JP2018154073A - Silver nanoparticle laminate and method for producing silver nanoparticle laminate - Google Patents

Silver nanoparticle laminate and method for producing silver nanoparticle laminate Download PDF

Info

Publication number
JP2018154073A
JP2018154073A JP2017054122A JP2017054122A JP2018154073A JP 2018154073 A JP2018154073 A JP 2018154073A JP 2017054122 A JP2017054122 A JP 2017054122A JP 2017054122 A JP2017054122 A JP 2017054122A JP 2018154073 A JP2018154073 A JP 2018154073A
Authority
JP
Japan
Prior art keywords
silver
silver nanoparticle
resin layer
layer
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017054122A
Other languages
Japanese (ja)
Other versions
JP6903974B2 (en
Inventor
大江 靖
Yasushi Oe
靖 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2017054122A priority Critical patent/JP6903974B2/en
Publication of JP2018154073A publication Critical patent/JP2018154073A/en
Application granted granted Critical
Publication of JP6903974B2 publication Critical patent/JP6903974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silver nanoparticle laminate having enhanced scratch resistance, and to provide a method for producing the silver nanoparticle laminate.SOLUTION: A silver nanoparticle laminate 10 includes: a base material 1; a silver nanoparticle resin layer 2 which is formed on the base material 1 and contains silver nanoparticles; and an overcoat layer 3 which is formed on the silver nanoparticle resin layer 2 and contains a three-dimensional crosslinked structure obtained by irradiation with ionization radiation. The silver nanoparticles are coated with protective molecules, and the protective molecules contains alkyldiamine having a primary amino group and a tertiary amino group as a main component. A resin layer containing the silver nanoparticles contains a copolymer of (meth)acrylate which has a carboxyl group on a side chain and is soluble in a solvent.SELECTED DRAWING: Figure 1

Description

本発明は、銀ナノ粒子積層体及び銀ナノ粒子積層体の製造方法に関する。   The present invention relates to a silver nanoparticle laminate and a method for producing a silver nanoparticle laminate.

銀ナノ粒子は他の物質には見られない電気的、熱的、光学的特性を有し、太陽電池からセンサーに至る幅広い製品で利用されている。さらに、銀ナノ粒子は他の多くの色素や顔料と異なり、光の吸収や散乱が極めて効果的であり、粒子の大きさや形状に応じて色を有する。光と銀ナノ粒子との強い関係は、表面プラズモン共鳴と呼ばれ、特定の波長の光で励起された際に金属表面の伝導電子が集団的な振動を起こすためで、通常にはない散乱や吸収特性の原因となる。   Silver nanoparticles have electrical, thermal and optical properties not found in other materials, and are used in a wide range of products from solar cells to sensors. Furthermore, unlike many other dyes and pigments, silver nanoparticles are extremely effective in absorbing and scattering light, and have a color depending on the size and shape of the particles. The strong relationship between light and silver nanoparticles is called surface plasmon resonance, because conduction electrons on the metal surface cause collective oscillation when excited by light of a specific wavelength. Causes absorption characteristics.

一般に金属銀が分散した塗液は、金属配線の用途に用いられることが多い。例えば、金属銀が分散した塗液で配線基板上にパターンを形成し、その塗液中に含まれる金属銀を焼結させ配線を形成する。金属銀を導電性材料として使用する場合、分散した金属銀の微細化による融点降下を利用して低温で焼結する必要があることが知られている。現在では、微細化したナノサイズの金属ナノ粒子が低温焼結可能な材料として期待されている。   In general, a coating liquid in which metallic silver is dispersed is often used for metallic wiring. For example, a pattern is formed on a wiring board with a coating liquid in which metallic silver is dispersed, and wiring is formed by sintering metallic silver contained in the coating liquid. In the case of using metallic silver as a conductive material, it is known that it is necessary to sinter at a low temperature by utilizing a melting point drop due to refinement of dispersed metallic silver. At present, miniaturized nano-sized metal nanoparticles are expected as materials that can be sintered at low temperature.

しかし、融点降下を示すほどの微小な金属銀の粒子は、互いに接触し凝集しやすい。この凝集を防止するためには、上述した塗液に分散剤を添加する必要があるが、分散剤を添加することによって、金属ナノ粒子特有の表面プラズモン共鳴が阻害され、特有の発色に悪影響を及ぼす可能性がある。
また、銀ナノ粒子特有の光学的特性を有する機能膜を作製するためには、分散性がよい塗液であって、低温では焼結しない銀膜となる必要がある。また、金属光沢を有する塗膜を作製したい場合は、塗布後に比較的低温で金属光沢をだす必要があり、用途に応じて焼結温度を変えることができなければならない。さらに、銀ナノ粒子、分散剤の他に膜強度や基材との密着性を上げるための樹脂成分を加えても凝集しない塗液組成であることが必要となる。
However, fine metal silver particles exhibiting a melting point drop tend to contact each other and aggregate. In order to prevent this agglomeration, it is necessary to add a dispersant to the coating liquid described above. However, by adding the dispersant, the surface plasmon resonance unique to the metal nanoparticles is inhibited, and the specific color development is adversely affected. There is a possibility of effect.
Moreover, in order to produce a functional film having optical characteristics peculiar to silver nanoparticles, it is necessary to form a silver film that has a good dispersibility and does not sinter at low temperatures. Further, when it is desired to produce a coating film having a metallic luster, it is necessary to produce the metallic luster at a relatively low temperature after coating, and the sintering temperature must be able to be changed depending on the application. Furthermore, it is necessary to have a coating liquid composition that does not aggregate even if a resin component for increasing film strength and adhesion to the substrate is added in addition to the silver nanoparticles and the dispersant.

従来、銀ナノ粒子を得ようとする場合、一般には硝酸銀や塩化銀などの銀塩を溶解させた水溶液などを用いて、存在する銀イオンを何らかの還元剤により還元して所望の形態の金属塩として析出させることが通常であった(特許文献1〜特許文献3)。
また、特に微細な銀粒子の製造においては、真空中において原子状銀を凝集させて銀ナノ粒子とする方法等も知られている(特許文献4)。
Conventionally, when trying to obtain silver nanoparticles, generally, an aqueous solution in which a silver salt such as silver nitrate or silver chloride is dissolved is used to reduce the existing silver ions with any reducing agent to form a metal salt in a desired form. It was normal to make it precipitate as (patent document 1-patent document 3).
In particular, in the production of fine silver particles, a method of aggregating atomic silver in a vacuum to form silver nanoparticles is also known (Patent Document 4).

また、シュウ酸銀とアミンを混合して、熱分解することによりシュウ酸銀アミン錯体を経て銀ナノ粒子を製造する方法等も知られている(特許文献5、特許文献6)。
この手法によれば、原料となる化合物から解離して生じる銀原子が、銀ナノ粒子を構成する過程で銀イオンの状態を経ることがない。
このため、上記手法であれば、銀イオンを還元するための還元剤を混合する必要がなく、単純な手法で平均粒径が均一な銀微粒子を製造することが可能である。さらに、アミン錯体の分解の際、アミン分子のアミノ基が銀粒子表面に配位することから、分散剤を添加しなくてもある種の有機溶剤に分散可能な銀ナノ粒子が得られる。
Moreover, the method etc. which manufacture a silver nanoparticle via a silver oxalate amine complex by mixing silver oxalate and an amine and thermally decomposing are also known (patent documents 5 and patent documents 6).
According to this technique, silver atoms generated by dissociation from a compound as a raw material do not pass through a silver ion state in the process of forming silver nanoparticles.
For this reason, if it is the said method, it is not necessary to mix the reducing agent for reduce | restoring silver ion, and it is possible to manufacture silver fine particles with a uniform average particle diameter with a simple method. Furthermore, when the amine complex is decomposed, the amino group of the amine molecule is coordinated on the surface of the silver particle, so that silver nanoparticles that can be dispersed in a certain organic solvent can be obtained without adding a dispersant.

特表2012−509396号公報Special table 2012-509396 gazette 特開2012−180589号公報JP 2012-180589 A 特開2012−140701号公報JP 2012-140701 A 特開2002−121437号公報JP 2002-121437 A 特開2012−162767号公報JP 2012-162767 A 特許第5574761号公報Japanese Patent No. 5574761

しかしながら、この銀ナノ粒子分散液のみを塗布し銀ナノ粒子膜を形成した場合、その銀ナノ粒子膜の強度や基材との密着性が十分でないために、銀ナノ粒子膜が基材から剥離しやすい、即ち耐擦傷性が低いという課題があった。   However, when a silver nanoparticle film is formed by applying only this silver nanoparticle dispersion, the silver nanoparticle film peels off from the substrate because the strength of the silver nanoparticle film and the adhesion to the substrate are not sufficient. There is a problem that it is easy to wear, that is, scratch resistance is low.

本発明は、上記の事情を鑑みてなされたものであり、耐擦傷性を高めた銀ナノ粒子積層体及び銀ナノ粒子積層体の製造方法を提供することを目的とする。   This invention is made | formed in view of said situation, and it aims at providing the manufacturing method of the silver nanoparticle laminated body which improved abrasion resistance, and a silver nanoparticle laminated body.

上記の課題を解決するために、本発明の一態様に係る銀ナノ粒子積層体は、基材と、前記基材上に形成され、銀ナノ粒子を含む樹脂層と、前記銀ナノ粒子を含む樹脂層上に形成され、電離放射線照射により得られる三次元架橋構造を含むオーバーコート層と、を備えている。   In order to solve the above problems, a silver nanoparticle laminate according to one embodiment of the present invention includes a base material, a resin layer formed on the base material and containing silver nanoparticles, and the silver nanoparticles. And an overcoat layer including a three-dimensional crosslinked structure formed on the resin layer and obtained by irradiation with ionizing radiation.

また、本発明の一態様によれば、前記銀ナノ粒子は、保護分子により覆われ、前記保護分子は、1級アミノ基と3級アミノ基とを有するアルキルジアミンを主成分として含んでいてもよい。   Further, according to one embodiment of the present invention, the silver nanoparticles may be covered with a protective molecule, and the protective molecule may contain an alkyl diamine having a primary amino group and a tertiary amino group as a main component. Good.

さらに本発明の一態様によれば、前記銀ナノ粒子を含む樹脂層は、側鎖中にカルボキシ基を有し溶剤可溶な(メタ)アクリル酸エステルのコポリマーを主成分として含んでいてもよい。   Furthermore, according to one aspect of the present invention, the resin layer containing silver nanoparticles may contain a solvent-soluble (meth) acrylic acid ester copolymer having a carboxy group in the side chain as a main component. .

本発明の一態様によれば、前記オーバーコート層は、ウレタン結合を有する三次元架橋構造を有する樹脂を含んでいてもよい。   According to an aspect of the present invention, the overcoat layer may include a resin having a three-dimensional crosslinked structure having a urethane bond.

本発明の一態様によれば、前記銀ナノ粒子の平均粒径は、30nm以下であることが好ましい。   According to an aspect of the present invention, the average particle diameter of the silver nanoparticles is preferably 30 nm or less.

また、本発明の一態様に係る銀ナノ粒子積層体の製造方法は、銀ナノ粒子と分散溶媒と側鎖中にカルボキシ基を有し溶剤可溶な(メタ)アクリル酸エステルのコポリマーを主成分として含む銀ナノ粒子樹脂層用組成物を、基材上に塗布し乾燥させて銀ナノ粒子樹脂層を形成する工程と、分子内に少なくとも2個以上の重合性不飽和二重結合を有する化合物と、光重合開始剤と、溶剤とを含むオーバーコート層用組成物を、前記銀ナノ粒子樹脂層上に塗布し乾燥させた後に、前記オーバーコート層用組成物を硬化させてオーバーコート層を形成する工程と、を有する。   The method for producing a silver nanoparticle laminate according to one embodiment of the present invention includes a silver nanoparticle, a dispersion solvent, and a solvent-soluble (meth) acrylic acid ester copolymer having a carboxy group in a side chain as a main component. And a step of forming a silver nanoparticle resin layer by applying a composition for a silver nanoparticle resin layer on the substrate and drying the composition, and a compound having at least two polymerizable unsaturated double bonds in the molecule An overcoat layer composition containing a photopolymerization initiator and a solvent is applied onto the silver nanoparticle resin layer and dried, and then the overcoat layer composition is cured to form an overcoat layer. Forming.

また、本発明の他の一態様に係る銀ナノ粒子積層体の製造方法は、基材上に、銀ナノ粒子と分散溶媒と側鎖中にカルボキシ基を有し溶剤可溶な(メタ)アクリル酸エステルのコポリマーとを含む銀ナノ粒子樹脂層用組成物からなる層と、分子内に少なくとも2個以上の重合性不飽和二重結合を有する化合物と、光重合開始剤と、溶剤とを含むオーバーコート層用組成物からなる層とを、この順に同時に形成する工程と、前記銀ナノ粒子樹脂層用組成物からなる層と、前記オーバーコート層用組成物からなる層とを、同時に乾燥させる工程と、乾燥させた前記オーバーコート層用組成物からなる層を硬化させてオーバーコート層を形成する工程と、を有する。   Moreover, the manufacturing method of the silver nanoparticle laminated body which concerns on another one aspect | mode of this invention is a solvent-soluble (meth) acryl which has a carboxy group in a silver nanoparticle, a dispersion | distribution solvent, and a side chain on a base material. A layer comprising a composition for a silver nanoparticle resin layer containing an acid ester copolymer, a compound having at least two polymerizable unsaturated double bonds in the molecule, a photopolymerization initiator, and a solvent. The step of simultaneously forming the layer made of the composition for overcoat layer in this order, the layer made of the composition for silver nanoparticle resin layer, and the layer made of the composition for overcoat layer are simultaneously dried. And a step of curing the dried layer made of the composition for an overcoat layer to form an overcoat layer.

本発明の一態様によれば、膜強度や銀ナノ粒子樹脂層との密着性が良好なオーバーコート層を銀ナノ粒子樹脂層上に積層することで、耐擦傷性を高めた銀ナノ粒子積層体及び銀ナノ粒子積層体の製造方法を提供することが可能となる。   According to one embodiment of the present invention, a silver nanoparticle laminate having improved scratch resistance by laminating an overcoat layer having good film strength and good adhesion with a silver nanoparticle resin layer on the silver nanoparticle resin layer. It becomes possible to provide the manufacturing method of a body and a silver nanoparticle laminated body.

本発明の実施形態に係る銀ナノ粒子積層体の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the silver nanoparticle laminated body which concerns on embodiment of this invention. 本発明の実施例1で得られた銀ナノ粒子のトルエン溶媒分散液を基板に塗布し乾燥させた後、観察した銀ナノ粒子の走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image of the silver nanoparticle observed after apply | coating the toluene solvent dispersion liquid of the silver nanoparticle obtained in Example 1 of this invention to the board | substrate and making it dry. 本発明の実施例1で得られた銀ナノ粒子の粒度分布及び累積度数(%)を示す図である。It is a figure which shows the particle size distribution and cumulative frequency (%) of the silver nanoparticle obtained in Example 1 of this invention.

以下に、図面を参照して、本発明の実施形態に係る銀ナノ粒子積層膜、銀ナノ粒子積層体及び銀ナノ粒子積層膜の製造方法について説明する。ここで、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、及び構造等が下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。   Below, with reference to drawings, the manufacturing method of the silver nanoparticle laminated film which concerns on embodiment of this invention, a silver nanoparticle laminated body, and a silver nanoparticle laminated film is demonstrated. Here, the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Further, the embodiment described below exemplifies a configuration for embodying the technical idea of the present invention, and the technical idea of the present invention is that the material, shape, structure, etc. of the component parts are as follows. It is not something specific. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.

(銀ナノ粒子積層体6の構成)
図1は、本発明の実施形態に係る銀ナノ粒子積層体6の構成を模式的に示す断面図である。
図1に示す銀ナノ粒子積層体6は、基材1と、基材1上に形成され、銀ナノ粒子4を含む銀ナノ粒子樹脂層2と、銀ナノ粒子樹脂層2上に形成されたオーバーコート層3と、を少なくとも備えている。また、銀ナノ粒子樹脂層2とオーバーコート層3を合わせて銀ナノ粒子積層膜5と称する。以下、上述した各層の詳細について説明する。
(Configuration of silver nanoparticle laminate 6)
FIG. 1 is a cross-sectional view schematically showing a configuration of a silver nanoparticle laminate 6 according to an embodiment of the present invention.
A silver nanoparticle laminate 6 shown in FIG. 1 is formed on a base 1, a silver nanoparticle resin layer 2 containing silver nanoparticles 4, and a silver nanoparticle resin layer 2 formed on the base 1. And at least an overcoat layer 3. The silver nanoparticle resin layer 2 and the overcoat layer 3 are collectively referred to as a silver nanoparticle multilayer film 5. Hereinafter, the details of each layer described above will be described.

[基材1]
基材1は、銀ナノ粒子樹脂層2を支持する部材である。このため、銀ナノ粒子樹脂層2を支持し形成することが可能であれば、基材の種類を問わない。本実施形態では、基材1としては、例えば、PET(ポリエチレンテレフタレート)フィルムを使用することができる。
[Substrate 1]
The substrate 1 is a member that supports the silver nanoparticle resin layer 2. For this reason, if it can support and form the silver nanoparticle resin layer 2, the kind of base material will not be ask | required. In this embodiment, as the base material 1, for example, a PET (polyethylene terephthalate) film can be used.

[銀ナノ粒子樹脂層2]
銀ナノ粒子樹脂層2は、基材1上に形成され、且つ銀ナノ粒子4と、側鎖中にカルボキシ基を有し溶剤可溶な(メタ)アクリル酸エステルのコポリマーを主成分として含んだ層であることが好ましい。銀ナノ粒子樹脂層2に含まれる銀ナノ粒子4の表面は、例えば、1級アミノ基と3級アミノ基とを有するアルキルジアミンを主成分として含む保護分子により覆われていることが好ましい。また、上述の銀ナノ粒子は、有機溶剤に分散可能であり、その平均粒径は、例えば30nm以下であることが好ましい。
[Silver nanoparticle resin layer 2]
The silver nanoparticle resin layer 2 includes a copolymer of silver nanoparticles 4 and a solvent-soluble (meth) acrylic acid ester having a carboxy group in the side chain, which is formed on the base material 1. A layer is preferred. The surface of the silver nanoparticles 4 contained in the silver nanoparticle resin layer 2 is preferably covered with a protective molecule containing, for example, an alkyldiamine having a primary amino group and a tertiary amino group as a main component. Moreover, it is preferable that the above-mentioned silver nanoparticle is dispersible in the organic solvent, and the average particle diameter is 30 nm or less, for example.

[オーバーコート層3]
オーバーコート層3は、銀ナノ粒子樹脂層2上に形成され、電離放射線照射により得られる三次元架橋構造を含んだ層である。より詳しくは、オーバーコート層3は、分子内に少なくとも2個以上の重合性不飽和二重結合を有する化合物(以下、単に「重合性化合物」とも称する)が重合し三次元架橋構造を有する樹脂、特にウレタン結合を有する三次元架橋構造を有する樹脂を含んだ層であることが好ましい。なお、オーバーコート層3は、
例えば、光重合開始剤を含んでいてもよい。
また、上述の重合性化合物は、例えば、ウレタン(メタ)アクリレートモノマー及びオリゴマーの少なくとも一方を主成分として含んだ化合物であることが好ましい。なお、本実施形態で使用可能な重合性化合物の具体例については、後述する。
また、上述の光重合開始剤は、上述の重合性化合物を光重合させるための開始剤である。このため、当該化合物を光重合させることが可能であれば、その種類を問わない。なお、本実施形態で使用可能な光重合開始剤の具体例については、後述する。
[Overcoat layer 3]
The overcoat layer 3 is a layer that is formed on the silver nanoparticle resin layer 2 and includes a three-dimensional crosslinked structure obtained by irradiation with ionizing radiation. More specifically, the overcoat layer 3 is a resin having a three-dimensional crosslinked structure obtained by polymerizing a compound having at least two polymerizable unsaturated double bonds in the molecule (hereinafter also simply referred to as “polymerizable compound”). In particular, a layer containing a resin having a three-dimensional crosslinked structure having a urethane bond is preferable. The overcoat layer 3 is
For example, a photopolymerization initiator may be included.
Moreover, it is preferable that the above-mentioned polymerizable compound is a compound containing, for example, at least one of a urethane (meth) acrylate monomer and an oligomer as a main component. In addition, the specific example of the polymeric compound which can be used by this embodiment is mentioned later.
The above-mentioned photopolymerization initiator is an initiator for photopolymerizing the above polymerizable compound. For this reason, the kind is not ask | required if the said compound can be photopolymerized. In addition, the specific example of the photoinitiator which can be used by this embodiment is mentioned later.

(銀ナノ粒子積層体6の製造方法)
[銀ナノ粒子の合成]
銀ナノ粒子を構成する銀の原料としては、含銀化合物のうちで、加熱により容易に分解して金属銀を生成する銀化合物が好ましく使用される。このような銀化合物としては、例えば、蟻酸、酢酸、シュウ酸、マロン酸、安息香酸、フタル酸などのカルボン酸と銀が化合したカルボン酸銀の他、塩化銀、硝酸銀、炭酸銀等を用いることができる。
そして、それらの銀化合物の中でも、分解により容易に金属を生成し、かつ、銀以外の不純物を生じにくい観点からシュウ酸銀が好ましく用いられる。シュウ酸銀は、銀含有率が高いとともに、加熱によりシュウ酸イオンが二酸化炭素として分解除去される。このために、還元剤を必要とせず熱分解により金属銀がそのまま得られ、不純物が残留しにくい点で有利といえる。
(Method for producing silver nanoparticle laminate 6)
[Synthesis of silver nanoparticles]
As a silver raw material constituting the silver nanoparticles, among silver-containing compounds, a silver compound that is easily decomposed by heating to form metallic silver is preferably used. As such a silver compound, for example, silver chloride, silver nitrate, silver carbonate or the like is used in addition to silver carboxylate in which carboxylic acid such as formic acid, acetic acid, oxalic acid, malonic acid, benzoic acid, phthalic acid and silver are combined. be able to.
Among these silver compounds, silver oxalate is preferably used from the viewpoint of easily generating a metal by decomposition and hardly generating impurities other than silver. Silver oxalate has a high silver content, and oxalate ions are decomposed and removed as carbon dioxide by heating. For this reason, it can be said that it is advantageous in that metal silver is obtained as it is by pyrolysis without requiring a reducing agent, and impurities hardly remain.

本実施形態では、上記銀化合物に所定のアルキルジアミンを加えて、銀化合物と当該アミンとの錯化合物を生成させる。この錯化合物には、銀、アルキルジアミン及びシュウ酸イオンが含まれる。この錯化合物においては、銀化合物に含まれる各銀原子に対してアミンに含まれる窒素原子がその非共有電子対を介して配位結合することにより、錯化合物を生成しているものと推察される。この時、アミノ基は1級であるRNH2(Rは炭化水素基)であることが好ましく、3級アミノ基となった場合は空間的に銀原子への配位が困難となる。このため、アルキルジアミンが1級と3級のアミノ基であれば、1級アミノ基が選択的に銀原子に配位し、3級アミノ基は分子鎖に応じて外側を向くことになる。
なお、2級アミノ基は、配位可能であるが、合成上の問題で高価であることと、反応性が1級よりも落ちるため、1級アミノ基及び3級アミノ基の使用が好ましい。
In this embodiment, a predetermined alkyl diamine is added to the silver compound to form a complex compound of the silver compound and the amine. This complex compound includes silver, alkyldiamine and oxalate ion. In this complex compound, it is presumed that the nitrogen atom contained in the amine is coordinated through the lone pair to each silver atom contained in the silver compound, thereby forming a complex compound. The In this case, the amino group is preferably primary RNH2 (R is a hydrocarbon group), and when it is a tertiary amino group, it is difficult to spatially coordinate with the silver atom. For this reason, if the alkyldiamine is a primary or tertiary amino group, the primary amino group is selectively coordinated to a silver atom, and the tertiary amino group faces outward depending on the molecular chain.
Although the secondary amino group can be coordinated, it is preferable to use a primary amino group and a tertiary amino group because it is expensive due to a synthesis problem and the reactivity is lower than the primary.

このように生成するジアミンが配位した金属銀原子は、その生成後に速やかに凝集し、相互に金属結合を生成して銀ナノ粒子を形成する。この際に、各銀原子に配位したジアミンが銀ナノ粒子の表面に保護膜を形成するため、一定の銀原子が集合して銀ナノ粒子を形成した後は、当該ジアミンの保護膜によってそれ以上の銀原子が結合することが困難と考えられる。
このため、錯化合物に含まれる銀化合物の分解と銀ナノ粒子の生成を、溶媒が存在せず銀原子が極めて高密度に存在する状態で行った場合でも、典型的には、粒径が30nm以下で粒径の揃った銀ナノ粒子が安定して得られるものと考えられる。
The metallic silver atoms coordinated by the diamine thus produced quickly aggregate after the production, and form metallic bonds with each other to form silver nanoparticles. At this time, since the diamine coordinated to each silver atom forms a protective film on the surface of the silver nanoparticle, after a certain silver atom gathers to form the silver nanoparticle, the protective film of the diamine prevents it. It is considered difficult to bond the above silver atoms.
For this reason, even when the decomposition of the silver compound contained in the complex compound and the generation of the silver nanoparticles are carried out in the state where the solvent is not present and silver atoms are present at a very high density, the particle size is typically 30 nm. It is considered that silver nanoparticles having a uniform particle size can be obtained stably below.

銀化合物とジアミンとの錯化合物の生成において、銀原子とジアミンとのモル比を1:1〜1:4とすることが好ましく、1:2〜1:4とすることがより好ましい。銀化合物とジアミンとの錯化合物の生成においてジアミンの量が上記の範囲を超えて少なくなると、ジアミンが配位していない銀原子の割合が増加し、得られる銀ナノ粒子が肥大するようになる。
また、銀原子の2倍量以上のジアミンが存在することにより、平均粒径がほぼ30nm以下の銀ナノ粒子が安定して得られるようになることから、この程度のジアミン量により確実にすべての銀原子がジアミンにより配位可能になるものと考える。
また、ジアミンが銀原子の4倍量以上になると、反応系における銀原子の密度が低下して、最終的な銀の回収歩留まりが低下するため、ジアミンの使用量は、銀原子の4倍量以下とすることが好ましい。
また、銀原子とジアミンのモル比を1:1程度とする場合には、全てのアミンが銀原子に配位して錯化合物を形成して反応系を保持する分散溶媒が存在しないこととなるため、必要に応じてメタノール等の反応溶媒を混合することも好ましい。
In the formation of the complex compound of the silver compound and the diamine, the molar ratio of the silver atom to the diamine is preferably 1: 1 to 1: 4, and more preferably 1: 2 to 1: 4. When the amount of diamine is reduced beyond the above range in the formation of a complex compound of a silver compound and a diamine, the proportion of silver atoms not coordinated with the diamine increases, and the resulting silver nanoparticles become enlarged. .
In addition, since silver nanoparticles having an average particle diameter of approximately 30 nm or less can be stably obtained by the presence of a diamine that is twice or more the amount of silver atoms, it is ensured that this amount of diamine ensures It is considered that the silver atom can be coordinated by diamine.
Moreover, since the density of silver atoms in the reaction system decreases when the amount of diamine exceeds 4 times the amount of silver atoms, the final yield of silver recovery decreases, so the amount of diamine used is 4 times the amount of silver atoms. The following is preferable.
Further, when the molar ratio of silver atom to diamine is about 1: 1, there is no dispersion solvent in which all amines coordinate with silver atoms to form a complex compound and hold the reaction system. Therefore, it is also preferable to mix a reaction solvent such as methanol as necessary.

銀化合物とジアミンとの錯化合物を攪拌しながら加熱すると、青色光沢を呈する懸濁液が得られる。この懸濁液から過剰のジアミン等を除去することによって、本実施形態に係る保護分子で表面が被覆された銀ナノ粒子(以下、単に「被覆銀ナノ粒子」とも称する)が得られる。
銀化合物とジアミンとの錯化合物を加熱して被覆銀ナノ粒子を得る際の条件は、使用する銀化合物やジアミンの種類に応じて、熱分解を行う際の温度、圧力、雰囲気などの条件を適宜選択できる。この際に、生成する被覆銀ナノ粒子が、熱分解を行う雰囲気との反応により汚染されたり、銀ナノ粒子の表面を覆う保護膜が分解されたりすることを防止する観点から、アルゴン雰囲気などの不活性雰囲気内で銀化合物の熱分解を行うことが好ましい。
一方、銀化合物としてシュウ酸銀を用いる場合には、シュウ酸イオンの分解によって発生する二酸化炭素により反応空間が保護されるため、大気中においてシュウ酸銀とジアミンとの錯化合物を加熱することで、シュウ酸銀の熱分解が可能である。
When a complex compound of a silver compound and a diamine is heated with stirring, a suspension exhibiting a blue gloss is obtained. By removing excess diamine and the like from this suspension, silver nanoparticles whose surface is coated with the protective molecules according to the present embodiment (hereinafter, also simply referred to as “coated silver nanoparticles”) can be obtained.
The conditions for heating the complex compound of silver compound and diamine to obtain coated silver nanoparticles depend on the conditions such as temperature, pressure, and atmosphere when performing thermal decomposition according to the type of silver compound and diamine used. It can be selected as appropriate. At this time, from the viewpoint of preventing the generated coated silver nanoparticles from being contaminated by the reaction with the atmosphere in which pyrolysis is performed or the protective film covering the surface of the silver nanoparticles from being decomposed, an argon atmosphere or the like is used. It is preferable to thermally decompose the silver compound in an inert atmosphere.
On the other hand, when silver oxalate is used as the silver compound, the reaction space is protected by carbon dioxide generated by the decomposition of oxalate ions, so that the complex compound of silver oxalate and diamine can be heated in the atmosphere. Thermal decomposition of silver oxalate is possible.

銀化合物の熱分解のために銀化合物とジアミンとの錯化合物を加熱する温度は、ジアミンの脱離を防止する観点から概ね使用するジアミンの沸点以下が好ましい。本実施形態では、一般的に80〜130℃程度に加熱することで、ジアミンで形成された保護膜を有する被覆銀ナノ粒子を得ることができる。   The temperature at which the complex compound of the silver compound and the diamine is heated for the thermal decomposition of the silver compound is preferably below the boiling point of the diamine generally used from the viewpoint of preventing the diamine from being eliminated. In the present embodiment, coated silver nanoparticles having a protective film formed of diamine can be obtained by heating to about 80 to 130 ° C. in general.

上記の通り、一般に、銀に対して過剰量のアルキルアミンを必要とする他の被覆銀ナノ粒子の合成法に比べて、本実施形態では、銀原子:ジアミンの総量が1:1(モル比)でも被覆銀ナノ粒子が高収率で合成できるため、アルキルジアミンの使用量を削減できる。また、シュウ酸イオンの熱分解で生じる二酸化炭素は、反応系外に容易に除去されるため、還元剤に由来する副生成物がなく、反応系から被覆銀ナノ粒子の分離も簡単にでき、被覆銀ナノ粒子の純度も高い。   As described above, in general, in this embodiment, the total amount of silver atoms: diamine is 1: 1 (molar ratio) compared to the synthesis method of other coated silver nanoparticles that require an excessive amount of alkylamine with respect to silver. However, since the coated silver nanoparticles can be synthesized in a high yield, the amount of alkyldiamine used can be reduced. In addition, carbon dioxide generated by thermal decomposition of oxalate ions is easily removed outside the reaction system, so there are no by-products derived from the reducing agent, and the coated silver nanoparticles can be easily separated from the reaction system. The purity of the coated silver nanoparticles is also high.

銀ナノ粒子は黄色の鮮明な色材として期待されているが、一般に、その表面プラズモンバンドの極大吸収波長が400nmよりも長波長側に現れるため、鮮明な黄色の色材として課題がある。これに対して、本実施形態のシュウ酸イオン・アルキルジアミン・銀錯化合物の熱分解では、表面プラズモンバンドの極大吸収波長が400nmよりも短波長側にある被覆銀ナノ粒子を得ることが容易であり、装飾品等の色材としても有用である。   Silver nanoparticles are expected as a clear yellow colorant. However, since the maximum absorption wavelength of the surface plasmon band appears on the longer wavelength side than 400 nm, there is a problem as a clear yellow colorant. In contrast, in the thermal decomposition of the oxalate ion / alkyldiamine / silver complex compound of the present embodiment, it is easy to obtain coated silver nanoparticles having a maximum absorption wavelength of the surface plasmon band on the shorter wavelength side than 400 nm. It is also useful as a coloring material for decorative items.

本実施形態に係る被覆銀ナノ粒子が400nmよりも短波長側に表面プラズモンバンドの極大吸収波長を有することは、当該銀ナノ粒子を構成する銀原子が電気的に中性な金属塩からなることを示しており、被覆を構成するジアミンが配位結合により金属銀に結合していることを示すものである。   The fact that the coated silver nanoparticles according to this embodiment have a maximum absorption wavelength of the surface plasmon band on the shorter wavelength side than 400 nm means that the silver atoms constituting the silver nanoparticles are made of an electrically neutral metal salt. This shows that the diamine constituting the coating is bonded to metallic silver by a coordination bond.

本実施形態に係る被覆銀ナノ粒子を分散溶媒として用いられる溶剤等に分散させる際には、銀ナノ粒子の保護膜を脱離させないような条件で、保護膜を形成する際に用いた過剰のアルキルジアミン等を除去すると共に使用する溶剤で置換することで、被覆銀ナノ粒子が分散した分散液を得ることが好ましい。
特に、本実施形態に係る被覆銀ナノ粒子を大気等に晒した場合には、低温でもその保護膜が脱離して銀ナノ粒子の凝集焼結が開始される。このため、被覆銀ナノ粒子をアルキルジアミン等から適宜の溶剤に置換する際には、被覆銀ナノ粒子が大気等に晒されない条件を選択して置換を行うことが好ましい。
When the coated silver nanoparticles according to the present embodiment are dispersed in a solvent or the like used as a dispersion solvent, the excessive amount used in forming the protective film under the condition that the protective film of the silver nanoparticles is not detached. It is preferable to obtain a dispersion liquid in which the coated silver nanoparticles are dispersed by removing the alkyldiamine and the like and replacing it with a solvent to be used.
In particular, when the coated silver nanoparticles according to the present embodiment are exposed to the atmosphere or the like, the protective film is detached even at a low temperature, and aggregation sintering of the silver nanoparticles is started. For this reason, when replacing the coated silver nanoparticles with an appropriate solvent from alkyl diamine or the like, it is preferable to perform the replacement by selecting conditions under which the coated silver nanoparticles are not exposed to the atmosphere or the like.

なお、本実施形態に係る被覆銀ナノ粒子を適宜の揮発性の分散溶媒に分散させた分散液を用いて、スピンコート法やインクジェット法によって所望の基材1上に塗布し塗膜を形成して、色材や光機能性膜として適応する場合、銀のみからなる成分だけでは、膜強度や基材1との密着性が弱く、触れただけで取れてしまう。
そこで、銀ナノ粒子樹脂層2の強度や銀ナノ粒子樹脂層2と基材1との密着性を上げる成分を加える必要がある。膜特性の向上には、幾つかの手法があるが、ポリマーを利用することが簡便である。このため、銀ナノ粒子が分散しやすいポリマーを塗工液に添加する手法が好ましい。そのような銀ナノ粒子を分散させるポリマーについては後述する。
しかし、上述のポリマーは、耐擦傷性は低く、また、有機溶剤やアルカリ性化合物にも溶けやすく耐薬品性も劣るため、機能を分離して銀ナノ粒子樹脂層2上に後述するオーバーコート層3を設けることが必須となる。
In addition, using a dispersion liquid in which the coated silver nanoparticles according to the present embodiment are dispersed in an appropriate volatile dispersion solvent, the coating is formed on the desired substrate 1 by a spin coating method or an ink jet method. Thus, when applied as a color material or an optical functional film, the film strength and the adhesion to the base material 1 are weak only with a component consisting of silver, and it can be removed only by touching.
Therefore, it is necessary to add a component that increases the strength of the silver nanoparticle resin layer 2 and the adhesion between the silver nanoparticle resin layer 2 and the substrate 1. There are several methods for improving the film properties, but it is convenient to use a polymer. For this reason, the method of adding a polymer in which silver nanoparticles are easily dispersed to the coating solution is preferable. The polymer in which such silver nanoparticles are dispersed will be described later.
However, the above-mentioned polymer has low scratch resistance, is easily soluble in organic solvents and alkaline compounds, and has poor chemical resistance. Therefore, the overcoat layer 3 described later is separated on the silver nanoparticle resin layer 2 by separating the functions. It is essential to provide

以下、本実施形態について更に詳細に説明する。
[シュウ酸銀]
シュウ酸銀は、銀含有率が高く、通常200℃で熱分解する。熱分解すると、シュウ酸イオンが二酸化炭素とし除去されて金属塩がそのまま得られる。
このため、還元剤を必要とせず、不純物が残留しにくい点で有利である。このような理由から、本実施形態において被覆銀ナノ粒子を得るための銀の原料となる銀化合物としてはシュウ酸銀が好ましく用いられる。
以下、銀化合物としてシュウ酸銀を用いた場合について説明する。但し、上記のように、銀化合物と所定のジアミンとの間で生成する錯化合物において、当該ジアミンが銀原子に配位した状態であればシュウ酸銀に限定されずに用いられることは言うまでもない。
Hereinafter, this embodiment will be described in more detail.
[Silver oxalate]
Silver oxalate has a high silver content and is usually thermally decomposed at 200 ° C. When pyrolyzed, the oxalate ions are removed as carbon dioxide, and the metal salt is obtained as it is.
For this reason, it is advantageous in that no reducing agent is required and impurities hardly remain. For these reasons, silver oxalate is preferably used as a silver compound that is a raw material of silver for obtaining coated silver nanoparticles in the present embodiment.
Hereinafter, the case where silver oxalate is used as the silver compound will be described. However, as described above, in the complex compound generated between the silver compound and the predetermined diamine, it goes without saying that the diamine is used without being limited to silver oxalate as long as the diamine is coordinated to the silver atom. .

本実施形態で用いられるシュウ酸銀として制限はなく、例えば、市販のシュウ酸銀を用いることができる。また、シュウ酸銀のシュウ酸イオンの20モル%以下を、例えば炭酸イオン、硝酸イオン及び酸化物イオンの少なくとも1種以上で置換しても良い。特に、シュウ酸イオンの20モル%以下を炭酸イオンで置換した場合、シュウ酸銀の熱的安定性を高める効果がある。置換量が20モル%を超えると前記錯化合物が熱分解しにくくなる場合がある。特に、沸点が250℃以下のアルキルジアミンを含んだシュウ酸イオン・アルキルジアミン・銀錯化合物では、100℃以下の低い温度での熱分解で被覆銀ナノ粒子を高効率で得ることができる。   There is no restriction | limiting as silver oxalate used by this embodiment, For example, commercially available silver oxalate can be used. Further, 20 mol% or less of silver oxalate oxalate ions may be substituted with at least one of carbonate ions, nitrate ions and oxide ions, for example. In particular, when 20 mol% or less of oxalate ions are substituted with carbonate ions, there is an effect of increasing the thermal stability of silver oxalate. If the amount of substitution exceeds 20 mol%, the complex compound may be difficult to thermally decompose. In particular, in the case of an oxalate ion / alkyldiamine / silver complex compound containing an alkyldiamine having a boiling point of 250 ° C. or less, coated silver nanoparticles can be obtained with high efficiency by thermal decomposition at a low temperature of 100 ° C. or less.

[アルキルジアミン]
本実施形態で用いられるアルキルジアミンは、特に、その構造に制限はない。アルキルジアミンは、シュウ酸銀と反応して、上述の錯化合物を形成するため、少なくともひとつのアミノ基が1級アミノ基、或いは2級アミノ基であることが必要であり、1級アミノ基であることが好ましい。さらに、非極性の分散溶媒との親和性を高めるため、もう一方のアミノ基は3級アミノ基であることが望ましい。
アルキルジアミンとしては、例えば、N,N−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N−ジメチル−1,3−プロパンジアミン、N,N−ジエチル−1,3−プロパンジアミン、N,N−ジメチル−1,5−ジアミノ−2−メチルペンタン、N,N−ジメチル−1,6−ヘキサンジアミン等が挙げられるが、この限りではない。また、複数の異なるアルキルジアミンを同時にシュウ酸銀と反応させても良い。
[Alkyldiamine]
The structure of the alkyldiamine used in this embodiment is not particularly limited. Alkyl diamine reacts with silver oxalate to form the complex compound described above, so at least one amino group must be a primary amino group or a secondary amino group. Preferably there is. Furthermore, in order to increase the affinity with a nonpolar dispersion solvent, the other amino group is desirably a tertiary amino group.
Examples of the alkyl diamine include N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dimethyl-1,3-propanediamine, N, N-diethyl-1,3-propanediamine, and N, N. -Dimethyl-1,5-diamino-2-methylpentane, N, N-dimethyl-1,6-hexanediamine and the like are exemplified, but not limited thereto. A plurality of different alkyl diamines may be simultaneously reacted with silver oxalate.

[銀ナノ粒子分散ポリマー]
本実施形態で用いられる銀ナノ粒子分散ポリマーは、特に、その構造に制限はない。
銀ナノ粒子分散ポリマーは溶剤可溶な(メタ)アクリル酸エステルのコポリマーを主成分として含み、少なくともひとつ以上のカルボキシ基を側鎖に有することが必要であり、メタクリル酸、アクリル酸といった主鎖に直接結合したカルボキシ基の他、琥珀酸、フタル
酸、ヘキサヒドロフタル酸等を側鎖に含んでも構わない。前記モノマーの他に、スチレン、α−メチルスチレン等をモノマー成分として含んでも構わない。
具体的には、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸ジシクロペンタニルの他、メタ(メタ)アクリル酸2−ヒドロキシエチルに琥珀酸、フタル酸等のジカルボン酸を反応させたもの、(メタ)アクリル酸2−ヒドロキシエチルに(メタ)アクリル酸グリシジルや(メタ)アクリル酸2−イソシアナトエチルを反応させたものを用いてもよい。
これらのモノマーをアゾビスイソブチロニトリル等の熱重合開始剤存在下反応溶媒中で重合させて使用する。また、根上工業製ハイパールMA4620(酸価:約130)等の市販品を用いてもよい。なお、本実施形態において、「(メタ)アクリルモノマー」とは「アクリルモノマー」と「メタクリルモノマー」の両方を示している。
[Silver nanoparticle dispersed polymer]
The structure of the silver nanoparticle-dispersed polymer used in this embodiment is not particularly limited.
The silver nanoparticle-dispersed polymer contains a solvent-soluble (meth) acrylic acid ester copolymer as a main component and must have at least one carboxy group in the side chain. In addition to the carboxy group directly bonded, succinic acid, phthalic acid, hexahydrophthalic acid and the like may be included in the side chain. In addition to the monomer, styrene, α-methylstyrene, or the like may be included as a monomer component.
Specifically, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, ( In addition to glycidyl (meth) acrylate and dicyclopentanyl (meth) acrylate, 2-hydroxyethyl meta (meth) acrylate reacted with dicarboxylic acid such as oxalic acid and phthalic acid, (meth) acrylic acid 2 -What reacted glycidyl (meth) acrylate and (meth) acrylic acid 2-isocyanatoethyl with hydroxyethyl may be used.
These monomers are used after being polymerized in a reaction solvent in the presence of a thermal polymerization initiator such as azobisisobutyronitrile. Commercial products such as Hyper MA4620 (acid value: about 130) manufactured by Negami Kogyo may also be used. In the present embodiment, “(meth) acrylic monomer” indicates both “acrylic monomer” and “methacrylic monomer”.

[オーバーコート層用組成物の調製]
本実施形態では、オーバーコート層用組成物は、分子内に少なくとも2個以上の重合性不飽和二重結合を有する化合物(重合性化合物)を含んでいる。
そして、その化合物としては、例えば、1分子中に2個以上のアルコール性水酸基を有する多価アルコールの該水酸基が、2個以上の(メタ)アクリル酸のエステル化物となっているものが好ましい。
その他には、アクリル系樹脂骨格に反応性のアクリロイル基が結合されたものをはじめとして、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート及びポリエーテル(メタ)アクリレートなどを上述の化合物として用いることができる。また、メラミンやイソシアヌル酸などの剛直な骨格にアクリロイル基を結合させたものも用いることができる。それらの化合物の中でも、本実施形態では、特にウレタン(メタ)アクリレートモノマー及びオリゴマーの少なくとも一方を用いると、オーバーコート層3の硬度ならびに可撓性を著しく向上させることができる。
[Preparation of composition for overcoat layer]
In this embodiment, the composition for overcoat layers contains the compound (polymerizable compound) which has at least 2 or more polymerizable unsaturated double bond in a molecule | numerator.
As the compound, for example, a compound in which the hydroxyl group of a polyhydric alcohol having two or more alcoholic hydroxyl groups in one molecule is an esterified product of two or more (meth) acrylic acids is preferable.
Other examples include polyester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, and polyether (meth) acrylate, as well as those in which a reactive acryloyl group is bonded to an acrylic resin skeleton. It can be used as a compound of Moreover, what made the acryloyl group couple | bond with rigid skeletons, such as a melamine and isocyanuric acid, can also be used. Among these compounds, in this embodiment, when at least one of a urethane (meth) acrylate monomer and an oligomer is used, the hardness and flexibility of the overcoat layer 3 can be remarkably improved.

本実施形態で好ましい、分子内に少なくとも2個以上の重合性不飽和二重結合を有するウレタン(メタ)アクリレートとしては、一般にポリエステルポリオールにイソシアネートモノマー、あるいはプレポリマーを反応させて得られた生成物に水酸基を有する(メタ)アクリルモノマーを反応させ形成されるものを挙げることができる。   The urethane (meth) acrylate having at least two polymerizable unsaturated double bonds in the molecule, which is preferable in this embodiment, is generally a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. And (meth) acrylic monomers having a hydroxyl group can be reacted with each other.

具体的な例としては、ペンタエリスリトールトリアクリレートヘキサジアミンイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサジアミンイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジアミンイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートイソホロンジイソシアネートウレタンプレポリマーなどを用いることができる。
また、これらの単量体は、1種または2種以上を混合して使用することができる。また、これらは、モノマーであってもよいし、一部が重合したオリゴマーであってもかまわない。これらの樹脂は、例えば、熱、あるいは紫外線、電子線等の電離放射線によるエネルギーを照射して加えることで架橋するものである。これらの化合物を、膜強度、基材との密着性、カール量を考慮しながら適宜選択する。
Specific examples include pentaerythritol triacrylate hexadiamine isocyanate urethane prepolymer, dipentaerythritol pentaacrylate hexadiamine isocyanate urethane prepolymer, pentaerythritol triacrylate toluenediamine isocyanate urethane prepolymer, dipentaerythritol pentaacrylate toluene diisocyanate urethane prepolymer. A polymer, pentaerythritol triacrylate isophorone diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymer, and the like can be used.
Moreover, these monomers can be used 1 type or in mixture of 2 or more types. These may be monomers or oligomers that are partially polymerized. These resins are cross-linked by, for example, irradiating and applying energy by ionizing radiation such as heat or ultraviolet rays and electron beams. These compounds are appropriately selected in consideration of film strength, adhesion to a substrate, and curl amount.

市販されているウレタン(メタ)アクリレートとしては、ナガセケムテック社;(商品名“デナコール”シリーズ等)、新中村化学社;(商品名“NKエステル”シリーズ等)、DIC社(商品名“UNDIC”シリーズ等)、日本油脂社;(商品名“ブレンマー”シリーズ等)、日本化薬社;(商品名“KAYARAD”シリーズ等)、共栄社化学社;(商品名“ライトエステル”シリーズ、“ライトアクリレート”シリーズ等)、ダイセル・オルネクス社;(商品名“Ebecryl”シリーズ等)、根上工業社;(商品名“アートレジン”シリーズ等)、日本合成化学工業社;(商品名;“紫光”紫シリーズ等)等の製品を利用することができる。   Commercially available urethane (meth) acrylates include Nagase Chemtech; (trade name “Denacol” series, etc.), Shin-Nakamura Chemical Co., Ltd. (trade name “NK Ester” series, etc.), DIC (trade name “UNDIC”). ("Series etc."), Nippon Oil & Fats Corporation (trade name "Blemmer" series etc.), Nippon Kayaku Co., Ltd. (trade name "KAYARAD" series etc.), Kyoeisha Chemical Co., Ltd. "Series etc.", Daicel Ornex Co., Ltd. (trade name "Ebecryl" series, etc.), Negami Kogyo Co., Ltd. (trade name "Art Resin" series, etc.), Nippon Synthetic Chemical Industry Co., Ltd .; Etc.) can be used.

具体的には、新中村化学社のU−4HA、U−6HA、UA−100A、U−6LPA、U−15HA、UA−32P、UA−33H、UA−53H、U−324A等、共栄社化学社のUA−306H、UA−306T、UA−306I等、日本合成化学工業社のUV−1700B、UV−6300B、UV−7600B、UV−7605B、UV−7640B、UV−7650B等、ダイセル・オルネクス社のEbecryl−1290、Ebecryl−1290K、Ebecryl−5129等、根上工業社のUN−3220H、UN−3220HB、UN−3220HS等を挙げることができるが、この限りではない。   Specifically, Shin-Nakamura Chemical U-4HA, U-6HA, UA-100A, U-6LPA, U-15HA, UA-32P, UA-33H, UA-53H, U-324A, etc., Kyoeisha Chemical Co., Ltd. UA-306H, UA-306T, UA-306I, etc., UV-1700B, UV-6300B, UV-7600B, UV-7605B, UV-7640B, UV-7650B, etc., manufactured by Nippon Synthetic Chemical Industry Co., Ltd. Examples include, but are not limited to, Ebecryl-1290, Ebecryl-1290K, Ebecryl-5129 and the like, UN-3220H, UN-3220HB, UN-3220HS and the like of Negami Kogyo.

本実施形態のオーバーコート層用組成物を構成する重合性化合物の使用割合(含有量比)は、組成物中の50%以上95%以下の範囲内が好ましく、必要に応じて、(メタ)アクリレートモノマーや溶剤で希釈しても構わない。   The use ratio (content ratio) of the polymerizable compound constituting the overcoat layer composition of the present embodiment is preferably in the range of 50% to 95% in the composition, and if necessary, (meta) You may dilute with an acrylate monomer or a solvent.

本実施形態のオーバーコート層用組成物を構成する光ラジカル重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、α−ヒドロキシケトン、ベンジルメチルケタール、α―アミノケトン、モノアシルフォスフィンオキサイド、ビスアシルフォスフィンオキサイド等を単独或いは混合して用いる。具体的には、BASF社のIrgacure 184、Irgacure 651、Irgacure 1173、Irgacure 907、Irgacure 369、Irgacure 819、Irgacure
TPO、ランバルティ社のEsacure KIP−150、Esacure ONE等を挙げることができるが、この限りではない。
Examples of the photo radical polymerization initiator constituting the overcoat layer composition of the present embodiment include acetophenones, benzophenones, α-hydroxyketone, benzylmethyl ketal, α-aminoketone, monoacylphosphine oxide, bisacyl. Phosphine oxide or the like is used alone or in combination. Specifically, Irgacure 184, Irgacure 651, Irgacure 1173, Irgacure 907, Irgacure 369, Irgacure 819, Irgacure from BASF
Examples include, but are not limited to, TPO, Escalure KIP-150 of Lambarti and Esacure ONE.

[銀ナノ粒子積層体6の製造工程]
銀ナノ粒子積層体6を製造するための第1〜第5の工程について、以下説明する。
第1の工程は、上述した被覆銀ナノ粒子を溶剤等に分散し、さらに、溶剤可溶な(メタ)アタクリル酸エステルのホモポリマー或いはコポリマーを加え、濃度、粘度を調整した塗液を作製する工程である。
第2の工程は、第1の工程で作製した塗液をフィルム基材やガラス基材に塗工して、被覆銀ナノ粒子と分散溶媒とを含む銀ナノ粒子樹脂層用樹脂からなる層を形成する工程である。
第3の工程は、当該層を乾燥させて銀ナノ粒子樹脂層2を形成する工程である。
第4の工程は、上述したオーバーコート層用組成物を溶剤等に溶解し粘度を調整した塗液を、第3の工程で形成した銀ナノ粒子樹脂層2の上に塗布し乾燥させて、オーバーコート層用組成物からなる層を形成する工程である。
第5の工程は、当該層に対して紫外線、電子線等の電離放射線照射処理により硬化させてオーバーコート層3を形成する工程である。
上記第1〜第5の工程を経て、本実施形態に係る銀ナノ粒子積層体6が得られる。
[Manufacturing process of silver nanoparticle laminate 6]
The 1st-5th process for manufacturing the silver nanoparticle laminated body 6 is demonstrated below.
In the first step, the coated silver nanoparticles described above are dispersed in a solvent or the like, and a solvent-soluble (meth) attacrylic acid ester homopolymer or copolymer is added to prepare a coating solution with adjusted concentration and viscosity. It is a process.
In the second step, the coating liquid prepared in the first step is applied to a film substrate or a glass substrate, and a layer made of a resin for a silver nanoparticle resin layer containing coated silver nanoparticles and a dispersion solvent is formed. It is a process of forming.
The third step is a step of forming the silver nanoparticle resin layer 2 by drying the layer.
In the fourth step, the above-mentioned composition for overcoat layer is dissolved in a solvent or the like to adjust the viscosity, and applied onto the silver nanoparticle resin layer 2 formed in the third step and dried. This is a step of forming a layer comprising the composition for an overcoat layer.
The fifth step is a step of forming the overcoat layer 3 by curing the layer by ionizing radiation irradiation treatment such as ultraviolet rays and electron beams.
The silver nanoparticle laminated body 6 which concerns on this embodiment is obtained through the said 1st-5th process.

上記第1の工程で用いる被覆銀ナノ粒子分散液の溶剤としては、例えば、トルエン、シクロヘキサノン、酢酸ブチル、日本テルペン化学社製のターピネオールC、ジヒドロターピネオール、テルソルブTHA−90等を挙げることができる。また、これらの溶剤のうち、数種類を混合して用いても良い。上述の溶剤は、組成物中に、組成物全体の95重量%までの量で存在できる。また、該溶剤は、被覆銀ナノ粒子分散液を基材1に塗布し乾燥させる際に実質的に除去される。
また、オーバーコート層用組成物に用いられる溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸イソプロピル、テトラヒドロフラン、1,3−ジオキソラン、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、2−プロパノール、1−ブタノール等を用いることができる。なお、溶剤は1種類に限定されるものでなく、複数の溶剤を混合して用いてもよい。また、これらの溶剤を80wt%以上含むことが好ましい。
Examples of the solvent of the coated silver nanoparticle dispersion used in the first step include toluene, cyclohexanone, butyl acetate, terpineol C, dihydroterpineol, and tersolve THA-90 manufactured by Nippon Terpene Chemical Co., Ltd. Moreover, you may mix and use several types among these solvents. The aforementioned solvents can be present in the composition in an amount up to 95% by weight of the total composition. The solvent is substantially removed when the coated silver nanoparticle dispersion is applied to the substrate 1 and dried.
Examples of the solvent used in the overcoat layer composition include methyl acetate, ethyl acetate, isopropyl acetate, tetrahydrofuran, 1,3-dioxolane, acetone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, 2-propanol, 1-butanol or the like can be used. The solvent is not limited to one type, and a plurality of solvents may be mixed and used. Moreover, it is preferable to contain 80 wt% or more of these solvents.

本実施形態において、上述した成分以外に、必要に応じて相溶性のある添加物、例えば、可塑剤、安定剤、界面活性剤、レベリング剤、カップリング剤などを、本実施形態の目的を損なわない範囲で添加することができる。但し、カールを抑制するため、或いは硬度を上げるためのフィラー類は、透過率の低下や分散性に不具合を生じるため加えないことが好ましい。   In the present embodiment, in addition to the components described above, if necessary, compatible additives such as a plasticizer, a stabilizer, a surfactant, a leveling agent, a coupling agent, and the like are spoiled. It is possible to add in the range which is not. However, it is preferable not to add fillers for suppressing curling or increasing the hardness because it causes a decrease in transmittance and a problem in dispersibility.

このように各成分を適宜選択し、任意の割合で混合して得た塗液を、例えばロールコーター、グラビアコーター、マイクログラビアコーター、バーコーター、ダイコーター、ディップコーター等の公知の塗工手段を用いて基材1に塗布し乾燥させた後、UV(ultraviolet)を照射する。
また、重層ダイコーターを用いて、2層を一度に塗布してもよい。以下、この方法について、詳しく説明する。
Thus, each component is appropriately selected, and a coating liquid obtained by mixing at an arbitrary ratio is obtained by using known coating means such as a roll coater, a gravure coater, a micro gravure coater, a bar coater, a die coater, and a dip coater. After applying to the base material 1 and drying, UV (ultraviolet) is irradiated.
Moreover, you may apply | coat two layers at once using a multilayer die coater. Hereinafter, this method will be described in detail.

被覆銀ナノ粒子と分散溶媒と溶剤可溶なメタクリル酸エステル或いはアクリル酸エステルのコポリマーとを含む銀ナノ粒子樹脂層用組成物からなる層と、オーバーコート層用組成物からなる層の2層を重層ダイコーターにて一度に塗布する。
続いて、塗布した2層を同時に乾燥させて、まずは銀ナノ粒子樹脂層2が形成される。
その後、オーバーコート層用組成物からなる層に対して紫外線、電子線等の電離放射線照射処理を行い、オーバーコート層3を形成する
Two layers of a silver nanoparticle resin layer composition comprising a coated silver nanoparticle, a dispersion solvent, and a solvent-soluble methacrylic acid ester or acrylic acid ester copolymer, and a layer comprising an overcoat layer composition Apply at once with a multilayer die coater.
Subsequently, the applied two layers are simultaneously dried to first form the silver nanoparticle resin layer 2.
Thereafter, the overcoat layer 3 is formed by subjecting the layer made of the composition for the overcoat layer to irradiation treatment with ionizing radiation such as ultraviolet rays and electron beams.

以上のように、従来の問題点を鑑みて、鋭意研究した結果、銀の原料となる銀化合物を分解して銀ナノ粒子を製造する際に、1級アミンと3級アミンを有するアルキルジアミンを介在させて用いると、50wt%以上の濃度でもトルエン等の有機溶剤に分散できる被覆銀ナノ粒子が得られる。また、その被覆銀ナノ粒子の分散液濃度を変えると濃度に応じた色の塗膜が得られた。
しかしながら、被覆銀ナノ粒子のみで製膜したものは、指で触れるだけで基材から剥離してしまい、膜強度や基材との密着性を上げるための成分を加えないと機能膜として成り立たない。そこで、膜強度や基材との密着性を上げるために、他の成分を添加すると添加物濃度に応じて分散性が悪化し、被覆銀ナノ粒子が高濃度での塗膜を得ることができない。高濃度銀塗膜でかつ膜強度や基材への密着性を上げるためには、銀ナノ粒子樹脂層2とオーバーコート層3からなる多層構成が必要となる。
As described above, as a result of earnest research in view of the conventional problems, when producing silver nanoparticles by decomposing a silver compound as a raw material of silver, an alkyldiamine having a primary amine and a tertiary amine is used. When used by interposing, coated silver nanoparticles that can be dispersed in an organic solvent such as toluene even at a concentration of 50 wt% or more can be obtained. Further, when the dispersion concentration of the coated silver nanoparticles was changed, a coating film having a color corresponding to the concentration was obtained.
However, the film formed only with the coated silver nanoparticles is peeled off from the base material only by touching with a finger, and it cannot be realized as a functional film without adding a component for increasing the film strength and adhesion to the base material. . Therefore, in order to increase the film strength and the adhesion to the substrate, when other components are added, the dispersibility deteriorates according to the additive concentration, and the coated silver nanoparticles cannot obtain a coating film with a high concentration. . In order to increase the film strength and the adhesion to the base material with a high-concentration silver coating film, a multilayer structure composed of the silver nanoparticle resin layer 2 and the overcoat layer 3 is required.

より詳しくは、銀の原料となる銀化合物として、例えば、シュウ酸銀を用いると共に、N,N−ジアルキルアミノアルキルアミンを介在させることによってシュウ酸銀に含まれる銀原子に当該アルキルジアミンの1級アミノ基部分が配位した錯化合物を調製し、この状態でシュウ酸銀を構成するシュウ酸イオンの部分を熱分解することにより、被覆銀ナノ粒子を高収率で調製することができる。当該被覆銀ナノ粒子は、錯形成しない3級アミノ基が粒子の最外面を向くため、トルエン等の非極性溶媒への分散性が良好で、しかも、側鎖にカルボキシ基を有するポリマーにも分散液として調製することができる。
このように分散液濃度や塗布膜厚を変えることで、種々の光学的特性を有する機能層が得られた。一方、オーバーコート層3としては、いわゆるハードコート剤と呼ばれる電離放射線、特に紫外線照射により硬化できるものを前記被覆銀ナノ粒子からなる銀ナノ粒子樹脂層2上に塗布硬化すれば、膜強度が高く基材密着性の強い銀ナノ粒子積層膜5を得るこ
とができた。
More specifically, for example, silver oxalate is used as a silver compound as a raw material of silver, and the primary amine of the alkyldiamine is contained in a silver atom contained in silver oxalate by interposing N, N-dialkylaminoalkylamine. By preparing a complex compound in which an amino group moiety is coordinated and thermally decomposing the oxalate ion moiety constituting silver oxalate in this state, coated silver nanoparticles can be prepared in high yield. The coated silver nanoparticles have excellent dispersibility in non-polar solvents such as toluene because the non-complexed tertiary amino groups face the outermost surface of the particles, and also disperse in polymers with carboxy groups in the side chains. It can be prepared as a liquid.
Thus, the functional layer which has various optical characteristics was obtained by changing dispersion liquid concentration and coating film thickness. On the other hand, if the overcoat layer 3 is applied and cured on the silver nanoparticle resin layer 2 composed of the coated silver nanoparticles, the film strength is high if an ionizing radiation called a so-called hard coat agent, especially a material that can be cured by ultraviolet irradiation is applied and cured. A silver nanoparticle laminated film 5 having strong substrate adhesion could be obtained.

(本実施形態の効果)
(1)本実施形態に係る銀ナノ粒子積層体6は、基材1と、基材1上に形成され、銀ナノ粒子を含む銀ナノ粒子樹脂層2と、銀ナノ粒子樹脂層2上に形成され、電離放射線照射により得られる三次元架橋構造を含むオーバーコート層3と、を備えている。
このような構成であれば、オーバーコート層3を備えているため、銀ナノ粒子積層体6の耐擦傷性を高めることができる。
(Effect of this embodiment)
(1) A silver nanoparticle laminate 6 according to this embodiment is formed on a base material 1, a silver nanoparticle resin layer 2 containing silver nanoparticles, and a silver nanoparticle resin layer 2 formed on the base material 1. And an overcoat layer 3 including a three-dimensional crosslinked structure formed by ionizing radiation irradiation.
With such a configuration, since the overcoat layer 3 is provided, the scratch resistance of the silver nanoparticle laminate 6 can be improved.

(2)また、本実施形態に係る銀ナノ粒子樹脂層2に含まれる銀ナノ粒子4は、保護分子により覆われ、その保護分子は、1級アミノ基と3級アミノ基とを有するアルキルジアミンを主成分として含むものであってもよい。
このような構成であれば、銀ナノ粒子4をトルエン等の非極性溶媒やカルボキシ基を側鎖に有するポリマーに分散させた場合には、その分散性が良好となる。
(2) Moreover, the silver nanoparticle 4 contained in the silver nanoparticle resin layer 2 according to the present embodiment is covered with a protective molecule, and the protective molecule is an alkyldiamine having a primary amino group and a tertiary amino group. May be included as a main component.
If it is such a structure, when the silver nanoparticle 4 is disperse | distributed to the polymer which has nonpolar solvents, such as toluene, and a carboxy group in a side chain, the dispersibility will become favorable.

(3)また、本実施形態に係る銀ナノ粒子積層体6に含まれるオーバーコート層3は、ウレタン結合を有する三次元架橋構造を有する樹脂を含むものであってもよい。
このような構成であれば、オーバーコート層3の膜強度や銀ナノ粒子樹脂層2との密着性をさらに高めることができる。よって、銀ナノ粒子積層体6の耐擦傷性をさらに高めることができる。
(3) Moreover, the overcoat layer 3 contained in the silver nanoparticle laminated body 6 which concerns on this embodiment may contain resin which has a three-dimensional crosslinked structure which has a urethane bond.
With such a configuration, the film strength of the overcoat layer 3 and the adhesion with the silver nanoparticle resin layer 2 can be further enhanced. Therefore, the scratch resistance of the silver nanoparticle laminate 6 can be further improved.

(4)また、本実施形態に係る銀ナノ粒子樹脂層2に含まれる側鎖中にカルボキシ基を有し溶剤可溶な(メタ)アクリル酸エステルのコポリマーは、側鎖中にカルボキシ基が含まれていれば、どのようなモノマーの組み合わせであってもよい。コポリマーを構成するモノマーを選択することにより銀ナノ粒子樹脂層2の、硬さや伸び等の機械的物性やガラス転移点の調整等の熱的物性を制御することができる。 (4) The copolymer of the (meth) acrylate ester having a carboxy group in the side chain contained in the silver nanoparticle resin layer 2 according to the present embodiment and having a solvent solubility contains a carboxy group in the side chain. Any combination of monomers may be used. By selecting the monomer constituting the copolymer, the mechanical properties of the silver nanoparticle resin layer 2 such as hardness and elongation and the thermal properties such as adjustment of the glass transition point can be controlled.

(5)また、本実施形態に係る銀ナノ粒子樹脂層2に含まれる銀ナノ粒子4の平均粒径は、30nm以下であってもよい。
このような構成であれば、銀ナノ粒子4を溶媒中に分散させた場合には、その分散性が良好となる。
(5) Moreover, 30 nm or less may be sufficient as the average particle diameter of the silver nanoparticle 4 contained in the silver nanoparticle resin layer 2 which concerns on this embodiment.
If it is such a structure, when the silver nanoparticle 4 is disperse | distributed in a solvent, the dispersibility will become favorable.

(6)また、本実施形態に係る銀ナノ粒子樹脂層2に含まれる銀ナノ粒子4は、有機溶剤に分散可能であってもよい。
このような構成であれば、銀ナノ粒子4を有機溶剤中に分散させた場合には、その分散性が良好となる。
(6) Moreover, the silver nanoparticles 4 contained in the silver nanoparticle resin layer 2 according to the present embodiment may be dispersible in an organic solvent.
If it is such a structure, when the silver nanoparticle 4 is disperse | distributed in the organic solvent, the dispersibility will become favorable.

(7)また、本実施形態に係る銀ナノ粒子積層体6に含まれるオーバーコート層3は、光重合開始剤を含んでもよい。
このような構成であっても、銀ナノ粒子積層体6の耐擦傷性は高まる。
(7) Moreover, the overcoat layer 3 contained in the silver nanoparticle laminated body 6 which concerns on this embodiment may also contain a photoinitiator.
Even with such a configuration, the scratch resistance of the silver nanoparticle laminate 6 is enhanced.

(8)本実施形態に係る銀ナノ粒子積層体6の製造方法は、銀ナノ粒子4と分散溶媒と側鎖にカルボキシ基を有するポリマーを含む組成物を基材上に塗布し乾燥させて銀ナノ粒子樹脂層2を形成する工程と、分子内に少なくとも2個以上の重合性不飽和二重結合を有する化合物と、光重合開始剤と、溶剤とを含むオーバーコート層用組成物を銀ナノ粒子樹脂層2上に塗布し乾燥させた後に、オーバーコート層用組成物を硬化させてオーバーコート層3を形成する工程と、を有する。
このような構成であれば、オーバーコート層3を備えているため、銀ナノ粒子積層体6の耐擦傷性を高めることができる。
(8) In the method for producing the silver nanoparticle laminate 6 according to this embodiment, a silver nanoparticle 4, a dispersion solvent, and a composition containing a polymer having a carboxy group in a side chain are applied onto a substrate and dried to form silver. An overcoat layer composition comprising a step of forming a nanoparticle resin layer 2, a compound having at least two polymerizable unsaturated double bonds in the molecule, a photopolymerization initiator, and a solvent. A step of forming the overcoat layer 3 by curing the overcoat layer composition after being applied onto the particle resin layer 2 and dried.
With such a configuration, since the overcoat layer 3 is provided, the scratch resistance of the silver nanoparticle laminate 6 can be improved.

(9)本実施形態に係る銀ナノ粒子積層体6の別の製造方法は、基材1上に、銀ナノ粒子4と分散溶媒と側鎖にカルボキシ基を有するポリマーを含む銀ナノ粒子樹脂層用組成物からなる銀ナノ粒子樹脂層2と、分子内に少なくとも2個以上の重合性不飽和二重結合を有する化合物と、光重合開始剤と、溶剤とを含むオーバーコート層用組成物からなるオーバーコート層3とを、例えば重層ダイコーターを用いて、この順に同時に形成する工程と、銀ナノ粒子樹脂層用組成物からなる銀ナノ粒子樹脂層2と、オーバーコート層用組成物からなるオーバーコート層3とを、同時に乾燥させる工程と、乾燥させたオーバーコート層用組成物からなるオーバーコート層3を硬化させてオーバーコート層3を形成する工程と、を有する。
このような構成であれば、オーバーコート層3を備えているため、これが保護層の役目を果たすことで銀ナノ粒子積層体6の耐擦傷性を高めることができる。
(9) Another method for producing the silver nanoparticle laminate 6 according to the present embodiment is a silver nanoparticle resin layer containing, on the substrate 1, silver nanoparticles 4, a dispersion solvent, and a polymer having a carboxy group in a side chain. From the composition for overcoat layers containing the silver nanoparticle resin layer 2 composed of the composition for use, a compound having at least two polymerizable unsaturated double bonds in the molecule, a photopolymerization initiator, and a solvent. The overcoat layer 3 is formed of, for example, a multi-layer die coater simultaneously in this order, the silver nanoparticle resin layer 2 made of the silver nanoparticle resin layer composition, and the overcoat layer composition. The step of simultaneously drying the overcoat layer 3 and the step of forming the overcoat layer 3 by curing the overcoat layer 3 made of the dried composition for overcoat layer.
If it is such a structure, since it has the overcoat layer 3, the abrasion resistance of the silver nanoparticle laminated body 6 can be improved because this serves as a protective layer.

(10)また、本実施形態に係る銀ナノ粒子積層体6の製造方法において、溶剤は、メチルエチルケトン、酢酸エチル及びそれらの混合物、或いは、メチルエチルケトン或いは酢酸エチルを80wt%以上含んだものであってもよい。
このような構成であれば、分子内に少なくとも2個以上の重合性不飽和二重結合を有する化合物を容易に溶解させることができる。
(10) Moreover, in the manufacturing method of the silver nanoparticle laminated body 6 which concerns on this embodiment, even if a solvent contains 80 wt% or more of methyl ethyl ketone, ethyl acetate, and mixtures thereof, or methyl ethyl ketone or ethyl acetate. Good.
With such a configuration, a compound having at least two polymerizable unsaturated double bonds in the molecule can be easily dissolved.

以上のように、本実施形態であれば、上述した従来技術の問題点を解決して、その製造過程や保存中においては十分に銀ナノ粒子が分散状態にあり、その凝集が防止される。
また、その銀ナノ粒子を用いて製膜した銀ナノ粒子樹脂層2に、膜強度や銀ナノ粒子樹脂層2との密着性が良好なオーバーコート層3を積層してなる銀ナノ粒子積層膜5、および銀ナノ粒子積層膜5を備えた銀ナノ粒子積層体6の製造方法を提供することができる。
As described above, according to the present embodiment, the above-described problems of the prior art are solved, and the silver nanoparticles are sufficiently dispersed during the production process and storage, and aggregation thereof is prevented.
Also, a silver nanoparticle laminated film obtained by laminating an overcoat layer 3 having good film strength and adhesion to the silver nanoparticle resin layer 2 on the silver nanoparticle resin layer 2 formed using the silver nanoparticles. 5 and a method for producing a silver nanoparticle laminate 6 including the silver nanoparticle laminate film 5 can be provided.

(変形例)
本実施形態では、表面を保護分子で被覆した銀ナノ粒子である被覆銀ナノ粒子を用いた場合について説明したが、本発明はこれに限定されるものではない。保護分子で被覆しない銀ナノ粒子であっても、分散性は被覆銀ナノ粒子に比べて劣るものの、上述した銀ナノ粒子積層体6に用いることができる。
(Modification)
In this embodiment, although the case where the covering silver nanoparticle which is the silver nanoparticle which coat | covered the surface with the protection molecule was used was demonstrated, this invention is not limited to this. Even if the silver nanoparticles are not coated with a protective molecule, the dispersibility is inferior to that of the coated silver nanoparticles, but can be used for the silver nanoparticle laminate 6 described above.

以下に、実施例として、銀ナノ粒子の製造方法及び溶媒への分散性、塗膜形成用塗液の調液、塗膜の物性などの評価を示すが、本発明はこれらに限定されるものではない。   In the following, the production method of silver nanoparticles, dispersibility in a solvent, preparation of a coating liquid for coating film formation, evaluation of physical properties of the coating film, etc. are shown as examples, but the present invention is limited to these. is not.

(実施例1〜実施例5)
〔シュウ酸銀の合成〕
シュウ酸二水和物(関東化学社)9.92gに蒸留水60mLを加え加温しながら溶解させ、110℃のオイルバス中で攪拌しながら、硝酸銀(関東化学社)26.7gに20mLの蒸留水を加え加温しながら溶解させたものを加え、1時間加熱攪拌を続けた。析出したシュウ酸銀を自然ろ過で回収し、さらに熱水200mL、メタノール(関東化学社)50mLでろ過洗浄した後、遮光デシケーター内で減圧しながら室温乾燥した。こうして得たシュウ酸銀の収量は、21.6g(収率90.4%)であった。
(Example 1 to Example 5)
[Synthesis of silver oxalate]
Distilled water (60 mL) was added to 9.92 g of oxalic acid dihydrate (Kanto Chemical Co., Ltd.) and dissolved while heating. While stirring in an oil bath at 110 ° C., 20 mL of silver nitrate (Kanto Chemical Co., Ltd.) (26.7 g) Distilled water was added and dissolved while heating, and stirring was continued for 1 hour. The precipitated silver oxalate was recovered by natural filtration, and further filtered and washed with 200 mL of hot water and 50 mL of methanol (Kanto Chemical Co., Ltd.), and then dried at room temperature while reducing the pressure in a shading desiccator. The yield of silver oxalate thus obtained was 21.6 g (yield 90.4%).

〔被覆銀ナノ粒子の合成〕
N,N−ジエチル−1,3−ジアミノプロパン(東京化成社)3.26gにオレイン酸0.13gを加えたところに、上述の工程で得たシュウ酸銀1.90gを加え、110℃のオイルバスで加熱攪拌した。1分以内で二酸化炭素の発泡が起こり、数分後に褐色の懸濁液に変化した。5分間加熱後、冷却したところにメタノール30mLを加え、遠心分離により得られた沈殿物を自然乾燥すると青色固形物1.48g(銀基準収率97.0)を得た。
[Synthesis of coated silver nanoparticles]
When 0.13 g of oleic acid was added to 3.26 g of N, N-diethyl-1,3-diaminopropane (Tokyo Kasei Co., Ltd.), 1.90 g of silver oxalate obtained in the above-mentioned step was added, and 110 ° C. The mixture was heated and stirred in an oil bath. Within 1 minute, carbon dioxide bubbling occurred and after a few minutes turned into a brown suspension. After heating for 5 minutes, 30 mL of methanol was added to the cooled place, and the precipitate obtained by centrifugation was naturally dried to obtain 1.48 g of a blue solid (silver reference yield: 97.0).

得られた被覆銀ナノ粒子を、走査型電子顕微鏡(日立ハイテクノロジー社、SEM S−4800)を用いてS−TEMモード(加速電圧30kV)で観察したところ、粒径が5〜20nm程度の球状粒子が観察された。その結果を図2に示す。より詳しくは、図2は実施例1で得た被覆銀ナノ粒子のトルエン溶媒分散液を基板(銅メッシュ・マイクログリッド)に垂らし乾燥させた後に観察した銀ナノ粒子の走査型電子顕微鏡像である。   The obtained coated silver nanoparticles were observed in a S-TEM mode (acceleration voltage 30 kV) using a scanning electron microscope (Hitachi High-Technology Corporation, SEM S-4800). Particles were observed. The result is shown in FIG. More specifically, FIG. 2 is a scanning electron microscope image of silver nanoparticles observed after the toluene solvent dispersion of the coated silver nanoparticles obtained in Example 1 was dropped on a substrate (copper mesh / microgrid) and dried. .

次に、得られた被覆銀ナノ粒子の溶媒への分散性を評価した。その結果、トルエン、シクロヘキサノン、ターピネオールC(日本テルペン化学社)、ジヒドロターピネオール(日本テルペン化学社)、及び、これらを主剤としたヘキサン等との混合溶媒に良好に分散した。そのトルエン分散溶液の動的光散乱粒度測定(日機装社、Nanotrac UPA−EX150)により、得られた被覆銀ナノ粒子は平均粒径15nmで良好に分散していることがわかった。その結果を図3に示す。また、図3に示した実線は、累積度数(%)を示している。   Next, the dispersibility of the obtained coated silver nanoparticles in a solvent was evaluated. As a result, toluene, cyclohexanone, terpineol C (Nippon Terpene Chemical Co., Ltd.), dihydroterpineol (Nippon Terpene Chemical Co., Ltd.), and a mixed solvent with hexane or the like containing these as a main component were well dispersed. Dynamic light scattering particle size measurement (Nikkiso, Nanotrac UPA-EX150) of the toluene dispersion solution showed that the obtained coated silver nanoparticles were well dispersed with an average particle size of 15 nm. The result is shown in FIG. Further, the solid line shown in FIG. 3 indicates the cumulative frequency (%).

〔側鎖にカルボキシ基を有するポリマーの合成〕
反応容器にトルエン800部を入れ、容器に窒素ガスを注入しながら80℃に加熱して、同温度で下記のモノマーおよび熱重合開始剤の混合物を1時間かけて滴下して重合反応を行った。
[Synthesis of polymer having carboxy group in side chain]
The reaction vessel was charged with 800 parts of toluene, heated to 80 ° C. while injecting nitrogen gas into the vessel, and a mixture of the following monomer and thermal polymerization initiator was added dropwise at the same temperature over 1 hour to carry out the polymerization reaction. .

スチレン 60.0部
メタクリル酸 60.0部
メタクリル酸メチル 65.0部
メタクリル酸ブチル 65.0部
アゾビスイソブチロニトリル 10.0部
滴下後、さらに80℃で3時間反応させた後、アゾビスイソブチロニトリル2.0部をトルエン50部で溶解させたものを添加し、さらに80℃で1時間反応を続けて樹脂溶液を合成した。
Styrene 60.0 parts Methacrylic acid 60.0 parts Methyl methacrylate 65.0 parts Butyl methacrylate 65.0 parts Azobisisobutyronitrile 10.0 parts After dropwise addition, the mixture is further reacted at 80 ° C for 3 hours, and then azo A solution obtained by dissolving 2.0 parts of bisisobutyronitrile in 50 parts of toluene was added, and the reaction was further continued at 80 ° C. for 1 hour to synthesize a resin solution.

室温まで冷却した後、樹脂溶液約2gをサンプリングして180℃、20分加熱乾燥して不揮発分を測定し、先に合成した樹脂溶液に不揮発分が20%となるようにトルエンを添加してアクリル樹脂溶液「A−1」を調製した。   After cooling to room temperature, about 2 g of the resin solution was sampled and heated and dried at 180 ° C. for 20 minutes to measure the nonvolatile content. Toluene was added to the previously synthesized resin solution so that the nonvolatile content was 20%. An acrylic resin solution “A-1” was prepared.

〔銀ナノ粒子樹脂層2の形成〕
上述の工程で得た青色固形物をトルエン(関東化学社)2.0gに分散させよく攪拌したものに、前記アクリル樹脂溶液「A−1」5.0gを加え、よく攪拌したものを銀ナノ粒子樹脂層塗液とした。
ここで、青色固形物の添加量が異なる銀ナノ粒子樹脂層塗液を5種類作製し、それぞれを実施例1〜5で使用した。青色固形物の添加量は実施例1を1.25重量%(トルエンに対する銀量)とし、段階的に添加量を増加させたものをこの順に実施例2〜5(2.5、5.0、10.0、20.0重量%)とした。
[Formation of silver nanoparticle resin layer 2]
The silver solid obtained in the above step was dispersed in 2.0 g of toluene (Kanto Chemical Co., Inc.) and stirred well. A particle resin layer coating solution was obtained.
Here, five types of silver nanoparticle resin layer coating liquids having different amounts of blue solids were prepared and used in Examples 1 to 5, respectively. The amount of the blue solid added was 1.25% by weight (silver amount with respect to toluene) in Example 1, and the amount added in stages was increased in this order in Examples 2 to 5 (2.5, 5.0). 10.0, 20.0% by weight).

上述の工程で得た被覆銀ナノ粒子を含む銀ナノ粒子樹脂層塗液を、#10バーコーターを用い、75μm厚PETフィルム(ルミラーT60、東レ社)に塗布後、90℃1分間オーブンにて溶剤を揮発させた。   After applying the silver nanoparticle resin layer coating solution containing the coated silver nanoparticles obtained in the above-described process to a 75 μm-thick PET film (Lumirror T60, Toray Industries, Inc.) using a # 10 bar coater, in an oven at 90 ° C for 1 minute The solvent was volatilized.

次に、ウレタンアクリレートオリゴマーUA306I(共栄社化学社)9.5g、開始剤としてイルガキュアー184(BASF社)0.50gをメチルエチルケトン12.0gに溶解させたもの「B−1」を、上述のPETフィルムに塗布乾燥した被覆銀ナノ粒子を含む銀ナノ粒子樹脂層2上に#10バーコーターで塗布し乾燥させた。
その後、その塗布フィルムをパージボックスに入れ窒素ガスを封入してから、UVコンベ
アー(ヘリウス社、CV−110Q−G型、光源:ライトハンマー10Merk2、Hバルブ)にて180mJ/cmで露光し、上記「B−1」を硬化させてオーバーコート層3を形成した。こうして得た銀ナノ粒子積層膜5(以下、単に「硬化膜」とも称する)の透過光は赤紫色を呈した。また、この硬化膜5の評価結果を下記の表1に示す。
Next, “B-1” obtained by dissolving 9.5 g of urethane acrylate oligomer UA306I (Kyoeisha Chemical Co., Ltd.) and 0.50 g of Irgacure 184 (BASF Corp.) as an initiator in 12.0 g of methyl ethyl ketone is used as the above PET film. On the silver nanoparticle resin layer 2 containing the coated silver nanoparticles coated and dried, a # 10 bar coater was applied and dried.
Thereafter, the coated film was put in a purge box and nitrogen gas was sealed, and then exposed at 180 mJ / cm 2 with a UV conveyor (Helius, CV-110Q-G type, light source: light hammer 10 Merck, H bulb), The “B-1” was cured to form an overcoat layer 3. The transmitted light of the thus obtained silver nanoparticle multilayer film 5 (hereinafter also simply referred to as “cured film”) was reddish purple. The evaluation results of the cured film 5 are shown in Table 1 below.

具体的には、密着性試験として、セロテープ(登録商標)を貼って剥がし、剥離の有無について評価した。PET基材から剥がれなしでオーバーコート層/銀ナノ粒子樹脂層間も剥がれなしを「◎」とし、PET基材から一部剥がれありでオーバーコート層/銀ナノ粒子樹脂層間で剥がれなしを「○」とし、オーバーコート層/銀ナノ粒子樹脂層間で一部剥がれありを「△」とし、剥がれありを「×」とした。   Specifically, as an adhesion test, cellotape (registered trademark) was applied and peeled off, and the presence or absence of peeling was evaluated. “◎” indicates that the overcoat layer / silver nanoparticle resin layer does not peel off from the PET base material, and “○” indicates that the part of the overcoat layer / silver nanoparticle resin layer does not peel off from the PET base material. In the overcoat layer / silver nanoparticle resin layer, partly peeled off was indicated as “Δ” and peeled off was indicated as “x”.

次に、耐擦傷試験として、#0000のスチールウールを用いて250g/cmの荷重を掛けながら10往復した時の傷の有無を調べ、500g荷重傷なしを「◎」とし、250g荷重傷なしを「◎」とし、傷ありを「×」とした。 Next, as an abrasion resistance test, the presence or absence of scratches when 10 reciprocations were applied while applying a load of 250 g / cm 2 using # 0000 steel wool was determined as “◎”, and there was no 250 g load scratch. Was marked with “◎” and scratched with “x”.

さらに、カール試験として、UV硬化後の1フィルムを100mm角に切り出し、片辺を抑えた時の対辺の浮き上がりを調べ、10mm未満を「○」とし、10mm以上を「×」とした。吸収極大波長(λmax)は、吸収スペクトル(島津製作所社、紫外可視分光光度計 UV−2600、吸光度モードを使用して測定)から求めた。   Furthermore, as a curl test, one film after UV curing was cut into a 100 mm square, and the lifting of the opposite side when one side was suppressed was examined, and less than 10 mm was “◯”, and 10 mm or more was “x”. The absorption maximum wavelength (λmax) was determined from an absorption spectrum (measured using Shimadzu Corporation, UV-visible spectrophotometer UV-2600, absorbance mode).

(実施例6)
実施例2で用いた「B−1」(オーバーコート層用組成物)のうち、ウレタンアクリレートオリゴマーUA306I(共栄社化学社)9.5gの代わりに、UV−1700B(日本合成化学社)9.0gとライトアクリレートPE−3A(ペンタエリスリトールトリアクリレート、共栄社化学社)1.0gの混合物「B−2」を使用した以外は実施例2と同等にして実施例6の硬化膜を得た。この実施例6に係る銀ナノ粒子積層膜5の評価結果を表1に示した。
(Example 6)
Of the "B-1" (overcoat layer composition) used in Example 2, 9.0 g of UV-1700B (Nippon Gosei Chemical Co., Ltd.) instead of 9.5 g of urethane acrylate oligomer UA306I (Kyoeisha Chemical Co., Ltd.) A cured film of Example 6 was obtained in the same manner as in Example 2 except that 1.0 g of light acrylate PE-3A (pentaerythritol triacrylate, Kyoeisha Chemical Co.) was used. The evaluation results of the silver nanoparticle multilayer film 5 according to Example 6 are shown in Table 1.

(実施例7)
実施例2で用いた「A−1」(アクリル樹脂溶液)の代わりに、ハイパールMA4620(根上工業製)の20%トルエン溶液5.0g「A−2」を使用した以外は実施例2と同等に操作し、実施例7の銀ナノ粒子積層膜5を得た。この実施例7に係る銀ナノ粒子積層膜5の評価結果を表1に示した。
(Example 7)
Instead of “A-1” (acrylic resin solution) used in Example 2, 20% toluene solution 5.0 g “A-2” of Hyperl MA4620 (manufactured by Negami Kogyo) was used. The silver nanoparticle multilayer film 5 of Example 7 was obtained. The evaluation results of the silver nanoparticle multilayer film 5 according to Example 7 are shown in Table 1.

(比較例1)
実施例2で用いた「A−1」(アクリル樹脂溶液)のうち、メタクリル酸を抜いたモノマー(スチレン;60.0部、メタクリル酸メチル;65.0部メタクリル酸ブチル;65部)を用いてアクリル樹脂溶液「C」を作製し、銀ナノ粒子樹脂層塗液の調製を試みたが、銀ナノ粒子が凝集、沈降してしまい、銀ナノ粒子樹脂層塗液が調製できなかった。そのため、上記評価項目のうち密着性および耐擦傷性については評価できなかった。
(Comparative Example 1)
Among the “A-1” (acrylic resin solution) used in Example 2, a monomer from which methacrylic acid was removed (styrene; 60.0 parts, methyl methacrylate; 65.0 parts butyl methacrylate; 65 parts) was used. Then, an acrylic resin solution “C” was prepared and an attempt was made to prepare a silver nanoparticle resin layer coating solution. However, the silver nanoparticles aggregated and settled, and the silver nanoparticle resin layer coating solution could not be prepared. Therefore, it was not possible to evaluate the adhesion and scratch resistance among the above evaluation items.

(比較例2)
実施例2で用いた「B−1」(オーバーコート層用組成物)のうち、ウレタンアクリレートオリゴマーUA306I(共栄社化学社)9.5gの代わりに、ライトアクリレートDPE−6A(ジペンタエリスリトールヘキサアクリレート、共栄社化学社)9.5gを混合させた混合物「D」を使用した以外は実施例2と同等にして硬化膜層を得た。こうして得た比較例2に係る銀ナノ粒子積層膜5の評価結果を表1に示した。
(Comparative Example 2)
Of the “B-1” (composition for overcoat layer) used in Example 2, instead of 9.5 g of urethane acrylate oligomer UA306I (Kyoeisha Chemical Co., Ltd.), light acrylate DPE-6A (dipentaerythritol hexaacrylate, Kyoeisha Chemical Co., Ltd.) A cured film layer was obtained in the same manner as in Example 2 except that 9.5 g of the mixture “D” was used. The evaluation results of the silver nanoparticle multilayer film 5 according to Comparative Example 2 obtained in this way are shown in Table 1.

表1に示した結果から、実施例1〜実施例7の銀ナノ粒子積層膜5は、密着性及び耐擦傷性がいずれも優れていることがわかる。
また、実施例1〜実施例7の銀ナノ粒子積層体6は、フィルムに形成してもカールしにくいことがわかる。
また、実施例1〜実施例7の銀ナノ粒子積層膜4は、耐擦傷性が特に優れていることがわかる。
また、実施例1〜実施例3及び実施例7の銀ナノ粒子積層膜5は、耐擦傷性と密着性の両方が特に優れていることがわかる。
また、比較例1以外の全ての実施例、比較例の極大吸収波長はアクリル樹脂により制御できることがわかる。
From the results shown in Table 1, it can be seen that the silver nanoparticle multilayer films 5 of Examples 1 to 7 are excellent in both adhesion and scratch resistance.
Moreover, even if it forms in a film, it turns out that the silver nanoparticle laminated body 6 of Example 1- Example 7 is hard to curl.
Moreover, it turns out that the silver nanoparticle laminated film 4 of Example 1- Example 7 is especially excellent in abrasion resistance.
Moreover, it turns out that the silver nanoparticle laminated film 5 of Example 1- Example 3 and Example 7 is especially excellent in both scratch resistance and adhesiveness.
Moreover, it turns out that the maximum absorption wavelength of all Examples other than the comparative example 1 and a comparative example can be controlled by an acrylic resin.

上述のように、表1に示した結果から、実施例1〜実施例7の銀ナノ粒子樹脂層2は、それぞれ密着性が高いことがわかる。より詳しくは、実施例4〜実施例5の銀ナノ粒子樹脂層2の密着性より、実施例1〜実施例3の銀ナノ粒子樹脂層2はさらに密着性が高いことがわかる。この結果を、図1を参照しつつ説明する。   As described above, the results shown in Table 1 indicate that the silver nanoparticle resin layers 2 of Examples 1 to 7 each have high adhesion. More specifically, it can be seen that the adhesion of the silver nanoparticle resin layer 2 of Examples 1 to 3 is higher than the adhesion of the silver nanoparticle resin layer 2 of Examples 4 to 5. This result will be described with reference to FIG.

図1は、実施例1〜実施例7の銀ナノ粒子樹脂層2を備えた銀ナノ粒子積層体6の構成を模式的に示す断面図である。表1の銀ナノ粒子の項目に示すように、実施例1〜実施例3の銀ナノ粒子樹脂層2は、実施例4〜実施例5の銀ナノ粒子樹脂層2に比べて、銀ナノ粒子4の含有量が少ない。この場合、存在する銀ナノ粒子4同士の間隔は比較的広いため、図1に示すように、銀ナノ粒子樹脂層2の樹脂成分は銀ナノ粒子4間に潜り込んで基材1の表面に達し、銀ナノ粒子樹脂層2の密着性が高まったと考えられる。
これに対し、実施例4〜実施例5の銀ナノ粒子樹脂層2は、実施例1〜実施例3の銀ナノ粒子樹脂層2に比べて、銀ナノ粒子4の含有量が多い。この場合、銀ナノ粒子4同士の間隔は比較的狭いため、図1に示すように、銀ナノ粒子樹脂層2の樹脂成分は銀ナノ粒子4間に潜り込めず、基材1の表面に達する当該樹脂成分の量は少なくなり、相対的に銀ナノ粒子樹脂層2の密着性が低くなったと考えられる。
FIG. 1 is a cross-sectional view schematically illustrating a configuration of a silver nanoparticle laminate 6 including the silver nanoparticle resin layer 2 of Examples 1 to 7. As shown in the item of silver nanoparticles in Table 1, the silver nanoparticle resin layers 2 of Examples 1 to 3 are more silver nanoparticles than the silver nanoparticle resin layers 2 of Examples 4 to 5. 4 content is low. In this case, since the interval between the existing silver nanoparticles 4 is relatively wide, the resin component of the silver nanoparticle resin layer 2 enters between the silver nanoparticles 4 and reaches the surface of the substrate 1 as shown in FIG. It is considered that the adhesiveness of the silver nanoparticle resin layer 2 has increased.
On the other hand, the silver nanoparticle resin layer 2 of Examples 4 to 5 has a higher content of silver nanoparticles 4 than the silver nanoparticle resin layer 2 of Examples 1 to 3. In this case, since the interval between the silver nanoparticles 4 is relatively narrow, the resin component of the silver nanoparticle resin layer 2 cannot reach between the silver nanoparticles 4 and reaches the surface of the substrate 1 as shown in FIG. It is considered that the amount of the resin component is reduced and the adhesion of the silver nanoparticle resin layer 2 is relatively lowered.

実施例6は、オーバーコート層3の組成物として「B−2」を用いており、ウレタンアクリレートではないために他の実施例と比べて耐擦傷性が多少低くなったと考えられる。
また、実施例7は樹脂溶液として「A−2」を用いているが、「A−1」と同様に銀ナノ粒子の分散性が良好なため、密着性が特に優れていた。
In Example 6, “B-2” was used as the composition of the overcoat layer 3, and since it was not urethane acrylate, it is considered that the scratch resistance was somewhat lower than in other examples.
Moreover, although Example 7 uses "A-2" as a resin solution, since the dispersibility of the silver nanoparticle is good like "A-1", the adhesion is particularly excellent.

以上説明したように、本発明における被覆銀ナノ粒子を含むUV硬化樹脂組成物は、銀ナノ粒子特有の光学的特性を有する機能膜や金属光沢を有する塗膜を作製可能であり、用途に応じて焼結温度を変えることができる。さらに、銀ナノ粒子、分散剤の他に膜強度や基材との密着性を上げるための樹脂成分を加えても凝集しない組成物である。   As described above, the UV curable resin composition containing the coated silver nanoparticles in the present invention can produce a functional film having optical characteristics peculiar to silver nanoparticles or a coating film having metallic luster, depending on the application. The sintering temperature can be changed. Furthermore, in addition to the silver nanoparticles and the dispersant, the composition does not aggregate even when a resin component for increasing the film strength and adhesion to the substrate is added.

1…基材
2…銀ナノ粒子樹脂層
3…オーバーコート層
4…銀ナノ粒子
5…銀ナノ粒子積層膜(又は硬化膜)
6…銀ナノ粒子積層体
DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Silver nanoparticle resin layer 3 ... Overcoat layer 4 ... Silver nanoparticle 5 ... Silver nanoparticle laminated film (or cured film)
6 ... Silver nanoparticle laminate

Claims (7)

基材と、
前記基材上に形成され、銀ナノ粒子を含む樹脂層と、
前記銀ナノ粒子を含む樹脂層上に形成され、電離放射線照射により得られる三次元架橋構造を含むオーバーコート層と、を備えたことを特徴とする銀ナノ粒子積層体。
A substrate;
A resin layer formed on the substrate and containing silver nanoparticles;
A silver nanoparticle laminate comprising: an overcoat layer including a three-dimensional cross-linked structure formed on the resin layer containing the silver nanoparticles and obtained by irradiation with ionizing radiation.
前記銀ナノ粒子は、保護分子により覆われ、
前記保護分子は、1級アミノ基と3級アミノ基とを有するアルキルジアミンを主成分として含むことを特徴とする請求項1に記載の銀ナノ粒子積層体。
The silver nanoparticles are covered with protective molecules,
The silver nanoparticle laminate according to claim 1, wherein the protective molecule contains, as a main component, an alkyldiamine having a primary amino group and a tertiary amino group.
前記銀ナノ粒子を含む樹脂層は、側鎖中にカルボキシ基を有し溶剤可溶な(メタ)アクリル酸エステルのコポリマーを主成分として含むことを特徴とする請求項1または2に記載の銀ナノ粒子積層体。   3. The silver according to claim 1, wherein the resin layer containing silver nanoparticles contains a copolymer of a solvent-soluble (meth) acrylic acid ester having a carboxy group in a side chain as a main component. 4. Nanoparticle laminate. 前記オーバーコート層は、ウレタン結合を有する三次元架橋構造を有する樹脂を含むことを特徴とする請求項1から3のいずれかに記載の銀ナノ粒子積層体。   The silver nanoparticle laminate according to any one of claims 1 to 3, wherein the overcoat layer includes a resin having a three-dimensional cross-linked structure having a urethane bond. 前記銀ナノ粒子の平均粒径は、30nm以下であることを特徴とする請求項1から4のいずれかに記載の銀ナノ粒子積層体。   The silver nanoparticle laminate according to any one of claims 1 to 4, wherein an average particle diameter of the silver nanoparticles is 30 nm or less. 銀ナノ粒子と分散溶媒と側鎖中にカルボキシ基を有し溶剤可溶な(メタ)アクリル酸エステルのコポリマーとを含む銀ナノ粒子樹脂層用組成物を、基材上に塗布し乾燥させて銀ナノ粒子樹脂層を形成する工程と、
分子内に少なくとも2個以上の重合性不飽和二重結合を有する化合物と、光重合開始剤と、溶剤とを含むオーバーコート層用組成物を、前記銀ナノ粒子樹脂層上に塗布し乾燥させた後に、前記オーバーコート層用組成物を硬化させてオーバーコート層を形成する工程と、を有することを特徴とする銀ナノ粒子積層体の製造方法。
A silver nanoparticle resin layer composition comprising silver nanoparticles, a dispersion solvent, and a solvent-soluble (meth) acrylic acid ester copolymer having a carboxy group in the side chain is applied onto a substrate and dried. Forming a silver nanoparticle resin layer;
A composition for an overcoat layer containing a compound having at least two polymerizable unsaturated double bonds in the molecule, a photopolymerization initiator, and a solvent is applied onto the silver nanoparticle resin layer and dried. And a step of curing the overcoat layer composition to form an overcoat layer. A method for producing a silver nanoparticle laminate, comprising:
基材上に、銀ナノ粒子と分散溶媒と側鎖中にカルボキシ基を有し溶剤可溶な(メタ)アクリル酸エステルのコポリマーとを含む銀ナノ粒子樹脂層用組成物からなる層と、分子内に少なくとも2個以上の重合性不飽和二重結合を有する化合物と、光重合開始剤と、溶剤とを含むオーバーコート層用組成物からなる層とを、この順に同時に形成する工程と、
前記銀ナノ粒子樹脂層用組成物からなる層と、前記オーバーコート層用組成物からなる層とを、同時に乾燥させる工程と、
乾燥させた前記オーバーコート層用組成物からなる層を硬化させてオーバーコート層を形成する工程と、を有することを特徴とする銀ナノ粒子積層体の製造方法。
A layer comprising a silver nanoparticle resin layer composition comprising a silver nanoparticle, a dispersion solvent, a solvent-soluble (meth) acrylic acid ester copolymer having a carboxy group in a side chain, and a molecule A step of simultaneously forming a layer comprising a composition for an overcoat layer containing at least two polymerizable unsaturated double bonds therein, a photopolymerization initiator, and a solvent in this order;
A step of simultaneously drying the layer made of the composition for a silver nanoparticle resin layer and the layer made of the composition for an overcoat layer;
And a step of curing the dried layer made of the composition for an overcoat layer to form an overcoat layer.
JP2017054122A 2017-03-21 2017-03-21 Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate Active JP6903974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017054122A JP6903974B2 (en) 2017-03-21 2017-03-21 Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017054122A JP6903974B2 (en) 2017-03-21 2017-03-21 Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate

Publications (2)

Publication Number Publication Date
JP2018154073A true JP2018154073A (en) 2018-10-04
JP6903974B2 JP6903974B2 (en) 2021-07-14

Family

ID=63715986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054122A Active JP6903974B2 (en) 2017-03-21 2017-03-21 Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate

Country Status (1)

Country Link
JP (1) JP6903974B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096225A (en) * 2010-10-06 2012-05-24 Taika:Kk Decoration method, decoration article, and nail beautifying agent
JP2013228698A (en) * 2012-03-27 2013-11-07 Fujifilm Corp Silver-particle containing film and method for manufacturing the same, and heat ray shielding material
WO2014013794A1 (en) * 2012-07-19 2014-01-23 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
WO2015159517A1 (en) * 2014-04-14 2015-10-22 富士フイルム株式会社 Anti-reflection film and functional glass
JP2015187976A (en) * 2014-03-10 2015-10-29 三ツ星ベルト株式会社 Conductive substrate and method for manufacturing the same, and precursor
JP2016107610A (en) * 2014-11-28 2016-06-20 トヨタ自動車株式会社 Decorative coating film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012096225A (en) * 2010-10-06 2012-05-24 Taika:Kk Decoration method, decoration article, and nail beautifying agent
JP2013228698A (en) * 2012-03-27 2013-11-07 Fujifilm Corp Silver-particle containing film and method for manufacturing the same, and heat ray shielding material
WO2014013794A1 (en) * 2012-07-19 2014-01-23 日油株式会社 Silver nanoparticles, method for producing same, silver nanoparticle dispersion liquid, and base provided with silver material
JP2015187976A (en) * 2014-03-10 2015-10-29 三ツ星ベルト株式会社 Conductive substrate and method for manufacturing the same, and precursor
WO2015159517A1 (en) * 2014-04-14 2015-10-22 富士フイルム株式会社 Anti-reflection film and functional glass
JP2016107610A (en) * 2014-11-28 2016-06-20 トヨタ自動車株式会社 Decorative coating film

Also Published As

Publication number Publication date
JP6903974B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
EP2857440B1 (en) Hard coating film
WO1996021699A1 (en) Conductive coating composition
KR101051228B1 (en) Metal Oxide Compositions, Cured Films, and Laminates
JP5643155B2 (en) Hard coat dispersion composition, hard coat coating composition and hard coat coating
JP2009084398A (en) Resin composition and process for production thereof
JP6972541B2 (en) Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate
JP5186768B2 (en) Antistatic curable composition, cured film and laminate
JP2010059339A (en) Antistatic curable composition, cured film and laminated article
KR101688974B1 (en) Curable resin composition for inkjet printing, solder resist using the same and method for manufacturing the same
EP3643757A1 (en) Counterfeit-preventing ink composition, counterfeit-preventing ink, printed article for counterfeit prevention, and method for producing counterfeit-preventing ink composition
JP7131083B2 (en) Silver nanoparticle laminate and method for producing the same
JP2011201930A (en) Composition for hardcoat and base material coated therewith
KR20200014678A (en) Antistatic photho-curable resin composition, antistactic plastic sheet prepared by using this and manufacturing method for the sames
KR102501500B1 (en) Active energy ray curing type hard coat agent and laminate
JP6841019B2 (en) Method for producing coating composition, silver nanoparticle laminate and silver nanoparticle laminate
JP6903974B2 (en) Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate
JP7006212B2 (en) Colloidal silver laminated film
JP7024362B2 (en) Method for manufacturing silver nanoparticle laminate and silver nanoparticle laminate, and method for coloring silver nanoparticle laminate
JP7225641B2 (en) Metal nanoparticle laminate and method for producing metal nanoparticle laminate
JP6540186B2 (en) Metal oxide composition and cured film thereof
JP2018199259A (en) Reversible heat sensitive recording laminate, manufacturing method of laminate containing silver nanoparticle layer, and manufacturing method of reversible heat sensitive recording laminate
JP2021017652A (en) Electromagnetic wave-transmitting member and method for producing the same, and coating liquid for electromagnetic wave-transmitting member
JP2020189910A (en) Silver nanoparticle film, silver nanoparticle coating liquid and manufacturing method of silver nanoparticle film
JP2011201931A (en) Composition for hardcoat and base material coated therewith
KR100707784B1 (en) Composition for cutting off heat ray, film formed therefrom and method for forming the composition and the film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210607

R150 Certificate of patent or registration of utility model

Ref document number: 6903974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250