JP2016109539A - ストロークセンサ - Google Patents

ストロークセンサ Download PDF

Info

Publication number
JP2016109539A
JP2016109539A JP2014246850A JP2014246850A JP2016109539A JP 2016109539 A JP2016109539 A JP 2016109539A JP 2014246850 A JP2014246850 A JP 2014246850A JP 2014246850 A JP2014246850 A JP 2014246850A JP 2016109539 A JP2016109539 A JP 2016109539A
Authority
JP
Japan
Prior art keywords
sensor
magnetic sensor
magnetic
piston rod
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014246850A
Other languages
English (en)
Inventor
杉原 克道
Katsumichi Sugihara
克道 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2014246850A priority Critical patent/JP2016109539A/ja
Priority to CN201510886251.9A priority patent/CN105674865A/zh
Publication of JP2016109539A publication Critical patent/JP2016109539A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Actuator (AREA)

Abstract

【課題】センサの取付面と平行な方向に感度を持ち、当該方向の検出信号に対する極性がないストロークセンサを用いても、表面形状に応じた波形を得られるストロークセンサを提供する。【解決手段】変位方向に所定のピッチで凸部10と凹部9が交互に設けられ直線状に変位するピストンロッド3の変位を検出するストロークセンサは、ピストンロッド3と対向して配置される磁気センサ34と、磁気センサ34からピストンロッド3へ向かう方向に磁束を発生させる磁石35と、を備え、磁気センサ34は、ピストンロッド3の変位方向に傾いて配置され、この傾き方向の磁束の大きさに基づいてピストンロッド3の変位を検出することを特徴とする。【選択図】図3

Description

本発明は、ストロークセンサに関する。
特許文献1には、磁性体に複数の凹状の溝を形成してなるピストンロッドの変位量を検出コイルを用いて検出する磁気式ストローク検出センサが記載されている。特許文献1に記載の磁気式ストローク検出センサでは、ピストンロッドが軸方向に進退移動すると、ピストンロッドの非磁性部である凹溝が検出コイルを通過する毎に、検出コイルのインピーダンスが正弦波状に変化する。そして、この検出コイルから得られる正弦波状のインピーダンスの変化に基づいてピストンロッドの移動距離を算出している。
特開平5−272906号公報
磁気センサの取付面と平行な方向のベクトル成分がどちら向きであっても、ベクトル成分の大きさ(絶対値)が同じであれば、抵抗値が同じ値となる形式のストロークセンサがある。言い換えると、磁気センサの取付面と平行な方向に感度を持っているが、当該方向の向きに対する極性を持っていないストロークセンサがある。このようなストロークセンサを、特許文献1のようなピストンロッドの移動距離の検出に用いる場合について、図7,図8,図9A及び図9Bを参照しながら説明する。
図7は、ピストンロッド91の変位(移動距離)を検出するストロークセンサ90の主要部を示している。ピストンロッド91は、磁性材料によって形成され、表面の変位方向に所定ピッチごとに非磁性部としての凹部92が設けられる。これにより、ピストンロッド91は、磁性部としての凸部93と非磁性部としての凹部92とが変位方向に交互に設けられる。
ストロークセンサ90は、直線状に移動するピストンロッド91の外周に隣接して、ピストンロッド91の変位方向と平行になるように設けられる。
図7、図8を参照してストロークセンサ90について具体的に説明する。ストロークセンサ90では、磁石96からの磁束Bが磁気センサ95を基板94の垂直方向に通過する。磁気センサ95は、磁気抵抗素子を備えている。ピストンロッド91が図7の位置から変位すると、磁性を有する凸部93の影響によって、例えば図8に示すように磁気センサ95内を通過する磁束Bが傾く。磁気センサ95は、内部を通過する磁束Bが傾くことで、抵抗値が大きな値へと変化する。
具体的には、磁気センサ95内における磁束Bは、磁気センサ95の基板94への取付面95aと平行な方向のベクトル成分xと、磁気センサ95の取付面95aに垂直な方向のベクトル成分yと、を有する。磁気センサ95を貫通する磁束Bのベクトルの大きさは、磁石96の強さに相当する。図8に示す3つの磁束Bのベクトルの大きさは同じである。この磁束Bのベクトルの大きさは、ベクトル成分xとベクトル成分yの合成ベクトルに相当する。磁気センサ95では、磁気センサ95内における磁束Bが取付面95aに垂直な方向であれば、ベクトル成分xが0(ゼロ)となり、磁気センサ95の抵抗値は最小となる。そして、磁気センサ95内における磁束Bが傾くにつれて、ベクトル成分xが大きくなると、磁気センサ95の抵抗値が大きくなる。また、磁気センサ95は、ベクトル成分xが取付面95aと平行ないずれの向きであっても、ベクトル成分xの大きさ(絶対値)が同じであれば、抵抗値は同じ値になる。つまり、磁気センサ95を備えるストロークセンサ90は、磁気センサ95の取付面95aと平行な方向に感度を持っているが、当該方向の向きに対する極性を持っていないことになる。
次に、図9A、図9Bを参照して、ピストンロッド91が変位した場合の磁気センサ95の抵抗値の変化について説明する。
図9Aは、磁気センサ95とピストンロッド91との各相対位置における磁気センサ95内における磁束Bの傾きの変化を示す概略図である。
図9Aにおいて、a位置は、凸部93のピストンロッド91の変位方向における中間の位置である。a位置では、ピストンロッド91の変位方向において磁気的に中立である。したがって、磁気センサ95を通過する磁束Bの向きはピストンロッド91に対して垂直となる。このとき、磁気センサ95内における磁束Bは、ベクトル成分xの大きさが0(ゼロ)となる。これにより、磁気センサ95の抵抗値は最小となる。
c位置は、磁気センサ95内における磁束Bの傾きが最大となる位置である。c位置では、磁気センサ95を通過する磁束Bは、磁性部である凸部93の影響を受け、傾きが最大となる。このとき、磁気センサ95内における磁束Bのベクトル成分xの大きさは最大となる。これにより、c位置では磁気センサ95の抵抗値は最大となる。
d位置は、非磁性部である凹部92のピストンロッド91の変位方向における中間の位置である。d位置では、a位置と同様に抵抗値が最小となる。
e位置は、d位置を挟んでc位置と対称となる位置である。e位置では、c位置とベクトル成分xの向きは異なるが、ベクトル成分xの大きさ(絶対値)は同じなので、抵抗値はc位置と同じ値になる。
図9Bは、ピストンロッド91が変位した場合の磁気センサ95の抵抗値の変化を示すグラフである。ピストンロッド91が変位すると、磁気センサ95はa位置からa位置における抵抗値で繰り返し変化する。これにより、抵抗値(検出信号)は図9Bのような波形となる。
図9Bに示す波形では、波形の山側のピークであるe位置からc位置までの距離とc位置からe位置までの距離が凸部93及び凹部92の幅と異なり、ピストンロッド91の表面形状(凸部93及び凹部92)に応じた波形にならない。このようにして検出された抵抗値(検出信号)をもとにピストンロッド91の移動距離を演算する場合には、検出信号の波形の複雑な処理が必要となる。
本発明は、このような技術的課題に鑑みてなされたものであり、可動体の表面形状に応じた波形を得ることができるストロークセンサを提供することを目的とする。
第1の発明は、変位方向に所定のピッチで磁性部と非磁性部が交互に設けられ直線状に変位する可動体の変位を検出するストロークセンサであって、可動体と対向して配置される磁気センサと、磁気センサから前記可動体へ向かう方向に磁束を発生させる磁石と、を備え、磁気センサは、可動体の変位方向に傾いて配置され、この傾き方向の磁束の大きさに基づいて可動体の変位を検出することを特徴とする。
第1発明では、磁気センサは直線状に変位する可動体の変位方向に傾いて配置されるため、磁気センサは傾き方向の磁束の大きさを検出することで可動体の変位を検出する。
第2の発明は、磁気センサは、磁束の傾き方向のベクトルの大きさに基づいて可動体の変位を検出するとともに、可動体が変位してベクトルの大きさが変化してもベクトルの向きは常に同じ方向になるように配置されていることを特徴とする。
第2発明では、磁束の傾き方向のベクトルの大きさが常に同じ方向になるように磁気センサが配置されているため、ベクトルの大きさの変化が大きくなり検出される抵抗値の波形の振幅が大きくなる。
第3の発明は、磁気センサの傾きは、磁気センサを通過する磁束の可動体の変位方向と垂直な方向に対する傾きの最大値より大きくなるように設定されることを特徴とする。
第3発明では、磁気センサの傾きが磁気センサを通過する磁束の可動体の変位方向と垂直な方向に対する傾きの最大値より大きくなるように設定されるため、磁束の可動体の変位方向と垂直な方向に対する傾きの方向が、垂直な方向に対して常に同じ側の傾きとなる。これにより、傾きの変化が大きくなり検出される抵抗値の波形の振幅が大きくなる。
第1〜第3の発明では、磁気センサは直線状に変位する可動体の変位方向に傾いて配置される。磁気センサは傾き方向の磁束の大きさを検出することで可動体の変位を検出する。
第4の発明は、磁気センサは、可動体が所定のピッチ移動したときに一周期の信号を出力することを特徴とする。
第4の発明では、可動体が所定のピッチ移動したときに、所定のピッチ応じた周期の波形を信号として出力するため、波形の信号処理を簡単な方法で行うことができる。
第5の発明は、磁気センサが取り付けられる基板をさらに備え、磁石は、基板を挟んで磁気センサと逆側に設けられるとともに、基板の垂直方向に磁束を発生させることを特徴とする。
第5の発明では、磁気センサは基板に取り付けられるので、磁気センサに接続される配線を省略できる。また、磁気センサ、基板、及び磁石をユニット化でき、組立が簡単になる。
第6発明は、可動体と対向する底面と、基板あるいは磁気センサが取り付けられる載置面と、を有するハウジングをさらに備え、載置面が底面に対して傾いて形成されることを特徴とする。
第6の発明では、ハウジングの基板あるいは磁気センサが取り付けられる載置面が可動体と対向する底面に対して傾いている。したがって、磁気センサを傾いた載置面に取り付けることで、磁気センサを一定の傾いた角度で組み立てることができる。
本発明によれば、可動体の表面形状に応じた波形を得ることができるストロークセンサを得ることができる。
本発明の実施形態に係るストロークセンサが組み込まれたダンパを示す構成図である。 本発明の実施形態に係るストロークセンサを拡大して示す拡大図である。 本発明の実施形態に係るストロークセンサにおけるセンサ部の先端部の断面を示す断面図である。 本発明の実施形態に係るストロークセンサにおける磁気センサ内における磁束の概念図である。 本発明の実施形態に係るストロークセンサにおける磁気センサとピストンロッドの各相対位置における磁気センサ内の磁束の傾きの変化を示す概略図である。 本発明の実施形態に係るストロークセンサにおける磁気センサの抵抗値の変化を示すグラフである。 図5Aの一部を拡大して示す拡大図である。 比較例におけるセンサ部の先端部の断面を示す断面図である。 比較例における磁気センサ内における磁束の概念図である。 比較例における磁気センサとピストンロッドの各相対位置における磁気センサ内の磁束の傾きの変化を示す概略図である。 比較例における磁気センサの抵抗値の変化を示すグラフである。
以下、添付図面を参照しながら本発明の実施形態について説明する。
図1は、本実施形態におけるストロークセンサ50が組み込まれたダンパ100を示す構成図である。
ダンパ100は、作動流体が封入されたシリンダチューブ1と、シリンダチューブ1内に摺動自在に収装されたピストン2と、一端がピストン2に結合され他端がシリンダチューブ1の外部へと延在する可動体としてのピストンロッド3と、直線状に変位するピストンロッド3の変位を検出するストロークセンサ50と、を備える。
シリンダチューブ1の開口端には、シリンダチューブ1を封止するシリンダヘッド4が設けられる。シリンダヘッド4は、ピストンロッド3の外周と摺接するベアリング5を内周に有してピストンロッド3を支持する。
ダンパ100は、さらに、シリンダヘッド4と隣接して設けられストロークセンサ50を保持するセンサホルダ6を備える。センサホルダ6は、シリンダヘッド4と同軸上に配置され、ピストンロッド3はセンサホルダ6を挿通する。センサホルダ6には、内周から外周まで径方向に連通してストロークセンサ50のセンサ部11(図2)が挿入される連通孔7が形成される。また、センサホルダ6の内周には、連通孔7及びシリンダチューブ1内へのダストの侵入を防止するダストシール8が設けられる。
ピストンロッド3は、直線状に変位し、磁性材料によって形成される。ピストンロッド3には、外表面の変位方向に所定のピッチで環状の溝からなる凹部9が設けられる。凹部9には、非磁性材料が埋め込まれ、非磁性部として機能する。これにより、ピストンロッド3には、磁性部としての凸部93と非磁性部としての凹部92とがピストンロッド3の変位方向に交互に設けられる。なお、ピストンロッド3は、凹部9に非磁性材料が埋め込まれるのに加えて、ピストンロッド3の外表面全体を非磁性材料でコーティングしてもよい。非磁性材料によるコーティングとしては、クロムめっきや銅めっきなどが施される。また、ピストンロッド3は、例えばシールをする必要がないなど、表面が均一である必要がなければ、非磁性材料を埋め込む必要はない。この場合には、凹部9内の空間が非磁性材として機能する。
図2は、ストロークセンサ50を拡大して示す拡大図である。図2に示すように、ストロークセンサ50のセンサ部11は、ピストンロッド3の外周面に対向するようにセンサホルダ6内に収装される。
ストロークセンサ50は、ピストンロッド3の変位に応じた抵抗値の変化を検出信号として出力するセンサ部11と、センサ部11と配線12によって接続されセンサ部11から出力される検出信号を増幅する増幅回路(図示せず)を有する基板13と、センサ部11を支持するとともに基板13を収容する有底筒状のケース14と、ケース14の開口部14aに覆設されるカバー15と、を備える。
ケース14は、センサホルダ6の外周面に固定され、側面にセンサホルダ6の連通孔7と連通するセンサ用開口部14bを有する。基板13には、増幅回路によって増幅した検出信号をケース14外へと伝達する外部配線16が接続される。外部配線16は、カバー15の孔15aを通して外部へと引き出される。
センサ部11は、ケース14のセンサ用開口部14bに支持される基端部17と、基端部17に対してセンサ部11の軸方向に移動可能な先端部18と、先端部18と基端部17との間に介装され先端部18をピストンロッド3側に付勢するスプリング19と、を有する。
先端部18には、ピストンロッド3の外周面に対向して円環状のベアリング20が装着され、先端部18はベアリング20を介してピストンロッド3と摺接する。ベアリング20の軸方向の厚みは、スプリング19によって付勢される先端部18とピストンロッド3とが所定の間隙を有するように予め設定される。
基板13は、ケース14の内面であってピストンロッド3の軸方向に垂直な面に固定される。基板13は、ボルト21によってケース14に固定された後、シリコン樹脂やエポキシ樹脂等のモールド樹脂22によって全体がモールドされる。
ストロークセンサ50では、ピストンロッド3の変位に伴ってセンサ部11の先端部18に対して凹部9及び凸部10が相対移動すると、センサ部11から出力される検出信号が基板13の増幅回路に伝達され信号が増幅された後、ケース14外のコントローラ(図示せず)に送信される。コントローラは、ストロークセンサ50から送信される検出信号を処理することでピストンロッド3の変位量(移動距離)を演算する。
次に、ストロークセンサ50の先端部18の内部構造について説明する。
図3は、センサ部11の先端部18の断面を示す断面図である。
先端部18は、内部に有底筒状の収容室30を画成するハウジング31を備える。ハウジング31は、ピストンロッド3と対向する底面31aを備える。底面31aは、ピストンロッド3の変位方向と平行になるように配置され、ベアリング20(図2)を介してピストンロッド3と摺接する。
収容室30の内底面30aには、収容室30の内径より小径な内周面を有する環状段部32が形成される。環状段部32の上面32a(載置面)は、底面31aに対して所定角度θ(1°〜5°程度)傾いている。底面31aは、ピストンロッド3の変位方向と平行になっているので、環状段部32の上面32aは、ピストンロッド3の変位方向に角度θだけ傾いていることになる。
ストロークセンサ50は、先端部18の収容室30内に、ピストンロッド3と対向して配置され、磁気抵抗素子を備える磁気センサ34と、磁気センサ34が取り付けられるセンサ基板33と、センサ基板33を挟んで磁気センサ34と逆側に設けられる磁石35と、センサ基板33と磁石35の間に設けられたヨーク36と、を備える。
磁気センサ34は、センサ基板33におけるピストンロッド3と対向する面に取り付けられる取付面34aを備えている。また、磁石35は、磁気センサ34からピストンロッド3へ向かう方向に磁束Bを発生させる。本実施形態においては、磁石35は、センサ基板33の垂直方向に磁束Bを発生させている。
センサ基板33は、環状段部32の上面32aに載置され、環状段部32に外縁部が支持される。磁気センサ34は、環状段部32によって形成された空間内に配置される。このように、センサ基板33は、傾いた環状段部32の上面32aに載置されるため、センサ基板33、磁気センサ34、ヨーク36及び磁石35は、底面31aに対して所定角度θ(1°〜5°程度)傾いて配置される。
センサ基板33、磁気センサ34、ヨーク36及び磁石35は、ハウジング31の収容室30に収容された後、収容室30にモールド樹脂が充填されることによって収容室30内に固定される。
次に、図3及び図4を参照して磁気センサ34内における磁束Bについて説明する。
ストロークセンサ50では、磁石35はセンサ基板33の垂直方向に磁束Bを発生させる。図3は、凸部10のピストンロッド3の変位方向における中間の位置で磁気センサ34がピストンロッド3に対向していることを示す図ある。この位置は、ピストンロッド3の変位方向において磁気的に中立となる位置である。磁石35によって発生した磁束Bは、磁気センサ34内では磁気的に中立となる方向、すなわち、ピストンロッド3の変位方向に対して垂直方向にある位置b2(図4参照)に向かって傾く。ピストンロッド3が図3の位置から変位すると、磁気センサ34内における磁束Bの傾きは、位置b1から位置b3の範囲内で、凸部10の位置に応じて変化する。磁気センサ34は、内部を通過する磁束Bが傾くことで抵抗値が大きな値へと変化する。
図4に示すように、磁気センサ34内における磁束Bは、磁気センサ34の取付面34aと平行な方向のベクトル成分xと、取付面34aに垂直な方向のベクトル成分yと、を有する。磁気センサ34を貫通する磁束Bのベクトルの大きさは、磁石35の強さに相当する。図4に示す3つの磁束Bのベクトルの大きさは同じである。この磁束Bのベクトルの大きさは、ベクトル成分xとベクトル成分yの合成ベクトルに相当する。磁気センサ34内における磁束Bが取付面34aに垂直な方向(位置b1に向かう方向)であれば、ベクトル成分xは0(ゼロ)となり、磁気センサ34の抵抗値は最小となる。そして、磁気センサ34内における磁束Bが位置b1に向かう方向から位置b3に向かう方向へと傾くにつれてベクトル成分xが大きくなると、磁気センサ34の抵抗値は大きくなる。ストロークセンサ50は、ベクトル成分xが取付面34aと平行ないずれの向きであっても、ベクトル成分xの大きさ(絶対値)が同じであれば、抵抗値は同じ値となる。つまり、磁気センサ34を備えるストロークセンサ50は、磁気センサ34の取付面34aと平行な方向に感度を持っているが、当該方向の向きに対する極性を持っていないということになる。
次に、磁気センサ34で検出される抵抗値の変化について説明する前に、比較例としてのストロークセンサ90の磁気センサ95で検出される抵抗値の変化について、図9A及び図9Bを参照して説明する。
本実施形態のストロークセンサ50と比較例であるストロークセンサ90とは、ストロークセンサ50のセンサ基板33、磁気センサ34、ヨーク36及び磁石35は、底面31aの垂直方向に対して所定角度θ(1°〜5°程度)傾いて配置されるのに対し、ストロークセンサ90ではセンサ基板94、磁気センサ95、ヨーク97及び磁石96が、ピストンロッド91の変位方向に対して平行である点で相違している。
図9Aについて説明する。図9Aにおけるa位置、c位置、d位置、及びe位置は発明の概要で説明しているため説明を省略する。図9Aにおいて、b位置は、ピストンロッド91の変位方向における凹部92と凸部93の境界位置である。磁気センサ95がb位置にあるときは、磁気センサ95を通過する磁束Bは磁性部である凸部93の影響を受ける。したがって、磁気センサ95内における磁束Bは凸部93(変位方向左向き)に向かって傾くため、ベクトル成分xの大きさは所定の値となる。これにより、b位置では抵抗値はa位置における値よりも大きな値となる。
f位置は、a位置を挟んでb位置と対称となる位置である。磁気センサ95がf位置にあるときには、磁気センサ95内における磁束Bは、b位置における磁束Bと対称となる向きに傾いている。このとき、ベクトル成分xは、b位置と同じ大きさとなる。f位置では、b位置とベクトル成分xの向きは異なるが、ベクトル成分xの大きさは同じなので、抵抗値は同じ値になる。
図9Bに示す波形では、波形の山側のピークであるe位置からc位置までの距離とc位置からe位置までの距離が凹部92及び凸部93の幅と異なる。このように、センサ基板94、磁気センサ95、ヨーク97及び磁石96をピストンロッド91の変位方向に対して平行に配置した場合には、磁気センサ95によって検出される検出信号(抵抗値)の波形は、ピストンロッド91の表面形状(凹部92及び凸部93)に応じた波形にならない。
次に、本実施形態のピストンロッド3が変位した際の磁気センサ34の抵抗値の変化について、図3〜図6を参照しながら説明する。なお、ダンパ100では、ストロークセンサ50が固定され、ピストンロッド3が変位するが、ここでは、便宜上、ピストンロッド3が固定され、ストロークセンサ50が変位するものとして説明する。
図4に示すように、磁気センサ34は、ベクトル成分xの大きさが変化してもベクトル成分xの向きは常に同じ方向になるように傾いて配置される。つまり、角度θは、磁束Bが変動してもベクトル成分xの向きが常に同じ方向になるような値に設定される。これにより、磁気センサ34内における磁束Bは、図4におけるベクトル成分yに対して左側の変動範囲のみで変化する。したがって、磁気センサ34内における磁束Bのベクトル成分xは、磁束Bが変化するとその大きさは変化するが、向きは変化せずに常にベクトル成分yに対して左側の変動範囲内に位置する。図4では、磁気センサ34は左側に傾けられて配置されるが、右側に傾けられてもよい。この場合には、磁気センサ34内における磁束Bのベクトル成分xは、常にベクトル成分yに対して右側の変動範囲内に位置することになる。
図5Aは、磁気センサ34とピストンロッド3の各相対位置における磁気センサ34内における磁束Bの傾きの変化を示す概略図である。図5Bは、磁気センサ34の抵抗値の変化を示すグラフである。図6は、図5Aの一部を拡大した拡大図である。なお、図5A、図5B、及び図6におけるa位置〜f位置は、図9A、図9Bに示す比較例と同様の位置であるので説明を省略する。
ストロークセンサ50の磁気センサ34は、e位置における磁気センサ34内の磁束Bの傾きと同じ角度になるように傾いて配置される。つまり、ストロークセンサ50では、磁気センサ34がピストンロッド3の変位方向に傾く角度θは、e位置における磁気センサ34内の磁束Bの傾きと同じ角度になるように設定される。これにより、e位置では、磁気センサ34内における磁束Bは取付面34aに対して垂直となる。このとき、磁気センサ34における磁束Bは、ベクトル成分xの大きさが0(ゼロ)となる。これにより、e位置での磁気センサ95の抵抗値は最小となる。
図5A、図6に示すように、磁気センサ34がe位置からc位置に向けて移動していくに従い、磁気センサ34内における磁束Bは傾きが大きくなる。これに伴って、磁気センサ34内における磁束Bのベクトル成分xも大きくなるため、e位置からc位置に向かうにつれて抵抗値は増加する。c位置では、磁気センサ34内における磁束Bは傾きが最大となり、抵抗値は最大となる。
磁気センサ34がc位置からe位置に向けて移動していくに従い、磁気センサ34内における磁束Bは傾きが小さくなる。これに伴って、磁気センサ34内における磁束Bのベクトル成分xも小さくなるため、c位置からe位置に向かうにつれて抵抗値は減少する。磁気センサ34がe位置に到達すると、磁気センサ34内における磁束Bは傾きがなくなり、ベクトル成分xは0(ゼロ)になる。したがって、抵抗値は、e位置において再び最小となる。このように、ストロークセンサ50では、磁気センサ34の抵抗値の波形は、e位置からc位置を通過して再びe位置にもどるまでを一周期とした波形が繰り返されたものとなる。e位置からe位置までの距離は、ピストンロッド3の凹部9と凸部10の変位方向の距離の和に等しい。したがって、磁気センサ34は、ピストンロッド3が所定のピッチ(ピストンロッド3の凹部9と凸部10の変位方向の距離の和)移動したときに一周期の検出信号(抵抗値)出力することになる。
このように、ストロークセンサ50では、ピストンロッド3の凹部9と凸部10の変位方向の距離の和に応じた検出信号(抵抗値)を得ることができる。これにより、検出信号(抵抗値)の波形は、凹部9と凸部10の変位方向の距離の和に応じた波長の単純な波形が繰り返されたもの、つまり、ピストンロッド3の変位による凹部9と凸部10の変化に応じた周期を波長とする単純な波形となるので、波形の信号処理を簡単な方法で行うことができる。
以上のように、ストロークセンサ50では、磁気センサ34が磁気センサ34内における磁束Bの取付面34aに平行な方向(磁束Bの傾き方向)のベクトル成分xの大きさを検出し、その検出結果に基づいてピストンロッド3の変位を検出することができる。つまり、磁気センサ34の取付面34aと平行な方向に感度を持ち、当該方向の検出信号に対する極性がないストロークセンサ50を用いても、ピストンロッド3の表面形状に応じた波形を得ることができる。また、検出信号(抵抗値)の波形が単純なものとなるので、波形の信号処理を簡単な方法で行うことができる。
また、比較例におけるストロークセンサ90では、磁気センサ95及び磁石96がピストンロッド91の変位方向と平行になるように配置されるため、図8に示すように、ピストンロッド91の変位に伴ってベクトル成分xはベクトル成分yを挟んで両側に変動する。このため、ベクトル成分xの大きさ(絶対値)の変化は小さい。これに対して、本実施形態におけるストロークセンサ50は、磁気センサ34及び磁石35がピストンロッド3の変位方向に傾いて配置されるため、図4に示すように、ピストンロッド3の変位に伴ってベクトル成分xはベクトル成分yに対して一方の側(左側)の範囲のみで変化する。これにより、ベクトル成分xの大きさ(絶対値)の変化が比較例に比べて大きくなるため、検出される抵抗値の波形の振幅が大きくなる。このように、波形の振幅が大きくなることで、ピストンロッド3が変位したときの抵抗値の変化が比較例に比べて大きくなる。したがって、ストロークセンサ50では、磁気センサ34及び磁石35がピストンロッド3の変位方向に傾いて配置されることで、ピストンロッド3の変位を検出する精度が向上する。
以上の本実施形態に示すストロークセンサ50によれば、以下の効果を奏する。
ストロークセンサ50では、磁気センサ34内における磁束Bの取付面34aに平行な方向のベクトル成分xの大きさを検出し、さらに、磁気センサ34及び磁石35は、ピストンロッド3の変位方向に傾いている。これにより、ストロークセンサ50は、ピストンロッド3の磁性部としての凸部10と非磁性部としての凹部9の変位方向の距離の和に等しい検出信号(抵抗値)の波形を得ることができる。つまり、ストロークセンサ50では、磁気センサ34及び磁石35がピストンロッド3の変位方向に傾いて配置されることで、ピストンロッド3の表面形状に応じた検出信号(抵抗値)が得られる。よって、磁気センサ34の取付面34aと平行な方向に感度を持ち、当該方向の検出信号に対する極性がないストロークセンサ50を用いても、ピストンロッド3の表面形状に応じた波形を得ることができる。また、検出信号(抵抗値)の波形は、凹部9と凸部10の変位方向の距離の和に応じた波長の単純な波形が繰り返されるもの、つまり、ピストンロッド3の変位による凹部9と凸部10の変化に応じた周期を波長とする単純な波形となるので、波形の信号処理を簡単な方法で行うことができる。さらに、検出信号(抵抗値)は、磁気センサを傾けていない比較例のものに比べ、振幅が大きくなる。これにより、変位を検出する精度が向上する。
以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。
変位方向に所定のピッチで磁性部(凸部10)と非磁性部(凹部9)が交互に設けられ直線状に変位する可動体(ピストンロッド3)の変位を検出するストロークセンサ50は、可動体(ピストンロッド3)と対向して配置される磁気センサ34と、磁気センサ34から可動体(ピストンロッド3)へ向かう方向に磁束Bを発生させる磁石35と、を備え、磁気センサ34は、可動体(ピストンロッド3)の変位方向に傾いて配置され、この傾き方向の磁束Bの大きさに基づいて可動体(ピストンロッド3)の変位を検出することを特徴とする。
この構成では、磁気センサ34は、直線状に変位する可動体(ピストンロッド3)の変位方向に傾いて配置されるため、磁気センサ34は傾き方向の磁束Bの大きさを検出することで可動体(ピストンロッド3)の変位を検出する。これにより、ストロークセンサ50は、可動体(ピストンロッド3)の表面形状(凹部9と凸部10)に応じた波形を得ることができる。
ストロークセンサ50は、磁気センサ34が、磁束Bの傾き方向のベクトル(ベクトル成分x)の大きさに基づいて可動体(ピストンロッド3)の変位を検出するとともに、可動体(ピストンロッド)が変位してベクトル(ベクトル成分x)の大きさが変化してもベクトル(ベクトル成分x)の向きは常に同じ方向になるように配置されていることを特徴とする。
この構成では、磁束Bの傾き方向のベクトル(ベクトル成分x)の大きさが常に同じ方向になるように磁気センサ34が配置されているため、ベクトル(ベクトル成分x)の大きさの変化が大きくなり検出される抵抗値の波形の振幅が大きくなる。したがって、可動体(ピストンロッド3)の変位を検出する精度が向上する。
ストロークセンサ50は、磁気センサ34の傾きが、磁気センサ34を通過する磁束Bの可動体(ピストンロッド3)の変位方向と垂直な方向に対する傾きの最大値より大きくなるように設定されることを特徴とする。
この構成では、磁気センサ34の傾きが磁気センサ34を通過する磁束Bの可動体(ピストンロッド3)の変位方向と垂直な方向に対する傾きの最大値より大きくなるように設定されるため、磁束Bの可動体(ピストンロッド3)の変位方向と垂直な方向に対する傾きの方向が、垂直な方向に対して常に同じ側の傾きとなる。これにより、傾きの変化が大きくなり検出される抵抗値の波形の振幅が大きくなる。したがって、可動体(ピストンロッド3)の変位を検出する精度が向上する。
ストロークセンサ50は、磁気センサ34が、可動体(ピストンロッド3)が所定のピッチ移動したときに一周期の信号を出力することを特徴とする。
この構成では、可動体が所定のピッチ移動したときに、所定のピッチ応じた周期の波形を信号として出力するため、波形の信号処理を簡単な方法で行うことができる。
ストロークセンサ50は、磁気センサ34が取り付けられる基板(センサ基板33)をさらに備え、磁石35は、基板(センサ基板33)を挟んで磁気センサ34と逆側に設けられるとともに、基板(センサ基板33)の垂直方向に磁束Bを発生させることを特徴とする。
この構成では、磁気センサ34は基板(センサ基板33)に取り付けられるので、磁気センサ34に接続される配線を省略できる。また、磁気センサ34、基板(センサ基板33)、及び磁石35をユニット化でき、組立が簡単になる。
ストロークセンサ50は、可動体(ピストンロッド3)と対向する底面31aと、基板(センサ基板33)あるいは磁気センサ34が取り付けられる載置面(上面32a)と、を有するハウジング31をさらに備え、載置面(上面32a)が底面31aに対して傾いて形成されることを特徴とする。
この構成では、磁気センサ34を傾いた載置面(上面32a)に取り付けることで、磁気センサ34を一定の傾いた角度に安定した状態で組み立てることができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一つを示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
例えば、上記実施形態では、ストロークセンサ50がダンパ100に組み込まれた場合について例示したが、流体圧アクチュエータはもちろんのこと、直線運動するものであれば、可動体は平板状などであってもよい。また、ピストンロッド3を磁性材料によって形成したが、ピストンロッド3を非磁性材料で形成し、凹部9に磁性材料を埋め込む構成でもよい。
環状段部32の上面32aが、底面31aに対して角度θ傾くように構成されているが、これに限らず、磁気センサ34と磁石35とがピストンロッド3の変位方向に傾いて固定されるものであれば、どのような構成であってもよい。また、環状段部32の上面32aにセンサ基板33が取り付けられているが、磁気センサ34が取り付けられるようにしてもよい。
磁気センサ34は、ベクトル成分xの大きさが変化してもベクトル成分xの向きが常に同じ方向になれば、磁気センサ34内における磁束Bは取付面34aに垂直となる位置を含んでいなくてもよい。言い換えると、磁気センサ34のピストンロッド3の変位方向への傾きは、磁気センサ34を通過する磁束Bのピストンロッド3の変位方向と垂直な方向に対する傾きの最大値より大きくなるように設定されていてもよい。
上記実施形態では、基板13に増幅回路が設けられているが、センサ基板33に設けてもよい。
50・・・ストロークセンサ、3・・・ピストンロッド(可動体)、9・・・凹部(非磁性部)、10・・・凸部(磁性部)、30・・・収容室、30a・・・内底面、31・・・ハウジング、31a・・・底面、32・・・環状段部、32a・・・上面(載置面)、33・・・センサ基板(基板)、34・・・磁気センサ、34a・・・取付面、35・・・磁石、100・・・ダンパ

Claims (6)

  1. 変位方向に所定のピッチで磁性部と非磁性部が交互に設けられ直線状に変位する可動体の変位を検出するストロークセンサであって、
    前記可動体と対向して配置される磁気センサと、
    前記磁気センサから前記可動体へ向かう方向に磁束を発生させる磁石と、を備え、
    前記磁気センサは、前記可動体の前記変位方向に傾いて配置され、この傾き方向の磁束の大きさに基づいて前記可動体の変位を検出することを特徴とするストロークセンサ。
  2. 前記磁気センサは、前記磁束の前記傾き方向のベクトルの大きさに基づいて前記可動体の変位を検出するとともに、前記可動体が変位して前記ベクトルの大きさが変化しても前記ベクトルの向きは常に同じ方向になるように配置されていることを特徴とする請求項1に記載のストロークセンサ。
  3. 前記磁気センサの傾きは、前記磁気センサを通過する磁束の前記可動体の変位方向と垂直な方向に対する傾きの最大値より大きくなるように設定されることを特徴とする請求項1または2に記載のストロークセンサ。
  4. 前記磁気センサは、前記可動体が前記所定のピッチ移動したときに一周期の信号を出力することを特徴とする請求項1から3のいずれか一項に記載のストロークセンサ。
  5. 前記磁気センサが取り付けられる基板をさらに備え、
    前記磁石は、前記基板を挟んで前記磁気センサと逆側に設けられるとともに、前記基板の垂直方向に磁束を発生させることを特徴とする請求項1から4のいずれか一項に記載のストロークセンサ。
  6. 前記可動体と対向する底面と、前記基板あるいは前記磁気センサが取り付けられる載置面と、を有するハウジングをさらに備え、
    前記載置面が前記底面に対して傾いて形成されることを特徴とする請求項5に記載のストロークセンサ。
JP2014246850A 2014-12-05 2014-12-05 ストロークセンサ Pending JP2016109539A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014246850A JP2016109539A (ja) 2014-12-05 2014-12-05 ストロークセンサ
CN201510886251.9A CN105674865A (zh) 2014-12-05 2015-12-04 行程传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246850A JP2016109539A (ja) 2014-12-05 2014-12-05 ストロークセンサ

Publications (1)

Publication Number Publication Date
JP2016109539A true JP2016109539A (ja) 2016-06-20

Family

ID=56123907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246850A Pending JP2016109539A (ja) 2014-12-05 2014-12-05 ストロークセンサ

Country Status (2)

Country Link
JP (1) JP2016109539A (ja)
CN (1) CN105674865A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017116412A (ja) * 2015-12-24 2017-06-29 Kyb株式会社 ストローク検出装置
JP6828676B2 (ja) * 2017-12-27 2021-02-10 Tdk株式会社 磁気センサ
JP6910978B2 (ja) * 2018-03-09 2021-07-28 Ckd株式会社 ピストン位置検出装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155917A (ja) * 1984-01-25 1985-08-16 Matsushita Electric Ind Co Ltd 検出装置
JPH0323307U (ja) * 1989-07-18 1991-03-11
JPH04136713A (ja) * 1990-09-28 1992-05-11 Kayaba Ind Co Ltd 位置検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042210B2 (en) * 1999-12-14 2006-05-09 Matsushita Electric Industrial Co., Ltd. Non-contact magnetic position sensor
US7302940B2 (en) * 2005-09-26 2007-12-04 Cummins, Inc Variable reluctance position sensor
US8129984B2 (en) * 2007-06-27 2012-03-06 Brooks Automation, Inc. Multiple dimension position sensor
TWI499759B (zh) * 2012-09-14 2015-09-11 Yamaha Motor Co Ltd 相對旋轉角度位移檢測裝置、使用該檢測裝置之轉矩檢測裝置及轉矩控制裝置、以及具備該控制裝置之車輛等

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155917A (ja) * 1984-01-25 1985-08-16 Matsushita Electric Ind Co Ltd 検出装置
JPH0323307U (ja) * 1989-07-18 1991-03-11
JPH04136713A (ja) * 1990-09-28 1992-05-11 Kayaba Ind Co Ltd 位置検出装置

Also Published As

Publication number Publication date
CN105674865A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5894596B2 (ja) 第2の部分に対する第1の部分の空間位置を決定するセンサ組立体および方法
KR100833329B1 (ko) 상대변위 측정 센서가 설치된 댐퍼
US8997629B2 (en) Pneumatic actuator
KR20030084639A (ko) 위치 감지 장치
JP2016109539A (ja) ストロークセンサ
EP3198231B1 (en) Magnetic field generator and position sensing assembly
JP4705931B2 (ja) 相対変位測定センサーモジュール
JP2015021745A (ja) ストローク検出装置
JP6326442B2 (ja) 磁気検出ユニット及びこれを備えるストローク検出装置
US11150109B2 (en) Displacement detecting device and continuously variable transmission device
JP6653062B2 (ja) ストロークセンサ
US8237430B2 (en) Displacement sensor for a rod
JP2014130035A (ja) ストロークセンサ
JP2017528696A (ja) アクチュエータ/センサ装置および当該装置で使用する方法
JP2019049489A (ja) 変位検出装置及び変位検出装置の較正方法
JP5004985B2 (ja) 磁気式位置センサ
KR20140135623A (ko) 회전 각도 검출기
JP6122714B2 (ja) 変位センサ
JP6367724B2 (ja) 変位検出装置
JP2009121862A (ja) 力センサ
JP4150904B2 (ja) 変位量センサ
CN111721327A (zh) 磁场发生组件、位置检测装置及磁场发生组件的制造方法
JP4345031B2 (ja) 変位量センサ
JP6218942B2 (ja) 変位検出装置
JP5958294B2 (ja) ストロークセンサ

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190122