JP2017220641A - Printed wiring board and electronic apparatus - Google Patents

Printed wiring board and electronic apparatus Download PDF

Info

Publication number
JP2017220641A
JP2017220641A JP2016116308A JP2016116308A JP2017220641A JP 2017220641 A JP2017220641 A JP 2017220641A JP 2016116308 A JP2016116308 A JP 2016116308A JP 2016116308 A JP2016116308 A JP 2016116308A JP 2017220641 A JP2017220641 A JP 2017220641A
Authority
JP
Japan
Prior art keywords
layer
metal
printed wiring
wiring board
conductive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016116308A
Other languages
Japanese (ja)
Other versions
JP6772567B2 (en
Inventor
聡 西之原
Satoshi Nishinohara
聡 西之原
英宣 小林
Hidenori Kobayashi
英宣 小林
孝洋 松沢
Takahiro Matsuzawa
孝洋 松沢
努 早坂
Tsutomu Hayasaka
努 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2016116308A priority Critical patent/JP6772567B2/en
Publication of JP2017220641A publication Critical patent/JP2017220641A/en
Application granted granted Critical
Publication of JP6772567B2 publication Critical patent/JP6772567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board in which bubbles are difficult to be produced even after a reflow process, a conductive adhesive layer and a metal plate have good adhesive strength, and conductivity is good between a ground circuit and a metal plate.SOLUTION: A printed wiring board includes a wiring circuit board, a conductive adhesive layer and a metal reinforcement plate. The conductive adhesive layer adheres to the wiring circuit board and metal reinforcement plate, respectively, the metal reinforcement plate has an intermediate layer and a surface protection layer on the surface of the metal plate, the intermediate layer is a nickel layer of 0.1-3 μm thick, and the surface protection layer is a noble metal layer of 0.05-0.5 μm thick.SELECTED DRAWING: Figure 1

Description

本発明は、金属補強板を備えたプリント配線板およびそのプリント配線板を備えた電子機器に関する。   The present invention relates to a printed wiring board including a metal reinforcing plate and an electronic apparatus including the printed wiring board.

携帯電話、およびスマートフォン等の電子機器は、内部に実装された電子部品が発する電磁波ノイズまたは外部から侵入する電磁波ノイズを原因とした誤作動を防止するために電磁波シールド層を設けることが一般的である。また、電子機器の内部に搭載されるプリント配線板、特にフレキシブルプリント配線板は、柔軟であるためその表面に電子部品を実装する場合、フレキシブルプリント配線板の電子部品実装面に対向した他面に接着剤層で金属板を貼り付けて補強することが行なわれている。そこで特許文献1では、前記接着剤層に導電性接着剤層を使用して電磁波シールド性を付与したプリント配線板が開示されている。   Electronic devices such as mobile phones and smartphones are generally provided with an electromagnetic shielding layer to prevent malfunction caused by electromagnetic noise generated by electronic components mounted inside or electromagnetic noise entering from the outside. is there. Also, printed wiring boards mounted inside electronic devices, especially flexible printed wiring boards, are flexible, so when mounting electronic components on the surface, be sure to place them on the other side of the flexible printed wiring board facing the electronic component mounting surface. It has been practiced to reinforce by attaching a metal plate with an adhesive layer. Therefore, Patent Document 1 discloses a printed wiring board in which an electromagnetic wave shielding property is imparted to the adhesive layer by using a conductive adhesive layer.

また、特許文献2では、電子部品に対する電磁波の効率的な除去のため、金属板の表面に金メッキを施し、導電性を改善したプリント配線板が開示されている。   Further, Patent Document 2 discloses a printed wiring board in which the surface of a metal plate is plated with gold in order to efficiently remove electromagnetic waves from an electronic component to improve conductivity.

特開2005−317946号公報JP 2005-317946 A 国際公開2014/132951号International Publication No. 2014/132951

しかし、特許文献1に記載されたプリント配線板は、導電性接着剤層を使用することで、通常の接着力は向上したが、プリント配線板の作製過程におけるリフロー工程(例えば230〜280℃)で、導電性接着剤層と金属補強板の界面に気泡が生じ、金属補強板が剥離し易いという問題があった。
また、特許公報2に記載されたプリント配線板は、金属板と貴金属等により形成されるメッキの界面の密着力が弱く、界面でクラックが生じ、抵抗値が増大する問題があった。
さらに、貴金属等により形成されるメッキを施した金属板は、導電性接着剤層との接着力が低い問題があった。
However, the printed wiring board described in Patent Document 1 uses a conductive adhesive layer to improve the normal adhesive force, but the reflow process (for example, 230 to 280 ° C.) in the manufacturing process of the printed wiring board. Therefore, there is a problem that bubbles are generated at the interface between the conductive adhesive layer and the metal reinforcing plate, and the metal reinforcing plate is easily peeled off.
In addition, the printed wiring board described in Patent Document 2 has a problem that the adhesion force at the interface of the plating formed by the metal plate and the noble metal is weak, cracks are generated at the interface, and the resistance value increases.
Furthermore, the plated metal plate formed of noble metal or the like has a problem of low adhesive force with the conductive adhesive layer.

本発明は、リフロー工程を経た後にも気泡が生じ難く、導電性接着剤層と金属板とが良好な接着力を有し、グランド回路と金属板との導電性が良好なプリント配線板の提供を目的とする。   The present invention provides a printed wiring board in which bubbles are not easily generated even after the reflow process, the conductive adhesive layer and the metal plate have good adhesion, and the electrical conductivity between the ground circuit and the metal plate is good. With the goal.

本発明のプリント配線板は、配線回路基板、導電性接着剤層、および金属補強板を備え、前記導電性接着剤層は、前記配線回路基板および金属補強板に対してそれぞれ接着し、前記金属補強板は、金属板の表面に中間層と表面保護層とを有してなり、前記中間層は、厚みが0.1〜3μmのニッケル層であり、前記表面保護層は、厚みが0.05〜0.5μmの貴金属層であることを特徴とする。   The printed wiring board of the present invention includes a wiring circuit board, a conductive adhesive layer, and a metal reinforcing plate, and the conductive adhesive layer is bonded to the wiring circuit board and the metal reinforcing plate, respectively, and the metal The reinforcing plate has an intermediate layer and a surface protective layer on the surface of the metal plate, the intermediate layer is a nickel layer having a thickness of 0.1 to 3 μm, and the surface protective layer has a thickness of 0. It is a noble metal layer of 05 to 0.5 μm.

本発明によれば、金属補強板が、金属板の表面に中間層であるニッケル層を介して、貴金属により形成されてなる表面保護層を有していることにより、金属板の表面に直接、貴金属層である表面保護層を設ける場合よりも接着性に優れ、表面保護層が、中間層を介して金属板に対して十分な密着力で一体化する。   According to the present invention, the metal reinforcing plate has a surface protective layer formed of a noble metal via a nickel layer as an intermediate layer on the surface of the metal plate, thereby directly on the surface of the metal plate, Adhesiveness is superior to the case where a surface protective layer which is a noble metal layer is provided, and the surface protective layer is integrated with the metal plate with sufficient adhesion via the intermediate layer.

また、表面保護層は、プリント配線板の柔軟性を確保するために極めて薄く形成されることが多く、全面に多数の微小穴が生じているが、導電性接着剤層による接着時に微小穴に導電性接着剤が侵入して全面一様な導電性面となる。この結果、表示保護層と導電性接着剤層との接着力が強固になるとともに、表示保護層の導電性も増大する。また、貴金属により形成されてなる表面保護層は、酸化することが少なく、長期にわたって安定した導電性を維持することができ、機械的強度および導電性に優れたプリント配線板を得ることができる。   In addition, the surface protective layer is often formed extremely thin to ensure the flexibility of the printed wiring board, and a large number of micro holes are formed on the entire surface. The conductive adhesive penetrates to form a uniform conductive surface on the entire surface. As a result, the adhesive force between the display protective layer and the conductive adhesive layer is strengthened, and the conductivity of the display protective layer is also increased. In addition, the surface protective layer formed of a noble metal is less oxidized, can maintain stable conductivity over a long period of time, and can obtain a printed wiring board excellent in mechanical strength and conductivity.

本発明のプリント配線板の構成を示す断面図である。It is sectional drawing which shows the structure of the printed wiring board of this invention.

以下、本発明のプリント配線板について、添付図面に示す好適な実施形態に基づいて詳細に説明する。   Hereinafter, the printed wiring board of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.

図1は、本発明のプリント配線板の構成を示す断面図である。なお、以下では、説明の都合上、図1中の上側を「上」、下側を「下」とする。   FIG. 1 is a cross-sectional view showing the configuration of the printed wiring board of the present invention. In the following, for convenience of explanation, the upper side in FIG. 1 is “upper” and the lower side is “lower”.

《プリント配線板》
本発明のプリント配線板1は、図1に示す通り、配線基板6と、金属補強板2とを接着する導電性接着剤層3を備えている。金属補強板2は、ステンレス等の金属板2aの表面に中間層2bを介して表面保護層2cを有している。
そして、前記中間層2bは、厚みが0.1〜3μmのニッケル層であり、前記表面保護層2cは、厚みが0.05〜0.5μmの貴金属層であることを特徴とする。
また、表面保護層2cに対する前記中間層2bの露出率が0.5〜20%であることが好ましい。
<Printed wiring board>
As shown in FIG. 1, the printed wiring board 1 of the present invention includes a conductive adhesive layer 3 that bonds a wiring board 6 and a metal reinforcing plate 2. The metal reinforcing plate 2 has a surface protective layer 2c on the surface of a metal plate 2a such as stainless steel via an intermediate layer 2b.
The intermediate layer 2b is a nickel layer having a thickness of 0.1 to 3 μm, and the surface protective layer 2c is a noble metal layer having a thickness of 0.05 to 0.5 μm.
Moreover, it is preferable that the exposure rate of the said intermediate | middle layer 2b with respect to the surface protective layer 2c is 0.5 to 20%.

プリント配線板1の実施態様をさらに説明する。配線基板6は、絶縁基材9と接する面であって金属補強板2と対向する面に電子部品10を実装することで、プリント配線板1に必要な強度が得られる。金属補強板2を備えることで、プリント配線板1に曲げ等の力が加わった際の半田接着部位ないし電子部品10に対するダメージを防止できる。また、導電性接着剤層3は、プリント配線板の上方向から下方向に対する電磁波をシールドすることができる。   The embodiment of the printed wiring board 1 will be further described. The wiring board 6 has a strength required for the printed wiring board 1 by mounting the electronic component 10 on a surface that is in contact with the insulating base material 9 and that is opposed to the metal reinforcing plate 2. By providing the metal reinforcing plate 2, it is possible to prevent damage to the solder bonding site or the electronic component 10 when a force such as bending is applied to the printed wiring board 1. Moreover, the conductive adhesive layer 3 can shield electromagnetic waves from the upper direction to the lower direction of the printed wiring board.

<金属補強板>
本発明の金属補強板は、金属板を備え、該金属板の表面に中間層と表面保護層とを有するものである。
すなわち、金属補強板2は、ステンレス等の金属板2aの表面に中間層2bを介して表面保護層2cを有している。
<Metal reinforcement plate>
The metal reinforcing plate of the present invention includes a metal plate, and has an intermediate layer and a surface protective layer on the surface of the metal plate.
That is, the metal reinforcing plate 2 has a surface protective layer 2c on the surface of a metal plate 2a such as stainless steel via an intermediate layer 2b.

[金属板]
金属補強板2の金属板2aは、例えば金、銀、銅、鉄およびステンレス等の導電性金属が挙げられる。これらの中で金属補強板としての強度、コストおよび化学的安定性の面でステンレスが好ましい。金属補強板2aの厚みは、一般的に0.04〜1mm程度である。
[Metal plate]
Examples of the metal plate 2a of the metal reinforcing plate 2 include conductive metals such as gold, silver, copper, iron, and stainless steel. Among these, stainless steel is preferable in terms of strength, cost and chemical stability as a metal reinforcing plate. The thickness of the metal reinforcing plate 2a is generally about 0.04 to 1 mm.

[中間層]
本発明の中間層は、ニッケルを有する層であり、ニッケル、およびニッケル合金の少なくともいずれかにより形成されてなる層である。中間層2bは、金属補強板2の金属板2aに対し、全表面に形成されている。
中間層の厚みは、0.1〜3μmであり、0.5〜2μmがより好ましい。中間層2bの厚みを3μm以下にすることで、金属補強板の表面凹凸を最表面に投影できるため、剥離強度が向上する。また、中間層2bの厚みを0.1μm以上とすることで、接続抵抗値を良化することができる。
[Middle layer]
The intermediate layer of the present invention is a layer containing nickel, and is a layer formed of at least one of nickel and a nickel alloy. The intermediate layer 2 b is formed on the entire surface with respect to the metal plate 2 a of the metal reinforcing plate 2.
The thickness of the intermediate layer is 0.1 to 3 μm, and more preferably 0.5 to 2 μm. By setting the thickness of the intermediate layer 2b to 3 μm or less, the surface unevenness of the metal reinforcing plate can be projected on the outermost surface, so that the peel strength is improved. Moreover, a connection resistance value can be improved by the thickness of the intermediate | middle layer 2b being 0.1 micrometer or more.

中間層2bは、電解ニッケルメッキ法および無電解ニッケルメッキ法で形成することができるが、無電解ニッケルメッキ法が好ましい。無電解ニッケルメッキはメッキの硬度が高く、表面保護層の密着性が高いためハンダフロート試験が良好となる。   The intermediate layer 2b can be formed by an electrolytic nickel plating method and an electroless nickel plating method, but an electroless nickel plating method is preferred. Since the electroless nickel plating has high plating hardness and high adhesion of the surface protective layer, the solder float test is good.

また、中間層2bはリンを含有することが好ましく、中間層のリン原子(P)濃度が、中間層全体(100重量%)中、2〜20重量%であることが好ましく、5〜15重量%がより好ましい。中間層にリンを2〜20重量%含有することで、中間層と表面保護層の密着力を向上させ、ハンダフロート試験が向上する。
上記リン原子濃度は、中間層2bの全原子におけるリン原子の重量%である。
リン原子濃度は蛍光X線分析によって測定することができる。中間層及び表面保護層を有する金属補強板を蛍光X線を用いて定量分析を行い、得られたニッケル原子とリン原子の合計を100としたときのリン原子濃度である。
Moreover, it is preferable that the intermediate | middle layer 2b contains phosphorus, and it is preferable that the phosphorus atom (P) density | concentration of an intermediate | middle layer is 2-20 weight% in the whole intermediate | middle layer (100 weight%), 5-15 weight% % Is more preferable. By containing 2 to 20% by weight of phosphorus in the intermediate layer, the adhesion between the intermediate layer and the surface protective layer is improved, and the solder float test is improved.
The phosphorus atom concentration is the weight percent of phosphorus atoms in all atoms of the intermediate layer 2b.
The phosphorus atom concentration can be measured by fluorescent X-ray analysis. This is the phosphorus atom concentration when the metal reinforcing plate having the intermediate layer and the surface protective layer is quantitatively analyzed using fluorescent X-rays and the total of the obtained nickel atoms and phosphorus atoms is 100.

上段で説明した中間層2bを有する金属補強板2は、中間層形成後の金属板2aをサンプリングして、これらの数値範囲を満たす中間層を有する金属補強板2を適宜選択して使用すれば良い。   The metal reinforcing plate 2 having the intermediate layer 2b described in the upper part is obtained by sampling the metal plate 2a after forming the intermediate layer, and appropriately selecting and using the metal reinforcing plate 2 having the intermediate layer satisfying these numerical ranges. good.

[表面保護層]
表面保護層2cは、中間層2bを介して金属補強板2の最表面に形成される貴金属層である。本発明の表面保護層は、貴金属を有する層であり、貴金属およびその合金の少なくともいずれかにより形成されてなる。
表面保護層の厚みは、0.05〜0.5μmであり、0.07〜0.3μmが好ましい。表面保護層の厚みを0.05〜0.5μmにすることで、剥離強度とハンダフロート試験とが良好となる。
[Surface protective layer]
The surface protective layer 2c is a noble metal layer formed on the outermost surface of the metal reinforcing plate 2 via the intermediate layer 2b. The surface protective layer of the present invention is a layer having a noble metal, and is formed of at least one of a noble metal and an alloy thereof.
The thickness of the surface protective layer is 0.05 to 0.5 μm, preferably 0.07 to 0.3 μm. By setting the thickness of the surface protective layer to 0.05 to 0.5 μm, the peel strength and the solder float test are improved.

表面保護層2cの材料として使用可能な貴金属としては、例えば、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(0s)等があり、本例では金を使用して説明している。また、貴金属を主成分とする合金を材料として表面保護層2cを形成することができる。
また、表面保護層2cは、その表面粗さRaが0.2μm以上であることが好ましく、0.3μm以上がより好ましく、0.4μm以上がさらに好ましい。表面粗さRaの数値が大きいと、表面保護層2cの表面が粗面となるため、金属補強板2と導電性接着剤層3を熱圧着する際、導電性接着剤層3が表面保護層2cの表面の窪みに侵入して両者の接着力を強固にする。
Examples of the noble metal that can be used as the material for the surface protective layer 2c include gold (Au), silver (Ag), platinum (Pt), palladium (Pd), iridium (Ir), ruthenium (Ru), and osmium (0s). In this example, gold is used for explanation. Further, the surface protective layer 2c can be formed using an alloy containing a precious metal as a main component.
The surface protective layer 2c preferably has a surface roughness Ra of 0.2 μm or more, more preferably 0.3 μm or more, and further preferably 0.4 μm or more. When the numerical value of the surface roughness Ra is large, the surface of the surface protective layer 2c becomes rough. Therefore, when the metal reinforcing plate 2 and the conductive adhesive layer 3 are thermocompression bonded, the conductive adhesive layer 3 becomes the surface protective layer. It penetrates into the depression on the surface of 2c and strengthens the adhesive force between them.

なお、表面粗さRaは、表面保護層2cの表面を接触式表面粗さ計を使用してJIS B 0601−2001に準拠して測定した数値である。   In addition, surface roughness Ra is the numerical value which measured the surface of the surface protective layer 2c based on JISB0601-2001 using the contact-type surface roughness meter.

また、本発明の金属補強板は、表面保護層を一定の厚みまで薄く形成した場合にピンホールが形成する場合がある。さらに、表面保護層を形成する際にマスキング等の工程をいれることで、表面保護層を薄くしなくとも、意図的にピンホールを形成することも可能である。上記ピンホールを有する表面保護層の表面をX線光電子分光分析(XPS)により測定すると、中間層のニッケルが確認される。本発明では、ここで確認された、表面保護層における中間層の検出量を、露出率として、定義した。
この中間層の露出率は、表面保護層に対して0.5〜20%であることが好ましい。前記露出率は1〜15%がより好ましく、2〜10%がさらに好ましい。表面保護層に対する前記中間層の露出率が0.5〜20%であることで、剥離強度とハンダフロート試験耐性が良化する。
露出率は、表面保護層の元素濃度に対する中間層の元素濃度の割合により、X線光電子分光分析(XPS)を用いて求めることができる。
In the metal reinforcing plate of the present invention, pinholes may be formed when the surface protective layer is thinly formed to a certain thickness. Furthermore, it is possible to intentionally form a pinhole without making the surface protective layer thin by inserting a process such as masking when forming the surface protective layer. When the surface of the surface protective layer having the pinhole is measured by X-ray photoelectron spectroscopy (XPS), nickel in the intermediate layer is confirmed. In the present invention, the detected amount of the intermediate layer in the surface protective layer confirmed here is defined as the exposure rate.
The exposure rate of the intermediate layer is preferably 0.5 to 20% with respect to the surface protective layer. The exposure rate is more preferably 1 to 15%, further preferably 2 to 10%. When the exposure rate of the intermediate layer with respect to the surface protective layer is 0.5 to 20%, the peel strength and the solder float test resistance are improved.
The exposure rate can be determined using X-ray photoelectron spectroscopy (XPS) based on the ratio of the element concentration of the intermediate layer to the element concentration of the surface protective layer.

表面保護層2cに対する中間層2bの厚みの比は、表面保護層2cの厚みを100としたときに、2〜30であることが好ましく、3〜20がより好ましい。前記厚みの比を2〜30とすることで、剥離強度と接続抵抗値をより向上できる。   The ratio of the thickness of the intermediate layer 2b to the surface protective layer 2c is preferably 2 to 30 and more preferably 3 to 20 when the thickness of the surface protective layer 2c is 100. By setting the thickness ratio to 2 to 30, the peel strength and the connection resistance value can be further improved.

<導電性接着剤層>
導電性接着剤層3は、配線回路基板および金属補強板に対してそれぞれ接着している。また、熱硬化性樹脂および導電性成分を含む、等方導電性接着剤または異方導電性接着剤を使用して形成する。ここで等方導電性とは、X軸(図1における左右方向)、Y軸(図1における奥行き方)およびZ軸(図1における上下方向)の3次元方向に導電する性質である。また異方導電性とはZ軸にのみ導電する性質である。これらの導電性はプリント配線板の使用態様に応じて適宜選択できる。
<Conductive adhesive layer>
The conductive adhesive layer 3 is bonded to the printed circuit board and the metal reinforcing plate, respectively. Further, it is formed using an isotropic conductive adhesive or an anisotropic conductive adhesive containing a thermosetting resin and a conductive component. Here, the isotropic conductivity is a property of conducting in the three-dimensional direction of the X axis (left and right direction in FIG. 1), Y axis (depth direction in FIG. 1), and Z axis (up and down direction in FIG. 1). The anisotropic conductivity is a property of conducting only in the Z axis. These electrical conductivity can be suitably selected according to the usage mode of a printed wiring board.

熱硬化性樹脂は、水酸基およびカルボキシル基のうち少なくともいずれか一方を有することが好ましい。具体的には、例えば、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、ウレタンウレア樹脂、シリコーン樹脂、アミド樹脂、イミド樹脂、アミドイミド樹脂、エラストマー樹脂およびゴム樹脂等が挙げられる。上記樹脂は、単独または2種類以上を併用できる。   The thermosetting resin preferably has at least one of a hydroxyl group and a carboxyl group. Specific examples include acrylic resins, epoxy resins, polyester resins, urethane resins, urethane urea resins, silicone resins, amide resins, imide resins, amideimide resins, elastomer resins, and rubber resins. The above resins can be used alone or in combination of two or more.

熱硬化性樹脂は、硬化剤を使用して硬化することが好ましい。前記硬化剤は、熱硬化性樹脂の架橋性官能基と反応できる官能基を1つ以上有する化合物であれば良く、限定されない。架橋性官能基がカルボキシル基の場合、硬化剤は、エポキシ化合物、アリジリン化合物、イソシアネート化合物、ポリオール化合物、アミン化合物、メラミン化合物、シラン系、カルボジイミド系化合物、金属キレート化合物等が好ましい。
また、架橋性官能基が水酸基の場合、硬化剤は、イソシアネート化合物、エポキシ化合物、アジリジン化合物、カルボジイミド化合物、金属キレート化合物が好ましい。また、架橋性官能基がアミノ基の場合、硬化剤は、イソシアネート化合物、エポキシ化合物、アジリジン化合物、カルボジイミド化合物、金属キレート化合物が好ましい。これらの硬化剤は、1 種または2 種以上使用できる。
The thermosetting resin is preferably cured using a curing agent. The curing agent is not limited as long as it is a compound having at least one functional group capable of reacting with the crosslinkable functional group of the thermosetting resin. When the crosslinkable functional group is a carboxyl group, the curing agent is preferably an epoxy compound, an alidiline compound, an isocyanate compound, a polyol compound, an amine compound, a melamine compound, a silane-based, carbodiimide-based compound, a metal chelate compound, or the like.
When the crosslinkable functional group is a hydroxyl group, the curing agent is preferably an isocyanate compound, an epoxy compound, an aziridine compound, a carbodiimide compound, or a metal chelate compound. When the crosslinkable functional group is an amino group, the curing agent is preferably an isocyanate compound, an epoxy compound, an aziridine compound, a carbodiimide compound, or a metal chelate compound. These curing agents can be used alone or in combination of two or more.

導電性成分は、導電性微粒子、導電性繊維、およびカーボンナノチューブ等から適宜選択して使用できる。導電性微粒子は、金、銀、銅、鉄、ニッケル、およびアルミニウム等の金属、ないしその合金、ないしカーボンブラック、フラーレン、および黒鉛等の無機材料等が挙げられる。また、銅粒子の表面を銀で被覆した銀被覆銅微粒子も挙げられる。   The conductive component can be appropriately selected from conductive fine particles, conductive fibers, carbon nanotubes, and the like. Examples of the conductive fine particles include metals such as gold, silver, copper, iron, nickel, and aluminum, alloys thereof, and inorganic materials such as carbon black, fullerene, and graphite. Moreover, the silver coating copper fine particle which coat | covered the surface of the copper particle with silver is also mentioned.

導電性接着剤層3は、さらに、粘着付与樹脂、イオン捕集剤、無機フィラー、金属不活性化剤、難燃剤、光重合開始剤、帯電防止剤、および酸化防止剤等を適宜選択して含むことができる。導電性接着剤層3の厚みは、通常30〜80μm程度である。   The conductive adhesive layer 3 is further appropriately selected from a tackifier resin, an ion scavenger, an inorganic filler, a metal deactivator, a flame retardant, a photopolymerization initiator, an antistatic agent, an antioxidant, and the like. Can be included. The thickness of the conductive adhesive layer 3 is usually about 30 to 80 μm.

<配線回路基板>
配線回路基板6は、絶縁層4aおよび4b、接着剤層5aおよび5b、ならびにグランド配線回路7、ならびに配線回路8、ならびに絶縁基板9を備えている。また配線回路基板6は、グランド配線回路7上にビア11(Via)といわれる円柱状ないしすり鉢状の穴を備えている。
<Wiring circuit board>
The printed circuit board 6 includes insulating layers 4a and 4b, adhesive layers 5a and 5b, a ground wiring circuit 7, a wiring circuit 8, and an insulating substrate 9. The printed circuit board 6 has a cylindrical or mortar-shaped hole called a via 11 (Via) on the ground wiring circuit 7.

絶縁層4aおよび4bは、カバーレイフィルムともいい、少なくとも樹脂を含む。樹脂は、例えばアクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、イレタンウレア樹脂、シリコーン樹脂、ポリアミド樹脂、ポリイミド樹脂、アミドイミド樹脂およびフェノール樹脂等が挙げられる。また、樹脂は、熱可塑性樹脂、熱硬化性樹脂および紫外線硬化性樹脂から適宜選択して使用できるが、耐熱性の面で熱硬化性樹脂が好ましい。これらの樹脂は、単独または2種類以上を併用できる。絶縁層4aおよび4bの厚みは、通常5〜50μm程度である。   The insulating layers 4a and 4b are also called cover lay films and contain at least a resin. Examples of the resin include acrylic resins, epoxy resins, polyester resins, urethane resins, ethane urethane resins, silicone resins, polyamide resins, polyimide resins, amideimide resins, and phenol resins. The resin can be appropriately selected from a thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin, and is preferably a thermosetting resin in terms of heat resistance. These resins can be used alone or in combination of two or more. The thickness of the insulating layers 4a and 4b is usually about 5 to 50 μm.

接着剤層5aおよび5bは、例えばアクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂、およびアミド樹脂等の熱硬化性樹脂が挙げられる。熱硬化樹脂に使用する硬化剤は、エポキシ硬化剤、イソシアネート硬化剤、およびアリジリン硬化剤等が挙げられる。接着剤層5aおよび5bは、絶縁層4aおよび4bと、グランド配線回路7および配線回路8を備えた絶縁基板9とを接着するために使用し、絶縁性を有する。接着剤層5aおよび5bの厚みは、通常1〜20μm程度である。   Examples of the adhesive layers 5a and 5b include thermosetting resins such as acrylic resins, epoxy resins, polyester resins, urethane resins, silicone resins, and amide resins. Examples of the curing agent used for the thermosetting resin include an epoxy curing agent, an isocyanate curing agent, and an alidiline curing agent. The adhesive layers 5a and 5b are used for bonding the insulating layers 4a and 4b to the insulating substrate 9 including the ground wiring circuit 7 and the wiring circuit 8, and have insulating properties. The thickness of the adhesive layers 5a and 5b is usually about 1 to 20 μm.

グランド配線回路7および配線回路8は、銅等の導電性金属層をエッチングして形成する方法、ないし導電性ペーストを印刷することで形成する方法が一般的である。図示はしないが配線回路基板6は、グランド配線回路7および配線回路8を複数有することができる。グランド配線回路7は、グランド電位を保つ回路であり、配線回路8は、電子部品等に電気信号を送信する回路である。グランド配線回路7および配線回路8の厚みは、それぞれ通常5〜50μm程度である。   The ground wiring circuit 7 and the wiring circuit 8 are generally formed by etching a conductive metal layer such as copper or by printing a conductive paste. Although not shown, the printed circuit board 6 can have a plurality of ground wiring circuits 7 and wiring circuits 8. The ground wiring circuit 7 is a circuit that maintains a ground potential, and the wiring circuit 8 is a circuit that transmits an electrical signal to an electronic component or the like. The thicknesses of the ground wiring circuit 7 and the wiring circuit 8 are usually about 5 to 50 μm, respectively.

絶縁基板9は、例えば、ポリイミド、ポリアミドイミド、ポリフェレンサルファイド、ポリエチレンテレフタレート、および、ポリエチレンナフタレート等の絶縁性を有するフィルムであり、配線回路基板6のベース材である。絶縁基板9は、リフロー工程を行なう場合、ポリフェレンサルファイドおよびポリイミドが好ましく、リフロー工程を行なわない場合、ポリエチレンテレフタレートが好ましい。絶縁基板9の厚みは、通常5〜100μm程度である。   The insulating substrate 9 is a film having insulating properties such as polyimide, polyamideimide, polyferene sulfide, polyethylene terephthalate, and polyethylene naphthalate, and is a base material for the printed circuit board 6. The insulating substrate 9 is preferably polyferene sulfide and polyimide when the reflow process is performed, and is preferably polyethylene terephthalate when the reflow process is not performed. The thickness of the insulating substrate 9 is usually about 5 to 100 μm.

ビア11は、グランド配線回路7および配線回路8から適宜選択した回路パターンの一部を露出するためにエッチングやレーザー等により形成される。図1によるとビア11によりグランド配線回路7の一部が露出しており導電接着剤層3を介してグランド配線回路7と金属補強板2とが電気的に接続されている。ビア11の直径は、通常0.5〜2μm程度である。   The via 11 is formed by etching, laser, or the like in order to expose a part of the circuit pattern appropriately selected from the ground wiring circuit 7 and the wiring circuit 8. According to FIG. 1, a part of the ground wiring circuit 7 is exposed by the via 11, and the ground wiring circuit 7 and the metal reinforcing plate 2 are electrically connected through the conductive adhesive layer 3. The diameter of the via 11 is usually about 0.5 to 2 μm.

プリント配線板1は、通常、電磁波シールドシートを備える。電磁波シールドシートは、絶縁層101、金属膜102、および導電性接着剤層103を備えるのが一般的であり、配線回路8を流れる電気信号が高周波である場合は、特に好ましい。一方、図示しないが、配線回路8を流れる電気信号が比較的低周波である場合、電磁波シールドシートは、少なくとも絶縁層101および導電性接着剤層103を備えていれば良い。   The printed wiring board 1 usually includes an electromagnetic wave shield sheet. The electromagnetic wave shielding sheet generally includes an insulating layer 101, a metal film 102, and a conductive adhesive layer 103, and is particularly preferable when an electrical signal flowing through the wiring circuit 8 is a high frequency. On the other hand, although not shown, when the electric signal flowing through the wiring circuit 8 has a relatively low frequency, the electromagnetic wave shielding sheet only needs to include at least the insulating layer 101 and the conductive adhesive layer 103.

絶縁層101は、絶縁基板9で説明した絶縁性を有するフィルムを使用する他に、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂、およびアミド樹脂等の熱硬化性樹脂を適宜選択して形成することもできる。絶縁層101の厚みは、通常2〜20μm程度が好ましい   For the insulating layer 101, in addition to using the insulating film described in the insulating substrate 9, a thermosetting resin such as an acrylic resin, an epoxy resin, a polyester resin, a urethane resin, a silicone resin, and an amide resin is appropriately selected. It can also be formed. The thickness of the insulating layer 101 is usually preferably about 2 to 20 μm.

金属膜102は、金、銀、銅、アルミニウム、および鉄等の導電性金属、ならびにこれらの合金から形成した被膜が好ましく、コスト面から銅がより好ましい。また金属膜102は、圧延金属箔、電解金属箔、スパッタ膜ならびに蒸着膜から適宜選択できるが、コスト面から圧延金属箔が好ましく、圧延銅箔がより好ましい。金属膜102の厚さは、金属箔の場合、0.1〜20μm程度が好ましく、スパッタ膜の場合、0.05〜5.0μm程度が好ましく、蒸着膜の場合、10〜500nm程度が好ましい。なお、スパッタ膜を形成する場合は、ITO(酸化インジウムスズ)またはATO(三酸化アンチモン)を使用することが好ましく、蒸着膜を形成する場合は、金、銀、銅、アルミニウムまたはニッケルを使用することが好ましい。   The metal film 102 is preferably a film formed of a conductive metal such as gold, silver, copper, aluminum, and iron, and an alloy thereof, and copper is more preferable from the viewpoint of cost. The metal film 102 can be appropriately selected from a rolled metal foil, an electrolytic metal foil, a sputtered film, and a deposited film, but a rolled metal foil is preferable and a rolled copper foil is more preferable from the viewpoint of cost. The thickness of the metal film 102 is preferably about 0.1 to 20 μm in the case of a metal foil, about 0.05 to 5.0 μm in the case of a sputtered film, and preferably about 10 to 500 nm in the case of a deposited film. In addition, when forming a sputtered film, it is preferable to use ITO (indium tin oxide) or ATO (antimony trioxide), and when forming a vapor deposition film, gold, silver, copper, aluminum, or nickel is used. It is preferable.

導電性接着剤層103は、導電性接着剤層3で説明した原料を含むことが好ましい。導電性接着剤層103の厚みは、2〜20μm程度が好ましい。   The conductive adhesive layer 103 preferably includes the raw materials described in the conductive adhesive layer 3. The thickness of the conductive adhesive layer 103 is preferably about 2 to 20 μm.

本発明のプリント配線板の製造方法は、少なくとも配線回路基板6、導電性接着剤層3、および金属補強板2を圧着する工程を備えていることが必要である。圧着は、例えば、配線回路基板6と電磁波シールドシートと圧着した後、導電性接着剤層3および金属補強板2を重ね圧着を行い、次いで電子部品を実装する方法が挙げられるが、圧着の順序は限定されない。本発明では配線回路基板6、導電性接着剤層3、および金属補強板2を圧着する工程を備えていれば良く、他の工程は、プリント配線板の構成ないし使用態様に応じて適宜変更できる。
前記圧着は、導電性接着剤層3が熱硬化型樹脂を含む場合、硬化促進の観点から同時に加熱することが特に好ましい。一方、導電性接着剤層3が熱可塑性樹脂を含む場合であっても密着が強固になり易いため加熱することが好ましい。加熱は150〜180℃程度が好ましく、圧着は、3〜30kg/cm程度が好ましい。圧着装置は、平板圧着機またはロール圧着機を使用できるが、平板圧着機を使用する場合、一定の圧力を一定の時間かけることができるため好ましい。圧着時間は、配線回路基板6、導電性接着剤層3、および金属補強板2が十分密着すればよいので特に限定されないが、通常30分〜2時間程度である。
The method for producing a printed wiring board of the present invention needs to include a step of crimping at least the printed circuit board 6, the conductive adhesive layer 3, and the metal reinforcing plate 2. Examples of the crimping include a method in which after the printed circuit board 6 and the electromagnetic wave shielding sheet are crimped, the conductive adhesive layer 3 and the metal reinforcing plate 2 are laminated and crimped, and then an electronic component is mounted. Is not limited. In this invention, what is necessary is just to provide the process of crimping | bonding the wiring circuit board 6, the conductive adhesive layer 3, and the metal reinforcement board 2, and another process can be suitably changed according to the structure thru | or use aspect of a printed wiring board. .
In the case where the conductive adhesive layer 3 contains a thermosetting resin, the pressure bonding is particularly preferably performed simultaneously from the viewpoint of acceleration of curing. On the other hand, even when the conductive adhesive layer 3 includes a thermoplastic resin, it is preferable to heat the adhesive adhesive layer 3 because adhesion is likely to be strong. The heating is preferably about 150 to 180 ° C., and the pressure bonding is preferably about 3 to 30 kg / cm 2 . As the crimping apparatus, a flat plate crimping machine or a roll crimping machine can be used. However, when a flat plate crimping machine is used, it is preferable because a certain pressure can be applied for a certain time. The crimping time is not particularly limited as long as the printed circuit board 6, the conductive adhesive layer 3, and the metal reinforcing plate 2 are sufficiently adhered to each other, but is usually about 30 minutes to 2 hours.

本発明のプリント配線板は、例えば、携帯電話、スマートフォン、ノートPC、デジタルカメラ、液晶ディスプレイ等の電子機器に搭載する(備える)ことはもとより、自動車、電車、船舶、航空機等の輸送機器にも好適に搭載できる(備える)ことができる。   The printed wiring board of the present invention is mounted (provided) on an electronic device such as a mobile phone, a smartphone, a notebook PC, a digital camera, and a liquid crystal display, and also on a transportation device such as an automobile, a train, a ship, and an aircraft. It can be suitably mounted (equipped).

以下、実施例を示して本発明を更に具体的に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

評価に使用した部材は、下記の通りである。   The members used for the evaluation are as follows.

<導電性接着シートA>
熱硬化性ポリアミド樹脂(酸価=10mgKOH/g、トーヨーケム社製)を100部、導電性微粒子(核体に銅、被覆層に銀を使用した樹枝状粒子D50 平均粒子径=12μm、福田金属箔粉工業社製) を400部容器に仕込み、不揮発分濃度が40重量%になるようトルエン: イソプロピルアルコール(重量比=2:1)の混合溶剤を加えて混合した。次いでビスフェノールA型エポキシ樹脂(「JER828」(エポキシ当量=189g/eq)三菱化学社製)を40部、およびアミン系エポキシ硬化剤(「YN100」三菱化学社製)15部を加えディスパーで10分攪拌して導電性樹脂組成物を作製した。得られた導電性樹脂組成物を、ドクターブレードを使用して、乾燥後の厚みが60μmになるように剥離性フィルムの離形処理された面上に塗工し、100℃の電気オーブンで2分間乾燥することで導電性接着シートAを得た。
<Conductive adhesive sheet A>
100 parts of thermosetting polyamide resin (acid value = 10 mg KOH / g, manufactured by Toyochem Co.), conductive fine particles (dendritic particles D50 using copper as the core and silver as the coating layer, average particle size = 12 μm, Fukuda Metal Foil) (Made by Kogyo Kogyo Co., Ltd.) was added to a 400-part container, and a mixed solvent of toluene: isopropyl alcohol (weight ratio = 2: 1) was added and mixed so that the nonvolatile content concentration was 40% by weight. Next, 40 parts of bisphenol A type epoxy resin (“JER828” (epoxy equivalent = 189 g / eq), manufactured by Mitsubishi Chemical Corporation) and 15 parts of amine type epoxy curing agent (“YN100” manufactured by Mitsubishi Chemical Corporation) were added, and 10 minutes with a disper. The conductive resin composition was produced by stirring. The obtained conductive resin composition was applied on the release-treated surface of the peelable film using a doctor blade so that the thickness after drying was 60 μm. The conductive adhesive sheet A was obtained by drying for minutes.

<導電性接着シートB>
熱硬化性ポリアミド樹脂(酸価=10mgKOH/g、トーヨーケム社製)を100部、導電性微粒子(核体に銅、被覆層に銀を使用した樹枝状粒子D50 平均粒子径=12μm、福田金属箔粉工業社製) を400部容器に仕込み、不揮発分濃度が40重量%になるようトルエン: イソプロピルアルコール(重量比=2:1)の混合溶剤を加えて混合した。次いでビスフェノールA型エポキシ樹脂(「JER828」(エポキシ当量=189g/eq)三菱化学社製)を40部、およびイミダゾール系エポキシ硬化剤(「EMI24」三菱化学社製)15部を加えディスパーで10分攪拌して導電性樹脂組成物を作製した。得られた導電性樹脂組成物を、ドクターブレードを使用して、乾燥後の厚みが60μmになるように剥離性フィルムの離形処理された面上に塗工し、100℃の電気オーブンで2分間乾燥することで導電性接着シートBを得た。
<Conductive adhesive sheet B>
100 parts of thermosetting polyamide resin (acid value = 10 mg KOH / g, manufactured by Toyochem Co.), conductive fine particles (dendritic particles D50 using copper as the core and silver as the coating layer, average particle size = 12 μm, Fukuda Metal Foil) (Made by Kogyo Kogyo Co., Ltd.) was added to a 400-part container, and a mixed solvent of toluene: isopropyl alcohol (weight ratio = 2: 1) was added and mixed so that the nonvolatile content concentration was 40 wt%. Next, 40 parts of bisphenol A type epoxy resin (“JER828” (epoxy equivalent = 189 g / eq), manufactured by Mitsubishi Chemical Corporation) and 15 parts of imidazole epoxy curing agent (“EMI24” manufactured by Mitsubishi Chemical Corporation) were added, and 10 minutes with a disper. The conductive resin composition was produced by stirring. The obtained conductive resin composition was applied on the release-treated surface of the peelable film using a doctor blade so that the thickness after drying was 60 μm. The conductive adhesive sheet B was obtained by drying for minutes.

<導電性接着シートC>
熱硬化性ポリウレタンウレア樹脂(酸価=5mgKOH/g、トーヨーケム社製)を100部、導電性微粒子(核体に銅、被覆層に銀を使用した樹枝状粒子D50 平均粒子径=12μm、福田金属箔粉工業社製) を400部容器に仕込み、不揮発分濃度が40重量%になるようトルエン: イソプロピルアルコール(重量比=2:1)の混合溶剤を加えて混合した。次いでビスフェノールA型エポキシ樹脂(「JER828」(エポキシ当量=189g/eq)三菱化学社製)を40部、およびアミン系エポキシ硬化剤(「YN100」三菱化学社製)15部を加えディスパーで10分攪拌して導電性樹脂組成物を作製した。得られた導電性樹脂組成物を、ドクターブレードを使用して、乾燥後の厚みが60μmになるように剥離性フィルムの離形処理された面上に塗工し、100℃の電気オーブンで2分間乾燥することで導電性接着シートCを得た。
<Conductive adhesive sheet C>
100 parts of thermosetting polyurethane urea resin (acid value = 5 mg KOH / g, manufactured by Toyochem Co.), conductive fine particles (dendritic particles D50 using copper as a core and silver as a coating layer, average particle diameter = 12 μm, Fukuda Metal) Foil Powder Industry Co., Ltd.) was charged into a 400-part container, and a mixed solvent of toluene: isopropyl alcohol (weight ratio = 2: 1) was added and mixed so that the nonvolatile content concentration was 40% by weight. Next, 40 parts of bisphenol A type epoxy resin (“JER828” (epoxy equivalent = 189 g / eq), manufactured by Mitsubishi Chemical Corporation) and 15 parts of amine type epoxy curing agent (“YN100” manufactured by Mitsubishi Chemical Corporation) were added, and 10 minutes with a disper. The conductive resin composition was produced by stirring. The obtained conductive resin composition was applied on the release-treated surface of the peelable film using a doctor blade so that the thickness after drying was 60 μm. The conductive adhesive sheet C was obtained by drying for minutes.

<配線回路基板>
銅張積層板;エスパーフレックス(厚さ8μm銅箔/厚さ38μmポリイミド 住友金属鉱山社製)
<Wiring circuit board>
Copper-clad laminate; Esperflex (8 μm thick copper foil / 38 μm thick polyimide manufactured by Sumitomo Metal Mining Co., Ltd.)

<金属補強板>
市販ステンレス板に対して、それぞれ無電解メッキを行なうことでステンレス板表面にニッケルからなる中間層を形成した後、電解メッキによって貴金属からなる表面保護層を形成した。無電解メッキの条件を公知の方法で調整してサンプリングを行ない中間層及び表面保護層の厚みと、露出率および表面粗さRaがそれぞれ異なる中間層と表面保護層を有するステンレス板(以下、単にSUS板という)1〜8、11、12(SUS1〜8、11、12)を得た。ステンレス板表面に無電解メッキを行わずに、直接貴金属層を形成することで、ステンレス板9(SUS9)を得た。また、ステンレス板表面に無電解メッキのみを行うことで、ニッケル層のみ有するステンレス板10(SUS10)を得た。そして各SUS板を、厚さ0.2mm・幅30mm・長さ150mmの試験板A、および厚さ0.2mm・幅30mm・長さ50mmの大きさの試験板Bに準備した。なお分析用試験板は別途準備した。
<Metal reinforcement plate>
A commercially available stainless steel plate was electrolessly plated to form an intermediate layer made of nickel on the stainless steel plate surface, and then a surface protective layer made of a noble metal was formed by electrolytic plating. A stainless steel plate having an intermediate layer and a surface protective layer having different thicknesses, exposure rates, and surface roughnesses Ra (hereinafter referred to simply as “intermediate layer” and “surface protective layer”). SUS plates) 1 to 8, 11, and 12 (SUS1 to 8, 11, and 12) were obtained. Stainless steel plate 9 (SUS9) was obtained by directly forming a noble metal layer on the stainless steel plate surface without electroless plating. Moreover, the stainless steel plate 10 (SUS10) which has only a nickel layer was obtained by performing only electroless plating on the stainless steel plate surface. Each SUS plate was prepared as a test plate A having a thickness of 0.2 mm, a width of 30 mm, and a length of 150 mm, and a test plate B having a thickness of 0.2 mm, a width of 30 mm, and a length of 50 mm. An analytical test plate was prepared separately.

得られたSUS板(SUS1〜12)について、それぞれ下記に示す方法により分析を行った。結果は、表1、および表2に記した。   About the obtained SUS board (SUS1-12), it analyzed by the method shown below, respectively. The results are shown in Table 1 and Table 2.

<リン原子濃度(P濃度)>
リン原子濃度はセイコーインスツル株式会社製の蛍光X線分析装置「SII SEA5120」によって測定した。測定条件は、真空とし、コリメーター径1.8mmとした。バルクFPアプリケーションによる定量分析を行い、得られた定量結果のニッケル原子とリン原子の合計を100としたときのリン原子の重量%をリン原子濃度とした。
<Phosphorus atom concentration (P concentration)>
The phosphorus atom concentration was measured by a fluorescent X-ray analyzer “SII SEA5120” manufactured by Seiko Instruments Inc. The measurement conditions were vacuum and the collimator diameter was 1.8 mm. Quantitative analysis was performed using a bulk FP application, and the phosphorus atom concentration was defined as the weight percentage of phosphorus atoms when the total of nickel atoms and phosphorus atoms in the obtained quantitative results was taken as 100.

<中間層/表面保護層厚み比率>
それぞれの膜厚値より、表面保護層の厚みを100としたときの、中間層の厚みの比率を求めた。
<Intermediate layer / surface protective layer thickness ratio>
From each film thickness value, the ratio of the thickness of the intermediate layer when the thickness of the surface protective layer was 100 was determined.

<露出率>
露出率は、得られた試験板表面についてXPS分析を次の条件で行ない、算出した。
<Exposure rate>
The exposure rate was calculated by performing XPS analysis on the obtained test plate surface under the following conditions.

専用台座に両面粘着テープを貼り、SUS板を固定したものを測定試料とした。測定試料を下記条件で、3箇所場所を変えて測定した。
装置:AXIS−HS(島津製作所社製/Kratos)
試料チャンバー内真空度:1×10−8Torr以下
X線源:Dual(Al)15kV,5mA Pass energy 80eV
Step:0.1 eV/Step
Speed:120秒/元素
Dell:300、積算回数:5
光電子取り出し角:試料表面に対して90度
結合エネルギー:C1s主ピークを284.6eVとしてシフト補正
Au(4f)ピーク領域:80〜92eV
Ni(2p)ピーク領域:880〜845eV
Ag(3d)ピーク領域:376〜362eV
Pd(3d)ピーク領域:330〜350eV
A measurement sample was obtained by attaching a double-sided adhesive tape to a dedicated pedestal and fixing a SUS plate. The measurement sample was measured under the following conditions at three locations.
Apparatus: AXIS-HS (manufactured by Shimadzu Corporation / Kratos)
Vacuum degree in sample chamber: 1 × 10 −8 Torr or less X-ray source: Dual (Al) 15 kV, 5 mA Pass energy 80 eV
Step: 0.1 eV / Step
Speed: 120 seconds / element Dell: 300, integration number: 5
Photoelectron extraction angle: 90 degrees with respect to the sample surface Binding energy: C1s main peak is 284.6 eV, shift correction Au (4f) peak region: 80-92 eV
Ni (2p) peak area: 880-845 eV
Ag (3d) peak area: 376 to 362 eV
Pd (3d) peak area: 330 to 350 eV

上記ピーク領域に出現したピークをスムージング処理し、直線法にてベースラインを引き、ニッケルと貴金属の原子濃度「Atomic Conc」を求めた。
得られた金原子濃度およびニッケル原子濃度の合計100%中のニッケル原子濃度について、3箇所の値の平均値を求め、露出率とした。
ニッケル、または貴金属がその合金である場合には合金のピークも加味して原子濃度を求め、中間層の露出率を算出した。
A peak appearing in the peak region was smoothed, and a baseline was drawn by a linear method to obtain an atomic concentration “Atomic Conc” of nickel and noble metal.
With respect to the nickel atom concentration in the total of 100% of the obtained gold atom concentration and nickel atom concentration, the average value of three values was obtained and used as the exposure rate.
When nickel or a noble metal was an alloy thereof, the atomic concentration was calculated taking into account the peak of the alloy, and the exposure rate of the intermediate layer was calculated.

<表面粗さ(Ra)>
表面粗さRaは、JISB0601‘2001に準じて、次の条件で測定した。
Raは算術平均粗さRaを指し、規定された中心線平均粗さであり、その基準粗さを1mmとした場合の中心線平均粗さを言う。上記のSUS板を、接触式表面粗さ計(「SURFCOM480A」東京精密社製)を使用し、測定速度0.03mm/s、測定長さ2mm、カットオフ値0.8mmの条件で表面粗さRaを測定した。測定場所を変えて得られた5 か所のRaの平均値をRaとした。
<Surface roughness (Ra)>
The surface roughness Ra was measured under the following conditions in accordance with JIS B0601'2001.
Ra refers to the arithmetic average roughness Ra, is a defined centerline average roughness, and refers to the centerline average roughness when the reference roughness is 1 mm. Using the contact type surface roughness meter ("SURFCOM 480A" manufactured by Tokyo Seimitsu Co., Ltd.), the above SUS plate was subjected to surface roughness under the conditions of a measurement speed of 0.03 mm / s, a measurement length of 2 mm, and a cutoff value of 0.8 mm. Ra was measured. Ra was an average value of 5 Ras obtained by changing the measurement location.

「実施例1〜10、および比較例1〜4」
<試験用積層体の作製>
導電性接着シートを幅25mm・長さ100mmの大きさに準備した。次いで一方の剥離性シートを剥がし露出した導電性接着剤層を表1に示す金属補強板から得られた試験板Aの上に載せ、ロールラミネーター(SA−1010 小型卓上テストラミネーター テスター産業株式会社)90℃、3kgf/cm、1m/minで仮止めした。そして、他の剥離性シートを剥がして、露出した導電性接着剤層にエスパーフレックスのポリイミド面が導電性接着剤層と接するように載せ、上記同様のロールラミネート条件で仮止した。そして、これらを170℃、2MPa、5分の条件で圧着をした後、160℃の電気オーブンで60分間加熱を行なうことで積層体を得た。
"Examples 1 to 10 and Comparative Examples 1 to 4"
<Preparation of test laminate>
A conductive adhesive sheet was prepared to have a width of 25 mm and a length of 100 mm. Next, one of the peelable sheets was peeled off and the exposed conductive adhesive layer was placed on the test plate A obtained from the metal reinforcing plate shown in Table 1, and a roll laminator (SA-1010 small tabletop test laminator Tester Sangyo Co., Ltd.). Temporarily fixed at 90 ° C., 3 kgf / cm 2 , and 1 m / min. Then, the other peelable sheet was peeled off, placed on the exposed conductive adhesive layer so that the polyimide surface of Esperflex was in contact with the conductive adhesive layer, and temporarily fixed under the same roll laminating conditions as described above. And after crimping | bonding these on 170 degreeC, 2 Mpa, and the conditions for 5 minutes, the laminated body was obtained by heating for 60 minutes with a 160 degreeC electric oven.

<剥離強度>
得られた積層体について、導電性接着剤層と試験板との剥離強度を測定するために23℃相対湿度50%の雰囲気下で、引っ張り速度50mm/minでTピール剥離試験をおこない、常温(23℃)の剥離強度(N/cm)を測定した。試験機は小型卓上試験機(EZ−TEST 島津製作所社製)を用いた。なお、剥離強度は、接着力ともいう。
<Peel strength>
In order to measure the peel strength between the conductive adhesive layer and the test plate, the obtained laminate was subjected to a T-peel peel test at 23 ° C. and 50% relative humidity at a pulling rate of 50 mm / min. 23 ° C.) peel strength (N / cm) was measured. A small desktop testing machine (EZ-TEST, manufactured by Shimadzu Corporation) was used as the testing machine. Note that the peel strength is also referred to as adhesive strength.

リフロー後の剥離強度を測定するために得られた積層体を小型リフロー機(SOLSYS−62501RTP アントム社製)を使用してピーク温度を260℃にしてリフロー処理を行なった。前記積層体を23℃相対湿度50%の雰囲気下で1時間放置した後、同雰囲気下、上記同様の方法でリフロー後の剥離強度(N/cm)を測定した。なお、剥離強度は以下の基準で評価した。
○:剥離強度が8N/cm以上
△:剥離強度が3N/cm以上、8N/cm未満
×:剥離強度が3N/cm未満
The laminate obtained for measuring the peel strength after reflow was subjected to a reflow treatment using a small reflow machine (SOLSYS-62501RTP manufactured by Antom Co., Ltd.) at a peak temperature of 260 ° C. The laminate was allowed to stand for 1 hour in an atmosphere of 23 ° C. and 50% relative humidity, and then the peel strength (N / cm) after reflow was measured in the same manner as described above. The peel strength was evaluated according to the following criteria.
○: Peel strength is 8 N / cm or more Δ: Peel strength is 3 N / cm or more and less than 8 N / cm ×: Peel strength is less than 3 N / cm

<ハンダフロート試験>
得られた積層体について金属補強板を下にして260℃の溶融ハンダに1分浮かべた。次いで、溶融ハンダから取り出した直後の積層体について、積層体の側面から導電性接着剤層の外観を目視で確認し、次の基準で評価した。なお、評価には角型ハンダ槽(POT100C 太洋電機産業社製)を使用した。評価は、1サンプルあたり5回評価した。
○:5評価中、全てのサンプルに異常が見られなかった。優れている
△:5評価中、1または2評価に気泡が発生した。実用可
×:5評価中、3評価以上に気泡が発生した。実用不可
<Solder float test>
The obtained laminate was floated on molten solder at 260 ° C. for 1 minute with the metal reinforcing plate down. Subsequently, about the laminated body immediately after taking out from molten solder, the external appearance of the electroconductive adhesive layer was confirmed visually from the side surface of the laminated body, and the following reference | standard evaluated. In addition, a square solder tank (POT100C manufactured by Taiyo Electric Industry Co., Ltd.) was used for the evaluation. Evaluation was performed 5 times per sample.
○: During 5 evaluations, no abnormality was observed in all samples. Excellent Δ: During 5 evaluations, bubbles were generated in 1 or 2 evaluations. Practical use ×: During 5 evaluations, bubbles were generated more than 3 evaluations. Impractical

<接続抵抗値>
上記<試験用積層体の作製>で使用した導電性接着シートの大きさを幅10mm・長さ50mmの大きさに換え、試験板Aを試験板Bに換えた以外は、<試験用積層体の作製>と同様に行うことで積層体を得た。得られた積層体について得られた積層体について、抵抗率計(ロレスターGP MCP−T600 三菱化学社製)を用い、2端子法で接続抵 抗値を測定した。なお、接続抵抗値は以下の基準で評価した。
○:接続抵抗値が20mΩ/□未満
△:接続抵抗値が20mΩ/□以上、40mΩ/□未満
×:接続抵抗値が40mΩ/□以上
<Connection resistance value>
Except that the size of the conductive adhesive sheet used in <Preparation of test laminate> is changed to a size of 10 mm in width and 50 mm in length, and test plate A is changed to test plate B. The laminate was obtained in the same manner as described above. About the laminated body obtained about the obtained laminated body, the connection resistance value was measured by a two-terminal method using a resistivity meter (Lorestar GP MCP-T600, manufactured by Mitsubishi Chemical Corporation). The connection resistance value was evaluated according to the following criteria.
○: Connection resistance value is less than 20 mΩ / □ Δ: Connection resistance value is 20 mΩ / □ or more, less than 40 mΩ / □ ×: Connection resistance value is 40 mΩ / □ or more

表1、2の結果から、実施例1〜10の、配線回路基板、導電性接着剤層、および金属補強板を備えるプリント配線基板は、リフロー工程を経た後にも気泡が生じ難く、導電性接着剤層と金属板とが良好な接着力を有し、グランド回路と金属板との導電性が良好であった。
これに対し、比較例のプリント配線基板は、グランド回路と金属板との導電性、剥離強度、およびハンダフロート性のすべてを満足することはできなかった。
From the results of Tables 1 and 2, the printed circuit board including the printed circuit board, the conductive adhesive layer, and the metal reinforcing plate of Examples 1 to 10 is less likely to generate air bubbles even after the reflow process. The agent layer and the metal plate had good adhesion, and the electrical conductivity between the ground circuit and the metal plate was good.
On the other hand, the printed wiring board of the comparative example could not satisfy all of the electrical conductivity, peel strength, and solder floatability between the ground circuit and the metal plate.

そのため、本発明の、機械的強度および導電性に優れるプリント配線板を備える電子機器は、内部に実装された電子部品が発する電磁波ノイズまたは外部から侵入する電磁波ノイズを原因とした誤作動を、長期にかつ安定に防止することが可能である。
また、上記プリント配線板は導電性接着剤層と金属板とが良好な接着力を有しているため、これを使用した電子機器は、振動や落下に強く、長期にわたって安定した動作を保つことができる。
For this reason, the electronic device including the printed wiring board having excellent mechanical strength and conductivity according to the present invention has a long-term malfunction caused by electromagnetic noise generated by an electronic component mounted inside or electromagnetic noise entering from the outside. It is possible to prevent it stably and stably.
In addition, since the printed wiring board has a good adhesive strength between the conductive adhesive layer and the metal plate, electronic devices using the printed wiring board are resistant to vibration and dropping, and maintain stable operation over a long period of time. Can do.

1 プリント配線板
2 金属補強板
2a 金属板
2b 中間層
2c 表面保護層
3 導電性接着剤層
4a 絶縁層
4b 絶縁層
5a 接着剤層
5b 接着剤層
6 配線回路基板
7 グランド配線回路
8 配線回路
9 絶縁基材
10 電子部品
11 ビア
101 絶縁層
102 金属膜
103 導電性接着剤層
DESCRIPTION OF SYMBOLS 1 Printed wiring board 2 Metal reinforcement board 2a Metal board 2b Intermediate layer 2c Surface protective layer 3 Conductive adhesive layer 4a Insulating layer 4b Insulating layer 5a Adhesive layer 5b Adhesive layer 6 Wiring circuit board 7 Ground wiring circuit 8 Wiring circuit 9 Insulating substrate 10 Electronic component 11 Via 101 Insulating layer 102 Metal film 103 Conductive adhesive layer

Claims (6)

配線回路基板、導電性接着剤層、および金属補強板を備え、前記導電性接着剤層は、前記配線回路基板および金属補強板に対してそれぞれ接着し、前記金属補強板は、金属板の表面に中間層と表面保護層とを有してなり、
前記中間層は、厚みが0.1〜3μmのニッケル層であり、
前記表面保護層は、厚みが0.05〜0.5μmの貴金属層であることを特徴とするプリント配線板。
A wiring circuit board, a conductive adhesive layer, and a metal reinforcing plate are provided, and the conductive adhesive layer is bonded to the wiring circuit board and the metal reinforcing plate, respectively, and the metal reinforcing plate is a surface of the metal plate. Having an intermediate layer and a surface protective layer,
The intermediate layer is a nickel layer having a thickness of 0.1 to 3 μm,
The printed wiring board, wherein the surface protective layer is a noble metal layer having a thickness of 0.05 to 0.5 μm.
前記表面保護層に対する前記中間層の露出率が0.5〜20%であることを特徴とする請求項1記載のプリント配線板。   The printed wiring board according to claim 1, wherein an exposure ratio of the intermediate layer to the surface protective layer is 0.5 to 20%. 前記表面保護層の厚みを100としたときの、前記中間層の厚みの比が2〜30であることを特徴とする請求項1または2に記載のプリント配線板。   The printed wiring board according to claim 1 or 2, wherein the thickness ratio of the intermediate layer is 2 to 30 when the thickness of the surface protective layer is 100. 前記中間層がリンを含有し、かつリン原子濃度が、中間層全体中2〜20重量%であることを特徴とする請求項1〜3いずれか1項記載のプリント配線板。   The printed wiring board according to any one of claims 1 to 3, wherein the intermediate layer contains phosphorus and the phosphorus atom concentration is 2 to 20% by weight in the entire intermediate layer. 前記表面保護層は、表面粗さRaが0.2μm以上であることを特徴とする請求項1〜4いずれか1項記載のプリント配線板。   The printed wiring board according to claim 1, wherein the surface protective layer has a surface roughness Ra of 0.2 μm or more. 請求項1〜5いずれか1項記載のプリント配線板を備えた、電子機器。   The electronic device provided with the printed wiring board of any one of Claims 1-5.
JP2016116308A 2016-06-10 2016-06-10 Printed wiring board and electronic equipment Active JP6772567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016116308A JP6772567B2 (en) 2016-06-10 2016-06-10 Printed wiring board and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016116308A JP6772567B2 (en) 2016-06-10 2016-06-10 Printed wiring board and electronic equipment

Publications (2)

Publication Number Publication Date
JP2017220641A true JP2017220641A (en) 2017-12-14
JP6772567B2 JP6772567B2 (en) 2020-10-21

Family

ID=60658173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016116308A Active JP6772567B2 (en) 2016-06-10 2016-06-10 Printed wiring board and electronic equipment

Country Status (1)

Country Link
JP (1) JP6772567B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371460B1 (en) * 2017-12-06 2018-08-08 タツタ電線株式会社 Reinforcing board for wiring board
KR20190106187A (en) * 2018-03-08 2019-09-18 삼성전자주식회사 Circuit board including conductive structures electrically connecting lines and electronic device including the same
CN112492768A (en) * 2021-01-29 2021-03-12 四川英创力电子科技股份有限公司 Manufacturing method of PCB with two surface treatments
CN115767938A (en) * 2022-11-25 2023-03-07 福莱盈电子股份有限公司 Gold plating method applied to reinforced steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286299A (en) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd Method for connecting semiconductor device
JP2011238860A (en) * 2010-05-12 2011-11-24 Nhk Spring Co Ltd Electrical connection structure of piezoelectric element, and head suspension
WO2016032006A1 (en) * 2014-08-29 2016-03-03 タツタ電線株式会社 Reinforcing member for flexible printed wiring board, and flexible printed wiring board provided with same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286299A (en) * 1999-03-30 2000-10-13 Matsushita Electric Ind Co Ltd Method for connecting semiconductor device
JP2011238860A (en) * 2010-05-12 2011-11-24 Nhk Spring Co Ltd Electrical connection structure of piezoelectric element, and head suspension
WO2016032006A1 (en) * 2014-08-29 2016-03-03 タツタ電線株式会社 Reinforcing member for flexible printed wiring board, and flexible printed wiring board provided with same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371460B1 (en) * 2017-12-06 2018-08-08 タツタ電線株式会社 Reinforcing board for wiring board
KR20190067112A (en) * 2017-12-06 2019-06-14 타츠타 전선 주식회사 Reinforcing member for printed wiring board
KR102419510B1 (en) 2017-12-06 2022-07-08 타츠타 전선 주식회사 Reinforcing member for printed wiring board
KR20190106187A (en) * 2018-03-08 2019-09-18 삼성전자주식회사 Circuit board including conductive structures electrically connecting lines and electronic device including the same
KR102659093B1 (en) 2018-03-08 2024-04-22 삼성전자주식회사 Circuit board including conductive structures electrically connecting lines and electronic device including the same
CN112492768A (en) * 2021-01-29 2021-03-12 四川英创力电子科技股份有限公司 Manufacturing method of PCB with two surface treatments
CN112492768B (en) * 2021-01-29 2021-04-30 四川英创力电子科技股份有限公司 Manufacturing method of PCB with two surface treatments
CN115767938A (en) * 2022-11-25 2023-03-07 福莱盈电子股份有限公司 Gold plating method applied to reinforced steel sheet
CN115767938B (en) * 2022-11-25 2024-05-28 福莱盈电子股份有限公司 Gold selection and plating method applied to reinforced steel sheet

Also Published As

Publication number Publication date
JP6772567B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
TWI514957B (en) Method for manufacturing electromagnetic interference shielding film
JP5861790B1 (en) Electromagnetic shielding sheet, electromagnetic shielding wiring circuit board, and electronic equipment
CN107889339B (en) Printed wiring board and electronic apparatus
JP5659379B1 (en) Printed wiring board
CN104350816A (en) Shield film and shield printed wiring board
TWI699787B (en) Conductive adhesive composition
TW201406278A (en) Shield film and shield printed wiring board
JP6028290B2 (en) Electromagnetic shielding sheet and printed wiring board
TW201438560A (en) Shielding film for printed wiring board and printed wiring board
JP6772567B2 (en) Printed wiring board and electronic equipment
JP2016063117A (en) Electromagnetic wave shield film, electromagnetic wave shield film-attached flexible printed wiring board, and manufacturing methods thereof
TWI602478B (en) Shape retaining film and shape retaining flexible wiring board containing the shape retaining film
KR102419510B1 (en) Reinforcing member for printed wiring board
JP4324029B2 (en) Laminated film having metal film and adhesive layer and method for producing the same
CN114830843A (en) Conductive adhesive
JP2016157920A (en) Electromagnetic wave shielding sheet, electromagnetic wave shielding wiring circuit board, and electronic device
US20240182759A1 (en) Electroconductive adhesive layer
JP2018056542A (en) Print circuit board and electronic device
WO2021167047A1 (en) Electroconductive adhesive, electromagnetic shielding film and electroconductive bonding film
JP2022021641A (en) Electromagnetic wave shield film and electromagnetic wave shield film-attached printed wiring board
KR20220124684A (en) electromagnetic shielding film
JP2020064927A (en) Electromagnetic wave shield film, manufacturing method of the same, and printed wiring board with electromagnetic wave shield film
CN114945268A (en) Electromagnetic wave shielding film and printed wiring board with electromagnetic wave shielding film
TW202406736A (en) Composite film
JP2021082646A (en) Electromagnetic wave-shield film, electromagnetic wave-shield film-attached print wiring board, and manufacturing methods thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R151 Written notification of patent or utility model registration

Ref document number: 6772567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350