JP2016105065A - 酸素濃度センサの制御装置 - Google Patents

酸素濃度センサの制御装置 Download PDF

Info

Publication number
JP2016105065A
JP2016105065A JP2014243433A JP2014243433A JP2016105065A JP 2016105065 A JP2016105065 A JP 2016105065A JP 2014243433 A JP2014243433 A JP 2014243433A JP 2014243433 A JP2014243433 A JP 2014243433A JP 2016105065 A JP2016105065 A JP 2016105065A
Authority
JP
Japan
Prior art keywords
sensor element
impedance
oxygen concentration
sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014243433A
Other languages
English (en)
Inventor
佐久間 隆
Takashi Sakuma
隆 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014243433A priority Critical patent/JP2016105065A/ja
Publication of JP2016105065A publication Critical patent/JP2016105065A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】長期にわたり、酸素濃度を精度良く検出できる酸素濃度センサの制御装置を提供すること。【解決手段】電子制御装置は、被検出ガス中の酸素濃度に応じた出力を生じるセンサ素子と、センサ素子の素子温度を活性温度に保つためのヒータと、を備える酸素濃度センサについて、センサ素子のインピーダンスを検出し、検出したインピーダンスと、素子温度とインピーダンスとの相関関係により予め設定された相関データとに基づいて、素子温度を活性温度に保つようにヒータへの通電を制御する。この電子制御装置は、センサ素子の容量を算出する算出手段(S10〜S23)と、算出手段により算出される容量に応じて相関データを設定するものであり、相関データを、容量が大きいほど任意の素子温度に対してインピーダンスの小さいデータに切り替えて設定する設定手段と、を備える。【選択図】図2

Description

本発明は、被検出ガス中の酸素濃度に応じた出力を生じるセンサ素子と、センサ素子の素子温度を活性温度に保つためのヒータと、を備える酸素濃度センサの制御装置に関する。
従来、電子制御式燃料噴射装置におけるフィードバック制御を実現するために、内燃機関の排気通路には、酸素濃度センサが配置されている。このような酸素濃度センサの制御装置として、例えば特許文献1に記載のものが知られている。
酸素濃度センサは、排気通路に配置され、排気ガス中の酸素濃度に応じた出力を生じるセンサ素子と、センサ素子の素子温度を活性温度に保つためのヒータと、を備えている。センサ素子の出力特性(起電力特性)は温度依存性を有しており、酸素濃度を精度良く検出するには、センサ素子の素子温度を活性温度に保つ必要がある。このため、酸素濃度の制御装置は、素子温度を活性温度に保つように、ヒータへの通電を制御する。
ところで、ヒータへの通電を制御して素子温度を活性温度に保つには、素子温度を検出する必要がある。センサ素子のインピーダンスと素子温度との間には、所定の相関関係がある。そこで、酸素濃度センサの制御装置は、センサ素子のインピーダンスを検出し、検出したインピーダンスと、インピーダンスと素子温度との相関関係について予め設定された相関データと、に基づいて、ヒータへの通電を制御するようになっている。例えば、相関データにより、検出したインピーダンスから素子温度を推定し、推定した素子温度に基づいて、ヒータへの通電を制御する。
特開2009−31153号公報
しかしながら、センサ素子がさらされる環境の温湿度、排気ガス等の影響によりセンサ素子が経時変化し、これによりセンサ素子には容量成分が形成される。この容量成分は、時間の経過とともに増大する。このように容量成分が形成されると、インピーダンスと素子温度との相関関係が変化してしまう。したがって、検出したインピーダンスに基づいてヒータへの通電を制御しても、検出したインピーダンスに対応する素子温度(目標素子温度)に対して、実際の素子温度が低くずれてしまう。このため、素子温度が活性状態よりも低くなり、酸素濃度の検出精度が低下する虞がある。
本発明は上記問題点に鑑み、長期にわたり、酸素濃度を精度良く検出できる酸素濃度センサの制御装置を提供することを目的とする。
ここに開示される発明は、上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲及びこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。
開示された発明のひとつは、被検出ガス中の酸素濃度に応じた出力を生じるセンサ素子(11)と、センサ素子の素子温度を活性温度に保つためのヒータ(12)と、を備える酸素濃度センサ(10)について、センサ素子のインピーダンスを検出し、検出したインピーダンスと、素子温度とインピーダンスとの相関関係により予め設定された相関データとに基づいて、素子温度を活性温度に保つようにヒータへの通電を制御する酸素濃度センサの制御装置であって、
センサ素子の容量を算出する算出手段(S10〜S23)と、
算出手段により算出される容量に応じて相関データを設定するものであり、相関データを、容量が大きいほど任意の素子温度に対してインピーダンスの小さいデータに切り替えて設定する設定手段(S30〜S34)と、
を備えることを特徴とする。
上記したように、センサ素子の経時変化により、センサ素子に容量が形成される。したがって、容量変化にともなうインピーダンスの追加分が生じる。センサ素子本来のインピーダンスをZ、容量形成による追加分を追加インピーダンスZとすると、合成インピーダンスZは、次式で示される。
(数1)1/Z=1/Z+1/Z
この合成インピーダンスZが、センサ素子のインピーダンスとして検出される。例えば素子温度を所定値とすべく、合成インピーダンスが所定値(一定値)となるようにヒータの通電が制御される場合について考える。容量が形成されない時点ではZ=0であるため、合成インピーダンスZとしてZが検出される。すなわち、Z=Zである。
しかしながら、容量が形成されると、追加インピーダンスZの影響で、Z>Zになる。インピーダンスZの値は、追加インピーダンスZが大きくなるほど大きくなる。従来の相関データは固定であり、センサ素子本来のインピーダンスZと素子温度との相関関係に基づいて設定されている。したがって、合成インピーダンスZが一定となるように制御されても、実際はインピーダンスZの値が大きくなるため、素子温度は低下してしまう。
これに対し、本発明では、算出手段により、センサ素子の容量を算出することができる。また、設定手段により、算出された容量に応じて相関データを切り替えて設定することができる。設定手段は、例えば容量が大きくなると、任意の素子温度に対してインピーダンスの小さい相関データに切り替える。すなわち、同じ素子温度でも対応する合成インピーダンスZが小さくなる。したがって、容量増加によって追加インピーダンスZが大きくなっても、インピーダンスZの増加を抑制することができる。すなわち、素子温度の低下を抑制することができる。このため、長期にわたり、酸素濃度を精度良く検出することができる。
第1実施形態に係る電子制御装置の概略構成を示す図である。 マイコンが実行する容量算出処理を示すフローチャートである。 Vx,Vy、Vc,tcを示す図である。 抵抗値R算出を説明するための図である。 マイコンが実行する相関データ設定処理を示すフローチャートである。 素子温度とインピーダンスとの相関関係を示す図である。
以下、本発明の実施形態を図に基づいて説明する。なお、各実施形態において、共通乃至関連する要素には同一の符号を付与するものとする。
(第1実施形態)
先ず、本実施形態に係る電子制御装置によって制御される酸素濃度センサ10について説明する。
図1に示すように、酸素濃度センサ10は、センサ素子11と、ヒータ12と、を備えている。すなわち、ヒータ12付きの酸素濃度センサ10となっている。酸素濃度センサ10は、内燃機関の排気通路に配置される。このような酸素濃度センサ10は、電子式燃料噴射装置のフィードバック制御を実現するためのセンサのひとつとして用いられる。
センサ素子11は、ジルコニアなどを材料とする固体電解質のセンサ素子であり、排気ガス(被検出ガス)中の酸素濃度に応じた起電力を生じる。したがって、この起電力を測定することにより、排気ガス中の酸素濃度を検出することができる。詳しくは、排気空燃比がリッチであるかリーンであるかを判定することができる。
センサ素子11の出力特性(起電力特性)は温度依存性を有している。このため、酸素濃度を精度良く検出するには、センサ素子11の素子温度を活性温度(例えば550℃)に保つ必要がある。また、センサ素子11のインピーダンスと素子温度との間には、所定の相関関係がある。詳しくは、インピーダンスが低下するのにつれて、素子温度が上昇する相関関係がある。
酸素濃度センサ10がさらされる温湿度、排気ガス等の影響により、センサ素子11は経時変化(経年劣化)する。詳しくは、図1に破線で示すように、経時変化によって、センサ素子11には、容量値Cの容量成分が新たに形成される。この容量成分は、時間の経過とともに増大する。容量成分が形成されるまでは、センサ素子11を、主に抵抗成分のインピーダンスと起電力成分とを直列接続した回路として、概ね等価的に示すことができる。このように、図1に示す容量値Cの容量成分は、初期的には存在せず、時間の経過とともに形成されるものであるため、図1において破線で示している。
ヒータ12は、センサ素子11の素子温度を活性温度に保つために配置されている。このヒータ12は、センサ素子11の素子温度を活性温度に保つように、後述する電子制御装置20によって通電が制御される。上記したように、センサ素子11のインピーダンスと素子温度との間には、所定の相関関係がある。このため、ヒータ12は、センサ素子11のインピーダンスと、インピーダンスと素子温度との相関データと、に基づいて、通電が制御される。ヒータ12への通電は、スイッチ13のオン、オフにより制御される。図1に示す例では、電源とグランドとの間で、ヒータ12とスイッチ13が直列接続されており、ヒータ12に対してローサイド側にスイッチ13が配置されている。また、スイッチ13として、nチャネル型のMOSFETを採用している。スイッチ13としてのMOSFETのゲートに電子制御装置20から駆動信号が入力され、駆動信号に応じてスイッチ13がオン、オフされる。
次に、図1に基づき、電子制御装置の概略構成を説明する。
図1に示す電子制御装置20は、エンジンECUとして構成されており、酸素濃度センサの制御装置は、電子制御装置20に組み込まれている。したがって、電子制御装置20が、特許請求の範囲に記載の酸素濃度センサの制御装置に相当する。以下においては、電子制御装置20の構成のうち、酸素濃度センサ10の制御に係る部分についてのみ説明する。
酸素濃度センサ10のセンサ素子11は、端子21,22を介して電子制御装置20に接続されている。端子21は高圧側の端子であり、端子22は低圧側の端子である。また、ヒータ12の通電を制御するスイッチ13は、端子23を介して、電子制御装置20に接続されている。
電子制御装置20は、第1スイッチ24、抵抗25,26、コンデンサ27、抵抗28、第2スイッチ29、抵抗30、AD変換部31、及びマイコン32を備えている。なお、電子制御装置20は、上記したスイッチ13も備えている。
第1スイッチ24の一端には、定電圧源に接続され、他端には抵抗25が接続されている。本実施形態では、第1スイッチ24としてpnpトランジスタを採用している。抵抗25は分圧用の抵抗である。抵抗25の他端は、抵抗26を介して、高圧側の端子21に接続されている。抵抗26は、センサ素子11のインピーダンスを検出するための抵抗である。また、抵抗25,26の接続点とグランドとの間に、コンデンサ27が接続されている。したがって、マイコン32からの駆動信号により第1スイッチ24がオンされると、コンデンサ27が充電が開始され、コンデンサ27の電位上昇にともなってセンサ素子11の端子間電圧が上昇する。このように、第1スイッチ24をオンすることで、センサ素子11に掃引電圧が印加される。
抵抗25,26の接続点とグランドとの間には、抵抗28と第2スイッチ29とが、第2スイッチ29をローサイド側として直列に接続されている。本実施形態では、第2スイッチ29としてnpnトランジスタを採用している。したがって、マイコン32からの駆動信号により、第1スイッチ24がオフされ、第2スイッチ29がオンされると、コンデンサ27に蓄積された電荷が第2スイッチ29を介して放電される。これにより、センサ素子11の端子間電圧が下降する。このように、第2スイッチ29をオフすることで、電圧の引き戻しがなされる。
抵抗30は、抵抗26と端子21との接続点とグランドとの間に接続されている。すなわち、定電圧源とグランドとの間に、第1スイッチ24、抵抗25,26,30が直列接続されている。抵抗26,30の直列回路に対して、コンデンサ27が並列接続されている。また、コンデンサ27に対し、抵抗28及び第2スイッチ29の直列回路が並列接続されている。
AD変換部31は、抵抗25,26の接続点の電圧をAD変換する第1AD変換器AD1と、抵抗26,30の接続点の電圧をAD変換する第2AD変換器AD2と、センサ素子11の端子間電圧をAD変換する第AD変換器AD3と、を有している。なお、図示しないが、各AD変換器AD1,AD2,AD3への入力に含まれるノイズを除去するためのフィルタを備えてもよい。
マイコン32は、CPU、ROM、RAM、レジスタ、及びI/Oポートなどを備えて構成されたマイクロコンピュータである。マイコン32において、CPUが、RAMやレジスタの一時記憶機能を利用しつつ、ROMに予め記憶された制御プログラム、バスを介して取得した各種データなどに応じて信号処理を行う。また、この信号処理で得られた信号を、バスなどに出力したりする。このようにして、マイコン32は、各種機能を実行する。
マイコン32は、センサ素子11の素子温度がセンサ素子11の活性温度に維持されるように、センサ素子11のインピーダンスの検出値と、インピーダンスと素子温度との相関データとに基づいて、ヒータ12への通電を制御する。詳しくは、駆動信号をスイッチ13のゲートに出力し、スイッチ13をオン、オフさせることで、ヒータ12への通電を制御する。
センサ素子11のインピーダンス検出は、以下のようにして行われる。マイコン32は、先ず、駆動信号を出力して、第1スイッチ24をオン、第2スイッチ29をオフさせる。これにより、第1スイッチ24、抵抗25,26を介して、センサ素子11に電流が流れる。このとき、マイコン32は、第1AD変換器AD1及び第2AD変換器AD3の出力に基づいて、Z=ΔV/ΔIから、センサ素子11のインピーダンスを算出する。そして、算出したインピーダンスと相関データとに基づき、ヒータ12への通電を制御する。例えば、相関データにより、算出したインピーダンスから素子温度を推定(換算)し、推定した素子温度に基づいて、ヒータ12への通電を制御してもよい。また、換算処理をせずに、算出したインピーダンスに応じて、ヒータ12への通電制御をしてもよい。相関データとしては、インピーダンスと素子温度との相関関係を示したマップや関数などを採用することができる。この相関データは、予め定められ、ROMに記憶されている。
第1スイッチ24のオンにより、コンデンサ27の充電にともなって、センサ素子11の端子間電圧、すなわち端子21の電位は上昇する。マイコン32は、例えば第3AD変換器AD3の出力に基づいて、第1スイッチ24をオフ、第2スイッチ29をオンさせる。これにより、コンデンサ27に充電されていた電荷が第2スイッチ29を介して放電され、第3AD変換器AD3の出力(端子間電圧)は急速に低下する。
電圧の引き戻しにより、インピーダンス検出のために印加した電圧の影響がなくなると、マイコン32は、第3AD変換器AD3の出力、すなわちセンサ素子11の端子間電圧に基づいて、酸素濃度を検出する。詳しくは、排気空燃比がリッチであるかリーンであるかを判定する。そして、判定結果に応じた駆動信号を、図示しないインジェクタに出力する。マイコン32は、センサ素子11のインピーダンス検出、すなわち素子温度検出と、センサ素子11の端子間電圧の検出、すなわち酸素濃度の検出とを、一定の周期で繰り返し実行する。
次に、図2〜図4に基づき、マイコン32が実行する容量算出処理について説明する。
上記したように、センサ素子11には、経時変化によって、容量値Cの容量成分が新たに追加形成される。また、容量値Cは時間の経過とともに増大する。このように使用途中において、容量成分が追加されると、容量値がない状態で設定された相関データに対してずれが生じる。また、時間の経過とともに、そのずれは大きくなる。
詳しくは、容量成分の追加にともなうインピーダンスの追加分が生じる。追加される容量成分を考慮しないセンサ素子本来のインピーダンスをZ、容量形成による追加分を追加インピーダンスZとすると、合成インピーダンスZは、次式で示される。
(数2)1/Z=1/Z+1/Z
この合成インピーダンスZが、センサ素子11のインピーダンスとして検出される。例えば素子温度を所定値とすべく、センサ素子11のインピーダンスが所定値(一定値)となるようにヒータ12の通電が制御される場合について考える。すなわち、合成インピーダンスZが一定となるように制御される場合について考える。容量が追加されない時点ではZ=0であるため、合成インピーダンスZとしてZが検出される。すなわち、Z=Zである。
しかしながら、容量成分が追加されると、追加インピーダンスZの影響で、Z>Zになる。インピーダンスZの値は、追加インピーダンスZが大きくなるほど大きくなる。相関データが、上記した素子本来のインピーダンスZと素子温度との相関関係を示す1種類のみの場合、合成インピーダンスZが一定となるように制御されても、容量成分の追加によりインピーダンスZの値が大きくなるため、素子温度は低下してしまう。このように、容量成分が追加されると、相関データに対してずれが生じる。
そこで、本実施形態では、容量成分の追加分を考慮して、マイコン32がヒータ12への通電を制御する。マイコン32は、以下のようにして追加される容量成分を算出する。図2は、マイコン32が実行する容量算出処理を示すフローチャートである。マイコン32は、車両のIGスイッチがオンされてから、内燃機関(エンジン)が始動するまでの間に、図2に示す処理を実行する。このように、内燃機関の始動前に、処理を実行する。換言すれば、排気ガスが排出される前であって、ヒータ12への通電がなされておらず素子温度が一定の状態で、処理を実行する。すなわち、センサ素子11のインピーダンスが所定時間一定となるタイミングで、処理を実行する。
図2に示すように、先ず、マイコン32は、AD変換部31(第2AD変換器AD2)から、初期電圧Vxを取得する(ステップS10)。初期電圧Vxは、図3に示すように、電圧を印加する直前の高圧側の端子21である。換言すれば、電圧を印加する直前のセンサ素子11の端子間電圧である。したがって、第2AD変換器AD2の出力に代えて、第3AD変換器AD3の出力を用いてもよい。
次いでマイコン32は、駆動信号を各スイッチ24,29に出力し、第1スイッチ24をオン、第2スイッチ29をオフさせる(ステップS11)。これにより、コンデンサ27への充電が開始される。
次いでマイコン32は、AD変換部31(第2AD変換器AD2)の出力が、飽和したか否かを判定する(ステップS12)。そして、飽和したと判定すると、AD変換部31(第2AD変換器AD2)から、飽和電圧Vyを取得する(ステップS13)。飽和電圧Vyは、第1スイッチ24をオンした後、所定の時定数を持って変化する電圧が変化し、その後、飽和した状態における電圧である。
次いでマイコン32は、センサ素子11の抵抗成分の抵抗値R及びチェック用電圧Vcを算出する(ステップS14)。このように、所定の時定数で変化しているときの電圧ではなく、飽和電圧Vyを用いる、すなわち直流成分の印加するため、容量値Cと切り離して、抵抗値Rを算出することができる。
図4に示すように、定電流源とグランドとの間には、抵抗25とセンサ素子11の抵抗成分との分圧回路が形成されている。なお、インピーダンス検出用の抵抗26の抵抗値は、抵抗25の抵抗値R及びセンサ素子11の抵抗成分の抵抗値Rに較べて十分に小さいため、ここでは無視する。図4に示す関係から、飽和電圧Vyは次式のように示すことができる。ここで、定電圧源の電源電圧をVOM5と示す。
(数3)Vy=(VOM5−Vx)×R/(R+R)+Vx
数式3を変形すると、抵抗値Rを次式のように示すことができる。
(数4)R=(Vy−Vx)/(VOM5−Vy)×R
抵抗値R及び電源電圧VOM5は所定値である。したがって、数式4に示す関係により、マイコン32は、ステップS10で取得した初期電圧Vxと、ステップS13で取得した飽和電圧Vyを用いることで、センサ素子11の抵抗成分の抵抗値Rを算出することができる。
また、図3に示したように、容量成分を算出する際の印加電圧は、所定の時定数をもって変化する。チェック用電圧Vcは、初期電圧Vxと飽和電圧Vyとの間の電圧である。ここで、RC回路における入力電圧Vinと出力電圧Voutとの関係は、次式のように示すことができる。
Figure 2016105065
数式5に、チェック用電圧Vcを当てはめると、次式のように示すことができる。なお、tcは、図3に示すように、電圧を印加してから、チェック用電圧Vcに達するまでにかかる時間を示している。
Figure 2016105065
ここで、tc=RC(時定数)のときのチェック用電圧Vcは、次式のように示すことができる。
Figure 2016105065
抵抗値R及び電源電圧VOM5は所定値である。また、抵抗値Rは数式4により算出される。したがって、数式7に示す関係により、マイコン32は、ステップS10で取得した初期電圧Vxを用いることで、チェック用電圧Vcを算出することができる。
ステップS14が終了すると、次いでマイコン32は、駆動信号を各スイッチ24,29に出力し、第1スイッチ24をオフ、第2スイッチ29をオンさせる(ステップS15)。これにより、コンデンサ27への蓄積された電荷が放電される。
次いでマイコン32は、AD変換部31(第2AD変換器AD2)の出力が、初期電圧Vxに戻ったか否かを判定する(ステップS16)。そして、初期電圧Vxに戻ったと判定すると、マイコン32は、駆動信号を各スイッチ24,29に出力し、第1スイッチ24をオン、第2スイッチ29をオフさせるとともに、内蔵するタイマのカウントを開始する(ステップS17)。
次いでマイコン32は、AD変換部31(第2AD変換器AD2)の出力が、ステップS14で算出したチェック用電圧Vcに到達したか否かを判定する(ステップS18)。そして、チェック用電圧Vcに到達したと判定すると、マイコン32は、そのときのタイマのカウントから、時間tcを計測する(ステップS19)。そして、タイマのカウント値をリセットする。次いでマイコン32は、計測した時間tcに基づいて、センサ素子11に追加された容量成分の容量値Cを算出する(ステップS20)。
上記したように、チェック用電圧Vcに到達するのにかかる時間tc=RCである。ここで、Rは図4に示す分圧回路の合成抵抗であり、次式で示すことができる。
(数8)1/R=1/R+1/R
したがって、容量値Cは、次式で示すことができる。
(数9)C=tc/(1/R+1/R
数式9において、時間tcは、ステップS19で計測される値である。また、抵抗値Rは所定値であり、抵抗値Rは数式4により算出される。したがって、マイコン32は、数式9により、容量値Cを算出することができる。
ステップS20が終了すると、次いでマイコン32は、駆動信号を各スイッチ24,29に出力し、第1スイッチ24をオフ、第2スイッチ29をオンさせる(ステップS21)。これにより、コンデンサ27への蓄積された電荷が放電される。
次いでマイコン32は、AD変換部31(第2AD変換器AD2)の出力が、初期電圧Vxに戻ったか否かを判定する(ステップS22)。そして、初期電圧Vxに戻ったと判定すると、マイコン32は、駆動信号を各スイッチ24,29に出力し、第1スイッチ24をオフ、第2スイッチ29をオフさせる(ステップS23)。以上により、追加容量の容量値算出処理を終了する。上記したステップS10〜ステップS23に示す処理が、特許請求の範囲に記載の算出手段に相当する。
次に、図5及び図6に基づき、マイコン32が実行する相関データ設定処理について説明する。マイコン32は、図2に示した容量算出処理を実行する毎に、以下に示す相関データ設定処理を実行する。
図5に示すように、先ずマイコン32は、算出した容量値Cを予め設定された第1閾値αと比較し、容量値Cが第1閾値α未満であるか否かを判定する(ステップS30)。容量値Cが第1閾値α未満であると判定すると、マイコン32は、相関データとしてマップAを選択してRAMに設定(ステップS31)。そして、一連の処理を終了する。
ステップS30において、容量値Cが第1閾値α以上の場合、マイコン32は、次に容量値Cを予め設定された第2閾値βと比較し、容量値Cが第2閾値β未満であるか否かを判定する(ステップS32)。上記したように、時間の経過とともに容量値Cは増大する。したがって、第2閾値βは、第1閾値αよりも大きい値が設定されている。
ステップS32において、容量値Cが第2閾値β未満である、すなわち、α≦C<βであると判定すると、マイコン32は、相関データとしてマップBを選択してRAMに設定する(ステップS33)。そして、一連の処理を終了する。また、容量値Cが第2閾値β以上であると判定すると、マイコン32は、相関データとしてマップCを選択してRAMに設定する(ステップS34)。そして、一連の処理を終了する。上記したステップS30〜ステップS34に示す処理が、特許請求の範囲に記載の設定手段に相当する。
図6は、素子温度とインピーダンスとの相関関係を示す図であり、各マップの相関関係を示している。図6においては、マップAを実線で示し、マップBを破線で示している。また、マップCを一点鎖線で示している。
マップAは、言うなれば、従来設定されていたマップと同じである。すなわち、容量成分が追加されていない状態での、センサ素子11のインピーダンスと素子温度との相関関係を示している。マップBは、容量成分の追加を考慮し、容量値Cとして第1所定値が追加された状態での、センサ素子11のインピーダンスと素子温度との相関関係を示している。マップCは、時間経過により容量値Cが増大し、容量値Cとして第2所定値が追加された状態での、センサ素子11のインピーダンスと素子温度との相関関係を示している。
上記したように、数式2示す関係を満たす合成インピーダンスZが、センサ素子11のインピーダンスとして検出される。例えば素子温度を所定値とすべく、センサ素子11のインピーダンス(合成インピーダンスZ)が一定となるように制御される場合について考える。容量が追加されない時点ではZ=0であるため、合成インピーダンスZとしてZが検出される。すなわち、Z=Zである。しかしながら、容量成分が追加されると、追加インピーダンスZの影響で、Z>Zになる。インピーダンスZの値は、追加インピーダンスZが大きくなるほど大きくなる。
例えばマイコン32が相関データとしてマップAのみを有しており、センサ素子11の活性温度が550℃とする。この場合、マイコン32は、算出されるインピーダンスとマップAとに基づいて、素子温度が550℃(インピーダンスが200Ω)となるように、ヒータ12の通電を制御する。容量成分が追加されていない状態ではZ=0であるため、センサ素子本来のインピーダンスZの値は200Ωとなる。したがって、算出されるインピーダンス、すなわち合成インピーダンスZと、インピーダンスZとの間にずれはない。
しかしながら、容量成分が追加されると、合成インピーダンスZが200Ωでも、インピーダンスZの値は200Ωより大きくなる。例えばインピーダンスZの値が300Ωになると、素子温度は525℃程度となる。このように、容量成分が追加されると、相関データに対してずれが生じる。
これに対し、本実施形態では、容量値Cに応じて、マップを切り替えて設定する。例えば、マップBに切り替えた場合、素子温度550℃でインピーダンスが100Ωとなっている。このため、容量増加によって追加インピーダンスZが大きくなっても、インピーダンスZの増加を抑制することができる。すなわち、素子温度の低下を抑制することができる。したがって、長期にわたり、酸素濃度を精度良く検出することができる。
以上、本発明の好ましい実施形態について説明したが、本発明は上記実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
電圧を印加し、立ち上がりの時定数から、追加された容量成分の容量値Cを算出する例を示した。しかしながら、ステップS15において電圧を掃引せず、飽和電圧Vyから初期電圧Vxまで低下する立ち下がりの時定数から、追加された容量成分の容量値Cを算出することもできる。
センサ素子11のインピーダンスと素子温度との相関関係を示す相関データは、マップに限定されない。相関関係を示す関数でも良い。
相関データとしてのマップ数は、上記例に限定されない。複数のマップを有し、容量値Cに応じて切り替えて設定できればよい。
インピーダンスを検出するための回路構成は、上記例に限定されない。
マイコン32に対してAD変換部31が外付けの例を示したが、マイコン32とAD変換部31が一体化された構成としてもよい。
内燃機関の始動前に、マイコン32が容量値Cを算出する例を示した。それ以外にも、センサ素子11のインピーダンスが所定時間一定となるタイミングであれば、容量値Cを算出することができる。
算出手段及び設定手段が、実体的なメモリ装置に記録されたソフトウェア及びそれを実行するマイコン32により構成される例を示した。しかしながら、上記例に限定されない。例えば、ハードウェアによって構成することもできる。
10…酸素濃度センサ、
11…センサ素子、
12…ヒータ、
20…電子制御装置、
21,22,23…端子、
24…第1スイッチ、
25,26,28,30…抵抗、
27…コンデンサ、
29…第2スイッチ、
31…AD変換部、
32…マイコン

Claims (4)

  1. 被検出ガス中の酸素濃度に応じた出力を生じるセンサ素子(11)と、前記センサ素子の素子温度を活性温度に保つためのヒータ(12)と、を備える酸素濃度センサ(10)について、前記センサ素子のインピーダンスを検出し、検出したインピーダンスと、素子温度とインピーダンスとの相関関係により予め設定された相関データとに基づいて、素子温度を活性温度に保つように前記ヒータへの通電を制御する酸素濃度センサの制御装置であって、
    前記センサ素子の容量を算出する算出手段(S10〜S23)と、
    前記算出手段により算出される容量に応じて前記相関データを設定するものであり、前記相関データを、前記容量が大きいほど任意の素子温度に対してインピーダンスの小さいデータに切り替えて設定する設定手段(S30〜S34)と、
    を備えることを特徴とする酸素濃度センサの制御装置。
  2. 前記算出手段は、
    前記センサ素子に直流成分を印加して前記センサ素子の抵抗値を算出し、
    前記センサ素子の電荷を放電させた後に前記センサ素子に所定電圧を印加するときの立ち上がり時定数、又は、前記センサ素子の電荷を放電させるときの立ち下がりの時定数と、算出した前記抵抗値とに基づいて、前記センサ素子の容量を算出することを特徴とする請求項1に記載の酸素濃度センサの制御装置。
  3. 前記算出手段は、前記センサ素子のインピーダンスが所定時間一定となるタイミングにおいて、前記センサ素子の容量を算出することを特徴とする請求項1又は請求項2に記載の酸素濃度センサの制御装置。
  4. 前記センサ素子が内燃機関の排気通路に配置される請求項1〜3いずれか1項に記載の酸素濃度センサの制御装置であって、
    前記算出手段は、前記内燃機関の始動前に、前記センサ素子の容量を算出することを特徴とする酸素濃度センサの制御装置。
JP2014243433A 2014-12-01 2014-12-01 酸素濃度センサの制御装置 Pending JP2016105065A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014243433A JP2016105065A (ja) 2014-12-01 2014-12-01 酸素濃度センサの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014243433A JP2016105065A (ja) 2014-12-01 2014-12-01 酸素濃度センサの制御装置

Publications (1)

Publication Number Publication Date
JP2016105065A true JP2016105065A (ja) 2016-06-09

Family

ID=56102427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014243433A Pending JP2016105065A (ja) 2014-12-01 2014-12-01 酸素濃度センサの制御装置

Country Status (1)

Country Link
JP (1) JP2016105065A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426936A (zh) * 2017-02-13 2018-08-21 丰田自动车株式会社 气体检测装置
WO2018201201A1 (en) * 2017-05-05 2018-11-08 Royal Melbourne Institute Of Technology Multi-gas sensing system
JP2020026995A (ja) * 2018-08-10 2020-02-20 株式会社デンソー 酸素センサ制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108426936A (zh) * 2017-02-13 2018-08-21 丰田自动车株式会社 气体检测装置
JP2018132316A (ja) * 2017-02-13 2018-08-23 トヨタ自動車株式会社 ガス検出装置
CN108426936B (zh) * 2017-02-13 2020-04-10 丰田自动车株式会社 气体检测装置
WO2018201201A1 (en) * 2017-05-05 2018-11-08 Royal Melbourne Institute Of Technology Multi-gas sensing system
JP2020026995A (ja) * 2018-08-10 2020-02-20 株式会社デンソー 酸素センサ制御装置
JP7081387B2 (ja) 2018-08-10 2022-06-07 株式会社デンソー 酸素センサ制御装置

Similar Documents

Publication Publication Date Title
JP5687484B2 (ja) 絶縁状態検出ユニットのフライングキャパシタ故障検出装置
US9018959B2 (en) Insulating state detection unit having failure detector
US9068934B2 (en) Gas sensor processing apparatus
US9689338B2 (en) Air-fuel ratio sensor control device
JP2007024581A (ja) 酸素センサの素子割れ検出装置
JP2016105065A (ja) 酸素濃度センサの制御装置
US9354191B2 (en) Oxygen sensor controlling apparatus, oxygen sensor controlling method and computer readable recording medium
JP4033072B2 (ja) ガス濃度センサの制御装置
US20150109155A1 (en) Semiconductor device and electronic control device
JP5817566B2 (ja) 電力検出システム
US7043957B2 (en) Element impedance detection apparatus and method for oxygen sensor
JP6115582B2 (ja) ガスセンサ制御装置
JP6379000B2 (ja) ガスセンサシステム
JP5991202B2 (ja) 酸素濃度センサの制御装置
JP2006250695A (ja) 酸素濃度センサの制御方法及び制御装置
JP2017053631A (ja) ガスセンサ制御装置
JP2009031153A (ja) 酸素センサの制御装置
JP6265094B2 (ja) 制御装置、および、その製造方法
JP5979165B2 (ja) 酸素濃度センサの素子インピーダンス検出装置
JP5723321B2 (ja) センサ出力処理装置、及び、センサシステム
US9458784B2 (en) Heater control apparatus and sensor control system
JP4765742B2 (ja) 排気ガスセンサの信号処理装置
JP2005227013A (ja) 酸素濃度センサの制御装置
JP2010053781A (ja) 内燃機関の失火検出装置
JP2018116029A (ja) 酸素濃度センサのインピーダンス検出装置