燥することで導電層を得た。
<Example 1>
100 parts of urethane resin, 450 parts of conductive fine particles 4, 15 parts of an epoxy compound (bisphenol A type epoxy resin, epoxy equivalent = 189 g / eq, “JER828”, manufactured by Mitsubishi Chemical Corporation) as a curing agent, and an aziridine compound (Nippon Catalyst) “Chemitite PZ-33” (2.0 parts) was charged into a container, and a mixed solvent of toluene: isopropyl alcohol (weight ratio 2: 1) was added so that the non-volatile content was 40%. The conductive sheet was coated using a bar coater so as to have a dry thickness of 10 μm, and dried in an electric oven at 100 ° C. for 2 minutes to obtain a conductive layer.

別途、ウレタン樹脂を100部、硬化剤としてエポキシ化合物10部およびアジリジン化合物10部を加えディスパーで10分攪拌した後、剥離性シートに、乾燥厚みが10μmになるようにバーコーターを使用して塗工し、100℃の電気オーブンで2分間乾燥することで絶縁層を得た。次いで導電層に絶縁層を貼り合わせることで電磁波シールドシートを得た。   Separately, 100 parts of a urethane resin, 10 parts of an epoxy compound and 10 parts of an aziridine compound as a curing agent were added and stirred with a disper for 10 minutes, and then applied to a peelable sheet using a bar coater so that the dry thickness was 10 μm. And an insulating layer was obtained by drying in an electric oven at 100 ° C. for 2 minutes. Next, an electromagnetic wave shielding sheet was obtained by attaching an insulating layer to the conductive layer.

<実施例2〜11、比較例1〜3>
実施例1の原料を表2の原料および配合量に変更した以外は実施例1と同様に行うことで、電磁波シールドシートを得た。
<Examples 2-11, Comparative Examples 1-3>
An electromagnetic wave shielding sheet was obtained in the same manner as in Example 1 except that the raw materials of Example 1 were changed to the raw materials and blending amounts shown in Table 2.

<実施例12>
ウレタン樹脂100部、導電性微粒子1を200部、導電性微粒子4を250部容器に仕込み、不揮発分濃度が40%になるようトルエン:イソプロピルアルコール(重量比=2:1)の混合溶剤を加えて混合した。次いでエポキシ化合物(ビスフェノールA型エポキシ樹脂、エポキシ当量=189g/eq、「JER828」、三菱化学社製)15部、アジリジン化合物(日本触媒製「ケミタイトPZ−33」)2.0部を加えディスパーで10分攪拌した後、剥離性シートに、乾燥厚みが10μmになるようにバーコーターを使用して塗工し、100℃の電気オーブンで2分間乾燥することで導電層を得た。
<Example 12>
100 parts of urethane resin, 200 parts of conductive fine particles 1 and 250 parts of conductive fine particles 4 are charged into a container, and a mixed solvent of toluene: isopropyl alcohol (weight ratio = 2: 1) is added so that the nonvolatile content concentration becomes 40%. And mixed. Next, 15 parts of an epoxy compound (bisphenol A type epoxy resin, epoxy equivalent = 189 g / eq, “JER828”, manufactured by Mitsubishi Chemical Corporation) and 2.0 parts of an aziridine compound (“Chemite PZ-33” manufactured by Nippon Shokubai Co., Ltd.) were added. After stirring for 10 minutes, the peelable sheet was coated using a bar coater so as to have a dry thickness of 10 μm, and dried in an electric oven at 100 ° C. for 2 minutes to obtain a conductive layer.

別途、ウレタン樹脂を100部、硬化剤としてエポキシ化合物10部およびアジリジン化合物10部を加えディスパーで10分攪拌した後、剥離性シートに、乾燥厚みが10μmになるようにバーコーターを使用して塗工し、100℃の電気オーブンで2分間乾燥することで絶縁層を得た。次いで、厚さ3μmの電解銅箔の一方の面に前述した導電層を貼り合わせた後、電解銅箔の他方の面に絶縁層を貼り合わせることで剥離性シート/絶縁層/電解銅箔/導電層/剥離性シートの構成の電磁波シールドシートを得た。   Separately, 100 parts of a urethane resin, 10 parts of an epoxy compound and 10 parts of an aziridine compound as a curing agent were added and stirred with a disper for 10 minutes, and then applied to a peelable sheet using a bar coater so that the dry thickness was 10 μm. And an insulating layer was obtained by drying in an electric oven at 100 ° C. for 2 minutes. Next, after bonding the conductive layer described above to one surface of the electrolytic copper foil having a thickness of 3 μm, the insulating layer is bonded to the other surface of the electrolytic copper foil, thereby releasing the sheet / insulating layer / electrolytic copper foil / An electromagnetic wave shielding sheet having a configuration of conductive layer / peelable sheet was obtained.

下記評価項目に従い物性を測定した。結果を表2示す。   Physical properties were measured according to the following evaluation items. The results are shown in Table 2.

<段差試験>
図3(1)を参照して説明する。厚さ200μm、幅20mm、長さ30mmの接着剤付きのポリイミドフィルム15、厚さ200μm、幅50mm、長さ50mmのステンレス板16、および得られた電磁波シールドシート11を幅40mm、長さ40mmの大きさに準備し試料とした。ステンレス板16上にポリイミドフィルム15がほぼ中心の位置に来るように接着剤を塗布し熱圧着して貼り付けた。次いで電磁波シールドシート11からの導電層14側の剥離性フィルムを剥がし、露出した導電層14とポリイミドフィルム15が接するように電磁波シールドシート11を載せた。これらを150℃、2MPa、30minの条件で圧着し、導電層14および絶縁層13のバインダー樹脂を硬化させた後、絶縁層側の剥離性フィルム12を剥がし、図3(2)に示す積層体17を得た。
そして積層体17の円形破線18の段差部を肉眼および顕微鏡を使用した50倍の拡大画像を観察することで、導電層および絶縁層の破断状態を評価した。
○:電磁波シールドシードが破断しなかった。良好な結果。
×:電磁波シールドシートが破断した。実用不可
<Step test>
This will be described with reference to FIG. A polyimide film 15 with an adhesive having a thickness of 200 μm, a width of 20 mm, and a length of 30 mm, a stainless plate 16 having a thickness of 200 μm, a width of 50 mm, and a length of 50 mm, and the obtained electromagnetic wave shielding sheet 11 having a width of 40 mm and a length of 40 mm Prepared in size and used as a sample. An adhesive was applied onto the stainless steel plate 16 so that the polyimide film 15 was almost at the center, and was bonded by thermocompression bonding. Next, the peelable film on the conductive layer 14 side from the electromagnetic wave shielding sheet 11 was peeled off, and the electromagnetic wave shielding sheet 11 was placed so that the exposed conductive layer 14 and the polyimide film 15 were in contact with each other. These are pressure-bonded under the conditions of 150 ° C., 2 MPa, 30 min to cure the binder resin of the conductive layer 14 and the insulating layer 13, and then the peelable film 12 on the insulating layer side is peeled off, and the laminate shown in FIG. 17 was obtained.
And the fracture | rupture state of a conductive layer and an insulating layer was evaluated by observing the 50-times enlarged image which used the naked eye and the microscope for the level | step-difference part of the circular broken line 18 of the laminated body 17. FIG.
○: The electromagnetic wave shield seed did not break. Good results.
X: The electromagnetic wave shielding sheet broke. Impractical

<接続抵抗値>
電磁波シールドシートを幅20mm、長さ50mmの大きさに準備し試料25とした。図4(1)の平面図を示して説明すると試料25から剥離性フィルムを剥がし、露出した導電層25bを、別に作製したフレキシブルプリント配線板(厚み25μmのポリイミドフィルム21上に、互いに電気的に接続されていない厚み18μmの銅箔回路22A、および銅箔回路22Bが形成されており、銅箔回路22A上に、接着剤付きの、厚み37.5μm、直径1.6mmのスルーホール24を有するカバーフィルム23が積層された配線板)に150℃、2MPa、30minの条件で圧着し、導電層25bおよび絶縁層25aを硬化させた。圧着後、絶縁層25a側の剥離性フィルムを除去し、図4(4)の平面図に示す22A−22B間の接続抵抗値を三菱化学製「ロレスターGP」のBSPプローブを用いて測定した。なお、図4(2)は、図4(1)のD−D’断面図、図4(3)は図4(1)のC−C’断面図である。同様に図4(5)は、図4(4)のD−D’断面図、図4(6)は、図4(4)のC−C’断面図である。接続抵抗値の評価基準は以下の通りである。
◎:300mΩ未満 良好な結果である。
○:300mΩ以上700mΩ未満 実用上問題ない。
×:1000mΩ以上 実用不可
<Connection resistance value>
An electromagnetic wave shielding sheet having a width of 20 mm and a length of 50 mm was prepared as Sample 25. 4 (1), the peelable film is peeled off from the sample 25, and the exposed conductive layer 25b is electrically connected to a separately prepared flexible printed wiring board (polyimide film 21 having a thickness of 25 μm). A copper foil circuit 22A and a copper foil circuit 22B with a thickness of 18 μm that are not connected are formed, and a through hole 24 with a thickness of 37.5 μm and a diameter of 1.6 mm is attached on the copper foil circuit 22A. The conductive layer 25b and the insulating layer 25a were cured by pressure bonding to the wiring board on which the cover film 23 was laminated) under the conditions of 150 ° C., 2 MPa, and 30 min. After the pressure bonding, the peelable film on the insulating layer 25a side was removed, and the connection resistance value between 22A and 22B shown in the plan view of FIG. 4 (4) was measured using a BSP probe of “Lorestar GP” manufactured by Mitsubishi Chemical. 4 (2) is a sectional view taken along the line DD ′ of FIG. 4 (1), and FIG. 4 (3) is a sectional view taken along the line CC ′ of FIG. 4 (1). Similarly, FIG. 4 (5) is a DD ′ sectional view of FIG. 4 (4), and FIG. 4 (6) is a CC ′ sectional view of FIG. 4 (4). The evaluation criteria for the connection resistance value are as follows.
A: Less than 300 mΩ Good results.
○: 300 mΩ or more and less than 700 mΩ There is no practical problem.
×: 1000 mΩ or more

<耐熱性>
電磁波シールドシートを幅10mm、長さ60mmの大きさに準備し試料とした。試料の導電層側の剥離性シートを剥がし露出した導電層に、厚さ50μmのポリイミドフィルム(東レ・デュポン社製「カプトン200EN」)を150℃、2MPa、30minの条件で圧着し、導電層および絶縁層の樹脂を硬化させた。硬化後、絶縁層側の剥離性シートを剥がし絶縁層を露出させた。次に試料を180℃の電気オーブンで3min、次いで280℃の電気オーブンで90sec熱処理した。そして加熱処理後の試料の外観を目視で観察し、発泡、浮き、剥がれ等の外観不良の有無を評価した。耐熱性は、それぞれ5サンプルで試験をおこない、外観不良が発生したサンプル数で評価した。なお、280℃加熱はリフロー工程での加熱温度に相当する。
◎:外観不良発生しなかった。良好な結果である。
○:外観不良発生が1個。実用上問題ない。
×:外観不良発生が3個以上。実用不可。
<Heat resistance>
An electromagnetic wave shielding sheet was prepared to have a width of 10 mm and a length of 60 mm to prepare a sample. A 50 μm-thick polyimide film (“Kapton 200EN” manufactured by Toray DuPont) is pressure-bonded to the exposed conductive layer by peeling off the peelable sheet on the conductive layer side of the sample at 150 ° C., 2 MPa, 30 min. The insulating layer resin was cured. After curing, the insulating layer side peelable sheet was peeled off to expose the insulating layer. Next, the sample was heat-treated in an electric oven at 180 ° C. for 3 minutes and then in an electric oven at 280 ° C. for 90 seconds. And the external appearance of the sample after heat processing was observed visually, and the presence or absence of external appearance defects, such as foaming, a float, and peeling, was evaluated. The heat resistance was evaluated by the number of samples in which a test was performed with 5 samples each and appearance defects occurred. The heating at 280 ° C. corresponds to the heating temperature in the reflow process.
A: No appearance defect occurred. It is a good result.
○: One appearance defect occurred. There is no problem in practical use.
X: Three or more appearance defects occurred. Not practical.

<折り曲げ試験>
上記「接続抵抗値」と同様に行い図4(4)のテストピースを作成した。その後、図4(4)のE−E’間を山折りした後、平坦に戻す動作を行い1セットとした。折り曲げ試験ではこれを20セット行った。図4(4)の平面図に示す22A−22B間の試験前と試験後との接続抵抗値を三菱化学製「ロレスターGP」のBSPプローブを用いて測定し、その変化率を計算した。折り曲げ試験の評価基準は以下の通りである。
◎:接続抵抗値の増加が20%未満 良好な結果である。
○:接続抵抗値の増加が20%以上、80%未満 実用上問題ない。
×:接続抵抗値の増加が80%以上 実用不可。
<Bending test>
The test piece of FIG. 4 (4) was created in the same manner as the “connection resistance value” described above. After that, after the EE ′ of FIG. 4 (4) was folded in a mountain, the operation of returning to flat was performed to make one set. In the bending test, 20 sets were performed. The connection resistance value before and after the test between 22A and 22B shown in the plan view of FIG. 4 (4) was measured using a BSP probe manufactured by Mitsubishi Chemical Corporation “Lorestar GP”, and the rate of change was calculated. The evaluation criteria for the bending test are as follows.
A: Increase in connection resistance value is less than 20%.
○: Increase in connection resistance value is 20% or more and less than 80%.
X: Increase in connection resistance value is 80% or more.

<接着力>
電磁波シールドシートを幅25mm、長さ70mmに準備し試料とした。試料から導電層側の剥離性シートを剥がし露出した導電層に、厚さ50μmのポリイミドフィルム(東レ・デュポン社製「カプトン200EN」)を150℃、2.0MPa、30minの条件で圧着することで導電層および絶縁層の樹脂を硬化させた。接着力測定のために電磁波シールドシートを補強する目的で絶縁層側の剥離性フィルムを剥がし、露出した絶縁層に、ポリウレタンポリウレア系接着剤から形成した接着シートを用い、ポリイミドフィルム(東レ・デュポン社製「カプトン200EN」)を、150℃、2MPa、30minの条件で圧着することで「ポリイミド/電磁波シールドシート/接着シート/ポリイミド」の構成の積層体を得た。この積層体について、引張試験機を使用して23℃50%RHの雰囲気下、引っ張り速度50mm/min、剥離角度90°で、導電層とポリイミドフィルムとの界面を剥離することで接着力(N/25mm)を測定し、未経時接着力とした。別途、積層体を85℃85%RHに設定した恒温恒湿機に7日間放置し、その後、23℃50%RHで1日放置後、同雰囲気で積層体の接着力を測定し、経時後接着力とした。接着力の評価基準は以下の通りである。
◎:9N/25mm以上 良好な結果である。
○:3N/25mm以上、9N/25mm未満 実用上問題ない。
×:3N/25mm未満 実用不可
<Adhesive strength>
An electromagnetic wave shielding sheet was prepared with a width of 25 mm and a length of 70 mm as a sample. By peeling the peelable sheet on the conductive layer side from the sample and pressing the polyimide film with a thickness of 50 μm (“Kapton 200EN” manufactured by Toray DuPont) under the conditions of 150 ° C., 2.0 MPa, and 30 min. The resin of the conductive layer and the insulating layer was cured. In order to reinforce the electromagnetic shielding sheet for adhesive strength measurement, the peelable film on the insulating layer side is peeled off, and an adhesive sheet formed from polyurethane polyurea adhesive is used for the exposed insulating layer, polyimide film (Toray DuPont) A laminate having a structure of “polyimide / electromagnetic wave shield sheet / adhesive sheet / polyimide” was obtained by pressure-bonding “Kapton 200EN” manufactured at 150 ° C., 2 MPa, 30 min. About this laminated body, adhesive force (N) is peeled by peeling the interface between the conductive layer and the polyimide film using a tensile tester in an atmosphere of 23 ° C. and 50% RH at a pulling speed of 50 mm / min and a peeling angle of 90 °. / 25 mm) was measured and used as the non-aging adhesive force. Separately, the laminate was left in a thermo-hygrostat set at 85 ° C. and 85% RH for 7 days, then left at 23 ° C. and 50% RH for 1 day, and then the adhesive strength of the laminate was measured in the same atmosphere. Adhesive strength was assumed. The evaluation criteria for adhesive strength are as follows.
A: 9 N / 25 mm or more Good results.
○: 3 N / 25 mm or more and less than 9 N / 25 mm No problem in practical use.
×: Less than 3N / 25mm

<導電層の断面積差>
電磁波シールドシートを幅5mm・長さ5mm程度の大きさに切断した後、スライドガラス上に、エポキシ樹脂(ペトロポキシ154、マルトー社製)を0.05g滴下し、電磁波シールドシートを接着させた。さらに上記エポキシ樹脂で電磁波シールドシートとポリイミドフィルム(東レ・デュポン社製「カプトン200EN」)とを接着し、(スライドガラス/電磁波シールドシート/ポリイミドフィルム)の構成の積層体を得た。得られた積層体をクロスセクションポリッシャー(日本電子社製、SM−09010)を用いてポリイミドフィルム側からイオンビーム照射により切断加工して、導電層の断面を形成した。
<Cross-sectional area difference of conductive layer>
After cutting the electromagnetic shielding sheet into a size of about 5 mm in width and 5 mm in length, 0.05 g of an epoxy resin (Petropoxy 154, manufactured by Marto) was dropped on the slide glass to adhere the electromagnetic shielding sheet. Furthermore, an electromagnetic wave shielding sheet and a polyimide film (“Kapton 200EN” manufactured by Toray DuPont) were bonded with the epoxy resin to obtain a laminate having a configuration of (slide glass / electromagnetic wave shielding sheet / polyimide film). The obtained laminate was cut by ion beam irradiation from the polyimide film side using a cross section polisher (manufactured by JEOL Ltd., SM-09010) to form a cross section of the conductive layer.

得られた導電層の断面を白金蒸着した後、電界放出形電子顕微鏡(日立製作所社製、S−4700)を使用して拡大画像を観察、保存した。観察条件は、加速電圧:5kV、エミッション電流:8mA、倍率:2000〜5000倍とした。
得られた拡大画像についてフリーソフトの「GIMP2.6.11」を使用しデータを読み込み、導電層を範囲指定、しきい値を自動調整して導電性微粒子を白、導電性微粒子以外の成分を黒に変換した。その後ヒストグラムで黒領域(0〜254)を選択することで黒色のピクセル数のパーセンテージ即ち導電層の断面積を100としたときのフレーク状導電性微粒子以外の成分が占める面積(面積(a)という)を算出した。面積(a)は、それぞれ5サンプルを評価し平均値を算出した。
また、電磁波シールドシートを150℃、2.0MPa、30minの条件で加熱圧着を行い硬化させた以外は、上記同様に加熱圧着後の導電層の断面積を100としたときのフレーク状導電性微粒子以外の成分が占める面積(面積(b)という)を算出した。そしてこれらの数値から加熱圧着後に導電層の加熱圧着後のフレーク状導電性微粒子以外の成分の断面積差(面積(a)−面積(b))を計算した。
After the platinum cross section of the obtained conductive layer was deposited, an enlarged image was observed and stored using a field emission electron microscope (S-4700, manufactured by Hitachi, Ltd.). The observation conditions were acceleration voltage: 5 kV, emission current: 8 mA, and magnification: 2000 to 5000 times.
Use the free software "GIMP 2.6.11" to read the enlarged image obtained, specify the conductive layer range, adjust the threshold automatically to make the conductive fine particles white, and the components other than the conductive fine particles Converted to black. Thereafter, by selecting a black region (0 to 254) in the histogram, the percentage occupied by the components other than the flaky conductive fine particles when the percentage of the number of black pixels, that is, the cross-sectional area of the conductive layer is 100, is referred to as area (a). ) Was calculated. For the area (a), 5 samples were evaluated and the average value was calculated.
In addition, flaky conductive fine particles when the cross-sectional area of the conductive layer after thermocompression bonding is 100 as described above, except that the electromagnetic wave shielding sheet is cured by thermocompression bonding under the conditions of 150 ° C., 2.0 MPa, and 30 min. The area occupied by other components (referred to as area (b)) was calculated. And the cross-sectional area difference (Area (a) -Area (b)) of components other than the flaky conductive fine particles after the thermocompression bonding of the conductive layer after the thermocompression bonding was calculated from these numerical values.

<アスペクト比>
上記「断面積差」と同様の方法で得た導電層の断面を白金蒸着した後、電界放出形電子顕微鏡(日立製作所社製、S−4700)を使用して拡大画像を観察、保存した。観察条件は加速電圧は5kV、エミッション電流は8mA、倍率はフレーク状導電性微粒子が30個以上観察できるように倍率を任意に設定した。
得られた拡大画像をMac−View Ver.4(マウンテック社)の解析ソフトを用いて読み込み、既に説明した通りに手動認識モードでフレーク状導電性微粒子を約30個選択した。微粒子の上限値側15%および下限値側15%を排除し、粒子基準データは、投影面積円相当径、分布は体積分布の設定としてアスペクト比を求めた。
<Aspect ratio>
After the platinum cross-section of the cross section of the conductive layer obtained by the same method as the above “cross-sectional area difference” was used, an enlarged image was observed and stored using a field emission electron microscope (S-4700, manufactured by Hitachi, Ltd.). The observation conditions were an acceleration voltage of 5 kV, an emission current of 8 mA, and a magnification arbitrarily set so that 30 or more flaky conductive fine particles could be observed.
The obtained enlarged image was read using the analysis software of Mac-View Ver.4 (Mounttech), and about 30 flaky conductive fine particles were selected in the manual recognition mode as already described. The upper limit value side 15% and the lower limit value side 15% of the fine particles were excluded, and the aspect ratio was obtained by setting the particle reference data as the projected area equivalent circle diameter and the distribution as the volume distribution.

1 絶縁層
2 導電層
3 剥離性シート
4 金属薄膜層
11 電磁波シールドシート
12 剥離性シート
13 絶縁層
14 導電層
15 ポリイミドフィルム
16 ステンレス板
17 積層体
18 段差試験観察部
21 ポリイミドフィルム
22A、22B 銅箔回路
23 カバーフィルム
24 スルーホール
25 電磁波シールドシート
DESCRIPTION OF SYMBOLS 1 Insulating layer 2 Conductive layer 3 Peelable sheet 4 Metal thin film layer 11 Electromagnetic wave shield sheet 12 Peelable sheet 13 Insulating layer 14 Conductive layer 15 Polyimide film 16 Stainless steel plate 17 Laminate 18 Step test observation part 21 Polyimide film 22A, 22B Copper foil Circuit 23 Cover film 24 Through hole 25 Electromagnetic wave shield sheet

Claims (4)

フレーク状導電性微粒子と、バインダー樹脂とを含む導電層、および絶縁層を備えた電磁波シールドシートであって、
前記導電層の切断面における前記フレーク状導電性微粒子の平均アスペクト比が7〜15であり、
加熱圧着前の前記導電層の断面積を100としたときの導電性微粒子以外の成分が占める面積が55〜80であり、
前記電磁波シールドシートを150℃、2MPa、30分間の条件で加熱圧着前後の導電性微粒子以外の成分が占める面積の差が5〜25であることを特徴とする電磁波シールドシート。
An electromagnetic wave shielding sheet comprising a conductive layer containing flaky conductive fine particles and a binder resin, and an insulating layer,
The average aspect ratio of the flaky conductive fine particles at the cut surface of the conductive layer is 7 to 15,
The area occupied by components other than the conductive fine particles when the cross-sectional area of the conductive layer before thermocompression bonding is 100 is 55 to 80,
The electromagnetic wave shielding sheet, wherein the electromagnetic wave shielding sheet has a difference in area occupied by components other than the conductive fine particles before and after thermocompression bonding at 150 ° C. and 2 MPa for 30 minutes.
前記バインダー樹脂が熱硬化性樹脂であることを特徴とする請求項1記載の電磁波シールドシート。   The electromagnetic wave shielding sheet according to claim 1, wherein the binder resin is a thermosetting resin. 前記導電層と、金属薄膜層と、前記絶縁層とを備えた請求項1または2に記載の電磁波シールドシート。   The electromagnetic wave shielding sheet according to claim 1, comprising the conductive layer, a metal thin film layer, and the insulating layer. 請求項1〜3いずれか1項に記載の電磁波シールドシートを備えたプリント配線板。   The printed wiring board provided with the electromagnetic wave shielding sheet of any one of Claims 1-3.
JP2014251240A 2014-12-11 2014-12-11 Electromagnetic shielding sheet and printed wiring board Active JP6028290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014251240A JP6028290B2 (en) 2014-12-11 2014-12-11 Electromagnetic shielding sheet and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014251240A JP6028290B2 (en) 2014-12-11 2014-12-11 Electromagnetic shielding sheet and printed wiring board

Publications (2)

Publication Number Publication Date
JP2016115725A true JP2016115725A (en) 2016-06-23
JP6028290B2 JP6028290B2 (en) 2016-11-16

Family

ID=56140187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014251240A Active JP6028290B2 (en) 2014-12-11 2014-12-11 Electromagnetic shielding sheet and printed wiring board

Country Status (1)

Country Link
JP (1) JP6028290B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183568B1 (en) * 2017-02-10 2017-08-23 東洋インキScホールディングス株式会社 Manufacturing method of component mounting board
WO2018147355A1 (en) * 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Component mounting substrate, method for producing same, laminate, electromagnetic shielding sheet and electronic device
JP2018129498A (en) * 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Electronic component-mounted board, laminate, electromagnetic wave-shielding sheet and electronic equipment
JP2019036585A (en) * 2017-08-10 2019-03-07 東洋インキScホールディングス株式会社 Electromagnetic wave shield laminate for vacuum molding, and electromagnetic wave shield molded body employing the same
JP2020035858A (en) * 2018-08-29 2020-03-05 タツタ電線株式会社 Electromagnetic wave shield film with transfer film, method of manufacturing the same, and method of manufacturing shield printed wiring board
JP6857288B1 (en) * 2019-05-29 2021-04-14 タツタ電線株式会社 Electromagnetic wave shield film and shield printed wiring board
JP2021061365A (en) * 2019-10-09 2021-04-15 信越ポリマー株式会社 Electromagnetic wave shield film, circuit board, and manufacturing method thereof
JP2021082658A (en) * 2019-11-15 2021-05-27 信越ポリマー株式会社 Electromagnetic wave-shield film, electromagnetic wave-shield film-attached print wiring board, and manufacturing method thereof
JP2021082646A (en) * 2019-11-15 2021-05-27 信越ポリマー株式会社 Electromagnetic wave-shield film, electromagnetic wave-shield film-attached print wiring board, and manufacturing methods thereof
JPWO2022065380A1 (en) * 2020-09-23 2022-03-31
WO2023054656A1 (en) * 2021-09-30 2023-04-06 タツタ電線株式会社 Electromagnetic wave shielding film and shielded printed wiring board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269632A (en) * 1999-03-17 2000-09-29 Tatsuta Electric Wire & Cable Co Ltd Shield flexible printed wiring board, manufacture thereof and reinforcing shield film therefor
JP2006207001A (en) * 2005-01-31 2006-08-10 Alps Electric Co Ltd Method for manufacturing magnetic composite sheet
JP2011187895A (en) * 2010-03-11 2011-09-22 Tatsuta Electric Wire & Cable Co Ltd Electromagnetic wave shielding film, and flexible substrate using the same, and method of manufacturing the same
JP2011216830A (en) * 2010-04-02 2011-10-27 Polymatech Co Ltd Electromagnetic wave noise suppressor and method for manufacturing the same
JP2013065675A (en) * 2011-09-16 2013-04-11 Fujimori Kogyo Co Ltd Electromagnetic wave shield material for fpc
JP2015109404A (en) * 2013-10-24 2015-06-11 信越ポリマー株式会社 Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269632A (en) * 1999-03-17 2000-09-29 Tatsuta Electric Wire & Cable Co Ltd Shield flexible printed wiring board, manufacture thereof and reinforcing shield film therefor
JP2006207001A (en) * 2005-01-31 2006-08-10 Alps Electric Co Ltd Method for manufacturing magnetic composite sheet
JP2011187895A (en) * 2010-03-11 2011-09-22 Tatsuta Electric Wire & Cable Co Ltd Electromagnetic wave shielding film, and flexible substrate using the same, and method of manufacturing the same
JP2011216830A (en) * 2010-04-02 2011-10-27 Polymatech Co Ltd Electromagnetic wave noise suppressor and method for manufacturing the same
JP2013065675A (en) * 2011-09-16 2013-04-11 Fujimori Kogyo Co Ltd Electromagnetic wave shield material for fpc
JP2015109404A (en) * 2013-10-24 2015-06-11 信越ポリマー株式会社 Electromagnetic wave shield film, flexible printed wiring board with electromagnetic wave shield film, and manufacturing method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183568B1 (en) * 2017-02-10 2017-08-23 東洋インキScホールディングス株式会社 Manufacturing method of component mounting board
WO2018147355A1 (en) * 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Component mounting substrate, method for producing same, laminate, electromagnetic shielding sheet and electronic device
JP2018129498A (en) * 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Electronic component-mounted board, laminate, electromagnetic wave-shielding sheet and electronic equipment
JP2018129493A (en) * 2017-02-10 2018-08-16 東洋インキScホールディングス株式会社 Method for manufacturing component-mounted board
JP2019036585A (en) * 2017-08-10 2019-03-07 東洋インキScホールディングス株式会社 Electromagnetic wave shield laminate for vacuum molding, and electromagnetic wave shield molded body employing the same
JP2020035858A (en) * 2018-08-29 2020-03-05 タツタ電線株式会社 Electromagnetic wave shield film with transfer film, method of manufacturing the same, and method of manufacturing shield printed wiring board
KR20200026065A (en) * 2018-08-29 2020-03-10 타츠타 전선 주식회사 Shielding film with transfer film, method for producing shielding film with transfer film
CN110876256A (en) * 2018-08-29 2020-03-10 拓自达电线株式会社 Electromagnetic wave shielding film, method for manufacturing same, and method for manufacturing shielded printed wiring board
KR102558230B1 (en) * 2018-08-29 2023-07-20 타츠타 전선 주식회사 Shielding film with transfer film, method for producing shielding film with transfer film
JP7256618B2 (en) 2018-08-29 2023-04-12 タツタ電線株式会社 Electromagnetic wave shielding film with transfer film, method for producing electromagnetic wave shielding film with transfer film, and method for producing shield printed wiring board
KR102406850B1 (en) 2019-05-29 2022-06-08 타츠타 전선 주식회사 Electromagnetic wave shielding film and shielding printed wiring board
KR20210154891A (en) 2019-05-29 2021-12-21 타츠타 전선 주식회사 Electromagnetic wave shielding film and shielding printed wiring board
CN113853839A (en) * 2019-05-29 2021-12-28 拓自达电线株式会社 Electromagnetic wave shielding film and shielded printed wiring board
CN113853839B (en) * 2019-05-29 2022-09-30 拓自达电线株式会社 Electromagnetic wave shielding film and shielding printed wiring board
US11647618B2 (en) 2019-05-29 2023-05-09 Tatsuta Electric Wire & Cable Co., Ltd. Electromagnetic wave shielding film and shielding printed wiring board
JP6857288B1 (en) * 2019-05-29 2021-04-14 タツタ電線株式会社 Electromagnetic wave shield film and shield printed wiring board
JP2021061365A (en) * 2019-10-09 2021-04-15 信越ポリマー株式会社 Electromagnetic wave shield film, circuit board, and manufacturing method thereof
JP2021082646A (en) * 2019-11-15 2021-05-27 信越ポリマー株式会社 Electromagnetic wave-shield film, electromagnetic wave-shield film-attached print wiring board, and manufacturing methods thereof
JP2021082658A (en) * 2019-11-15 2021-05-27 信越ポリマー株式会社 Electromagnetic wave-shield film, electromagnetic wave-shield film-attached print wiring board, and manufacturing method thereof
JPWO2022065380A1 (en) * 2020-09-23 2022-03-31
KR20230070200A (en) 2020-09-23 2023-05-22 타츠타 전선 주식회사 Electromagnetic wave shielding film and shielding printed wiring board
WO2023054656A1 (en) * 2021-09-30 2023-04-06 タツタ電線株式会社 Electromagnetic wave shielding film and shielded printed wiring board

Also Published As

Publication number Publication date
JP6028290B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6028290B2 (en) Electromagnetic shielding sheet and printed wiring board
JP6264731B2 (en) Conductive resin composition, conductive sheet, electromagnetic wave shielding sheet, manufacturing method thereof, and manufacturing method of conductive fine particles
JP6255816B2 (en) Electromagnetic shielding sheet and printed wiring board
TW202102068A (en) Electromagnetic wave shielding sheet and printed wiring board
JP6597927B1 (en) Electromagnetic shielding sheet and electromagnetic shielding wiring circuit board
JP6388064B2 (en) Electronic component mounting substrate, laminate, electromagnetic wave shielding sheet, and electronic device
JP6287430B2 (en) Conductive adhesive sheet, electromagnetic shielding sheet, and printed wiring board
TWI734575B (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
JP2017193717A (en) Conductive resin composition, conductive adhesive sheet, electromagnetic wave shield sheet and printed wiring board
JP6544466B1 (en) Electromagnetic wave shield sheet and printed wiring board
JP2015138813A (en) Electromagnetic wave shield sheet, and printed wiring board with electromagnetic wave shield sheet
JP2017220641A (en) Printed wiring board and electronic apparatus
JP6566008B2 (en) Electromagnetic shielding sheet and printed wiring board
TWI734574B (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
JP7001187B1 (en) Electromagnetic wave shield sheet and its manufacturing method, shielded wiring board, and electronic equipment
JP7347184B2 (en) Electronic component mounting board and electronic equipment using the same
TWI837383B (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
JP6451879B2 (en) Conductive adhesive sheet, electromagnetic shielding sheet, and printed wiring board
JP2020205399A (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
JP2019041132A (en) Conductive resin composition, conductive adhesive sheet, electromagnetic wave shield sheet and printed wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160928

R151 Written notification of patent or utility model registration

Ref document number: 6028290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250