JP2016107610A - Decorative coating film - Google Patents

Decorative coating film Download PDF

Info

Publication number
JP2016107610A
JP2016107610A JP2015085025A JP2015085025A JP2016107610A JP 2016107610 A JP2016107610 A JP 2016107610A JP 2015085025 A JP2015085025 A JP 2015085025A JP 2015085025 A JP2015085025 A JP 2015085025A JP 2016107610 A JP2016107610 A JP 2016107610A
Authority
JP
Japan
Prior art keywords
silver
fine particles
decorative coating
alloy
decorative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015085025A
Other languages
Japanese (ja)
Inventor
文隆 吉永
Fumitaka Yoshinaga
文隆 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to DE102015120433.9A priority Critical patent/DE102015120433A1/en
Priority to US14/952,164 priority patent/US20160152834A1/en
Priority to CN201510844119.1A priority patent/CN105647271A/en
Publication of JP2016107610A publication Critical patent/JP2016107610A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0837Bismuth
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel

Abstract

PROBLEM TO BE SOLVED: To provide a decorative coating film which, when fine particles of silver or a silver alloy are used in a decorative coating film formed on a surface of a resin substrate located in a radar device path, can successively improving glossiness of the decorative coating film.SOLUTION: A decorative coating film is formed on a surface of a resin substrate located in a radar device path. The decorative coating film at least comprises fine particles of silver or a silver alloy dispersed in the decorative coating film, and a binding resin having optical transparency and binding the fine particles of silver or a silver alloy to each other. In a color system (L,a,b) specified in the CIE1976 color system, the chromaticness index aand chromaticness index bof the decorative coating film satisfy a relation of 6.7≤((a)+(b))≤23.4.SELECTED DRAWING: Figure 5

Description

本発明は、樹脂基材の表面に形成される装飾被膜であって、特に光沢性に優れた装飾被膜に関する。   The present invention relates to a decorative coating formed on the surface of a resin substrate, and particularly relates to a decorative coating excellent in gloss.

従来から、自動車などの車両には、その前方の障害物または車両との距離を測定すべく、その前部の中心位置にミリ波レーダなどのレーダ装置が搭載されている。レーダ装置から照射されるたとえばミリ波などの電波はフロントグリルや車両製造会社のエンブレムを介して前方に放射され、前方車両や前方障害物などの対象物で反射され、この反射波がフロントグリル等を介してレーダ装置に戻るようになっている。   2. Description of the Related Art Conventionally, a vehicle such as an automobile is equipped with a radar device such as a millimeter wave radar at the center position in front of the vehicle so as to measure an obstacle ahead of the vehicle or a distance from the vehicle. Radio waves such as millimeter waves emitted from the radar device are radiated forward via the front grill and the vehicle manufacturer's emblem and reflected by an object such as a front vehicle or a front obstacle, and this reflected wave is reflected on the front grill or the like. It returns to a radar apparatus via.

したがって、フロントグリルやエンブレムなどのレーダ装置のビーム経路に配置される箇所には、電波透過損失が少なく、しかも所望の美観を付与できる材料や塗料が用いられることが多く、樹脂基材の表面に装飾被膜を形成することが一般的になされている。   Therefore, materials and paints that have a low radio wave transmission loss and can give a desired aesthetic appearance are often used at locations arranged in the beam path of radar devices such as the front grille and emblem. It is common practice to form a decorative coating.

一方、従来から銀被膜は可視光反射率が高く、赤外線遮蔽性に優れていることから、各種用途に用いられている。さらに、銀被膜は電波遮蔽性にも優れていることから、例えば電波によって誤作動を生じる電子機器類を外部の電波から保護したり、あるいは、電子機器類から生じる電波の放射を抑止したりすることができることから、電波シールド被膜として用いられることもある。   On the other hand, silver coatings are conventionally used in various applications because they have high visible light reflectivity and excellent infrared shielding properties. In addition, the silver coating is also excellent in radio wave shielding. For example, electronic devices that malfunction due to radio waves are protected from external radio waves, or radio waves generated from electronic devices are suppressed. Therefore, it may be used as a radio wave shielding film.

たとえば、特許文献1には、ビスマス(Bi)および/またはアンチモン(Sb)を0.01〜10at%含有する電波シールド用銀合金膜が開示されている。この電波シールド用銀合金膜には、透明誘電体被膜が形成されており、この被膜にピンホールや傷等の欠陥部が形成されて、直接的に銀合金膜に晒された場合であっても、銀の凝集が生じ難いとされている。   For example, Patent Document 1 discloses a silver alloy film for radio wave shielding containing 0.01 to 10 at% of bismuth (Bi) and / or antimony (Sb). This silver alloy film for radio wave shielding has a transparent dielectric film formed on it, and defects such as pinholes and scratches are formed on this film, which is directly exposed to the silver alloy film. However, it is said that silver aggregation hardly occurs.

特開2004−263290号公報JP 2004-263290 A

しかしながら、たとえば、レーダ装置経路内に位置するエンブレムなどの樹脂基材の表面に、意匠性を高めるために銀を用いる場合、たとえば特許文献1の如く、樹脂基材を銀被膜で覆ってしまうと、レーダ装置からのミリ波などの電波が透過し難くなってしまう。   However, for example, when silver is used on the surface of a resin base material such as an emblem located in the radar apparatus path in order to improve design, if the resin base material is covered with a silver coating as in Patent Document 1, for example. Therefore, it is difficult for radio waves such as millimeter waves from the radar device to pass through.

このことから、銀または銀合金の微粒子とこれを結合する結合樹脂とともに、装飾被膜として基材表面に被覆することが考えられる。しかしながら、このような装飾被膜は、継時的に使用すると、装飾被膜は光に晒される(光エネルギーを受ける)ことになるが、装飾被膜の光沢度はほとんど変わらない。   From this, it is conceivable that the surface of the base material is coated as a decorative film together with fine particles of silver or silver alloy and a binding resin for binding the fine particles. However, when such a decorative coating is used over time, the decorative coating is exposed to light (receives light energy), but the glossiness of the decorative coating is hardly changed.

本発明はこのような点を鑑みてなされたものであり、その目的とすることころは、レーダ装置経路内に位置する樹脂基材の表面に形成される装飾被膜に、銀または銀合金の微粒子を用いた場合、装飾被膜の光沢性を継時的に向上させることができる装飾被膜を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to form silver or silver alloy fine particles on a decorative film formed on the surface of a resin substrate located in a radar apparatus path. In the case where is used, the object is to provide a decorative coating that can improve the gloss of the decorative coating over time.

発明者は、鋭意検討を重ねた結果、銀または銀合金の微粒子とこれらを結合する結合樹脂の表面では、表面プラズモン共鳴吸収が起因して、装飾被膜の光沢性が向上するとの知見を得た。すなわち、図7(a)に示すように、装飾被膜に光が照射されると、光によるエネルギーにより銀または銀合金の微粒子(金属微粒子)ばかりでなく、これらを結合する結合樹脂も振動する。これにより、銀および銀合金の微粒子の内部の自由電子が移動し、銀または銀合金の微粒子が分極しやすくなると考えた。   As a result of intensive studies, the inventor obtained knowledge that the gloss of the decorative coating is improved due to surface plasmon resonance absorption on the surface of silver or silver alloy fine particles and the binding resin that binds these. . That is, as shown in FIG. 7A, when the decorative coating is irradiated with light, not only the silver or silver alloy fine particles (metal fine particles) but also the binding resin that binds them vibrates due to the light energy. As a result, it was considered that free electrons inside the fine particles of silver and silver alloy move, and the fine particles of silver or silver alloy are easily polarized.

このようにして、図7(b)に示すように、銀または銀合金の微粒子さらには結合樹脂の表面において、表面プラズモン・ポラリトンと呼ばれる表面電磁波が発生し、特定波長の光が吸収され、これにより、特に銀または銀合金の微粒子のエネルギーが増幅され易くなる(表面プラズモン共鳴吸収)。   In this way, as shown in FIG. 7B, surface electromagnetic waves called surface plasmon polariton are generated on the surface of the silver or silver alloy fine particles or the binding resin, and light of a specific wavelength is absorbed. In particular, the energy of fine particles of silver or silver alloy is easily amplified (surface plasmon resonance absorption).

このような結果、銀または銀合金の微粒子の場合には微粒子周辺の構成物質が増幅エネルギーを受けやすくなり、このエネルギーにより装飾被膜の光沢性が向上するとの新たな知見を得た。その理由として、微粒子周辺の構成物質が変質し、微粒子同士がさらに緻密になっていることが挙げられる。したがって、装飾被膜の光沢性を向上させるには、表面プラズモン共鳴吸収が生じ易い銀または銀合金の微粒子と結合樹脂との組み合わせを選定することが重要であると考え、これらの組み合わせとして、表面プラズモン共鳴吸収に装飾被膜の色彩が起因すると考えた。   As a result, in the case of fine particles of silver or silver alloy, the constituent material around the fine particles is easily subjected to amplification energy, and new knowledge has been obtained that the gloss of the decorative coating is improved by this energy. The reason for this is that the constituent materials around the fine particles are altered, and the fine particles are more dense. Therefore, in order to improve the gloss of the decorative coating, it is important to select a combination of silver or a silver alloy fine particle and a binding resin, which are likely to cause surface plasmon resonance absorption. We thought that the color of the decorative film was caused by resonance absorption.

本発明は、このような点を鑑みてなされたものであり、本発明に係る装飾被膜は、レーダ装置経路内に位置する樹脂基材の表面に形成される装飾被膜であって、該装飾被膜は、該装飾被膜内に分散した銀または銀合金の微粒子と、該銀または銀合金の微粒子を結合する光透過性を有した結合樹脂と、を少なくとも備えており、CIE1976表色系に規定される表色系(L,a,b)において、前記装飾被膜のクロマティクネス指数aおよびクロマティクネス指数bが、6.7≦((a+(b1/2≦23.4の関係を満たしていることを特徴とする。 The present invention has been made in view of the above points, and a decorative coating according to the present invention is a decorative coating formed on the surface of a resin substrate located in a radar apparatus path, and the decorative coating is provided. Comprises at least a fine particle of silver or a silver alloy dispersed in the decorative coating and a light-transmitting binding resin that binds the fine particle of the silver or silver alloy, and is defined in the CIE 1976 color system. In the color system (L * , a * , b * ), the chromaticness index a * and the chromaticness index b * of the decorative coating are 6.7 ≦ ((a * ) 2 + (b * ) 2 ) It is characterized by satisfying the relationship of 1/2 ≦ 23.4.

装飾被膜は、装飾被膜内に分散した銀または銀合金の微粒子と、この微粒子を結合する光透過性を有した結合樹脂と、を少なくとも備えた構造であるので、外観上は金属光沢を持ちつつ、電波透過性(電気的絶縁性)を有する被膜となる。   The decorative coating has a structure including at least silver or silver alloy fine particles dispersed in the decorative coating and a light-transmitting binding resin that binds the fine particles, and thus has a metallic luster in appearance. It becomes a film having radio wave permeability (electrical insulating property).

ここで、CIE1976表色系に規定される表色系(L,a,b)において、クロマティクネス指数a,bが0に近いほど無彩色に近づく。一方、クロマティクネス指数aの値が0から大きくなるに従って、装飾被膜の色彩は赤色に近づき、クロマティクネス指数aの値が0から小さくなるに従って、装飾被膜の色彩は緑色に近づく。また、クロマティクネス指数bの値が0から大きくなるに従って、装飾被膜の色彩は黄色に近づき、クロマティクネス指数bの値が0から小さくなるに従って、装飾被膜の色彩は青色に近づく。 Here, in the color system (L * , a * , b * ) defined in the CIE 1976 color system, the closer the chromaticness index a * , b * is to 0, the closer to achromatic color. On the other hand, according to chromaticness indices a * value increases from 0, the color of the enamel coating approaches red, according to chromaticness indices a * value becomes smaller from 0, the color of the enamel coating approaches green. Further, according to chromaticness index b * value increases from 0, the color of the enamel coating approaches yellow, according chromaticness index b * value becomes smaller from 0, the color of the enamel coating approaches blue.

本実施形態では、前記装飾被膜のクロマティクネス指数aおよびクロマティクネス指数bが、6.7≦((a+(b1/2≦23.4の関係を満たしているので、装飾被膜は、銀または銀合金の微粒子特有の表面プラズモン共鳴吸収し易い色(有彩色)を呈し、この結果、光が照射される環境下で、装飾被膜の金属光沢が増加する度合いが継時的に高くなる。 In this embodiment, the chromaticness index a * and the chromaticness index b * of the decorative coating satisfy the relationship of 6.7 ≦ ((a * ) 2 + (b * ) 2 ) 1/2 ≦ 23.4. Therefore, the decorative coating exhibits a color (chromatic color) that is easy to absorb surface plasmon resonance characteristic of silver or silver alloy fine particles, and as a result, the metallic gloss of the decorative coating increases in an environment where light is irradiated. The degree increases over time.

一方、装飾被膜のクロマティクネス指数aおよびクロマティクネス指数bが((a+(b1/2<6.7の関係を満たす場合、((a+(b1/2の値が小さく、装飾被膜は無彩色に近づく。これにより、銀または銀合金からなる微粒子特有の表面プラズモン共鳴吸収が抑制されてしまう(光エネルギーが吸収され難い)ため、装飾被膜の光沢度はほとんど変化しない。後述する実施例からも明らかなように、現状では、装飾被膜のクロマティクネス指数aおよびクロマティクネス指数bが、((a+(b1/2≦23.4の関係を満たす装飾被膜を製造することはできる。 On the other hand, when the chromaticness index a * and the chromaticness index b * of the decorative film satisfy the relationship of ((a * ) 2 + (b * ) 2 ) 1/2 <6.7, ((a * ) 2 + (B * ) 2 ) The value of 1/2 is small, and the decorative film approaches an achromatic color. Thereby, surface plasmon resonance absorption peculiar to fine particles made of silver or a silver alloy is suppressed (light energy is hardly absorbed), so that the glossiness of the decorative coating hardly changes. As will be apparent from the examples described later, at present, the chromaticness index a * and the chromaticness index b * of the decorative coating are ((a * ) 2 + (b * ) 2 ) 1/2 ≦ 23.4. It is possible to produce a decorative coating that satisfies the above relationship.

より好ましい態様としては、銀または銀合金の微粒子の平均粒径は、2〜200nmである。銀または銀合金の微粒子の平均粒径が200nmよりも大きい場合には、銀または銀合金の微粒子が凝集し易く、このことに起因して銀光沢が低下し易いことが分っている。このことより、銀または銀合金の平均粒径の望ましい範囲として200nm以下を規定したものである。また、銀または銀合金の微粒子の平均粒径が2nm未満の場合には、装飾被膜に入射された光が反射され難い。また、銀または銀合金の微粒子がナノサイズであることから、この態様の場合には、局在表面プラズモン共鳴吸収と呼ばれる現象により光が吸収され易い。   In a more preferred embodiment, the average particle diameter of the silver or silver alloy fine particles is 2 to 200 nm. It has been found that when the average particle diameter of the silver or silver alloy fine particles is larger than 200 nm, the silver or silver alloy fine particles are likely to aggregate, and as a result, the silver gloss is likely to be lowered. From this, 200 nm or less is prescribed | regulated as a desirable range of the average particle diameter of silver or a silver alloy. Moreover, when the average particle diameter of the silver or silver alloy fine particles is less than 2 nm, the light incident on the decorative coating is difficult to be reflected. In addition, since the silver or silver alloy fine particles are nano-sized, in this embodiment, light is easily absorbed by a phenomenon called localized surface plasmon resonance absorption.

さらに、好ましい態様としては、前記微粒子を構成する銀または銀合金の結晶子径が2nm〜98nmの範囲にある。ここで、結晶子径が2nm未満である場合、装飾被膜に入射された光が反射され難い。一方、結晶子径98nmを超えた場合、装飾被膜に電波(電磁波)が透過し難くなる。   Furthermore, as a preferred embodiment, the crystallite diameter of silver or a silver alloy constituting the fine particles is in the range of 2 nm to 98 nm. Here, when the crystallite diameter is less than 2 nm, the light incident on the decorative coating is difficult to be reflected. On the other hand, when the crystallite diameter exceeds 98 nm, it is difficult for radio waves (electromagnetic waves) to pass through the decorative coating.

本発明によれば、レーダ装置経路内に位置する樹脂基材の表面に形成される装飾被膜に、銀または銀合金の微粒子を用いた場合、装飾被膜の光沢性を継時的に向上させることができる。   According to the present invention, when silver or silver alloy fine particles are used for the decorative coating formed on the surface of the resin substrate located in the radar apparatus path, the gloss of the decorative coating is continuously improved. Can do.

本発明の実施形態に係る装飾被膜を説明した模式図である。It is the schematic diagram explaining the decorative film which concerns on embodiment of this invention. 図1に示す装飾被膜の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the decorative film shown in FIG. 車両前方のフロントグリル(樹脂基材)とその表面のエンブレム、樹脂基材後方の車両内部に配されたレーダ装置の関係を示した車両全体の模式図である。1 is a schematic diagram of the entire vehicle showing a relationship between a front grille (resin base material) in front of the vehicle, an emblem on the surface thereof, and a radar device disposed inside the vehicle behind the resin base material. 車両前方のフロントグリル(樹脂基材)とその表面のエンブレム、樹脂基材後方の車両内部に配されたレーダ装置の関係を示した断面図である。It is sectional drawing which showed the relationship between the front grille (resin base material) of the vehicle front, the emblem of the surface, and the radar apparatus distribute | arranged inside the vehicle of the resin base back. ((a+(b1/2とグロス増加度との関係を示した図である。 ((A *) 2 + ( b *) 2) is a graph showing a relationship between a half and gloss increasing degree. 実施例2および比較例1に係る装飾被膜に入射する光の波長と、装飾被膜の反射率との関係を示した図である。It is the figure which showed the relationship between the wavelength of the light which injects into the decorative coating which concerns on Example 2 and Comparative Example 1, and the reflectance of a decorative coating. (a)は、光により銀合金の微粒子が分極するまでの状態を説明するための図であり、(b)は、表面プラズモン共鳴吸収を説明するための図である。(A) is a figure for demonstrating the state until the fine particles of a silver alloy are polarized by light, (b) is a figure for demonstrating surface plasmon resonance absorption.

以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明の装飾被膜1の実施の形態を説明した模式図である。図2は、図1に示す装飾被膜1の構成を説明するための模式図である。図3は、車両前方のフロントグリルF(樹脂基材20)とその表面のエンブレム10、フロントグリルF後方の車両内部に配されたレーダ装置Dの関係を示した車両全体の模式図である。図4は、車両前方のフロントグリルF(樹脂基材20)とその表面のエンブレム10、フロントグリルF後方の車両内部に配されたレーダ装置Dの関係を示した断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram illustrating an embodiment of a decorative coating 1 of the present invention. FIG. 2 is a schematic diagram for explaining the configuration of the decorative coating 1 shown in FIG. FIG. 3 is a schematic diagram of the entire vehicle showing the relationship between the front grille F (resin base material 20) in front of the vehicle, the emblem 10 on the surface thereof, and the radar device D disposed inside the vehicle behind the front grille F. FIG. 4 is a cross-sectional view showing the relationship between the front grill F (resin base material 20) in front of the vehicle, the emblem 10 on the surface thereof, and the radar device D disposed in the vehicle behind the front grill F.

図1で示す装飾被膜1は、フロントグリルFである樹脂基材20の表面に装着されるエンブレム10の一部を構成するものである。図3で示すように、車両ボディAの前方に装備されるレーダ装置DはフロントグリルFの背後に配置される。   A decorative coating 1 shown in FIG. 1 constitutes a part of an emblem 10 attached to the surface of a resin base material 20 that is a front grille F. As shown in FIG. 3, the radar device D installed in front of the vehicle body A is disposed behind the front grille F.

レーダ装置Dから照射されるミリ波L1は、図4で示すようにフロントグリルFとその表面のエンブレム10を介して前方に放射される。放射されたミリ波L1は、前方車両や前方障害物などの対象物で反射する。反射したミリ波L2はエンブレム10およびフロントグリルFを介してレーダ装置Dに戻る。したがって、装飾被膜1を含むエンブレム10は、レーダ装置経路内に位置する樹脂基材20の表面に形成されることになる。   As shown in FIG. 4, the millimeter wave L1 emitted from the radar device D is radiated forward through the front grill F and the emblem 10 on the surface thereof. The emitted millimeter wave L1 is reflected by an object such as a forward vehicle or a front obstacle. The reflected millimeter wave L2 returns to the radar device D through the emblem 10 and the front grill F. Therefore, the emblem 10 including the decorative coating 1 is formed on the surface of the resin base material 20 located in the radar apparatus path.

装飾被膜1は、その適用用途がレーダ装置経路内に位置する樹脂基材20(フロントグリルF)の表面であることから、外観上は金属光沢を持ちつつ、電波透過性(電気的絶縁性)を有する被膜である。   The decorative coating 1 is applied to the surface of the resin base material 20 (front grille F) located in the radar apparatus path, so that it has a metallic luster and has a radio wave transmission (electrical insulation). It is a film which has.

具体的には、図1に示すように、装飾被膜1には、無色透明な樹脂被覆層2が視認方向(X方向)に積層して全体が構成され、エンブレム10とされる。なお、装飾被膜1に接着シール等が貼着してあり、接着シールが樹脂基材20と接着されるような形態であってもよい。   Specifically, as shown in FIG. 1, a colorless transparent resin coating layer 2 is laminated in the viewing direction (X direction) on the decorative coating 1 to form an emblem 10. Note that an adhesive seal or the like may be attached to the decorative coating 1 and the adhesive seal may be bonded to the resin substrate 20.

装飾被膜1は、図2に示すように、装飾被膜内に分散した銀または銀合金の微粒子1aと、銀または銀合金の微粒子1aを結合する光透過性を有した結合樹脂1bと、を少なくとも備えている。装飾被膜1には、銀または銀合金の微粒子1aの分散性を高めるために、分散剤(保護剤)1cがさらに添加されていることが好ましい。   As shown in FIG. 2, the decorative coating 1 includes at least a silver or silver alloy fine particle 1a dispersed in the decorative coating and a light-transmitting binding resin 1b that binds the silver or silver alloy fine particle 1a. I have. It is preferable that a dispersant (protective agent) 1c is further added to the decorative coating 1 in order to improve the dispersibility of the silver or silver alloy fine particles 1a.

このように、装飾被膜1には、銀または銀合金の微粒子1aが層内で不連続に分散されており、銀または銀合金の微粒子1aであることから粒子間距離が極めて短く、そのために粒子が緻密に集合している。このことから、人間の視覚には金属光沢を提供する一方で、一つ一つのナノ粒子を電波が通過する際には電波のミリ波減衰が極めて少なく、結果として、外観上は金属光沢を持ちつつも、電気的絶縁性を有する被膜となり得るものである。   Thus, since the silver or silver alloy fine particles 1a are discontinuously dispersed within the layer in the decorative coating 1, the distance between the particles is extremely short because of the silver or silver alloy fine particles 1a. Are densely assembled. Thus, while providing a metallic luster for human vision, when the radio wave passes through each nanoparticle, the millimeter wave attenuation of the radio wave is extremely small, resulting in a metallic luster in appearance. However, it can be a film having electrical insulation.

なお、本明細書でいう「ミリ波」とは、電波の中でもその周波数帯域が30GHz〜300GHz程度の電波のことであり、たとえば、該周波数帯域の76GHz程度を特定することができる。また、本明細書でいう「装飾被膜」は、既述する車両製造会社のエンブレムや該車両に特有な装飾品などを構成する構成要素であり、この装飾被膜からなる、もしくは装飾被膜を一部として含むエンブレム等が樹脂基材であるフロントグリルの表面に形成されるものである。   The “millimeter wave” referred to in the present specification refers to a radio wave having a frequency band of about 30 GHz to 300 GHz among radio waves. For example, about 76 GHz of the frequency band can be specified. Further, the “decorative coating” as used in the present specification is a component constituting the emblem of the vehicle manufacturing company described above or a decorative product peculiar to the vehicle, and is composed of this decorative coating or a part of the decorative coating. The emblem and the like included in the above are formed on the surface of the front grill which is a resin base material.

本実施形態に係る装飾被膜1では、CIE1976表色系に規定される表色系(L,a,b)において、装飾被膜1のクロマティクネス指数aおよびクロマティクネス指数bが、6.7≦((a+(b1/2≦23.4の関係を満たしている。 In the decorative coating 1 according to the present embodiment, the chromaticness index a * and the chromaticness index b * of the decorative coating 1 in the color system (L * , a * , b * ) defined in the CIE 1976 color system are The relationship of 6.7 ≦ ((a * ) 2 + (b * ) 2 ) 1/2 ≦ 23.4 is satisfied.

これにより、装飾被膜1は、銀または銀合金の微粒子1a特有の表面プラズモン共鳴吸収が生じ易い色(有彩色)を呈し、この結果、継時的に照射される光により、装飾被膜1の金属光沢が増加する度合いが高くなる。
上述した((a+(b1/2は、銀または銀合金の微粒子1aの粒子径が小さいほど、大きい値となり、銀合金の微粒子1aの粒子密度(すなわち含有量)が大きいほど、大きい値となる。さらに、銀合金の微粒子1aの場合には、銀が表面プラズモン共鳴吸収に寄与するため、微粒子1aに対する銀の含有量が多いほど、((a+(b1/2は、大きい値となる。したがって、6.7≦((a+(b1/2≦23.4の装飾被膜1を得るためには、これらの値を調節すればよい。
As a result, the decorative coating 1 exhibits a color (chromatic color) that is likely to cause surface plasmon resonance absorption peculiar to the silver or silver alloy fine particles 1a, and as a result, the metal of the decorative coating 1 is irradiated by the light irradiated continuously. The degree of increase in gloss increases.
The above-mentioned ((a * ) 2 + (b * ) 2 ) 1/2 becomes larger as the particle diameter of the silver or silver alloy fine particles 1a is smaller, and the particle density (that is, the content) of the silver alloy fine particles 1a. ) Is larger, the larger the value. Furthermore, in the case of the silver alloy fine particles 1a, since silver contributes to surface plasmon resonance absorption, the larger the silver content in the fine particles 1a, the more ((a * ) 2 + (b * ) 2 ) 1/2. Is a large value. Therefore, in order to obtain the decorative coating 1 of 6.7 ≦ ((a * ) 2 + (b * ) 2 ) 1/2 ≦ 23.4, these values may be adjusted.

ここで、装飾被膜のクロマティクネス指数aおよびクロマティクネス指数bが、((a+(b1/2<6.7の関係を満たす場合、((a+(b1/2の値が小さく、装飾被膜は無彩色に近づく。これにより、銀または銀合金からなる微粒子特有の表面プラズモン共鳴吸収が抑制されてしまう(光エネルギーが吸収され難い)ため、光エネルギーの照射時間に拘わらず装飾被膜の光沢度はほとんど変化しない。一方、装飾被膜のクロマティクネス指数aおよびクロマティクネス指数bが((a+(b1/2>23.4の関係を満たす被膜は製造し難い。 Here, when the chromaticness index a * and the chromaticness index b * of the decorative film satisfy the relationship of ((a * ) 2 + (b * ) 2 ) 1/2 <6.7, ((a * ) The value of 2 + (b * ) 2 ) 1/2 is small, and the decorative film approaches an achromatic color. As a result, surface plasmon resonance absorption peculiar to fine particles made of silver or a silver alloy is suppressed (light energy is hardly absorbed), so that the glossiness of the decorative coating hardly changes regardless of the irradiation time of light energy. On the other hand, it is difficult to produce a coating film in which the chromaticness index a * and the chromaticness index b * of the decorative coating satisfy the relationship of ((a * ) 2 + (b * ) 2 ) 1/2 > 23.4.

ここで、装飾被膜1の((a+(b1/2の値は、たとえば、(1)装飾被膜1に対して銀または銀合金からなる微粒子の含有量を分散剤の量に対して調整する、(2)銀合金微粒子を用いた場合には、合金化される金属およびその量を調整する、(3)後述する結合樹脂の種類および熱処理温度を選定することにより、実験的に設定することができる。 Here, the value of ((a * ) 2 + (b * ) 2 ) 1/2 of the decorative coating 1 is, for example, (1) the content of fine particles made of silver or a silver alloy is dispersed in the decorative coating 1 (2) When silver alloy fine particles are used, adjust the metal to be alloyed and its amount, (3) Select the type of binder resin and heat treatment temperature to be described later Can be set experimentally.

銀または銀合金からなる場合、分散剤の量を増量することにより、銀または銀合金からなる微粒子同士の凝着を抑え、装飾被膜1内における微粒子の分散性が高まり、微粒子周辺の構成物質が増幅エネルギーを受けやすくなり、このエネルギーにより装飾被膜1の光沢性を高めることができる。本実施形態では、分散剤の量を微粒子の含有量に対して、7.2質量%以上含有していることが好ましく、このような組成にすることにより、本実施形態で示した上述した((a+(b1/2の範囲となり易く、装飾被膜1の光沢性を向上させることができる。なお、装飾皮膜1の光沢性の変化は((a+(b1/2の値に依存性が高い。これは表面プラズモン共鳴吸収が光沢性の変化に寄与しているためである。装飾皮膜1の光沢性の変化は明度指数Lには依存性がないが、好ましくは、Lの範囲は、98〜20の範囲にある。 When made of silver or a silver alloy, by increasing the amount of the dispersing agent, the adhesion between the fine particles made of silver or the silver alloy is suppressed, the dispersibility of the fine particles in the decorative coating 1 is increased, and the constituent materials around the fine particles are reduced. It becomes easy to receive amplified energy, and the glossiness of the decorative coating 1 can be enhanced by this energy. In the present embodiment, the amount of the dispersant is preferably 7.2% by mass or more with respect to the content of the fine particles, and by using such a composition, the above-described (shown in the present embodiment) The range of (a * ) 2 + (b * ) 2 ) is likely to be 1/2 , and the glossiness of the decorative coating 1 can be improved. The change in glossiness of the decorative coating 1 is highly dependent on the value of ((a * ) 2 + (b * ) 2 ) 1/2 . This is because surface plasmon resonance absorption contributes to a change in glossiness. The change in glossiness of the decorative coating 1 does not depend on the lightness index L * , but preferably the range of L * is in the range of 98-20.

ここで、本実施形態における、銀合金の「微粒子」とは「ナノ粒子」のことを示称しており、「ナノ粒子」とは、その平均粒径がナノオーダーの粒子のことであり、ナノ粒子の粒径測定方法としては、SEM画像やTEM画像の一定範囲内にある微粒子を画像上で抽出し、その平均値を求めて平均粒径とする方法などを挙げることができる。銀または銀合金の微粒子1aがナノサイズであることから、表面プラズモン共鳴吸収により装飾被膜に光エネルギーが吸収され易い。   Here, in the present embodiment, “fine particles” of the silver alloy indicate “nanoparticles”, and “nanoparticles” are particles having an average particle diameter of nano-order, Examples of the particle diameter measuring method include a method of extracting fine particles within a certain range of an SEM image or a TEM image on an image and obtaining an average value thereof to obtain an average particle diameter. Since the silver or silver alloy fine particles 1a are nano-sized, light energy is easily absorbed by the decorative coating by surface plasmon resonance absorption.

本実施形態では、銀または銀合金の微粒子1aの平均粒径は2〜200nmであることが望ましい。銀または銀合金の微粒子の平均粒径が200nmよりも大きな場合には、銀合金の微粒子が乱反射し易く、このことに起因して銀光沢が低下し易い。また、銀合金の微粒子の平均粒径が2nm未満の場合には、装飾被膜に入射された光が反射され難い。   In this embodiment, it is desirable that the average particle diameter of the silver or silver alloy fine particles 1a is 2 to 200 nm. When the average particle diameter of the silver or silver alloy fine particles is larger than 200 nm, the silver alloy fine particles are likely to be irregularly reflected, and as a result, the silver luster tends to be lowered. Moreover, when the average particle diameter of the silver alloy fine particles is less than 2 nm, the light incident on the decorative coating is difficult to be reflected.

さらに、微粒子を構成する銀または銀合金の結晶子径が2nm〜98nmの範囲にあることが好ましい。ここで、結晶子径が2nm未満である場合、装飾被膜に入射された光が反射され難い。一方、結晶子径98nmを超えた場合、装飾被膜に電波(電磁波)が透過し難くなる。   Furthermore, it is preferable that the crystallite diameter of the silver or silver alloy constituting the fine particles is in the range of 2 nm to 98 nm. Here, when the crystallite diameter is less than 2 nm, the light incident on the decorative coating is difficult to be reflected. On the other hand, when the crystallite diameter exceeds 98 nm, it is difficult for radio waves (electromagnetic waves) to pass through the decorative coating.

たとえば、銀合金の微粒子は、銀と、銀と合金化する金属とが、イオン状態にある金属溶液に、還元剤を投入することにより、作製することができる。このような製造方法により得られた微粒子は、ナノオーダーの粒子となる。   For example, fine particles of a silver alloy can be produced by introducing a reducing agent into a metal solution in which silver and a metal that forms an alloy with silver are in an ionic state. The fine particles obtained by such a production method become nano-order particles.

また、金属溶液に含まれるそれぞれの金属の含有量を変化させることにより、銀と合金化する金属との合金の組成比を調整することができる。また、金属溶液に還元剤および分散剤を投入してから分散剤の濃度または攪拌する時間およびそのときの加熱温度を調整することにより、銀または銀合金の粒子の平均粒径および銀合金の結晶子径を調整することができる。   Moreover, the composition ratio of the alloy of silver and the metal to be alloyed can be adjusted by changing the content of each metal contained in the metal solution. In addition, by adding the reducing agent and the dispersing agent to the metal solution, and adjusting the concentration of the dispersing agent or the stirring time and the heating temperature at that time, the average particle diameter of the silver or silver alloy particles and the crystal of the silver alloy The child diameter can be adjusted.

樹脂被覆層2および結合樹脂1bは、光透過性を有する高分子樹脂であり、たとえば、アクリル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、エポキシ樹脂、ポリスチレン樹脂などを挙げることができる。   The resin coating layer 2 and the binding resin 1b are light-transmitting polymer resins such as acrylic resin, polycarbonate resin, polyethylene terephthalate resin, epoxy resin, and polystyrene resin.

また、分散剤(保護剤)1cを添加する場合には、分散剤(保護剤)1cは、銀または銀合金の微粒子1aと付着性がよく、結合樹脂1bと親和性がよい樹脂が好ましい。上に例示した種類の結合樹脂を選択した場合には、その樹脂にカルボニル基を有した樹脂が好ましい。たとえば、結合樹脂1bに、アクリル樹脂を選定した場合には、分散剤(保護剤)1cに、カルボニル基を有したアクリル樹脂を選定することが好ましい。   When the dispersant (protective agent) 1c is added, the dispersant (protective agent) 1c is preferably a resin that has good adhesion to the fine particles 1a of silver or silver alloy and good affinity to the binding resin 1b. When the type of binding resin exemplified above is selected, a resin having a carbonyl group in the resin is preferred. For example, when an acrylic resin is selected as the binding resin 1b, it is preferable to select an acrylic resin having a carbonyl group as the dispersant (protective agent) 1c.

このように、分散剤(保護剤)にカルボニル基を有することにより、銀または銀合金の微粒子1aに対する付着性を高めることができ、さらに、結合樹脂1bと同じ樹脂を選定することにより、結合樹脂1bとの親和性を高めることができる。   Thus, by having a carbonyl group in the dispersant (protective agent), it is possible to improve the adhesion of the silver or silver alloy to the fine particles 1a, and further, by selecting the same resin as the binding resin 1b, the binding resin Affinity with 1b can be increased.

なお、ここで、装飾被膜1全体に含まれる銀または銀合金の微粒子1aは、85〜99質量%であることが好ましい。ここで、微粒子1aの含有量が85質量%未満の場合、銀または銀合金の微粒子1aによる金属光沢は十分ではないことがあり、その含有量が99質量%を超えた場合、結合樹脂1bによる基材との結合が十分でないことがある。   Here, the silver or silver alloy fine particles 1a contained in the entire decorative coating 1 are preferably 85 to 99% by mass. Here, when the content of the fine particles 1a is less than 85% by mass, the metallic luster due to the silver or silver alloy fine particles 1a may not be sufficient, and when the content exceeds 99% by mass, it depends on the binding resin 1b. Bonding with the substrate may not be sufficient.

以下に本発明を実施例に基づき説明する。   The present invention will be described below based on examples.

<実施例1:Ag−Bi合金微粒子>
硝酸銀220gと硝酸ビスマス3.3gを混合し、これに、アミノアルコール(還元剤)597gとディスパピック190(分散剤:ビックケミー・ジャパン社製)80gとを加え、60℃、120分間の条件で加熱混合した。これにより、Ag−Bi合金微粒子を析出させ、これを室温、3時間の条件で、UF膜(限外ろ過膜)でUFろ過した。得られたAg−Bi合金微粒子の平均粒径は16nm、Ag−Bi合金の結晶子径は14nmであり、Ag−Bi合金に対してビスマスを2.4質量%含有している。
<Example 1: Ag-Bi alloy fine particles>
220 g of silver nitrate and 3.3 g of bismuth nitrate are mixed. To this, 597 g of amino alcohol (reducing agent) and 80 g of disperse 190 (dispersing agent: manufactured by Big Chemie Japan) are added and heated at 60 ° C. for 120 minutes. Mixed. Thereby, Ag-Bi alloy fine particles were precipitated, and this was UF filtered with a UF membrane (ultrafiltration membrane) under conditions of room temperature and 3 hours. The average particle diameter of the obtained Ag—Bi alloy fine particles was 16 nm, the crystallite diameter of the Ag—Bi alloy was 14 nm, and contained 2.4 mass% of bismuth with respect to the Ag—Bi alloy.

次に、配合剤として、プロピレングリコールモノエチルエーテル40g、スチレン8.86g、エチルヘキシルアクリレート8.27g、ラウリルメタクリレート15g、2−ヒドロキシエチルメタクリレート34.8g、メタクリル酸3.07g、アシッドホスホオキシヘキサモノメタクリレート30g、プロピレングリコールモノエチルエーテルの重合開始剤43g、ターシャリブチルパーオクトエート0.3gを混合した配合剤1を作製した。   Next, as a compounding agent, 40 g of propylene glycol monoethyl ether, 8.86 g of styrene, 8.27 g of ethylhexyl acrylate, 15 g of lauryl methacrylate, 34.8 g of 2-hydroxyethyl methacrylate, 3.07 g of methacrylic acid, acid phosphooxyhexamonomethacrylate The compounding agent 1 which mixed 30g, the polymerization initiator 43g of propylene glycol monoethyl ether, and the tertiary butyl peroctoate 0.3g was produced.

この配合剤1、0.465gに、ディスパピック190(ビックケミー・ジャパン社製)0.38g、エポクロスWS−300(日本触媒社製)0.23g、BYK−330(ビックケミー・ジャパン社製)0.09g、1−エトキシ−2−プロパノール150gを混合して塗料調合し、これを結合樹脂として、Ag−Bi合金微粒子を被膜全体に対して、5質量%となるように結合樹脂にAg−Bi合金微粒子を混合した。次に、得られた混合物を、スピンコートにて塗工後、80℃、30分間の条件で熱処理して装飾被膜を形成した。Ag−Bi合金微粒子が装飾被膜全体に対して95質量%含有するように結合樹脂にAg−Bi合金微粒子を混合した。   To this compounding agent 1, 0.465 g, 0.38 g of Dispapic 190 (manufactured by Big Chemie Japan), 0.23 g of Epochros WS-300 (manufactured by Nippon Shokubai Co., Ltd.), BYK-330 (manufactured by Big Chemie Japan) 0. 09 g and 150 g of 1-ethoxy-2-propanol were mixed, and this was used as a binder resin. Using this as a binder resin, Ag-Bi alloy was added to the binder resin so that the Ag-Bi alloy fine particles would be 5% by mass with respect to the entire coating. Fine particles were mixed. Next, the obtained mixture was applied by spin coating and then heat-treated at 80 ° C. for 30 minutes to form a decorative film. Ag-Bi alloy fine particles were mixed with the binding resin so that the Ag-Bi alloy fine particles contained 95% by mass with respect to the entire decorative coating.

<実施例2:Ag微粒子>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸ビスマスを添加せず、銀からなるAg微粒子を作製した点および分散剤の量を減少させた点である。具体的には、Ag微粒子を作製する際に、硝酸銀220gに、アミノアルコール(還元剤)597gとディスパピック190(分散剤:ビックケミー・ジャパン社製)27gとを加え、60℃、120分間の条件で加熱混合し、Ag微粒子を析出させ、これを室温、3時間の条件で、UF膜でろ過した。得られたAg微粒子の平均粒径は19nm、Agの結晶子径は16nmであった。なお、Ag微粒子が装飾被膜全体に対して95質量%含有するように結合樹脂にAg微粒子を混合した。
<Example 2: Ag fine particles>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that bismuth nitrate was not added, Ag fine particles made of silver were produced, and the amount of the dispersant was reduced. Specifically, when preparing Ag fine particles, 597 g of amino alcohol (reducing agent) and 27 g of disperse 190 (dispersing agent: manufactured by Big Chemie Japan) are added to 220 g of silver nitrate, and conditions of 60 ° C. and 120 minutes are added. The mixture was heated and mixed to precipitate Ag fine particles, which were filtered through a UF membrane at room temperature for 3 hours. The average particle diameter of the obtained Ag fine particles was 19 nm, and the crystallite diameter of Ag was 16 nm. In addition, Ag fine particles were mixed with the binding resin so that the Ag fine particles contained 95% by mass with respect to the entire decorative coating.

<実施例3:Ag微粒子>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸ビスマスを添加せず、銀からなるAg微粒子を作製した点と、分散剤の量を減少させた点と、結合樹脂の組成を変更した点と、スピンコートで装飾被膜を形成後の熱処理条件とである。
<Example 3: Ag fine particles>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that Ag fine particles made of silver were prepared without adding bismuth nitrate, the amount of the dispersant was reduced, the composition of the binding resin was changed, and spin coating And the heat treatment conditions after forming the decorative coating.

具体的には、実施例2と同様に、Ag微粒子を作製する際に、硝酸銀220gに、アミノアルコール(還元剤)597gとディスパピック190(分散剤:ビックケミー・ジャパン社製)27gとを加え、60℃、120分間の条件で加熱混合し、Ag微粒子を析出させ、これを室温、3時間の条件で、UF膜でろ過した。この点は、実施例2と同じである。   Specifically, in the same manner as in Example 2, when preparing Ag fine particles, 597 g of amino alcohol (reducing agent) and 27 g of disperse 190 (dispersant: manufactured by Big Chemie Japan) were added to 220 g of silver nitrate, Heat mixing was performed at 60 ° C. for 120 minutes to precipitate Ag fine particles, which were filtered through a UF membrane at room temperature for 3 hours. This is the same as in the second embodiment.

さらに、主剤としてプラミーズWY(オリジン電気社製)3.16g、硬化剤としてプラミーズWY(オリジン電気社製)0.72g、BYK−330(ビックケミー・ジャパン社製)0.03g、1−エトキシ−2−プロパノール13.97gを混合して、塗料調合し、これを結合樹脂としてAg微粒子に混合した。具体的には、Ag微粒子が装飾被膜全体に対して95質量%含有するように結合樹脂にAg微粒子を混合した。得られた混合物を、スピンコートにて塗工後、80℃、30分間の条件で熱処理して装飾被膜を形成した。   Furthermore, 3.16 g of Plamy's WY (manufactured by Origin Electric Co., Ltd.) as the main agent, 0.72 g of Plamy's WY (manufactured by Origin Electric Co., Ltd.) as the curing agent, 0.03 g of BYK-330 (manufactured by Big Chemie Japan Co., Ltd.), 1-ethoxy-2 -13.97 g of propanol was mixed to prepare a paint, and this was mixed with Ag fine particles as a binding resin. Specifically, Ag fine particles were mixed with the binding resin so that the Ag fine particles contained 95% by mass with respect to the entire decorative coating. The obtained mixture was applied by spin coating and then heat-treated at 80 ° C. for 30 minutes to form a decorative film.

<実施例4:Ag−Pd合金微粒子>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸ビスマスの代わりに硝酸パラジウムを用いて、銀とパラジウムとの合金からなるAg−Pd合金微粒子を作製した点と分散剤の量を減少させた点である。
<Example 4: Ag-Pd alloy fine particles>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that palladium nitrate was used instead of bismuth nitrate to produce Ag-Pd alloy fine particles made of an alloy of silver and palladium, and the amount of the dispersant was reduced.

具体的には、硝酸銀220gと硝酸パラジウム4.0gを混合し、これにアミノアルコール(還元剤)597gとディスパピック190(分散剤:ビックケミー・ジャパン社製)27gとを添加して、60℃、120分間の条件で加熱混合し、Ag−Pd合金微粒子を析出させ、これを室温、3時間の条件で、UF膜でろ過した点である。   Specifically, 220 g of silver nitrate and 4.0 g of palladium nitrate were mixed, and 597 g of amino alcohol (reducing agent) and 27 g of disperse 190 (dispersing agent: manufactured by Big Chemie Japan) were added to this, It is the point which heat-mixed on the conditions for 120 minutes, and precipitated Ag-Pd alloy microparticles | fine-particles, and filtered this with the UF membrane on the conditions for 3 hours at room temperature.

得られたAg−Pd合金微粒子の平均粒径は21nm、Ag−Pd結晶子径18nm、Ag−Pd合金に対してパラジウムが1.0質量%含有している。なお、Ag−Pd合金微粒子が装飾被膜全体に対して95質量%含有するように結合樹脂にAg−Pd合金微粒子を混合した。   The obtained Ag—Pd alloy fine particles had an average particle diameter of 21 nm, an Ag—Pd crystallite diameter of 18 nm, and contained 1.0% by mass of palladium with respect to the Ag—Pd alloy. The Ag—Pd alloy fine particles were mixed with the binding resin so that the Ag—Pd alloy fine particles contained 95% by mass with respect to the entire decorative coating.

<実施例5:Ag微粒子>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸ビスマスを添加せず、銀からなるAg微粒子を作製した点および分散剤の量を増加させた点である。具体的には、Ag微粒子を作製する際に、硝酸銀220gに、アミノアルコール(還元剤)597gとディスパピック190(分散剤:ビックケミー・ジャパン社製)108gとを加え、60℃、120分間の条件で加熱混合し、Ag微粒子を析出させ、これを室温、3時間の条件で、UF膜でろ過した。得られたAg微粒子の平均粒径は19nm、Agの結晶子径は16nmであった。なお、Ag合金微粒子が装飾被膜全体に対して95質量%含有するように結合樹脂にAg微粒子を混合した。
<Example 5: Ag fine particles>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that bismuth nitrate was not added, Ag fine particles made of silver were produced, and the amount of the dispersant was increased. Specifically, when preparing Ag fine particles, 597 g of amino alcohol (reducing agent) and 108 g of disperse 190 (dispersing agent: manufactured by Big Chemie Japan) are added to 220 g of silver nitrate, and conditions of 60 ° C. and 120 minutes are added. The mixture was heated and mixed to precipitate Ag fine particles, which were filtered through a UF membrane at room temperature for 3 hours. The average particle diameter of the obtained Ag fine particles was 19 nm, and the crystallite diameter of Ag was 16 nm. The Ag fine particles were mixed with the binding resin so that the Ag alloy fine particles contained 95% by mass with respect to the entire decorative coating.

<比較例1:Ag−Ni合金微粒子>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸ビスマスの代わりに硝酸ニッケルを用いて、銀とニッケルとの合金からなるAg−Ni合金微粒子を作製した点および分散剤の量を減少させた点である。
<Comparative Example 1: Ag-Ni alloy fine particles>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that nickel nitrate is used instead of bismuth nitrate to produce Ag-Ni alloy fine particles made of an alloy of silver and nickel, and the amount of the dispersant is reduced.

具体的には、硝酸銀220gと硝酸ニッケル16gを混合し、これをアミノアルコール(還元剤)597gとディスパピック190(分散剤:ビックケミー・ジャパン社製)27gに添加して、60℃、120分間の条件で加熱混合し、Ag−Ni合金微粒子を析出させ、これを室温、3時間の条件で、UF膜でろ過した。   Specifically, 220 g of silver nitrate and 16 g of nickel nitrate are mixed, and this is added to 597 g of amino alcohol (reducing agent) and 27 g of disperse 190 (dispersing agent: manufactured by Big Chemie Japan Co., Ltd.) at 60 ° C. for 120 minutes. The mixture was heated and mixed under conditions to precipitate Ag-Ni alloy fine particles, which were filtered through a UF membrane at room temperature for 3 hours.

得られたAg−Ni合金微粒子の平均粒径35nm、Ag−Ni結晶子径30nm、Ag−Ni合金に対するニッケルが5.1質量%であった。なお、Ag−Ni合金微粒子が装飾被膜全体に対して95質量%含有するように結合樹脂にAg−Ni合金微粒子を混合した。   The average particle diameter of the obtained Ag—Ni alloy fine particles was 35 nm, the Ag—Ni crystallite diameter was 30 nm, and the nickel content relative to the Ag—Ni alloy was 5.1% by mass. In addition, Ag-Ni alloy fine particles were mixed with the binding resin so that the Ag-Ni alloy fine particles contained 95% by mass with respect to the entire decorative coating.

<比較例2:Ag−Ni合金微粒子>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸ビスマスの代わりに硝酸ニッケルを用いて、銀とニッケルとの合金からなるAg−Ni合金微粒子を作製した点および分散剤の量を減少させた点である。
<Comparative Example 2: Ag-Ni alloy fine particles>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that nickel nitrate is used instead of bismuth nitrate to produce Ag-Ni alloy fine particles made of an alloy of silver and nickel, and the amount of the dispersant is reduced.

具体的には、硝酸銀220gと硝酸ニッケル64gを混合し、これをアミノアルコール(還元剤)597gとディスパピック190(分散剤:ビックケミー・ジャパン社製)27gに添加して、60℃、120分間の条件で加熱混合し、Ag−Ni合金微粒子を析出させ、これを室温、3時間の条件で、UF膜でろ過した。得られたAg−Ni合金微粒子の平均粒径25nm、Ag−Ni結晶子径20nm、Ag−Ni合金に対するニッケルが20.4質量%であった。なお、Ag−Ni合金微粒子が装飾被膜全体に対して95質量%含有するように結合樹脂にAg−Ni合金微粒子を混合した。   Specifically, 220 g of silver nitrate and 64 g of nickel nitrate are mixed, and this is added to 597 g of amino alcohol (reducing agent) and 27 g of disperse 190 (dispersing agent: manufactured by Big Chemie Japan Co., Ltd.) at 60 ° C. for 120 minutes. The mixture was heated and mixed under conditions to precipitate Ag-Ni alloy fine particles, which were filtered through a UF membrane at room temperature for 3 hours. The average particle diameter of the obtained Ag—Ni alloy fine particles was 25 nm, the Ag—Ni crystallite diameter was 20 nm, and the nickel content relative to the Ag—Ni alloy was 20.4% by mass. In addition, Ag-Ni alloy fine particles were mixed with the binding resin so that the Ag-Ni alloy fine particles contained 95% by mass with respect to the entire decorative coating.

<比較例3:Ag−Ni合金微粒子>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸ビスマスの代わりに硝酸ニッケルを用いて、銀とニッケルとの合金からなるAg−Ni合金微粒子を作製した点と、分散剤の量を減少させた点と、結合樹脂の組成を変更した点とである。なお、比較例3は、実施例3に対してAg微粒子をAg−Ni合金微粒子に変更した例でもある。
<Comparative Example 3: Ag-Ni alloy fine particles>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 was that nickel nitrate was used in place of bismuth nitrate to produce Ag-Ni alloy fine particles made of an alloy of silver and nickel, the amount of the dispersant was reduced, The composition of the binding resin is changed. Comparative Example 3 is also an example in which Ag fine particles are changed to Ag—Ni alloy fine particles with respect to Example 3.

具体的には、硝酸銀220gと硝酸ニッケル16gを混合し、これにアミノアルコール(還元剤)597gとディスパピック190(分散剤:ビックケミー・ジャパン社製)27gを加え、60℃、120分間の条件で加熱混合し、Ag−Ni合金微粒子を析出させ、これを室温、3時間の条件で、UF膜でろ過した。   Specifically, 220 g of silver nitrate and 16 g of nickel nitrate are mixed, and 597 g of amino alcohol (reducing agent) and 27 g of disperse 190 (dispersant: manufactured by Big Chemie Japan Co., Ltd.) are added thereto, and the conditions are 60 ° C. and 120 minutes. The mixture was heated and mixed to precipitate Ag-Ni alloy fine particles, which were filtered through a UF membrane at room temperature for 3 hours.

さらに、主剤としてプラミーズWY(オリジン電気社製)3.16g、硬化剤としてプラミーズWY(オリジン電気社製)0.72g、BYK−330(ビックケミー・ジャパン社製)0.03g、1−エトキシ−2−プロパノール13.97gを混合して、塗料調合し、これを結合樹脂としてAg−Ni合金微粒子に混合した。なお、Ag−Ni合金微粒子が装飾被膜全体に対して95質量%含有するように結合樹脂にAg−Ni合金微粒子を混合した。   Furthermore, 3.16 g of Plamy's WY (manufactured by Origin Electric Co., Ltd.) as the main agent, 0.72 g of Plamy's WY (manufactured by Origin Electric Co., Ltd.) as the curing agent, 0.03 g of BYK-330 (manufactured by Big Chemie Japan Co., Ltd.), 1-ethoxy-2 -13.97 g of propanol was mixed to prepare a paint, and this was mixed with Ag-Ni alloy fine particles as a binding resin. In addition, Ag-Ni alloy fine particles were mixed with the binding resin so that the Ag-Ni alloy fine particles contained 95% by mass with respect to the entire decorative coating.

<比較例4:Ag微粒子>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸ビスマスを添加せず、銀からなるAg微粒子を作製した点と、および分散剤の量を減少させた点と、結合樹脂の組成を変更した点と、スピンコートで装飾被膜を形成後の熱処理条件とである。なお、比較例4が、実施例3との相違する点はスピンコートにて塗工後の熱処理温度である。
<Comparative Example 4: Ag fine particles>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that Ag fine particles made of silver were prepared without adding bismuth nitrate, the amount of the dispersant was reduced, the composition of the binding resin was changed, and the spin Heat treatment conditions after forming a decorative film with a coat. The difference between Comparative Example 4 and Example 3 is the heat treatment temperature after coating by spin coating.

具体的には、硝酸銀220gに、アミノアルコール(還元剤)597gとディスパピック190(分散剤:ビックケミー・ジャパン社製)27gを加えて、60℃、120分間の条件で加熱混合し、Ag微粒子を析出させ、これを室温、3時間の条件で、UF膜でろ過した。   Specifically, 597 g of amino alcohol (reducing agent) and 27 g of dispersic 190 (dispersing agent: manufactured by Big Chemie Japan) are added to 220 g of silver nitrate, and the mixture is heated and mixed under the conditions of 60 ° C. and 120 minutes to obtain fine Ag particles. This was precipitated and filtered through a UF membrane under the conditions of room temperature and 3 hours.

さらに、主剤としてプラミーズWY(オリジン電気社製)3.16g、硬化剤としてプラミーズWY(オリジン電気社製)0.72g、BYK−330(ビックケミー・ジャパン社製)0.03g、1−エトキシ−2−プロパノール13.97gを混合して、塗料調合し、これを結合樹脂としてAg微粒子に混合した。Ag微粒子が装飾被膜全体に対して95質量%と含有するように結合樹脂にAg微粒子を混合した。得られた混合物を、スピンコートにて塗工後、120℃、30分間の条件で熱処理して装飾被膜を形成した。   Furthermore, 3.16 g of Plamy's WY (manufactured by Origin Electric Co., Ltd.) as the main agent, 0.72 g of Plamy's WY (manufactured by Origin Electric Co., Ltd.) as the curing agent, 0.03 g of BYK-330 (manufactured by Big Chemie Japan Co., Ltd.), 1-ethoxy-2 -13.97 g of propanol was mixed to prepare a paint, and this was mixed with Ag fine particles as a binding resin. Ag fine particles were mixed with the binding resin so that the Ag fine particles contained 95% by mass with respect to the entire decorative coating. The obtained mixture was applied by spin coating and then heat-treated at 120 ° C. for 30 minutes to form a decorative film.

〔耐候性試験(キセノン試験)〕
以下に示す耐候性試験前に、実施例1〜4および比較例1〜4に係る装飾被膜のCIE1976表色系(JIS Z 8729)に規定される表色系(L,a,b)のクロマティクネス指数a,クロマティクネス指数bを、色彩色差計(村上色彩技術研究所製:CMS−35SP)で測定した。さらに測定した結果から、((a+(b1/2の値を算出した。これらの結果を表1に示す。
[Weather resistance test (xenon test)]
Before the weather resistance test shown below, the color systems (L * , a * , b * ) defined in the CIE 1976 color system (JIS Z 8729) of the decorative coatings according to Examples 1 to 4 and Comparative Examples 1 to 4 are used . chromaticness index a * of), the chromaticness index b *, color difference meter (manufactured by Murakami color Research Laboratory: was measured in the CMS-35SP). Further, the value of ((a * ) 2 + (b * ) 2 ) 1/2 was calculated from the measurement result. These results are shown in Table 1.

次に、JIS Z 8741に準拠して、測定角度60°の条件で、実施例1〜4および比較例1〜4に係る装飾被膜のグロス値を光沢計(村上色彩技術研究所製:GM−26PRO−AUTO)で測定した。実施例1〜4および比較例1〜4に係る装飾被膜に対して、耐候性試験(キセノン試験)を実施した(100W×125MJ)。耐候性試験後の実施例1〜4および比較例1〜4に係る装飾被膜のグロス値を測定した。実施例1〜4および比較例1〜4のそれぞれに対して、耐候性試験後のグロス値から耐候性試験前のグロス値を減算した値を、グロス増加度として算出した。この結果を表1に示す。さらに、図5に、((a+(b1/2とグロス増加度との関係を示した。 Next, in accordance with JIS Z 8741, the gloss values of the decorative coatings according to Examples 1 to 4 and Comparative Examples 1 to 4 were measured under the condition of a measurement angle of 60 ° (manufactured by Murakami Color Research Laboratory: GM-). 26PRO-AUTO). A weather resistance test (xenon test) was performed on the decorative coatings according to Examples 1 to 4 and Comparative Examples 1 to 4 (100 W × 125 MJ). The gloss values of the decorative coatings according to Examples 1 to 4 and Comparative Examples 1 to 4 after the weather resistance test were measured. For each of Examples 1 to 4 and Comparative Examples 1 to 4, a value obtained by subtracting the gloss value before the weather resistance test from the gloss value after the weather resistance test was calculated as the gloss increase degree. The results are shown in Table 1. FIG. 5 shows the relationship between ((a * ) 2 + (b * ) 2 ) 1/2 and the degree of increase in gloss.

Figure 2016107610
Figure 2016107610

〔反射率の測定〕
耐候性試験前に実施例2および比較例1に係る装飾被膜に光を照射し、これらの装飾被膜に対する分光スペクトルから、波長ごとの装飾被膜の反射率を測定した。図6は、実施例2および比較例1に係る装飾被膜に入射する光の波長と、装飾被膜の反射率との関係を示した図である。
[Measurement of reflectance]
Before the weather resistance test, the decorative coatings according to Example 2 and Comparative Example 1 were irradiated with light, and the reflectance of the decorative coating for each wavelength was measured from the spectral spectrum of these decorative coatings. FIG. 6 is a diagram showing the relationship between the wavelength of light incident on the decorative coating according to Example 2 and Comparative Example 1 and the reflectance of the decorative coating.

(結果1)
図5および表1に示すように、実施例1〜5に係る装飾被膜は、6.7≦((a+(b1/2≦23.4の関係を満たしている。この範囲であれば、耐候性試験後の装飾被膜のグロス増加度は60を超え、装飾被膜の光沢度は向上する。一方、比較例1〜4に係る装飾被膜は、((a+(b1/2<6.7である。この範囲であれば、耐候性試験に拘わらず装飾被膜の光沢度はほとんど変化していないと言える。
(Result 1)
As shown in FIG. 5 and Table 1, the decorative films according to Examples 1 to 5 satisfy the relationship of 6.7 ≦ ((a * ) 2 + (b * ) 2 ) 1/2 ≦ 23.4. Yes. If it is this range, the gloss increase degree of the decorative coating after a weather resistance test will exceed 60, and the glossiness of a decorative coating will improve. On the other hand, the enamel coating according to Comparative Examples 1 to 4 is a 1/2 <6.7 ((a *) 2 + (b *) 2). If it is this range, it can be said that the glossiness of a decorative coating has hardly changed irrespective of a weather resistance test.

さらに、図6に示すように、実施例2に係る装飾被膜は、比較例1のものに比べて、波長の変化に従って反射率が大きく変化していた。このことから、実施例2に係るAg微粒子に光が照射されると光の特定波長で光が吸収され、Ag微粒子に吸収される光エネルギーが増幅され易くなると考えられる(表面プラズモン共鳴吸収)。これにより、実施例2では、銀微粒子周辺の構成物質が増幅エネルギーを受けやすくなり、このエネルギーにより実施例2に係る装飾被膜は、耐候性試験後の光沢性が向上すると考えられる。この現象は、実施例1、3、4、5の場合も生じていると考えらえる。   Further, as shown in FIG. 6, the decorative coating according to Example 2 had a large change in reflectance according to the change in wavelength as compared with that of Comparative Example 1. From this, it is considered that when the Ag fine particles according to Example 2 are irradiated with light, the light is absorbed at a specific wavelength of light, and the light energy absorbed by the Ag fine particles is easily amplified (surface plasmon resonance absorption). Thereby, in Example 2, the constituent material around the silver fine particles easily receives amplification energy, and it is considered that the gloss of the decorative coating according to Example 2 after the weather resistance test is improved by this energy. This phenomenon can be considered to occur in the cases of Examples 1, 3, 4, and 5.

以上のことから、実施例1〜5に係る装飾被膜のクロマティクネス指数aおよびクロマティクネス指数bが6.7≦((a+(b1/2≦23.4の関係を満たすことにより、AgまたはAg合金の微粒子特有の表面プラズモン共鳴吸収が生じやすい色(有彩色)を呈すると考えられる。この結果、実施例1〜4では、耐候性試験後の装飾被膜の金属光沢が増加する度合いが高くなる(グロス増加度が大きくなる)と考えられる。 From the above, the chromaticness index a * and the chromaticness index b * of the decorative films according to Examples 1 to 5 are 6.7 ≦ ((a * ) 2 + (b * ) 2 ) 1/2 ≦ 23. By satisfying the relationship (4), it is considered that a color (chromatic color) that is likely to cause surface plasmon resonance absorption peculiar to fine particles of Ag or an Ag alloy is exhibited. As a result, in Examples 1 to 4, it is considered that the degree of increase in the metallic luster of the decorative coating after the weather resistance test is increased (the increase in gloss is increased).

一方、比較例1〜4に係る装飾被膜では((a+(b1/2の値が小さすぎて、無彩色に近い表色を呈する。このため、AgまたはAg合金微粒子特有の表面プラズモン共鳴吸収が抑制されてしまう。この結果、比較例1〜4では、耐候性試験後の装飾被膜の光沢度はほとんど変化しかなった(グロス増加度が小さい)と考えられる。 On the other hand, in the decorative coatings according to Comparative Examples 1 to 4, the value of ((a * ) 2 + (b * ) 2 ) 1/2 is too small and exhibits a near-achromatic color. For this reason, surface plasmon resonance absorption peculiar to Ag or Ag alloy fine particles will be suppressed. As a result, in Comparative Examples 1 to 4, it is considered that the glossiness of the decorative coating after the weather resistance test almost changed (the degree of increase in gloss is small).

<実施例6>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸銀と硝酸ビスマス、アミノアルコール、分散剤の混合時の加熱温度および混合時間、分散剤濃度を変更して銀合金(Ag−Bi合金)の微粒子の平均粒径を200nmとした点である。なお、TEM画像の一定範囲内にある銀合金微粒子を画像上で抽出し、その平均値を求めて、銀合金微粒子の平均粒径を測定した。
<Example 6>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that the average particle diameter of the fine particles of the silver alloy (Ag-Bi alloy) is changed by changing the heating temperature and mixing time when mixing silver nitrate and bismuth nitrate, amino alcohol, and the dispersant, and the dispersant concentration. Is 200 nm. In addition, the silver alloy fine particles within a certain range of the TEM image were extracted on the image, the average value was obtained, and the average particle size of the silver alloy fine particles was measured.

<比較例5>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸銀と硝酸ビスマス、アミノアルコール、分散剤混合時の加熱温度および混合時間、分散剤濃度を変更して銀合金(Ag−Bi合金)の微粒子の平均粒径を、500nmとした点である。
<Comparative Example 5>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that the average particle size of silver alloy (Ag-Bi alloy) fine particles is changed by changing the heating temperature and mixing time when mixing silver nitrate and bismuth nitrate, amino alcohol, and dispersing agent, and dispersing agent concentration. , 500 nm.

(結果2)
実施例6および比較例5の装飾被膜を観察した結果、比較例5の場合(微粒子の平均粒径が200nmよりも大きな場合)、銀合金の微粒子が乱反射しており、実施例5のものに比べて銀光沢が低下し易い。この結果から、銀または銀合金の微粒子の平均粒径は、200nm以下であることが好ましい。なお、後述する結果3から、平均粒径は、2nm以上であることが好ましい。
(Result 2)
As a result of observing the decorative coating of Example 6 and Comparative Example 5, in the case of Comparative Example 5 (when the average particle size of the fine particles is larger than 200 nm), the silver alloy fine particles are irregularly reflected. Compared to silver gloss, it tends to decrease. From this result, it is preferable that the average particle diameter of the silver or silver alloy fine particles is 200 nm or less. In addition, from the result 3 mentioned later, it is preferable that an average particle diameter is 2 nm or more.

<実施例7>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸銀と硝酸ビスマス、アミノアルコール、分散剤の混合時の加熱温度および混合時間、分散剤濃度を変更して、銀合金(Ag−Bi合金)の結晶子径が2nm〜98nmの範囲(具体的には、結晶子径、2nm、36nm、98nm)としたものである。なお、銀合金の結晶子径は、JIS H 7805に規定のX線回折法により測定したものである。
<Example 7>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that the crystallite diameter of the silver alloy (Ag-Bi alloy) is changed by changing the heating temperature and mixing time when mixing silver nitrate and bismuth nitrate, amino alcohol, and the dispersant, and the dispersant concentration. The range is 2 nm to 98 nm (specifically, the crystallite diameter is 2 nm, 36 nm, 98 nm). The crystallite diameter of the silver alloy is measured by the X-ray diffraction method specified in JIS H 7805.

<比較例6>
実施例1と同じように、装飾被膜を成膜した。実施例1と相違する点は、硝酸銀と硝酸ビスマス、アミノアルコールの加熱温度および混合時間を変更して、銀合金(Ag−Bi合金)の結晶子径が2nm未満、または98nm超え(具体的には、結晶子径、1nm、99nm)としたものである。
<Comparative Example 6>
A decorative coating was formed in the same manner as in Example 1. The difference from Example 1 is that the crystallite diameter of the silver alloy (Ag-Bi alloy) is less than 2 nm or more than 98 nm by changing the heating temperature and mixing time of silver nitrate, bismuth nitrate and amino alcohol (specifically, Are crystallite diameters of 1 nm and 99 nm).

(結果3)
実施例7および比較例6の装飾被膜を観察した結果、比較例6のうち、結晶子径が2nm未満である場合、装飾被膜に入射された光が反射され難くかった。一方、比較例6のうち結晶子径98nmを超えた場合、装飾被膜に電波(電磁波)が透過し難くなったことがわかった。なお、実施例7の装飾被膜は、金属光沢性を有し、電波透過性も良好であった。この結果から、銀または銀合金の結晶子径が2〜98nmの範囲にあることが好ましいと考えられる。
(Result 3)
As a result of observing the decorative coating of Example 7 and Comparative Example 6, in Comparative Example 6, when the crystallite diameter was less than 2 nm, the light incident on the decorative coating was difficult to be reflected. On the other hand, when the crystallite diameter exceeded 98 nm in Comparative Example 6, it was found that radio waves (electromagnetic waves) were hardly transmitted through the decorative coating. Note that the decorative coating of Example 7 had metallic luster and good radio wave permeability. From this result, it is considered that the crystallite diameter of silver or silver alloy is preferably in the range of 2 to 98 nm.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…装飾被膜、1a…微粒子、1b…結合樹脂、1c…保護剤(分散剤)、2…樹脂被覆層、10…エンブレム、20…樹脂基材、F…フロントグリル、D…レーダ装置   DESCRIPTION OF SYMBOLS 1 ... Decorative coating, 1a ... Fine particle, 1b ... Binding resin, 1c ... Protective agent (dispersing agent), 2 ... Resin coating layer, 10 ... Emblem, 20 ... Resin base material, F ... Front grille, D ... Radar device

Claims (3)

レーダ装置経路内に位置する樹脂基材の表面に形成される装飾被膜であって、
該装飾被膜は、該装飾被膜内に分散した銀または銀合金の微粒子と、該銀または銀合金の微粒子を結合する光透過性を有した結合樹脂と、を少なくとも備えており、
CIE1976表色系に規定される表色系(L,a,b)において、前記装飾被膜のクロマティクネス指数aおよびクロマティクネス指数bが、
6.7≦((a+(b1/2≦23.4
の関係を満たしていることを特徴とする装飾被膜。
A decorative coating formed on the surface of a resin substrate located in the radar apparatus path,
The decorative coating comprises at least silver or silver alloy fine particles dispersed in the decorative coating and a light-transmitting binding resin that binds the silver or silver alloy fine particles.
In the color system (L * , a * , b * ) defined in the CIE 1976 color system, the chromaticness index a * and the chromaticness index b * of the decorative coating are:
6.7 ≦ ((a * ) 2 + (b * ) 2 ) 1/2 ≦ 23.4
A decorative film characterized by satisfying the above relationship.
前記銀または銀合金の微粒子の平均粒径は、2〜200nmであることを特徴とする請求項1に記載の装飾被膜。   2. The decorative coating according to claim 1, wherein an average particle diameter of the silver or silver alloy fine particles is 2 to 200 nm. 前記微粒子を構成する前記銀または前記銀合金の結晶子径が2〜98nmの範囲にあることを特徴とする請求項1または2に記載の装飾被膜。   The decorative coating according to claim 1 or 2, wherein a crystallite diameter of the silver or the silver alloy constituting the fine particles is in a range of 2 to 98 nm.
JP2015085025A 2014-11-28 2015-04-17 Decorative coating film Pending JP2016107610A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102015120433.9A DE102015120433A1 (en) 2014-11-28 2015-11-25 Decorative coating
US14/952,164 US20160152834A1 (en) 2014-11-28 2015-11-25 Decorative coating
CN201510844119.1A CN105647271A (en) 2014-11-28 2015-11-26 Decorative coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014241868 2014-11-28
JP2014241868 2014-11-28

Publications (1)

Publication Number Publication Date
JP2016107610A true JP2016107610A (en) 2016-06-20

Family

ID=56122796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085025A Pending JP2016107610A (en) 2014-11-28 2015-04-17 Decorative coating film

Country Status (2)

Country Link
JP (1) JP2016107610A (en)
CN (1) CN105647271A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095705A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Decorative film
JP2018154073A (en) * 2017-03-21 2018-10-04 凸版印刷株式会社 Silver nanoparticle laminate and method for producing silver nanoparticle laminate
JP2019098683A (en) * 2017-12-06 2019-06-24 凸版印刷株式会社 Silver nanoparticle laminate, method for producing silver nanoparticle laminate, and coloration method of silver particle laminate
WO2019187328A1 (en) * 2018-03-30 2019-10-03 豊田合成株式会社 Milliwave-transmitting decorative article, silver mirror film and method for forming same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930417B2 (en) * 2017-12-22 2021-09-01 トヨタ自動車株式会社 Decorative coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064285A1 (en) * 2008-12-01 2010-06-10 トヨタ自動車株式会社 Decorative film and method for decorative film formation
JP2012046665A (en) * 2010-08-27 2012-03-08 Toyota Motor Corp Lustrous electromagnetic wave transmissive coating film, electromagnetic wave transmissive coating material composition for forming this film, and method of forming electromagnetic wave transmissive coating film therewith
JP2012171509A (en) * 2011-02-22 2012-09-10 Toyota Motor Corp Decorative coating film
JP2013024727A (en) * 2011-07-21 2013-02-04 Toyota Motor Corp Decorative film
JP2014145678A (en) * 2013-01-29 2014-08-14 Toyota Motor Corp Decorative film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064285A1 (en) * 2008-12-01 2010-06-10 トヨタ自動車株式会社 Decorative film and method for decorative film formation
JP2012046665A (en) * 2010-08-27 2012-03-08 Toyota Motor Corp Lustrous electromagnetic wave transmissive coating film, electromagnetic wave transmissive coating material composition for forming this film, and method of forming electromagnetic wave transmissive coating film therewith
JP2012171509A (en) * 2011-02-22 2012-09-10 Toyota Motor Corp Decorative coating film
JP2013024727A (en) * 2011-07-21 2013-02-04 Toyota Motor Corp Decorative film
JP2014145678A (en) * 2013-01-29 2014-08-14 Toyota Motor Corp Decorative film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095705A (en) * 2016-12-09 2018-06-21 トヨタ自動車株式会社 Decorative film
JP2018154073A (en) * 2017-03-21 2018-10-04 凸版印刷株式会社 Silver nanoparticle laminate and method for producing silver nanoparticle laminate
JP2019098683A (en) * 2017-12-06 2019-06-24 凸版印刷株式会社 Silver nanoparticle laminate, method for producing silver nanoparticle laminate, and coloration method of silver particle laminate
JP7024362B2 (en) 2017-12-06 2022-02-24 凸版印刷株式会社 Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate, and method for coloring silver nanoparticle laminate
WO2019187328A1 (en) * 2018-03-30 2019-10-03 豊田合成株式会社 Milliwave-transmitting decorative article, silver mirror film and method for forming same
JP2019177311A (en) * 2018-03-30 2019-10-17 豊田合成株式会社 Millimeter wave-permeable decorative article, silver mirror film and its formation method
JP7106935B2 (en) 2018-03-30 2022-07-27 豊田合成株式会社 Millimeter-wave transparent decorative article, silver mirror film and method for forming the same

Also Published As

Publication number Publication date
CN105647271A (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5811157B2 (en) Decorative coating
JP2016107610A (en) Decorative coating film
EP3474048A1 (en) Infrared-shielding sheet, interlayer film for infrared-shielding laminated glass, and infrared-shielding laminated glass and method for manufacturing same
JP6828514B2 (en) Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, coating liquid for heat ray shielding film, and heat ray shielding film using these, heat ray shielding resin film, heat ray shielding fine particle dispersion
KR101795191B1 (en) Method for producing heat-ray-shielding dispersion, heat-ray-shielding dispersion, and heat-ray-shielding body
JP2010030075A (en) Electromagnetic wave transmissive brilliant coating resin product and its manufacturing method
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP4332610B2 (en) Composition containing metal nanorod and metal oxide powder and use thereof
JP2003315531A (en) Polymer film containing metal nanorod and optical filter
US20160152834A1 (en) Decorative coating
US20210170481A1 (en) Decorative coating film
JPH10110123A (en) Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane
JP2018128341A (en) Decorative coating
JP2015087359A (en) Decoration coating
JP4487787B2 (en) Solar-shielding boride fine particles, solar-shielding-body-forming dispersion liquid and solar-light shielding body using the boride-fine particles, method for producing solar-shielding boride fine particles, and method for producing solar-shielding body-forming dispersion liquid
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP6649628B2 (en) Decorative coating
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
JP6811895B2 (en) Far-infrared reflective film, heat-shielding film and heat-shielding glass
JP2014145678A (en) Decorative film
WO2018061678A1 (en) Antireflection structure
JP2005231974A (en) Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180220