JP2016100366A - リソグラフィ装置、及び物品の製造方法 - Google Patents

リソグラフィ装置、及び物品の製造方法 Download PDF

Info

Publication number
JP2016100366A
JP2016100366A JP2014234002A JP2014234002A JP2016100366A JP 2016100366 A JP2016100366 A JP 2016100366A JP 2014234002 A JP2014234002 A JP 2014234002A JP 2014234002 A JP2014234002 A JP 2014234002A JP 2016100366 A JP2016100366 A JP 2016100366A
Authority
JP
Japan
Prior art keywords
substrate
mark
light detection
detection units
lithographic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014234002A
Other languages
English (en)
Inventor
裕一 岩▲崎▼
Yuichi Iwasaki
裕一 岩▲崎▼
大石 哲
Satoru Oishi
哲 大石
稲 秀樹
Hideki Ina
秀樹 稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014234002A priority Critical patent/JP2016100366A/ja
Priority to US14/940,349 priority patent/US9606460B2/en
Publication of JP2016100366A publication Critical patent/JP2016100366A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30433System calibration
    • H01J2237/30438Registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】重ね合わせ精度の点で有利なリソグラフィ装置を提供する。【解決手段】パターン形成をビームで基板に行うリソグラフィ装置であって、前記ビームを前記基板に照射する光学系と、前記基板上のマークをそれぞれが検出する複数の検出部と、前記基板を第1方向に走査移動させながら前記光学系によってビームを前記基板に照射する第1動作と、前記第1方向とは異なる第2方向に前記基板をステップ移動させる第2動作とが交互に行われるように前記パターン形成を制御する制御部と、を有し、前記制御部は、前記第1動作において、前記複数の検出部のうち少なくとも1つに前記マークを検出させ、前記複数の検出部は、前記第2方向において、前記ステップ移動の距離の正の整数倍の間隔をもって配置されていることを特徴とするリソグラフィ装置を提供する。【選択図】図2

Description

本発明は、リソグラフィ装置、及び物品の製造方法に関する。
リソグラフィ技術において重要な指標として、解像性能、スループット及び重ね合わせ精度の3つがある。ここで、解像性能とは、基板に形成可能なパターンの最小寸法を表すものであり、スループットとは、単位時間あたりに処理可能な基板の数(生産性)を表すものである。また、重ね合わせ精度とは、これまでの半導体プロセス工程(レイヤ)で基板に形成されたパターンに対する、これから描画(露光)するパターンの重ね合わせ(位置合わせ)の精度を表すものである。
荷電粒子線で基板に描画を行う描画装置においては、ステージ、磁場、帯電、熱、荷電粒子線、計測系、光学系などに関して、重ね合わせ精度を低下させる様々な要因がある。これらのうち、帯電や熱以外の要因は、主に、システマティックな要因と考えられ、通常のアライメントによる補正で精度を補償することができる。通常のアライメントによる補正では、まず、基板に形成されている複数のアライメントマークを検出し、その検出値に基づいて、基板に描画されている全てのショット領域(又は一部のショット領域)の配列を求める。そして、このようにして求めたショット領域の配列に基づいて、初期データにおける基板上の荷電粒子線の位置(照射位置)を補正することで、重ね合わせ精度を補償している。
一方、残りの要因である帯電や熱は、通常のアライメントの後、荷電粒子線が基板に照射されるときに生じるものである。具体的には、荷電粒子線が基板に照射されると基板の表面に帯電が生じ、それによる電場が荷電粒子線に作用することで、荷電粒子線を照射すべき位置からずれた位置に荷電粒子線が照射され、重ね合わせ精度が低下してしまう。また、荷電粒子線が基板に照射されると基板が加熱されて変形し、荷電粒子線を照射すべき位置からずれた位置に荷電粒子線が照射されることで、重ね合わせ精度が低下してしまう。
帯電による重ね合わせ精度の低下を解決するための技術として、基板の表面に導電性膜を設ける技術が提案されている。しかし、実際には、導電性膜を用いても、荷電粒子線の位置のずれを完全に解決できるものではない。
熱による基板の変形(その変形量や方向)は、荷電粒子線に関する条件、基板に描画するパターンの密度及び分布、基板の層構造、基板を保持するチャックの摩擦などのパラメータに関係するため、その量や方向を予測することは非常に難しい。また、熱による基板の変形は、基板を描画している間に生じるため、その間に計測及び補正することが求められている。そこで、熱による重ね合わせ精度の低下を解決するための技術が従来から提案されている(特許文献1乃至3及び非特許文献1及び2参照)。
特許文献1には、基板上の複数のマークの位置をマーク計測系で計測し、マーク間距離を算出してフィッティングによって基板の歪みを求める技術が提案されている。特許文献1では、荷電粒子線と基板との相対的な位置ずれを補正することで、基板の歪みによる重ね合わせ精度の低下を抑制可能であるとしている。また、特許文献1には、8個のマーク計測系を配置することも提案されている。
また、特許文献2には、通常のアライメントに用いられる計測系を用いて、基板の温度変化による露光光と基板との相対的な位置ずれを補正する技術が提案されている。特許文献2では、あるショット領域を露光している間に次のショット領域に形成されているマークの位置を計測し、かかる計測結果を次のショット領域を露光する際に反映させる。これにより、基板の温度変化による露光光と基板との相対的な位置ずれを補正可能であるとしている。
また、特許文献3には、荷電粒子線を用いてマークの位置を計測することで、荷電粒子線と基板との相対的な位置を補正する技術が提案されている。特許文献3では、基板の歪みに起因する荷電粒子線と基板との相対的な位置ずれを補正可能であるとしている。
また、非特許文献1には、36個の荷電粒子光学系(カラム)を有する量産用の描画装置が提案されている。更に、非特許文献2には、基板を描画している(走査している)間において、基板上のマークを複数の計測系で同時に計測する技術が提案されている。
米国特許第7897942号明細書 特開2007−115758号公報 特開2000−228351号公報
Proc. of SPIE Vol. 8680 86800H−1 Proc. of SPIE Vol. 7271 727107−13
従来技術として挙げた先行技術文献は、基板の歪み(変形)を計測して荷電粒子線と基板との相対的な位置ずれを補正するとしているものの、当該計測の具体的な構成や当該補正のための具体的な手順(シーケンス)が開示されていない。
本発明は、重ね合わせ精度の点で有利なリソグラフィ装置を提供することを例示的目的とする。
上記目的を達成するために、本発明の一側面としてのリソグラフィ装置は、パターン形成をビームで基板に行うリソグラフィ装置であって、前記ビームを前記基板に照射する光学系と、前記基板上のマークをそれぞれが検出する複数の検出部と、前記基板を第1方向に走査移動させながら前記光学系によってビームを前記基板に照射する第1動作と、前記第1方向とは異なる第2方向に前記基板をステップ移動させる第2動作とが交互に行われるように前記パターン形成を制御する制御部と、を有し、前記制御部は、前記第1動作において、前記複数の検出部のうち少なくとも1つに前記マークを検出させ、前記複数の検出部は、前記第2方向において、前記ステップ移動の距離の正の整数倍の間隔をもって配置されていることを特徴とする。
本発明の更なる目的又はその他の側面は、以下、添付図面を参照して説明される好ましい実施形態によって明らかにされるであろう。
本発明によれば、例えば、重ね合わせ精度の点で有利なリソグラフィ装置を提供することができる。
本発明の一側面としての描画装置の構成を示す概略図である。 電子光学系と、光検出部と、ショットレイアウトと、マークとの配置関係を示す概略図である。 光検出部の検出視野とマークとの関係を示す概略図である。 図1に示す描画装置における描画処理を説明するためのフローチャートである。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 図1に示す描画装置における描画処理を説明するための図である。 4つのチップ領域が形成されたショット領域を示す概略図である。
以下、添付図面を参照して、本発明の好適な実施の形態について説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
図1は、本発明の一側面としての描画装置100の構成を示す概略図である。描画装置100は、パターン形成をビームで基板に行うリソグラフィ装置であって、ビームで基板に描画を行う。なお、当該ビームは、本実施形態では、電子線であるが、イオン線等の他の荷電粒子線や光線などであってもよく、一般的には、輻射(エネルギー線)(radiant (energy) beam)としうる。
描画装置100は、電子銃21と、電子光学系(荷電粒子光学系)1と、電子検出部24と、基板6を保持して移動可能なステージ2と、干渉計3と、光検出部4と、光検出部4を駆動する駆動部19と、真空チャンバー50とを有する。また、描画装置100は、電子系制御部7と、光系制御部8と、位置算出部9と、ステージ制御部10と、主制御部11と、メモリ12とを有する。
真空チャンバー50は、電子光学系1を支持し、ステージ2、干渉計3、光検出部4などを収容する。真空チャンバー50は、その内部が真空ポンプによって真空状態となるように排気されている。
電子光学系1は、電子銃21から射出された電子線を収束させる電子レンズ系22と、電子線を偏向させる偏向器23とを含み、基板6に電子線を照射する。電子銃21、電子光学系1及び電子検出部24は、電子系制御部7によって制御される。電子系制御部7は、電子線を用いて基板6にパターンを描画する際に、偏向器23によって電子線をY軸方向に走査させるとともに、基板6に描画するパターンに応じて電子線の照射及び非照射を制御する。電子線を用いて基板6の位置を計測する際には、電子系制御部7は、偏向器23によって基板6に対して電子線を走査させるとともに、電子検出部24によって基板6から放出される2次電子を検出して基板6の位置を求める。また、図1では、1つの電子光学系1のみが図示されているが、後述するように、描画装置100は、複数の電子光学系1を有していてもよい。
ステージ2は、Yステージ31と、Xステージ32とを含み、感光剤(レジスト)が塗布された基板6を保持する。ステージ2は、Yステージ31の上にXステージ32が配置された構成を有する。また、Xステージ32の上には、電子光学系1(電子レンズ系22)の軸に平行なZ軸方向に基板6の位置決めを行うZステージが配置されている。干渉計3は、ステージ2に固定されたミラー13をレーザで照射し、その反射光を検出する。位置算出部9は、干渉計3の検出結果に基づいて、ステージ2の位置を算出する。ステージ制御部10は、位置算出部9で算出されたステージ2の位置に基づいて、ステージ2を制御する。
光検出部4は、基板6に設けられたマークやステージ2に設けられた基準マーク5を検出する。光検出部4は、例えば、基板6に塗布された感光剤を感光しない波長帯域の光でアライメントマークや熱などによる基板6の歪み(歪み量)を求めるためのマークを照明し、その反射光を検出面(撮像面)に結像させることで、それらのマークを検出する。なお、基板6の歪み量は、例えば、基板6の倍率に関する成分を含む。
基板6の歪みを求めるためのマークの検出においては、基板6を走査方向であるX軸方向に走査しながら、基板6上の各ショット領域のスクライブライン(スクライブ領域の内)に配置されたマークを光検出部4で検出できれば、その方式は限定されない。例えば、画像処理方式を採用する場合には、TDI(Time Delay Integration)センサを用いることで、基板6を走査しながらのマークの検出が可能となる。また、シェブロンマークと呼ばれるマークをスクライブラインに配置して、レーザなどのビームを基板上に集光し、その散乱光を検出する方式でもよい。光系制御部8は、光検出部4の検出結果に基づいて、光検出部4の光軸に対するマークの位置を求める。なお、光検出部4は、駆動部19によって、走査方向とは異なる非走査方向であるY軸方向に駆動可能に構成されていてもよい。また、図1では、1つの光検出部4のみが図示されているが、後述するように、描画装置100は、本実施形態では、複数の光検出部4を有する。
主制御部11は、CPUなどを含み、描画装置100の全体(動作)を制御する。主制御部11は、電子系制御部7、光系制御部8、位置算出部9及びステージ制御部10からの情報を処理し、描画装置100の各部を制御する。主制御部11は、描画動作(第1動作)と、ステップ動作(第2動作)とが交互に行われるようにして基板6の全面を描画する。描画動作とは、ステージ2(基板6)をX軸方向(第1方向)に走査移動させながら電子光学系1によって電子線を基板6に照射する動作である。ステップ動作とは、Y軸方向(第2方向)にステージ2をステップ移動させる動作である。また、主制御部11は、描画動作において、電子光学系1による電子線の照射に並行して光検出部4によって基板6の歪みを求めるためのマークを検出させる。そして、主制御部11は、かかるマークの位置情報に基づいて、基板6の歪みに応じて電子光学系1からの電子線の照射位置を補正する。メモリ12は、主制御部11に必要な情報を記憶する。
図2を参照して、描画装置100が3つの電子光学系1a、1b及び1c、及び、6つの光検出部4a、4b、4c、4d、4e及び4fを有する場合について説明する。図2は、電子光学系1a乃至1cと、光検出部4a乃至4fと、基板6のショット領域の配列(ショットレイアウト)110と、基板6の歪みを求めるためのマーク101a乃至101fとの配置関係を示す概略図である。
3つの電子光学系1a乃至1cで基板6の全面を描画するために、電子光学系1a乃至1cは、Y軸方向に、等間隔となるように配置されている。マーク101a乃至101fは、X軸方向に沿った所定のスクライブラインに配置される。また、マーク101a乃至101fのそれぞれは、基板6の各ショット領域のスクライブラインにおいて、所定の間隔で配置されたマーク要素を含む。例えば、本実施形態では、マーク101a乃至101fのそれぞれは、ショット領域ごとに1つのマーク要素を含んでいる。
光検出部4a乃至4fは、Y軸方向において、ステージ2をY軸方向にステップ移動させるステップ動作におけるステップ移動の距離の正の整数倍の間隔をもって配置される。換言すれば、光検出部4a乃至4fは、1回又は複数回の第2動作によるステージ2のY軸方向への移動に応じて、描画動作において光検出部4a乃至4fのいずれかでマーク101a乃至101fを検出可能なように、Y軸方向に間隔をもって配置される。具体的には、光検出部4a乃至4fのそれぞれのY軸方向の位置を表すY座標Yが以下の式(1)を満たすように、光検出部4a乃至4fは、Y軸方向に間隔をもって配置される。
=Y+{(i−1)+k/n}×Sy ・・・(1)
ここで、n=光検出部の数、i=1〜n、k=正の整数、Sy=Y軸方向におけるショット領域のサイズ(幅)、Y=ショットレイアウトに応じた任意のY座標(即ち、任意のマークのY座標)である。
このような間隔で光検出部4a乃至4fを配置することで、光検出部4a乃至4fによるマーク101a乃至101fの検出を、実質的に、等時間間隔で、即ち、非走査方向であるY軸方向に一定距離だけステップ移動するごとに行うことができる。これに関しては、バーニアの考えで説明される。バーニアの考えは、空間周波数が異なる2つの繰り返しパターンの重なり具合を用いるものであって、例えば、ノギスの副尺に適用されている。
図2では、例えば、Sy=30mmとすると、6つの光検出部4a乃至4fが配置される(n=6)ため、式(1)から、光検出部4a乃至4fのY軸方向の間隔は35mmとなる。また、図2では、6つの光検出部4a乃至4fは、Y軸方向に等間隔で配置されている。
半導体デバイスの製造で用いられるショット領域のサイズSyは、現在主流の露光装置における露光範囲の制約(最大33mm×26mm)及び生産性から、33mm乃至27mm程度となることが多い。従って、6つの光検出部4a乃至4fは、Y軸方向に、35mm±3.5mmの範囲で駆動可能であることが好ましく、本実施形態では、駆動部19によって、光検出部4a乃至4fをY軸方向に駆動可能にしている。但し、光検出部4のY軸方向への駆動範囲は、光検出部4の数に応じて適宜設定される。
また、マーク101a乃至101fは、基板6の各ショット領域のスクライブラインに適宜配置すればよい。マーク101a乃至101fのそれぞれは、少なくとも2つのマーク要素を含み、1つのショット領域ごとに1つのマーク要素を含むとよい。また、マーク101a乃至101fのそれぞれが1つのショット領域に対して多数のマーク要素を含むことで、基板6の歪みを、より高精度に求めることが可能となる。
このように、ショットレイアウトに応じて、電子光学系1a乃至1c、光検出部4a乃至4f、及び、マーク101a乃至101fを配置することで、パターンの描画と同時にマーク101a乃至101fを光検出部4a乃至4fで検出することができる。
ここで、一般的に、基板6のショットサイズは自由に決められるため、マーク101a乃至101fを検出する際に、各ショット領域のスクライブラインに配置されたマークの中心と光検出部4の検出中心とが一致する(重なる)とは限らない。マークの中心と光検出部4の検出中心とが一致することが理想であるが、それらがずれている場合であってもマークの検出が可能となる構成について、図3を参照して説明する。
図3では、3つの光検出部4a乃至4cが配置されているものとする。描画装置100は、上述したように、描画動作とステップ動作とを交互に行って基板6を描画する。図3では、ステップ動作における1回のステップ移動による距離、即ち、1回の描画動作における描画幅、即ち、露光幅をLとする。また、光検出部4a乃至4cのそれぞれのY座標Yiが式(1)を満たすように、光検出部4a乃至4cは配置されている。この場合、光検出部4a、4b及び4cのそれぞれの検出視野4a−1、4b−1及び4c−1が露光幅Lと等しいサイズであれば、検出視野4a−1乃至4b−1はマーク101a乃至101bのY軸方向の幅の半分(50%)以上を必ず通過する。従って、光検出部4a乃至4cのそれぞれが露光幅Lと等しいサイズの検出視野を有し、マーク101a乃至101cのY軸方向の幅の少なくとも半分が検出視野に入ればマーク101a乃至101cを検出可能なように構成する。これにより、スクライブラインに配置されたマークの中心と光検出部の検出中心とがずれている場合であっても、マークの検出が可能となり、基板上の全てのマークを検出することができる。
図4を参照して、描画装置100における描画処理、即ち、電子線を用いて基板6にパターンを描画する処理を説明する。描画処理は、上述したように、描画動作とステップ動作とを含み、主制御部11が描画装置100の各部を統括的に制御することで行われる。
S101では、基板搬送装置によって基板6を描画装置100に搬入し、かかる基板6をステージ2に保持させる。S102では、通常のアライメントを行う。具体的には、基板6に設けられたアライメントマークを光検出部4a乃至4fで検出し、その検出値に基づいて、基板6のショット領域の配列(ショットレイアウト)を求める。そして、かかるショットレイアウトに基づいて、描画データにおける基板上の電子線の照射位置を補正する(即ち、補正データを生成する)。
S103では、S102で得られた補正データ、及び、基板6に描画すべきパターンのデータに基づいて、描画動作とステップ動作とを交互に行って基板6にパターンを描画する。また、後述するS109を経ている場合には、S102で得られた補正データに代えて、S109で得られた補正データ、及び、基板6に描画すべきパターンのデータに基づいて、基板6にパターンを描画する。
S104では、基板6へのパターンの描画が終了したかどうかを判定する。基板6へのパターンの描画が終了している場合には、描画処理を終了する。一方、基板6へのパターンの描画が終了していない場合には、S105に移行する。
S105では、ショットレイアウト110に基づいて、光検出部4a乃至4fのいずれかがスクライブラインに位置しているかどうか、即ち、光検出部4a乃至4fのいずれかでマーク101a乃至101fのいずれかを検出可能であるかどうかを判定する。光検出部4a乃至4fのいずれかでマーク101a乃至101fのいずれかを検出可能でない場合には、S103に移行する。一方、光検出部4a乃至4fのいずれかでマーク101a乃至101fのいずれかを検出可能である場合には、S106に移行する。
S106では、基板6へのパターンの描画(S103)に並行して、光検出部4a乃至4fのうちマーク101a乃至101fのいずれかを検出可能な光検出部で、その検出可能なマークを検出する。例えば、図5Aでは、光検出部4a乃至4fのうち、光検出部4aでマーク101aを検出可能であるため、光検出部4aでマーク101aを検出する。マーク101aは、1つのショット領域に対して1つのマーク要素を含んでいるため、9つのマーク要素のそれぞれを光検出部4aで検出する。
S107では、S106で検出されたマーク101a乃至101fのいずれかの位置情報(即ち、複数の光検出部のうちの少なくとも1つの出力)に基づいて、基板6の歪み量を算出する。例えば、図5Aでは、光検出部4aで検出されたマーク101a、即ち、マーク101aに含まれる9つのマーク要素を統計処理し、熱によるマーク101aの位置の変化から基板6の歪み量を求める。
S108では、S102で求めたショットレイアウトと、S107で算出された基板6の歪み量とに基づいて、基板6の歪みに起因する電子線の照射位置のずれを補正するための補正量を算出する。
S109では、S108で算出された補正量に基づいて、描画データにおける基板上の電子線の照射位置を補正する。換言すれば、アライメントマークを検出して得られる基板6のショット領域の配列と、S107で算出された歪み量とに基づいて、電子光学系1からの電子線の照射位置を補正するための補正データを生成する。かかる補正データは、その後の基板6へのパターンの描画(S103)に用いられる。
基板6へのパターンの描画が終了するまで、S103乃至S109が繰り返される。この際、本実施形態では、図5B乃至図5Fに示すように、光検出部4a乃至4fのいずれかでマーク101a乃至101fのいずれかを検出することができる。図5Bは、図5Aに示す状態から1回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に5mm(=Sy/n)だけステップ移動させた状態を示している。図5Bでは、光検出部4a乃至4fのうち、光検出部4bでマーク101bを検出可能であるため、光検出部4bでマーク101bを検出する。図5Cは、図5Aに示す状態から2回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に10mmだけステップ移動させた状態を示している。図5Cでは、光検出部4a乃至4fのうち、光検出部4cでマーク101cを検出可能であるため、光検出部4cでマーク101cを検出する。図5Dは、図5Aに示す状態から3回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に15mmだけステップ移動させた状態を示している。図5Dでは、光検出部4a乃至4fのうち、光検出部4dでマーク101dを検出可能であるため、光検出部4dでマーク101dを検出する。図5Eは、図5Aに示す状態から4回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に20mmだけステップ移動させた状態を示している。図5Eでは、光検出部4a乃至4fのうち、光検出部4eでマーク101eを検出可能であるため、光検出部4eでマーク101eを検出する。図5Fは、図5Aに示す状態から5回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に25mmだけステップ移動させた状態を示している。図5Fでは、光検出部4a乃至4fのうち、光検出部4fでマーク101fを検出可能であるため、光検出部4fでマーク101fを検出する。
本実施形態における描画処理では、基板6へのパターンを描画している間に生じる熱で基板6が歪むような場合であっても、かかる基板6の歪みに応じて、電子線の照射位置を補正することができるため、重ね合わせ精度の低下を抑制することができる。特に、上述したように、複数の光検出部4を、式(1)を満たすように配置することで、光検出部4によるマークの検出を、実質的に、等時間間隔で、即ち、Y軸方向に一定距離だけステップ移動するごとに行うことができるため、重ね合わせ精度の向上に寄与する。
本実施形態の描画装置100によれば、通常のアライメントの後に基板6が歪んだとしても、パターンの描画に並行して基板6の歪みを求めるためのマークを検出し、基板6の歪みに応じて電子線の照射位置を補正することができる。従って、描画装置100は、基板6への電子線の照射に関して高精度な位置精度を得ることが可能であり、重ね合わせ精度の低下を抑制することができる。
また、図5A乃至図5Fでは、光検出部4a乃至4fをY軸方向に等間隔で配置し、ステージ2(基板6)のステップ移動の正の整数回ごとにマーク101a乃至101fを順次検出している。また、光検出部4a乃至4fは、X軸方向に関して異なる2種類の位置に交互に配置されている。但し、光検出部4a乃至4fの配置は、図5A乃至図5Fに示すような配置に限定されるものではない。例えば、マークの検出を、実質的に、等時間間隔で、且つ、ショットレイアウトにおいてある程度離れたショット領域のスクライブラインに配置されたマークを検出するように、光検出部4a乃至4fを配置してもよい。
図6A乃至図6Fでは、光検出部4a乃至4fは、Y軸方向に等間隔で配置されていない。光検出部4aを基準として、光検出部4bは、Y軸方向において、光検出部4aからの距離が40mmとなるように(即ち、光検出部4aと光検出部4bとのY軸方向の間隔が40mmとなるように)配置されている。また、光検出部4aを基準として、光検出部4cは、Y軸方向において、光検出部4aからの距離が80mmとなるように(即ち、光検出部4bと光検出部4cとのY軸方向の間隔が40mmとなるように)配置されている。また、光検出部4aを基準として、光検出部4dは、Y軸方向において、光検出部4aからの距離が95mmとなるように(即ち、光検出部4cと光検出部4dとのY軸方向の間隔が15mmとなるように)配置されている。また、光検出部4aを基準として、光検出部4eは、Y軸方向において、光検出部4aからの距離が105mmとなるように(即ち、光検出部4dと光検出部4eとのY軸方向の間隔が10mmとなるように)配置されている。また、光検出部4aを基準として、光検出部4fは、Y軸方向において、光検出部4aからの距離が145mmとなるように(即ち、光検出部4eと光検出部4fとのY軸方向の間隔が40mmとなるように)配置されている。
上述したように、基板6へのパターンの描画が終了するまで、S103乃至S109を繰り返すことを考えると、図6A乃至図6Fに示すように、光検出部4a乃至4fのいずれかでマーク101a乃至101fのいずれかを検出することができる。例えば、図6Aでは、光検出部4a乃至4fのうち、光検出部4aでマーク101aを検出可能であるため、光検出部4aでマーク101aを検出する。図6Bは、図6Aに示す状態から1回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に5mm(=Sy/n)だけステップ移動させた状態を示している。図6Bでは、光検出部4a乃至4fのうち、光検出部4dでマーク101dを検出可能であるため、光検出部4dでマーク101dを検出する。マーク101dは、マーク101aに対して、Y軸方向に3ショット領域だけ離れたスクライブラインに配置されている。図6Cは、図6Aに示す状態から2回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に10mmだけステップ移動させた状態を示している。図6Cでは、光検出部4a乃至4fのうち、光検出部4bでマーク101bを検出可能であるため、光検出部4bでマーク101bを検出する。図6Dは、図6Aに示す状態から3回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に15mmだけステップ移動させた状態を示している。図6Dでは、光検出部4a乃至4fのうち、光検出部4eでマーク101eを検出可能であるため、光検出部4eでマーク101eを検出する。図6Eは、図6Aに示す状態から4回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に20mmだけステップ移動させた状態を示している。図6Eでは、光検出部4a乃至4fのうち、光検出部4cでマーク101cを検出可能であるため、光検出部4cでマーク101cを検出する。図6Fは、図6Aに示す状態から5回のステップ動作を行った状態、即ち、ステージ2(基板6)をY軸方向に25mmだけステップ移動させた状態を示している。図5Fでは、光検出部4a乃至4fのうち、光検出部4fでマーク101fを検出可能であるため、光検出部4fでマーク101fを検出する。
図6A乃至図6Fに示すような光検出部4a乃至4fの配置では、2つの異なるスクライブラインに配置されたマークを検出することで、非走査方向であるY軸方向に関する基板6の倍率成分も求めることができる。但し、この場合には、2つの異なるスクライブラインに配置されたマークを検出する間に、基板6の倍率成分は大きく変化しないという限定条件が必要となる。
また、本実施形態では、マーク101a乃至101fが1つのショット領域の上下のスクライブラインに配置されている。但し、実際には、図7に示すように、1つのショット領域に4つのチップ領域が形成されている(所謂、「1ショット4チップ」)場合がある。このような場合には、チップ領域の間に形成されているスクライブラインに、マーク101a乃至101fを配置すればよい。そして、Y軸方向におけるショット領域のサイズSyをY軸方向におけるチップ領域のサイズ(幅)に代えて、式(1)を満たすように、光検出部4a乃至4fを配置すればよい。
描画装置100は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。物品の製造方法は、基板に塗布された感光剤に描画装置100を用いて潜像パターンを形成する工程(パターン形成を基板に行う工程)と、かかる工程で潜像パターンを形成された基板を現像する工程(パターン形成を行われた基板を現像する工程)とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含みうる。本実施形態の物品の製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されないことはいうまでもなく、その要旨の範囲内で種々の変形及び変更が可能である。
100:描画装置 4:光検出部 6:基板 7:電子系制御部 8:光系制御部 9:位置算出部 10:ステージ制御部 11:主制御部

Claims (12)

  1. パターン形成をビームで基板に行うリソグラフィ装置であって、
    前記ビームを前記基板に照射する光学系と、
    前記基板上のマークをそれぞれが検出する複数の検出部と、
    前記基板を第1方向に走査移動させながら前記光学系によってビームを前記基板に照射する第1動作と、前記第1方向とは異なる第2方向に前記基板をステップ移動させる第2動作とが交互に行われるように前記パターン形成を制御する制御部と、を有し、
    前記制御部は、前記第1動作において、前記複数の検出部のうち少なくとも1つに前記マークを検出させ、
    前記複数の検出部は、前記第2方向において、前記ステップ移動の距離の正の整数倍の間隔をもって配置されていることを特徴とするリソグラフィ装置。
  2. 前記複数の検出部は、前記第2方向において等間隔となるように配置されていることを特徴とする請求項1に記載のリソグラフィ装置。
  3. 前記複数の検出部は、前記ステップ移動の正の整数回ごとに前記マークを順次検出するように配置されていることを特徴とする請求項1又は2に記載のリソグラフィ装置。
  4. 前記複数の検出部は、前記第1方向に関して異なる2種類の位置に交互に配置されていることを特徴とする請求項1乃至3のうちいずれか1項に記載のリソグラフィ装置。
  5. 前記複数の検出部のそれぞれは、前記第2方向において、前記距離だけの視野を有し、前記マークの少なくとも半分を前記視野に入れて前記マークを検出するように構成されていることを特徴とする請求項1乃至4のうちいずれか1項に記載のリソグラフィ装置。
  6. 前記間隔を変更するための駆動部を有することを特徴とする請求項1乃至5のうちいずれか1項に記載のリソグラフィ装置。
  7. 前記制御部は、前記複数の検出部のうちの少なくとも1つの出力に基づいて前記基板の歪み量を求めることを特徴とする請求項1乃至6のうちいずれか1項に記載のリソグラフィ装置。
  8. 前記基板の歪み量は、前記基板の倍率に関する成分を含むことを特徴とする請求項1乃至7のうちいずれか1項に記載のリソグラフィ装置。
  9. パターン形成をビームで基板に行うリソグラフィ装置であって、
    前記ビームを前記基板に照射する光学系と、
    前記基板上のマークをそれぞれが検出する複数の検出部と、
    前記基板を第1方向に走査移動させながら前記光学系によってビームを前記基板に照射する第1動作と、前記第1方向とは異なる第2方向に前記基板をステップ移動させる第2動作とが交互に行われるように前記パターン形成を制御する制御部と、を有し、
    前記制御部は、前記第1動作において、前記複数の検出部のうち少なくとも1つに前記マークを検出させ、
    前記複数の検出部は、正の整数回の前記ステップ移動ごとに前記複数の検出部のうちいずれかで前記マークを検出するように前記第2方向において間隔をもって配置されていることを特徴とするリソグラフィ装置。
  10. 前記マークは、前記基板上のスクライブ領域の内に形成されていることを特徴とする請求項1乃至9のうちいずれか1項に記載のリソグラフィ装置。
  11. 前記光学系は、前記ビームとして荷電粒子線を前記基板に照射することを特徴とする請求項1乃至10のうちいずれか1項に記載のリソグラフィ装置。
  12. 請求項1乃至11のうちいずれか1項に記載のリソグラフィ装置を用いてパターン形成を基板に行う工程と、
    前記工程で前記パターン形成を行われた前記基板を現像する工程と、
    を含むことを特徴とする物品の製造方法。
JP2014234002A 2014-11-18 2014-11-18 リソグラフィ装置、及び物品の製造方法 Pending JP2016100366A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014234002A JP2016100366A (ja) 2014-11-18 2014-11-18 リソグラフィ装置、及び物品の製造方法
US14/940,349 US9606460B2 (en) 2014-11-18 2015-11-13 Lithography apparatus, and method of manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014234002A JP2016100366A (ja) 2014-11-18 2014-11-18 リソグラフィ装置、及び物品の製造方法

Publications (1)

Publication Number Publication Date
JP2016100366A true JP2016100366A (ja) 2016-05-30

Family

ID=55961565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014234002A Pending JP2016100366A (ja) 2014-11-18 2014-11-18 リソグラフィ装置、及び物品の製造方法

Country Status (2)

Country Link
US (1) US9606460B2 (ja)
JP (1) JP2016100366A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6188382B2 (ja) * 2013-04-03 2017-08-30 キヤノン株式会社 インプリント装置および物品の製造方法
JP6978926B2 (ja) * 2017-12-18 2021-12-08 キヤノン株式会社 計測方法、計測装置、露光装置、および物品製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228351A (ja) 1999-02-09 2000-08-15 Nikon Corp 荷電粒子線転写露光方法及びそれに用いるマスク
AU2001294275A1 (en) * 2000-10-19 2002-04-29 Nikon Corporation Position detection method, position detection device, exposure method, exposure system, control program, and device production method
CN1795536A (zh) * 2003-05-28 2006-06-28 株式会社尼康 位置信息测量方法及装置、和曝光方法及装置
US7425703B2 (en) * 2004-02-20 2008-09-16 Ebara Corporation Electron beam apparatus, a device manufacturing method using the same apparatus, a pattern evaluation method, a device manufacturing method using the same method, and a resist pattern or processed wafer evaluation method
US7868300B2 (en) * 2005-09-15 2011-01-11 Mapper Lithography Ip B.V. Lithography system, sensor and measuring method
JP2007115758A (ja) 2005-10-18 2007-05-10 Nikon Corp 露光方法及び露光装置
US7897942B1 (en) 2007-12-20 2011-03-01 Kla-Tencor Corporation Dynamic tracking of wafer motion and distortion during lithography
JP2009206458A (ja) * 2008-02-29 2009-09-10 Canon Inc 検出装置、露光装置およびデバイス製造方法
JP6039917B2 (ja) * 2012-05-22 2016-12-07 キヤノン株式会社 インプリント装置、インプリント方法及び物品の製造方法

Also Published As

Publication number Publication date
US20160139510A1 (en) 2016-05-19
US9606460B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
JP6812450B2 (ja) パターン形成プロセスを制御する方法、リソグラフィ装置、メトロロジ装置リソグラフィックセル、および関連するコンピュータプログラム
TWI229399B (en) Determining a corrected position from a measured position of an alignment mark
US20150022797A1 (en) Lithography apparatus, lithography method, and article manufacturing method
JP2014120746A (ja) 描画装置、および物品の製造方法
JP2014168031A (ja) リソグラフィ装置、リソグラフィ方法及び物品製造方法
JP6462614B2 (ja) パターン精度検出装置及び加工システム
JP2016001708A (ja) リソグラフィ装置、及び物品の製造方法
JP2015177032A (ja) リソグラフィ装置及び物品の製造方法
TW200839842A (en) Position measurement apparatus, imaging apparatus, exposure apparatus, and device manufacturing method
TWI649643B (zh) 判定度量衡系統之最佳操作參數設定之方法與設備及判定基板柵格之方法
TWI516858B (zh) 使用帶電粒子束在基板上實施繪圖的繪圖裝置及物件之製造方法
JP2016100366A (ja) リソグラフィ装置、及び物品の製造方法
US9257262B2 (en) Lithography apparatus, lithography method, and method of manufacturing article
JP2014216631A (ja) 描画装置、及び物品の製造方法
KR101755088B1 (ko) 패턴 형성 방법, 리소그래피 장치 및 시스템, 및 물품 제조 방법
JP2013145871A (ja) リソグラフィー装置および方法、ならびに物品製造方法
JP6798017B2 (ja) 基板にわたってパラメータ変動を修正する処理装置及び方法
JP7309516B2 (ja) 露光装置、物品の製造方法、露光方法、及び記録媒体
JP6371602B2 (ja) 露光装置、露光方法、および物品の製造方法
JP6338386B2 (ja) リソグラフィ装置、及び物品の製造方法
US10429747B2 (en) Hybrid laser and implant treatment for overlay error correction
TWI810649B (zh) 樣品檢測裝置
JP2016015470A (ja) リソグラフィ装置、及び物品の製造方法
CN113495433A (zh) 曝光方法、曝光装置及半导体装置的制造方法
TW507271B (en) Electron beam exposure apparatus, electron beam correction method, electron beam exposure method, and method for manufacturing semiconductor device