JP2016092331A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2016092331A
JP2016092331A JP2014228117A JP2014228117A JP2016092331A JP 2016092331 A JP2016092331 A JP 2016092331A JP 2014228117 A JP2014228117 A JP 2014228117A JP 2014228117 A JP2014228117 A JP 2014228117A JP 2016092331 A JP2016092331 A JP 2016092331A
Authority
JP
Japan
Prior art keywords
region
type
drift layer
layer
breakdown voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014228117A
Other languages
English (en)
Other versions
JP6606819B2 (ja
Inventor
慎一郎 松永
Shinichiro Matsunaga
慎一郎 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014228117A priority Critical patent/JP6606819B2/ja
Publication of JP2016092331A publication Critical patent/JP2016092331A/ja
Application granted granted Critical
Publication of JP6606819B2 publication Critical patent/JP6606819B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】耐圧を向上させることができる半導体装置を提供すること。【解決手段】活性領域21の外側に、活性領域21の周囲を囲むように周辺耐圧構造部22が設けられている。活性領域21には、MOSゲート構造が設けられている。n-型ドリフト層2の内部には、p+型ベース層4側の表面層に、少数キャリアの障壁となるn型CS領域3が設けられている。n型CS領域3は、活性領域21に設けられており、周辺耐圧構造部22には設けられていない。このため、周辺耐圧構造部22におけるn-型ドリフト層2の不純物濃度は高耐圧を実現可能な程度に低い状態になっている。この不純物濃度の低いn-型ドリフト層2に、第1,2JTE領域14,15からなるJTE構造が設けられている。【選択図】図2

Description

この発明は、半導体装置に関する。
絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)は、伝導度変調効果によりオン抵抗が低いという利点を有する。従来、伝導度変調効果による低オン抵抗化を効率よく図るために、ドリフト層の内部の基体おもて面側に、ドリフト層と同導電型で、かつドリフト層よりも不純物濃度の高いキャリアストレージ(キャリア蓄積(CS:Carrier Storage))層を設けたIGBTが公知である。キャリアストレージ層が少数キャリアの障壁となり、少数キャリアの蓄積効果が高くなるため、コレクタ−エミッタ間の電流密度が増大され、伝導度変調効果が高くなる。
また、絶縁ゲート型電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)においても、ドリフト層の内部の基体おもて面側でかつチャネル付近の部分の不純物濃度を高くすることで低オン抵抗化を図る技術が公知である。MOSFETでは、ドリフト層の内部の基体おもて面側に設けられたCS層がキャリアスプレッド(キャリア拡散(CS:Carrier Spread))層として機能し、いわゆるJFET(Junction FET)抵抗が低減され、オン抵抗が低下する。以下、キャリアストレージ層およびキャリアスプレッド層をまとめてCS層とする。
次に、従来のCS層を備えた半導体装置の構造について、プレーナゲート構造のIGBTを例に説明する。図9は、従来のCS層を備えた半導体装置の周辺耐圧構造部の構造を示す断面図である。周辺耐圧構造部122は、活性領域121の外側に配置され、活性領域121の周囲を囲む領域であり、n-型ドリフト層102の、基体おもて面側の電界を緩和し耐圧を保持する機能を有する。活性領域121は、オン状態のときに電流が流れる領域である。図9に示すように、従来の半導体装置は、p+型半導体基板101のおもて面上にエピタキシャル成長によりn-型ドリフト層102、n型CS層103およびp+型ベース層104層を順に積層してなるエピタキシャル基体を用いて構成される。すなわち、n型CS層103は、n-型ドリフト層102とp+型ベース層104との間に設けられている。
また、n型CS層103は、活性領域121から周辺耐圧構造部122にわたって設けられている。周辺耐圧構造部122には、p+型ベース層104を深さ方向に貫通してn型CS層103に達する溝113が設けられている。n型CS層103の、溝113の底面に露出する部分には、p+型ベース層104の端部に隣接して、接合終端(JTE:Junction Termination Extension)構造が設けられている。JTE構造は、p+型ベース層104よりも不純物濃度の低いp型領域(第1,2JTE領域114,115)からなる。符号107,110,112は、それぞれp++型コンタクト領域、層間絶縁膜およびコレクタ電極である。
このようにCS層を設けることで低オン抵抗化を図った装置として、シリコン(Si)よりもバンドギャップが広い半導体(以下、ワイドバンドギャップ半導体とする)を用いて作製(製造)されたトレンチゲート構造のMOS型半導体装置が提案されている(例えば、下記特許文献1(第0018〜0019段落、第5図)、下記特許文献2(第0016〜0017段落、第1,2図)および下記特許文献3(第14頁32行目〜第15頁14行目、第20図)参照。)。下記特許文献1〜3では、ドリフト層の内部の、ベース層との境界付近に、トレンチ底部よりも基体おもて面から浅い深さで、エピタキシャル層からなるCS層が設けられている。
特開2008−16747号公報 特許第5444608号公報 特許第5054255号公報
特に、炭化珪素(SiC)半導体などのワイドバンドギャップ半導体を用いて半導体装置を作製(製造)する場合、上記特許文献1〜3のように不純物濃度および厚さの制御が比較的容易なエピタキシャル成長によりCS層を堆積することが一般的であるが、この場合、活性領域の周囲を囲む周辺耐圧構造部にもCS層が形成される。しかしながら、周辺耐圧構造部にCS層が形成された場合、CS層の不純物濃度はドリフト層の不純物濃度よりも1桁〜2桁程度高くなる場合があるため、周辺耐圧構造部に設けたJTE構造に悪影響を与えて、周辺耐圧構造部の最大耐圧が低下する虞がある。そして、周辺耐圧構造部の最大耐圧が低下することで、素子全体の耐圧が低下してしまう。
この発明は、上述した従来技術による問題点を解消するため、耐圧を向上させることができる半導体装置を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、電流が流れる活性領域の外側に周辺耐圧構造部を有する半導体装置において、次の特徴を有する。第1主面と第2主面とを有する第1導電型のドリフト層が設けられている。前記ドリフト層の第1主面側に、素子構造が設けられている。前記ドリフト層の内部の前記素子構造側に、前記ドリフト層よりも不純物濃度の高い第1導電型の高濃度領域が選択的に設けられている。前記高濃度領域は、前記活性領域に設けられ、前記周辺耐圧構造部には設けられていない。
また、この発明にかかる半導体装置は、上述した発明において、前記高濃度領域は、前記ドリフト層の第2主面側から第1主面側へ向って移動する少数キャリアの移動を抑制するバリア領域であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記高濃度領域は、前記ドリフト層の第1主面側から第2主面側へ向って移動するキャリアを前記ドリフト層の第1主面に平行な方向に拡げるスプレッド領域であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、さらに次の特徴を有する。前記素子構造は、第2導電型半導体領域、第1導電型半導体領域、ゲート絶縁膜およびゲート電極を有する。前記第2導電型半導体領域は、前記ドリフト層の第1主面側に設けられている。前記第1導電型半導体領域は、前記第2導電型半導体領域の内部に設けられている。前記ゲート絶縁膜は、前記第2導電型半導体領域の、前記ドリフト層と前記第1導電型半導体領域の間の領域に接して設けられている。前記ゲート電極は、前記ゲート絶縁膜を挟んで前記第1導電型半導体領域の反対側に設けられている。そして、前記高濃度領域は、前記第2導電型半導体領域との境界付近に設けられている。
上述した発明によれば、周辺耐圧構造部におけるドリフト層の第1主面側の不純物濃度を、高耐圧を実現可能な程度に低い状態にすることができる。これにより、不純物濃度の低いドリフト層にJTE構造を設けることができ、周辺耐圧構造部の最大耐圧が低下することを防止することができる。また、実施の形態によれば、周辺耐圧構造部の最大耐圧が低下することを防止することができるため、活性領域よりも周辺耐圧構造部の最大耐圧を高くすることができる。
本発明にかかる半導体装置によれば、耐圧を向上させることができるという効果を奏する。
実施の形態にかかる半導体装置の活性領域の構造を示す断面図である。 実施の形態にかかる半導体装置の周辺耐圧構造部の構造を示す断面図である。 実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。 従来のCS層を備えた半導体装置の周辺耐圧構造部の構造を示す断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態)
実施の形態にかかる半導体装置の構造について、プレーナゲート構造のIGBTを例に説明する。図1は、実施の形態にかかる半導体装置の活性領域の構造を示す断面図である。図2は、実施の形態にかかる半導体装置の周辺耐圧構造部の構造を示す断面図である。図1,2に示すように、実施の形態にかかる半導体装置は、オン状態のときに電流が流れる活性領域21の外側に、活性領域21の周囲を囲むように周辺耐圧構造部22を有する。周辺耐圧構造部22は、n-型ドリフト層2の、基体おもて面(第1主面)側の電界を緩和し耐圧を保持する機能を有する。また、実施の形態にかかる半導体装置は、p+型コレクタ層となるp+型半導体基板1のおもて面上にエピタキシャル成長によりn-型ドリフト層2およびp+型ベース層4を順に積層してなるエピタキシャル基体(半導体チップ)を用いて構成される。
活性領域21において、n-型ドリフト層2の内部には、p+型ベース層4側の表面層に、n型拡散領域からなるn型CS領域(高濃度領域)3が設けられている。n型CS領域3は、n-型ドリフト層2上に堆積されたp+型ベース層4に接するように設けられている。すなわち、n型CS領域3は、n-型ドリフト層2の内部の、p+型ベース層4との境界付近に、p+型ベース層4の下側(n-型ドリフト層2側)を覆うように設けられている。また、n型CS領域3は、活性領域21のみに設けられており、周辺耐圧構造部22には設けられていない。すなわち、n-型ドリフト層2の内部にn型CS領域3が設けられていることにより、活性領域21でのみ、n-型ドリフト層2の基体おもて面側の不純物濃度が高くなっている。
n型CS領域3は、オン状態のときに少数キャリア(正孔)の障壁(バリア)となる。このため、n型CS領域3は、コレクタ側からn-型ドリフト層2に注入される少数キャリアのエミッタ側への引き抜きを抑制し、少数キャリアの蓄積効果を高めるキャリアストレージ(キャリア蓄積)領域として機能する。このため、n型CS領域3を設けることで、n-型ドリフト層2の電流密度が増大され、伝導度変調効果を高めることができる。n型CS領域3は、p+型ベース層4および後述するJFET領域5の下側を覆うように、基体おもて面に平行に例えば活性領域21全体に延在していてもよい。
エピタキシャル基体のおもて面側(p+型ベース層4側)には、MOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)構造(素子構造)が設けられている。MOSゲートは、p+型ベース層4、JFET領域5、n+型エミッタ領域(第1導電型半導体領域)6、p++型コンタクト領域7、ゲート絶縁膜8およびゲート電極9からなる。具体的には、p+型ベース層4の内部には、p+型ベース層4を深さ方向に貫通してn型CS領域3に達するn型のJFET領域5が設けられている。JFET領域5の不純物濃度は、n-型ドリフト層2の不純物濃度よりも高い。JFET領域5は、JFET抵抗を低減させ、オン抵抗を低下させる機能を有する。p+型ベース層4の、JFET領域5以外の部分(第2導電型半導体領域)に、ゲート電極9に沿ってチャネルが形成される。
また、p+型ベース層4の内部には、n+型エミッタ領域6およびp++型コンタクト領域7がそれぞれ選択的に設けられている。n+型エミッタ領域6およびp++型コンタクト領域7は、JFET領域5と離して配置されている。p++型コンタクト領域7は、n+型エミッタ領域6よりもJFET領域5から離れた位置に配置され、かつn+型エミッタ領域6に接する。p+型ベース層4の、JFET領域5とn+型エミッタ領域6とに挟まれた部分の表面上には、JFET領域5の表面からn+型エミッタ領域6の表面にわたってゲート絶縁膜8が設けられている。ゲート絶縁膜8の表面上には、ゲート電極9が設けられている。ゲート電極9を覆うように層間絶縁膜10が設けられている。
層間絶縁膜10は、エピタキシャル基体のおもて面上に、活性領域21から周辺耐圧構造部22にわたって設けられている。層間絶縁膜10を深さ方向に貫通するコンタクトホールには、n+型エミッタ領域6およびp++型コンタクト領域7が露出されている。エミッタ電極11は、層間絶縁膜10を深さ方向に貫通するコンタクトホールを介してn+型エミッタ領域6およびp++型コンタクト領域7に接するとともに、層間絶縁膜10によってゲート電極9と電気的に絶縁されている。エピタキシャル基体の裏面(すなわちp+型半導体基板1の裏面)には、活性領域21から周辺耐圧構造部22にわたってコレクタ電極12が設けられている。
周辺耐圧構造部22において、エピタキシャル基体のおもて面側には、p+型ベース層4よりも不純物濃度の低いp型領域からなるJTE構造が設けられている。JTE構造は、周辺耐圧構造部22における電界を緩和する機能を有する。上述したように、周辺耐圧構造部22にはn型CS領域3が設けられていないため、周辺耐圧構造部22におけるn-型ドリフト層2の不純物濃度は高耐圧を実現可能な程度に低い状態になっている。JTE構造は、この不純物濃度の低いn-型ドリフト層2に設けられる。JTE構造は、例えば、活性領域21側から外側に向う方向に、不純物濃度の異なるp型領域(以下、第1JTE領域とする)14およびp-型領域(以下、第2JTE領域とする)15を互いに接するように並列させてなるダブルゾーンJTE構造であってもよい。
具体的には、周辺耐圧構造部22には、p+型ベース層4を深さ方向に貫通してn-型ドリフト層2に達する溝13が設けられ、基体おもて面のほぼ全面にn-型ドリフト層2が露出されている。このn-型ドリフト層2の、溝13の底面に露出する部分の表面層に、例えば活性領域21を囲む同心円状に第1,2JTE領域14,15が選択的に設けられている。第1JTE領域14は、周辺耐圧構造部22の最も内側に設けられ、n型CS領域3およびp+型ベース層4の端部に接する。第2JTE領域15は、第1JTE領域14よりも外側に設けられ、第1JTE領域14に接する。
次に、実施の形態にかかる半導体装置の製造方法ついて、例えば耐圧13kVクラスのIGBTを作製(製造)する場合を例に説明する。図3〜8は、実施の形態にかかる半導体装置の製造途中の状態を示す断面図である。図3〜8には、(a)に活性領域21の状態を示し、(b)周辺耐圧構造部22の状態を示す。また、図3,5〜7には、イオン注入マスクの開口部にのみイオン注入を示す矢印を図示する。まず、図3に示すように、出発基板として、p+型コレクタ層となるp+型半導体基板(半導体ウエハ)1を用意する。p+型半導体基板1の不純物濃度は、例えば1×1018/cm3程度であってもよい。次に、エピタキシャル成長により、p+型半導体基板1のおもて面にn-型ドリフト層2を堆積する。n-型ドリフト層2の不純物濃度は、例えば1×1015/cm3程度であってもよい。
次に、n-型ドリフト層2の表面に、活性領域21の形成領域に対応する部分を開口したイオン注入用マスク31を形成する。すなわち、イオン注入用マスク31によって周辺耐圧構造部22の形成領域に対応する部分を覆う。次に、このイオン注入用マスクをマスクとしてn型不純物のイオン注入32を行い、n-型ドリフト層2の表面層の不純物濃度を高くすることで、n-型ドリフト層2の表面から例えば2μm程度の深さのn型CS領域3を形成する。n型CS領域3の不純物濃度は、例えば1×1016/cm3以上1×1017/cm3以下程度であってもよい。このとき、周辺耐圧構造部22はイオン注入用マスク31によって覆われているため、周辺耐圧構造部22にはn型CS領域3が形成されない。次に、イオン注入用マスク31を除去する。
次に、図4に示すように、エピタキシャル成長により、n-型ドリフト層2およびn型CS領域3の表面にp+型ベース層4を堆積する。ここまでの工程により、p+型半導体基板1上にn-型ドリフト層2およびp+型ベース層4を順に積層してなるエピタキシャル基体(エピタキシャルウエハ)が形成される。次に、図5に示すように、p+型ベース層4の表面に、JFET領域5の形成領域に対応する部分を開口したイオン注入用マスク33を形成する。次に、イオン注入用マスク33をマスクとしてn型不純物のイオン注入34を行い、p+型ベース層4の一部をn型に反転させて(打ち返して)JFET領域5を形成する。次に、イオン注入用マスク33を除去する。
次に、図6に示すように、n+型エミッタ領域6の形成領域に対応する部分を開口したイオン注入用マスク35を形成する。イオン注入用マスク35をマスクとしてn型不純物のイオン注入36を行い、p+型ベース層4の表面層にn+型エミッタ領域6を形成する。次に、イオン注入用マスク35を除去する。次に、図7に示すように、p++型コンタクト領域7の形成領域に対応する部分を開口したイオン注入用マスク37を形成する。イオン注入用マスク37をマスクとしてp型不純物のイオン注入38を行い、p+型ベース層4の表面層にp++型コンタクト領域7を形成する。次に、イオン注入用マスク37を除去する。
また、p+型ベース層4の形成後、後述する活性化アニール前に、所定のタイミングで周辺耐圧構造部22にJTE構造を形成する。具体的には、例えば、p+型ベース層4の表面に、周辺耐圧構造部22の形成領域に対応する部分を開口したエッチング用マスク(不図示)を形成する。このエッチング用マスクをマスクとしてエッチングを行い、p+型ベース層4の周辺耐圧構造部22に対応する部分を除去(すなわち周辺耐圧構造部22に溝13を形成)し、周辺耐圧構造部22にn-型ドリフト層2を露出させる。このエッチングにおいて、p+型ベース層4とともにn-型ドリフト層2の表面層を除去し、例えば溝13の活性領域21側にn型CS領域3を露出させてもよい。そして、p型不純物を選択的にイオン注入する工程を繰り返し行い、n-型ドリフト層2の表面層に第1,2JTE領域14,15を選択的に形成すればよい(図2,8(b)参照)。
上述したJFET領域5、n+型エミッタ領域6、p++型コンタクト領域7および第1,2JTE領域14,15を形成するための各イオン注入の順序は種々変更可能である。次に、各イオン注入によってそれぞれ形成された拡散領域を活性化させるための活性化アニール(熱処理)を行う。なお、図5〜8では、n+型エミッタ領域6、p++型コンタクト領域7および第1,2JTE領域14,15の順に形成される場合を例に図示している。次に、図8に示すように、エピタキシャル基体のおもて面(p+型ベース層4側の面)を熱酸化してゲート絶縁膜8を形成する。次に、ゲート絶縁膜8上にゲート電極9として例えば多結晶シリコン(poly−Si)層を形成し、パターニングする。
次に、ゲート電極9を覆うように層間絶縁膜10を形成し、パターニングしてから熱処理(リフロー)する。層間絶縁膜10のパターニング時、コンタクトホールを形成するとともに、コンタクトホールに露出されたゲート絶縁膜8も除去して、n+型エミッタ領域6およびp++型コンタクト領域7を露出させる。次に、例えばスパッタ法により、コンタクトホールを埋め込むようにエミッタ電極11を形成する。次に、p+型半導体基板1の裏面にコレクタ電極12を形成する。次に、エピタキシャル基体のおもて面にパッシベーション保護膜を形成する。その後、エピタキシャル基体をチップ状に切断(ダイシング)することで、図1,2に示すIGBTが完成する。
また、上述した実施の形態にかかる半導体装置の製造方法では、p+型ベース層4をエピタキシャル成長によって形成する場合を例に説明しているが、イオン注入によりp+型ベース層4を形成してもよい。例えば、n型CS領域3の形成後、n型CS領域3の形成に用いた同一のイオン注入用マスクをマスクとしてp型不純物のイオン注入を行い、n型CS領域3の表面層にp+型ベース層4を形成すればよい。この場合、周辺耐圧構造部22において、基体おもて面にn-型ドリフト層2が露出された状態となるため、JTE構造を形成する際に溝13を形成しなくてもよい。
また、n型CS領域3をイオン注入によって形成する場合を例に説明しているが、エピタキシャル成長によりn-型ドリフト層2の表面にn型CS領域3となるn型エピタキシャル層を堆積した後、このn型エピタキシャル層の、活性領域21と周辺耐圧構造部22との境界から外側の部分を除去してもよい。この場合、エピタキシャル成長によりn型CS領域3となるn型エピタキシャル層を堆積した後、例えば、このn型エピタキシャル層の表面に、活性領域21の形成領域に対応する部分を覆うエッチング用マスクを形成する。そして、このエッチング用マスクをマスクとしてエッチングを行い、n型エピタキシャル層の周辺耐圧構造部22に対応する部分を除去すればよい。
また、本発明を適用してプレーナゲート構造のMOSFETを作製することも可能である。この場合、上述した実施の形態にかかる半導体装置の製造方法において、p+型半導体基板1に代えて、出発基板としてn+型ドレイン層となるn+型半導体基板(半導体ウエハ)を用意すればよい。本発明を適用したMOSFETの製造方法の出発基板以外の条件は、上述した図1,2に示すIGBTの製造方法と同様である。本発明を適用したMOSFETの断面構造は、図1,2に示すIGBTにおいてp+型半導体基板1に代えてn+型半導体基板を設けた場合と同様である。n+型エミッタ領域6およびエミッタ電極11はそれぞれn+型ソース領域およびソース電極となる。n型CS領域3は、オン状態のときにn-型ドリフト層2内をソース側からドレイン側へ向って移動するキャリア(電子)を横方向(基体おもて面に平行な方向)に拡げるキャリアスプレッド(キャリア拡散)領域として機能する。
(実施例)
上述した実施の形態にかかる半導体装置の製造方法にしたがい、n型CS領域3を備えた耐圧13kVクラスのプレーナゲート構造のIGBTを作製し(以下、実施例とする)、周辺耐圧構造部22の最大耐圧を測定した。比較として、n型CS層103を備えた従来のプレーナゲート構造のIGBT(図9参照)を作製し(以下、従来例とする)、周辺耐圧構造部122の最大耐圧を測定した。すなわち、従来例は、活性領域121から周辺耐圧構造部122にわたって設けられたn型CS層103を備える。従来例のn型CS層103以外の構成は実施例と同様である。その結果、従来例の周辺耐圧構造部122の最大耐圧は15.5kVであることが確認された。一方、実施例の周辺耐圧構造部22の最大耐圧は18kVであり、従来例よりも周辺耐圧構造部22の最大耐圧を向上させることができることが確認された。
以上、説明したように、実施の形態によれば、活性領域にのみn型CS領域を設けることで、周辺耐圧構造部におけるn-型ドリフト層の基体おもて面側の不純物濃度を、高耐圧を実現可能な程度に低い状態にすることができる。これにより、不純物濃度の低いn-型ドリフト層にJTE構造を設けることができ、周辺耐圧構造部の最大耐圧が低下することを防止することができる。したがって、上述した従来例よりも周辺耐圧構造部の最大耐圧を向上させることができ、素子全体の耐圧を向上させることができる。また、実施の形態によれば、周辺耐圧構造部の最大耐圧が低下することを防止することができるため、活性領域よりも周辺耐圧構造部の最大耐圧を高くすることができる。また、実施の形態によれば、活性領域におけるn-型ドリフト層の内部の、p+型ベース層との境界付近にn型CS領域を設けることができるため、従来と同様に低オン抵抗化を図ることができる。すなわち、IGBTにおいては、n型CS領域がキャリアストレージ領域として機能し、伝導度変調効果を高めて、オン抵抗を低下させることができる。MOSFETにおいては、n型CS領域がキャリアスプレッド領域として機能し、JFET抵抗が低減され、オン抵抗を低下させることができる。
以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。上述した実施の形態では、プレーナゲート構造のMOS型半導体装置を例に説明しているが、本発明はトレンチゲート構造のMOS型半導体装置に適用した場合においても同様の効果を有する。本発明をトレンチゲート構造のMOS型半導体装置に適用する場合、ドリフト層とベース層との間に、トレンチ底部よりも基体おもて面から浅い深さで、かつ活性領域のみにn型CS層を形成すればよい。また、本発明は、炭化珪素(SiC)半導体などのワイドバンドギャップ半導体(シリコンよりもバンドギャップが広い半導体)を用いて作製された半導体装置に適用した場合においても同様の効果を有する。また、上述した実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
以上のように、本発明にかかる半導体装置は、周辺耐圧構造部にJTE構造(リサーフ(RESURF:Reduced Surface Field)構造)を備えた半導体装置に有用であり、特に炭化珪素半導体などのワイドバンドギャップ半導体を用いて作製された耐圧13kVクラス以上の高耐圧な半導体装置に適している。
1 p+型半導体基板
2 n-型ドリフト層
3 n型CS領域
4 p+型ベース層
5 JFET領域
6 n+型エミッタ領域
7 p++型コンタクト領域
8 ゲート絶縁膜
9 ゲート電極
10 層間絶縁膜
11 エミッタ電極
12 コレクタ電極
13 溝
14 第1JTE領域
15 第2JTE領域
21 活性領域
22 周辺耐圧構造部
31,33,35,37 イオン注入用マスク
32,34,36,38 イオン注入

Claims (4)

  1. 電流が流れる活性領域の外側に周辺耐圧構造部を有する半導体装置において、
    第1主面と第2主面とを有する第1導電型のドリフト層と、
    前記ドリフト層の第1主面側に設けられた素子構造と、
    前記ドリフト層の内部の前記素子構造側に、かつ前記活性領域に設けられた、前記ドリフト層よりも不純物濃度の高い第1導電型の高濃度領域と、
    を備え、
    前記高濃度領域は、前記周辺耐圧構造部に設けられていないことを特徴とする半導体装置。
  2. 前記高濃度領域は、前記ドリフト層の第2主面側から第1主面側へ向って移動する少数キャリアの移動を抑制するバリア領域であることを特徴とする請求項1に記載の半導体装置。
  3. 前記高濃度領域は、前記ドリフト層の第1主面側から第2主面側へ向って移動するキャリアを前記ドリフト層の第1主面に平行な方向に拡げるスプレッド領域であることを特徴とする請求項1に記載の半導体装置。
  4. 前記素子構造は、
    前記ドリフト層の第1主面側に設けられた第2導電型半導体領域と、
    前記第2導電型半導体領域の内部に設けられた第1導電型半導体領域と、
    前記第2導電型半導体領域の、前記ドリフト層と前記第1導電型半導体領域の間の領域に接して設けられたゲート絶縁膜と、
    前記ゲート絶縁膜を挟んで前記第1導電型半導体領域の反対側に設けられたゲート電極と、を有し、
    前記高濃度領域は、前記第2導電型半導体領域との境界付近に設けられていることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。
JP2014228117A 2014-11-10 2014-11-10 半導体装置 Active JP6606819B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014228117A JP6606819B2 (ja) 2014-11-10 2014-11-10 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014228117A JP6606819B2 (ja) 2014-11-10 2014-11-10 半導体装置

Publications (2)

Publication Number Publication Date
JP2016092331A true JP2016092331A (ja) 2016-05-23
JP6606819B2 JP6606819B2 (ja) 2019-11-20

Family

ID=56017246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014228117A Active JP6606819B2 (ja) 2014-11-10 2014-11-10 半導体装置

Country Status (1)

Country Link
JP (1) JP6606819B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110164A (ja) * 2016-12-28 2018-07-12 富士電機株式会社 半導体装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013552A (ja) * 2005-09-21 2006-01-12 Shindengen Electric Mfg Co Ltd 半導体デバイスの製造方法
JP2010045363A (ja) * 2008-08-11 2010-02-25 Cree Inc 電力半導体デバイスのためのメサ終端構造とメサ終端構造をもつ電力半導体デバイスを形成するための方法
WO2011129443A1 (ja) * 2010-04-15 2011-10-20 富士電機株式会社 半導体装置
JP2012009522A (ja) * 2010-06-23 2012-01-12 Mitsubishi Electric Corp 電力用半導体装置
JP2012256662A (ja) * 2011-06-08 2012-12-27 Yoshitaka Sugawara 半導体素子および半導体装置
JP2013065749A (ja) * 2011-09-20 2013-04-11 Toshiba Corp 半導体装置
JP2013179361A (ja) * 2013-06-13 2013-09-09 Mitsubishi Electric Corp 半導体装置
WO2013136898A1 (ja) * 2012-03-16 2013-09-19 富士電機株式会社 半導体装置
JP2014063961A (ja) * 2012-09-24 2014-04-10 Denso Corp 半導体装置
WO2014073127A1 (ja) * 2012-11-09 2014-05-15 パナソニック株式会社 半導体装置及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013552A (ja) * 2005-09-21 2006-01-12 Shindengen Electric Mfg Co Ltd 半導体デバイスの製造方法
JP2010045363A (ja) * 2008-08-11 2010-02-25 Cree Inc 電力半導体デバイスのためのメサ終端構造とメサ終端構造をもつ電力半導体デバイスを形成するための方法
WO2011129443A1 (ja) * 2010-04-15 2011-10-20 富士電機株式会社 半導体装置
JP2012009522A (ja) * 2010-06-23 2012-01-12 Mitsubishi Electric Corp 電力用半導体装置
JP2012256662A (ja) * 2011-06-08 2012-12-27 Yoshitaka Sugawara 半導体素子および半導体装置
JP2013065749A (ja) * 2011-09-20 2013-04-11 Toshiba Corp 半導体装置
WO2013136898A1 (ja) * 2012-03-16 2013-09-19 富士電機株式会社 半導体装置
JP2014063961A (ja) * 2012-09-24 2014-04-10 Denso Corp 半導体装置
WO2014073127A1 (ja) * 2012-11-09 2014-05-15 パナソニック株式会社 半導体装置及びその製造方法
JP2013179361A (ja) * 2013-06-13 2013-09-09 Mitsubishi Electric Corp 半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110164A (ja) * 2016-12-28 2018-07-12 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
JP6606819B2 (ja) 2019-11-20

Similar Documents

Publication Publication Date Title
JP7059555B2 (ja) 半導体装置
JP6049784B2 (ja) 炭化珪素半導体装置およびその製造方法
JP7190144B2 (ja) 超接合炭化珪素半導体装置および超接合炭化珪素半導体装置の製造方法
JP6320545B2 (ja) 半導体装置
US9825164B2 (en) Silicon carbide semiconductor device and manufacturing method for same
JP5642191B2 (ja) 半導体装置
JP7029710B2 (ja) 半導体装置
JP6802454B2 (ja) 半導体装置およびその製造方法
JP7182850B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2011124464A (ja) 半導体装置及びその製造方法
JP7456467B2 (ja) 炭化シリコン半導体装置及びその製造方法
JP2018110164A (ja) 半導体装置
JP5676923B2 (ja) 半導体装置の製造方法および半導体装置
WO2016046900A1 (ja) 炭化ケイ素半導体装置、炭化ケイ素半導体装置の製造方法及び炭化ケイ素半導体装置の設計方法
WO2014207793A1 (ja) 半導体装置およびその製造方法
JP5556863B2 (ja) ワイドバンドギャップ半導体縦型mosfet
JP5547022B2 (ja) 半導体装置
JP2014187200A (ja) 半導体装置の製造方法
KR102056356B1 (ko) 전력 반도체 소자의 제조 방법 및 그에 따른 전력 반도체 소자
JP6606819B2 (ja) 半導体装置
WO2014184839A1 (ja) 炭化珪素半導体装置
JP2006086549A (ja) 電界効果トランジスタ及びその製造方法
JP6092680B2 (ja) 半導体装置及び半導体装置の製造方法
JP2012160601A (ja) 半導体装置の製造方法
JP2017092364A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6606819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250