JP2016084936A - 組合せ玉軸受及び工作機械用主軸装置 - Google Patents

組合せ玉軸受及び工作機械用主軸装置 Download PDF

Info

Publication number
JP2016084936A
JP2016084936A JP2015205772A JP2015205772A JP2016084936A JP 2016084936 A JP2016084936 A JP 2016084936A JP 2015205772 A JP2015205772 A JP 2015205772A JP 2015205772 A JP2015205772 A JP 2015205772A JP 2016084936 A JP2016084936 A JP 2016084936A
Authority
JP
Japan
Prior art keywords
row
bearings
bearing
ball
ball bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015205772A
Other languages
English (en)
Inventor
恭平 松永
kyohei Matsunaga
恭平 松永
美昭 勝野
Yoshiaki Katsuno
美昭 勝野
松山 直樹
Naoki Matsuyama
直樹 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Publication of JP2016084936A publication Critical patent/JP2016084936A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • F16C2240/34Contact angles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Abstract

【課題】大きな荷重が負荷される軸受の耐衝撃性を向上することができる組合せ玉軸受及び工作機械用主軸装置を提供する。【解決手段】前側軸受40,50,60,70のうち、外側列軸受40,70の玉43,73の玉径d1,d4は、内側列軸受50,60の玉53,63の玉径d2,d3よりも大きく設計されている。外側列軸受40,70の玉ピッチ円径PCD1,PCD4は、内側列軸受50,60の玉ピッチ円径PCD2,PCD3よりも大きく設計されている。外側列軸受40,70の接触角α1,α4は、内側列軸受50,60の接触角α2,α3よりも大きく設計されている。【選択図】図2

Description

本発明は、組合せ玉軸受及び工作機械用主軸装置に関し、より詳細には、高速回転可能な組合せ玉軸受及び工作機械用主軸装置に関する。
近年、工作機械によって加工される被加工ワークの形状が複雑化してきている。このため、このワーク形状の複雑化に伴い、段替え回数を減らし加工効率を向上させるため、工作機械自体の構造も複雑化してきている。工作機械の構造の複雑化の一つとして、5軸加工機などの多軸加工機が挙げられる。
また、近年の工作機械の多くは数値制御(Numerical Control:NC)により加工を行
っており、被加工ワーク形状の複雑化(例えば、自動車のボディ金型・人工関節など、3次元の立体曲面輪郭加工)、工作機械構造の複雑化に伴い、数値制御のための加工プログラムも複雑化してきている。そのため、NC工作機械の加工プログラム作成時にミスが生じやすくなり、その結果、機械誤作動により、主軸回転部位(工具や工具保持ホルダ部位など)を加工物やベッド・テーブルなどの周辺部材に接触干渉・衝突させるトラブル(以下、「主軸の衝突」と称する。)が起こりやすくなる。この主軸の衝突により、工作機械主軸に組み込まれている転がり軸受の玉と軌道面との接触部で圧痕が形成され、その状態で主軸を使用すると、様々な不具合が発生する。例えば、転がり軸受の玉がこの圧痕を踏むことで発生する振動によって加工精度が悪くなったり、異音が発生したりする。さらには、その圧痕を起点とした軌道面の剥離が発生し、転がり軸受の焼付きに発展する可能性もある。また、工作機械の製作時にも作業者のミスや不慮の事故による主軸の衝突が起こる可能性がある。
例えば、工作機械などに使用される複列転がり軸受としては、各列の玉径を変え、玉径を大きくすることで、軸受剛性をアップし、軸受動負荷容量を大きくして、長寿命とすることが知られている(例えば、特許文献1参照。)。
特開2004−286116号公報
ところで、工作機械用主軸装置では、主軸剛性を高めるため、3列以上のアンギュラ玉軸受を軸方向に配列してなる組合せ玉軸受が使用される場合がある。このような組合せ玉軸受においても、主軸の衝突により、主軸工具先端に荷重が負荷されると、軸方向最工具側列軸受で最も荷重を受けるため、転がり軸受の玉と軌道面との接触部で圧痕が形成されやすい。
また、アンギュラ玉軸受では、軸方向から大きな荷重が作用すると玉と軌道面との接触楕円の位置がずれ、玉が軌道輪の溝肩に乗り上げて、玉を傷つけてしまう可能性もある。 特許文献1に記載の複列転がり軸受では、組合せ玉軸受について開示されておらず、耐衝撃性を考慮したものではない。
本発明は、前述した課題に鑑みてなされたものであり、その目的は、大きな荷重が負荷される軸受の耐衝撃性を向上することができる組合せ玉軸受及び工作機械用主軸装置を提供することにある。
本発明の上記目的は、下記の構成により達成される。
(1) 3列以上のアンギュラ玉軸受を軸方向に配列してなる組合せ玉軸受において、
軸方向外側に配置される前記アンギュラ玉軸受の少なくとも一方の玉径が、軸方向内側に配置される前記アンギュラ玉軸受の玉径よりも大きいことを特徴とする組合せ玉軸受。(2) 前記軸方向外側に配置される前記アンギュラ玉軸受の接触角は、前記軸方向内側に配置される前記アンギュラ玉軸受の接触角よりも大きいことを特徴とする(1)に記載の組合せ玉軸受。
(3) 前記軸方向外側に配置される前記アンギュラ玉軸受の玉ピッチ円径が前記軸方向内側に配置される前記アンギュラ玉軸受の玉ピッチ円径よりも大きいことを特徴とする(1)または(2)に記載の組合せ玉軸受。
(4) (1)〜(3)のいずれかに記載の組合せ玉軸受を備えることを特徴とする工作機械用主軸装置。
本発明の組合せ玉軸受によれば、軸方向外側に配置されるアンギュラ玉軸受(以下、「外側列軸受」とも称す。)の少なくとも一方の玉径が、軸方向内側に配置されるアンギュラ玉軸受(以下、「内側列軸受」とも称す。)の玉径よりも大きいので、玉径を大きくした外側列軸受の限界荷重(玉と軌道面との接触部に圧痕が発生する最小の荷重)が大きくなり、大きな荷重が外側列軸受に付加された場合の圧痕の発生を抑制することができ、耐衝撃性を向上することができる。
その結果、主軸装置に適用された場合に、主軸工具先端に荷重が負荷された際、最も荷重を負担する軸方向最工具側列軸受、すなわち、玉径を大きくした外側列軸受の圧痕発生リスクを下げることができ、軸方向最工具側列軸受の耐衝撃性を向上させることができる。
本発明の組合せ玉軸受が前側軸受として適用された主軸装置を示す断面図である。 本発明の一実施形態に係る組合せ玉軸受の断面図である。 本発明の第1の変形例に係る組合せ玉軸受の断面図である。 本発明の第2の変形例に係る組合せ玉軸受の断面図である。 本発明の第3の変形例に係る組合せ玉軸受の断面図である。 本発明の第4の変形例に係る組合せ玉軸受の断面図である。 本発明の第5の変形例に係る組合せ玉軸受の断面図である。 本発明の第6の変形例に係る組合せ玉軸受の断面図である。 4列背面組合せアンギュラ玉軸受が搭載された一般的な工作機械主軸の略図である。
以下、本発明の一実施形態に係る組合せ玉軸受について図面に基づいて詳細に説明する。
図1は、本実施形態の組合せ玉軸受が適用された主軸装置20を示す。主軸装置20は、モータビルトイン方式であり、その軸方向中心部には、中空状の回転軸22が設けられ、回転軸22の軸芯には、ドローバ23が摺動自在に挿嵌されている。ドローバ23には、工具Tが取り付けられた工具ホルダ24が設けられており、ドローバ23が皿ばね27の力によって反工具側方向(図の右方向)に付勢されることで、工具ホルダ24は、回転軸22のテーパ面28と嵌合する。この結果、回転軸22には、工具Tがドローバ23、工具ホルダ24と共に一体に取り付けられる。
また、回転軸22は、その工具側を支承する組合せ玉軸受である前側軸受40,50,60,70と、反工具側を支承する図示しない後側軸受とによって、ハウジングHに回転自在に支持されている。
前側軸受40,50,60,70と後側軸受間における回転軸22の外周面には、ロータ30が外嵌されている。また、ロータ30の周囲に配置されるステータ32は、ステータ32に焼き嵌めされた冷却ジャケット33をハウジングHを構成する外筒29に内嵌することで、外筒29に固定される。従って、ロータ30とステータ32はモータを構成し、ステータ32に電力を供給することでロータ30に回転力を発生させ、回転軸22を回転させる。
図2にも併せて示すように、前側軸受40,50,60,70は、外輪41,51,61,71と、内輪42,52,62,72と、接触角α1,α2,α3,α4を持って配置される転動体としての玉43,53,63,73と、玉43,53,63,73を円周方向が略等間隔で保持する保持器44,54,64,74と、をそれぞれ有するアンギュラ玉軸受である。これら前側軸受40,50,60,70は、工具側から数えて1列目・2列目の軸方向外側の前側軸受40,50と、3列目・4列目の軸方向内側の前側軸受60,70が背面組み合わせとなるように配置された状態で、定位置予圧が付与されている。また、本実施形態では、各前側軸受40,50,60,70の外径、内径、軸方向幅が、それぞれ等しく設計されている。
前側軸受40,50,60,70の外輪41,51,61,71は、外筒29に固定された前側軸受ハウジング31に内嵌されており、且つ前側軸受ハウジング31にボルト締結された前側軸受外輪押え38によって複数の外輪間座35を介して前側軸受ハウジング31に対し軸方向に固定されている。また、前側軸受40,50,60,70の内輪42,52,62,72は、回転軸22に外嵌されており、且つ回転軸22に締結されたナット39によって複数の内輪間座36を介して回転軸22に対し軸方向に固定されている。
各外輪41,51,61,71の内周面には、図2に示すように、軌道面41a,51a,61a,71aに対して軸方向一方側にカウンタボア41b,51b,61b,71bが形成されている。各外輪41,51,61,71は、これらカウンタボア41b,51b,61b,71bが組合せ玉軸受の中間位置に対して軸方向外側(即ち、前側軸受40,50は工具側、前側軸受60,70は反工具側)を向くように、配置されている。
また、各保持器44,54,64,74は、任意な構成としてもよいが、本実施形態では、円筒状のポケットを有し、外輪41,51,61,71の軌道面41a,51a,61a,71aに対して軸方向他方側の内周面に案内されている。
なお、図2は、外輪間座35及び内輪間座36を省略して示しているが、本発明の組合せ玉軸受は、間座を有する構成、間座を有しない構成のいずれの場合も含むものとする。
また、前側軸受ハウジング31の外周面と、前側軸受ハウジング31に外嵌されるカバー34との間には、冷却油が循環する循環経路11が形成されており、この循環経路11に温度コントロールされた冷却油を循環させることで各前側軸受40,50,60,70を冷却する。モータの発熱を伴うモータビルトイン方式の主軸装置20では、主軸精度の向上を図るために熱変位を抑えることが重要であり、上記循環経路11によって、高速回転時の軸受40,50,60,70の発熱やステータ32の発熱による主軸の温度上昇を抑えることができる。
ここで、本実施形態では、図2に示すように、前側軸受40,50,60,70のうち、工具側から1列目、4列目の外側列軸受40,70の玉43,73の玉径d1,d4が、工具側から2列目、3列目の内側列軸受50,60の玉53,63の玉径d2,d3よりも大きく設計されている。
また、外側列軸受40,70の玉ピッチ円径PCD1,PCD4は、内側列軸受50,60の玉ピッチ円径PCD2,PCD3よりも大きく設計されている。
さらに、外側列軸受40,70の接触角α1,α4は、内側列軸受50,60の接触角α2,α3よりも大きく設計されている。
このように、外側列軸受40,70の玉径d1,d4を大きくすることで、その軸受の限界荷重(玉と軌道面との接触部に圧痕が発生する最低の荷重)が大きくなる。その結果、主軸工具先端に荷重が負荷された際、最も荷重を負担する軸方向最工具側列軸受、すなわち1列目の外側列軸受40の圧痕発生リスクが下がる。
また、一般に、工作機械用主軸装置20を高速回転で使用する場合、玉43,53,63,73と内外輪42,52,62,72,41,51,61,71間の転がり接触部の温度が上昇する。この温度上昇が大きい場合、油膜切れによる焼付きが発生する可能性がある。そのため、軸受の転がり摩擦による発熱を抑えることは非常に重要である。しかしながら、1列目、4列目の外側列軸受40,70は、内側列軸受50,60に比べ、軸受自身の転がり摩擦による発熱分を外部に逃がすことが容易であり、軸受の転がり摩擦による発熱で焼付く可能性は低い。したがって、外側列軸受40,70の玉径d1,d4を大きくして、外側列軸受40,70の転がり摩擦による発熱がある程度増大したとしても、問題なく使用することができる。
一方、2列目、3列目の内側列軸受50,60は、1列目、4列目の外側列軸受40,70の発熱と昇温に阻まれているため、熱伝達性が悪くなり、軸受自身の転がり摩擦による発熱分を外部に逃がすことが困難である。特に、本実施形態のようなモータビルトイン方式の主軸装置20の場合、ロータ30の発熱が回転軸22の内部を伝わり前側軸受40,50,60,70にも伝達されるので、より厳しい条件となる。
さらに、前側軸受ハウジング31に形成された冷却油の循環経路11の冷却によって、前側軸受の外輪41,51,61,71は温度が抑えられるが、冷却部と直接接していない内輪42,52,62,72の温度上昇は抑えることができず、その結果、軸受の内外輪温度差(内輪温度>外輪温度)が発生する。
また、この外筒冷却油の循環経路11の中央部に位置する2列目、3列目の内側列軸受50,60は、最も冷却効果が得られるので、1列目、4列目の外側列軸受40,70に比べて、さらに内外輪温度差が大きくなる傾向になる。内外輪温度差が発生すると、軸受の内部すきまが小さくなり、内部予圧が増大して転がり接触部のPV値が上昇し、焼付きに進行する。そのため、高速主軸での軸受の焼付き不具合は、2列目、3列目の内側列軸受50,60で発生するのがほとんどである。
以上のことから、2列目、3列目の内側列軸受50,60の玉径d2,d3を大きくすることは焼付きリスクをさらに高めることにつながるため得策でない。
したがって、外側列軸受40,70の玉径d1,d4のみを大きくし、内側列軸受50,60の玉径d2,d3を外側列軸受40,70の玉径d1,d4よりも小さくすることで、焼付きリスクは従来のまま、耐衝撃性を向上させることができる。
また、接触角を持ったアンギュラ玉軸受が背面組合せで配置される前側軸受40,50,60,70において、外側列軸受40,70の玉ピッチ円径PCD1,PCD4を内側列軸受の玉ピッチ円径PCD2,PCD3より大きくすることで、モーメント長を長くでき、組合せ軸受および主軸装置20のモーメント剛性を高めることができる。
玉ピッチ円径を大きくすることの弊害として、軸受回転時のdmn値が大きくなり、軸受の転がり摩擦による発熱が大きくなることが挙げられる。しかしながら、外側列軸受40,70においては、上述したように、軸受の発熱がある程度増大したとしても、問題なく使用することができる。一方、内側列軸受50,60においては、上述の理由で発熱量が大きくなることは避けなければならない。したがって、内側列軸受50,60の玉ピッチ円径PCD2,PCD3を外側列軸受40,70の玉ピッチ円径PCD1,PCD4よりも小さくし、内側列軸受50,60の発熱量を下げなければならない。
さらに、外側列軸受40,70の接触角α1,α4を、内側列軸受50,60の接触角α2,α3より大きくすることで、組合せ玉軸受および主軸装置20のモーメント長を長くすることによるモーメント剛性向上に加え、アキシアル剛性を高めることができる。
ここで、主軸系のラジアル剛性は、軸受の剛性以外に回転軸22の曲げ剛性が影響するが、アキシアル剛性に関しては、軸受の剛性でほぼ決定される。一般に軸受の接触角を大きくすると、スピン滑りやジャイロ滑りなど接触角を持つアンギュラ玉軸受において生じるすべりが大きくなり、軸受の発熱量が増大する。上述したように、外側列軸受40,70は、接触角増加による発熱量増大をある程度許容することができるが、内側列軸受50,60は、発熱量の増加を許容できない。したがって、内側列軸受50,60の接触角α2,α3を外側列軸受40,70の接触角α1,α4よりも小さくし、発熱量を下げなければならない。
なお、本実施形態では、外側列軸受40,70を内側列軸受50,60に比べて、玉径大、玉ピッチ円径大、接触角大としているため、軸受のdmn値が高くなると、主軸の発熱が従来仕様に対して増加する傾向になるが、通常回転使用レベルであれば、焼付きの問題は生じない。ただし、dmn値が50万以上、望ましくは、80万以上の使用回転数領域を想定した場合、外側列軸受40,70のみ、鉄より比重の小さいセラミック玉(Siなど)を採用することで、玉の遠心力による内部荷重増加が抑制され、発熱を抑制
することができる。
また、工作機械用主軸装置20の加工効率を高めるための一つの方策として、工具の一刃あたりの送り量を増やしたり、加工の切り込み量を多くしたりする、いわゆる重切削が挙げられる。本実施形態では、上述のモーメント剛性とアキシアル剛性の向上効果によって、これまでよりも重切削が可能となる。
なお、外側列軸受40,70の玉43,73の遠心力大による内部荷重の増加、及び、内側列軸受50,60の負荷容量の減少を鑑みると両者の最適なバランス確保の点から、以下の条件を満たすことが望ましい。
玉径比 : 1.0<外側列軸受玉径/内側列軸受玉径<4.6
玉ピッチ円径比: 1.0≦外側列軸受玉ピッチ円径/内側列軸受玉ピッチ円径<1.5
以上説明したように、本実施形態の組合せ玉軸受によれば、前側軸受40,50,60,70のうち、工具側から1列目、4列目の外側列軸受40,70の玉43,73の玉径d1,d4が、工具側から2列目、3列目の内側列軸受50,60の玉53,63の玉径d2,d3よりも大きく設計されているので、外側列軸受40,70の圧痕発生リスクを下げることができ、軸方向最工具側列軸受の耐衝撃性を向上させることができる。
また、外側列軸受40,70の玉ピッチ円径PCD1,PCD4は、内側列軸受50,60の玉ピッチ円径PCD2,PCD3よりも大きく設計されているので、モーメント長を長くして、組合せ玉軸受のモーメント剛性を高めることができる。
さらに、外側列軸受40,70の接触角α1,α4は、内側列軸受50,60の接触角α2,α3よりも大きく設計されているので、組合せ玉軸受のモーメント剛性及びアキシアル剛性を高めることができる。
なお、本発明は上述した実施形態に限定されるものでなく、適宜、変形、改良等が可能である。
上記実施形態では、外側列軸受40,70を内側列軸受50,60に比べて、玉径大、玉ピッチ円径大、接触角大としているが、本発明は、少なくとも外側列軸受40,70の玉径d1,d4が内側列軸受50,60の玉径d2,d3よりも大きければよい。
即ち、図3に示す第1の変形例の組合せ玉軸受では、外側列軸受40,70の玉径d1,d4が内側列軸受50,60の玉径d2,d3よりも大きく設定される一方、前側軸受40,50,60,70の玉ピッチ円径PCD1,PCD2,PCD3,PCD4は、同一(PCD1=PCD2=PCD3=PCD4)とし、且つ、各接触角α1,α2,α3,α4も、同一(α1=α2=α3=α4)としている。
また、図4に示す第2の変形例の組合せ玉軸受では、外側列軸受40,70の玉径d1,d4が内側列軸受50,60の玉径d2,d3よりも大きく設定され、外側列軸受40,70の玉ピッチ円径PCD1,PCD4は、内側列軸受50,60の玉ピッチ円径PCD2,PCD3よりも大きく設定される一方、前側軸受40,50,60,70の各接触角α1,α2,α3,α4は、同一(α1=α2=α3=α4)としている。
また、図2〜図4の組合せ玉軸受では、4列の多列アンギュラ玉軸受について説明したが、本発明の組合せ玉軸受は、少なくとも3列以上であればよく、図5に示す第3の変形例のように、6列の多列アンギュラ玉軸受であってもよいし、図6に示す第4の変形例のように、3列の多列アンギュラ玉軸受であってもよい。
具体的に、図5に示す6列の多列アンギュラ玉軸受では、外側列軸受40,70と内側列軸受50,60との間に、外輪81,91、内輪82,92、玉83,93、保持器84,94をそれぞれ有する中間列のアンギュラ玉軸受80,90がそれぞれ配置される。この場合、各軸受の玉径は、外側列軸受40,70の玉径>中間列軸受80,90の玉径>内側列軸受50,60の玉径となる(d1,d4>d5,d6>d2,d3)。また、各軸受の玉ピッチ円径は、外側列軸受40,70の玉ピッチ円径>中間列軸受80,90の玉ピッチ円径>内側列軸受50,60の玉ピッチ円径となる(PCD1,PCD4>PCD5,PCD6>PCD2,PCD3)。さらに、各軸受の接触角は、外側列軸受40,70の接触角>中間列軸受80,90の接触角>内側列軸受50,60の接触角となる(α1,α4>α5,α6>α2,α3)。
また、図6に示すように、外側列軸受40,70の間に1列の内側列軸受50のみとした3列の多列アンギュラ玉軸受の場合、各軸受の玉径は、外側列軸受40,70の玉径>内側列軸受50の玉径となるようにすればよい(d1,d4>d2)。また、各軸受の玉ピッチ円径は、外側列軸受40,70の玉ピッチ円径>内側列軸受50の玉ピッチ円径となるようにすればよい(PCD1,PCD4>PCD2)。さらに、各軸受の接触角は、外側列軸受40,70の接触角>内側列軸受50の接触角となるようにすればよい(α1,α4>α2)。
但し、偶数列の組合せ軸受の場合、軸方向外側から数えて同じ位置の軸受は、接触角を等しくすることが望ましい。例えば、図2に示す4列の組合せ軸受の場合、工具側から1列目と4列目の外側軸受40,70の接触角α1、α4、及び2列目と3列目の内側軸受50,60の接触角α2、α3を等しくすると、定位置予圧を付加した場合、個々の軸受の予圧による付加荷重Fa1,Fa2,Fa3,Fa4は、Fa1=Fa4、Fa2=Fa3、且つ、Fa1+Fa2=Fa3+Fa4となる。従って、1列目と4列目、及び2列目と3列目は、それぞれ同じ予圧荷重となるので、予圧バランスをとることができる。
ここで、例えば、1列目:20°、2列目:16°、3列目:16°、4列目:18°のように接触角を違えると、3列目と4列目の軸受60,70の予圧による接触面圧(特に3列目)が、1列目と2列目の軸受40,50に比べ大きくなってしまうので、焼付きに対してはやや不利となる。しかし、逆に2列目の軸受50の内外輪温度差が3列目の軸受60より大きい場合など、2列目の軸受50の焼付きを3列目の軸受60より、あえて生じ難くする必要があれば、上記のように1列目と4列目の軸受40,70の接触角を変えてもよい。
また、奇数列の組合せ軸受の場合、背面組合せした際に軸方向中間部に位置する軸受と接触角が半径方向に対して反対方向に向く軸受は、軸方向外側から数えて同じ位置の軸受と比べて、接触角を大きくすることが好ましい。
例えば、図6に示す3列組合せ軸受の場合、工具側から1列目、2列目の軸受40,50の接触角α1、α2と、3列目の軸受70の接触角α4とは、半径方向に対して反対方向に向くことになり、各列の軸受の予圧による付加荷重Fa1,Fa2,Fa3は、Fa1+Fa2=Fa3、且つ、Fa3>Fa1>Fa2となり、3列目の軸受70は、1列目と2列目の軸受40,50の予圧荷重を付加するので、予圧による接触面圧が高くなる。このため、3列目の軸受70の接触角α4を、1列目の軸受40の接触角α1より大きくすることで(α1<α4、かつ、α1>α2)、3列目の軸受70の予圧荷重による接触面圧の上昇を抑えることができる。
また、上記実施形態では、アンギュラ玉軸受40,50,60,70の組立てに必要不可欠なカウンタボア41b,51b,61b,71bは、各外輪41,51,61,71の内周面に形成されている。一方、図7及び図8に示す第5及び第6変形例では、内側列軸受50,60におけるカウンタボア51b、61bは、外輪51,61の内周面に形成したままとし、外側列軸受40、70におけるカウンタボア42b、72bが、内輪42,72に設けられている。
即ち、図7に示す第5の変形例では、図2に示す実施形態と同様に、外側列軸受40,70を内側列軸受50,60に比べて、玉径大、玉ピッチ円径大、接触角大としている。このように、外側列軸受40,70の玉径d1,d4を内側列軸受50,60の玉径d2,d3よりも大きくし、外側列軸受40,70の玉ピッチ円径PCD1,PCD4を内側列軸受50,60の玉ピッチ円径PCD2,PCD3よりも大きくすることで、耐荷重性・耐圧痕性の向上や、モーメント剛性の向上などが図られている。
また、第5の変形例では、玉径及び玉ピッチ円径の影響で肉厚が薄くなる外側列軸受40,70の外輪41、71にカウンタボアが形成されないので、ハウジング肩部や外輪押さえ面と当接する外輪41,71の軸方向端面に適切な平面幅を確保することができる。これにより、適切な面接触による平面固定が行われ、接触剛性の維持、及び、回転中の振動等による外輪クリープなどの不具合発生を抑制することができる。
また、外輪41,71を軸方向に固定する際に、外輪押さえの固定力によって外輪が歪変形することも抑制され、主軸組込み時の軸受の精度悪化を抑えることができる。
さらには、外輪41、71は、径方向肉厚を維持でき、かつ、軌道みぞ底中心に対して左右の肉厚が等しくなるので、リングの熱処理時(仕上研磨の前工程)の変形を抑制することができる。
一方、外側列軸受40,70の内輪42,72は、玉ピッチ円径PCD1,PCD4が大きくなっているので、カウンタボア42b、72bを形成しても内輪軌道面42a,72aの軸方向両側で肉厚を確保することができる。したがって、第5の変形例では、外側列軸受40,70の内輪42、72にカウンタボア42b、72bを形成することで、外側列軸受40,70の内外輪の肉厚バランスのとれた構成とすることができる。
なお、カウンタボア42b、72bは、組合せ玉軸受の中間位置に対して軸方向内側(即ち、前側軸受40は反工具側、前側軸受70は工具側)を向くように、配置されている。
また、図8に示す第6の変形例のような6列の多列アンギュラ玉軸受においても、図5に示す第3の変形例と同様、外側列軸受40,70を内側列軸受50,60、中間列軸受80,90に比べて、玉径大、玉ピッチ円径大、接触角大としている。このため、第5の変形例と同様に、外側列軸受40,70の内輪42、72にカウンタボア42b、72bを形成することで、外側列軸受40,70の内外輪の肉厚バランスのとれた構成とすることができ、第5の変形例と同様の効果を奏することができる。
なお、第6の変形例では、内側列軸受50,60、及び中間列軸受80,90のカウンタボア51b、61b、81b、91bは、外輪51,61,81,91に形成されている。
また、玉径に関して、本実施形態では、外側列軸受40,70の両方の玉径を内側列軸受50,60の玉径よりも大きくしているが、主軸工具先端での主軸の衝突を考慮すれば、軸方向最工具側となる外側列軸受40のみの玉径を内側列軸受50,60の玉径より大きくしてもよい。
ただし、軸方向最反工具側となる外側列軸受70は、工具交換において工具のチャックを解除する際、ドローバ23による後方からの荷重を最も負荷するので、本実施形態のように、外側列軸受40,70の両方の玉径を内側列軸受50,60の玉径よりも大きくすることが好ましい。
また、潤滑条件も、グリース潤滑に限定されるものでなく、オイルエア潤滑、オイルミスト潤滑、アンダーレース潤滑、ジェット潤滑などいずれの潤滑法を適用してもよい。
また、軸受の組合せ方法としては、背面組合せのほかに、正面組合せ(接触角が逆ハの字方向の組合せ)としてもよい。
さらに、本発明の組合せ玉軸受は、工作機械用主軸装置に限らず、衝突荷重などの、大きな荷重が軸受に負荷される他の装置に適用されてもよい。
なお、本実施形態では、1列目、4列目、及び2列目、3列目は、それぞれ同じ仕様を採用しているが、必要に応じて異ならせても良い。
ここで、外側列軸受40,70と内側列軸受50,60の玉径、玉ピッチ円径、接触角が同じ従来品と、外側列軸受40,70と内側列軸受50,60の玉径、玉ピッチ円径、接触角を変えた考案品A〜Eとを用いて、以下の4つの試験を行った。図7は、4列背面組合せアンギュラ玉軸受が搭載された一般的な工作機械用主軸装置20の略図を示す。図7は、外側列軸受40,70と内側列軸受50,60の玉径、玉ピッチ円径、接触角が同じ従来品を示している。
また、軸受配列は軸方向工具側(図中左側)から1列目、2列目、3列目、4列目としており、考案品A〜Eは、1列目と4列目および2列目と3列目は同じ仕様の軸受であり、4列組合せにおいて、左右対称の構造としている。従来品と考案品A〜Eで、各軸受共通の軸受寸法を以下に示す。
・軸受寸法
・内径 φ70mm
・外径 φ125mm
・幅 24mm
<限界ラジアル荷重>
まず、図7に矢印で示すように、軸先端にラジアル荷重が負荷されたと想定して、以下のような計算条件で、限界ラジアル荷重の比較を行った。表1は、限界ラジアル荷重の比較結果を示す。
・計算条件
・予圧荷重 950N
Figure 2016084936
表1の結果から、従来品の限界ラジアル荷重を100とした場合、軸方向最工具側列軸受である1列目軸受の玉径を大とした考案品A〜Eは、限界ラジアル荷重が向上することがわかる。この結果より、主軸にラジアル荷重が負荷された場合、最も大きな荷重を負担する1列目軸受の玉径を大きくすることで、従来品にくらべ1列目軸受の限界荷重が増加するので、結果として、ラジアル方向の耐衝撃性が向上することがわかる。
<アキシアル荷重分担率>
次に、上記従来品及び考案品C〜Eを用いて、以下のような計算条件で、アキシアル荷重分担率について比較を行った。
・計算条件
・予圧荷重 950N
・外部アキシアル荷重 3000N
表2は、アキシアル荷重分担率の比較結果を示す。これは主軸系にアキシアル荷重が負荷されたとき、負荷側である1列目、2列目軸受40,50において、アキシアル荷重の分担率がどのように変化するかの計算結果である。
Figure 2016084936
表2の結果より、接触角が大きい1列目の外側列軸受40のほうが、荷重分担率が増える作用があることがわかる。また、考案品C〜Eでは、接触角が大きくより大きい荷重を負荷している1列目の外側列軸受40は、2列目の内側列軸受50よりも玉径が大きく、限界の負荷荷重も大きい。したがって、従来品よりも2列目の軸受50の荷重が軽減されるので、より大きなアキシアル荷重を負荷することができるため、アキシアル方向の耐衝撃性が向上することがわかる。
さらに、例えば高速回転中にアキシアル方向の外部荷重を負荷した場合、内側列軸受である2列目の軸受50の負荷荷重を小さくでき、内側列軸受50が焼付きなどの損傷を受けづらくなることがわかる。
このとき、外側列軸受40,70の接触角を大きくしすぎると、また、内側列軸受40,60との接触角差を大きくしすぎると、外側列軸受40,70の発熱量大および負荷荷重大となり、外側列軸受40,70の焼付きリスクが高くなってしまう。したがって、それぞれの列の接触角は好ましくは、最小(内側列軸受)で10°以上、最大(外側列軸受)で30°以下が、より好ましくは、最小(内側列軸受)15°以上、最大(外側列軸受)で25°以下が良い。主軸の軸受配列や組合せ列数・ビルトインモータの容量・外筒冷却の効率など、主軸の高速特性(焼付きの発生頻度やリスク)に合わせて、適正な接触角を選べばよい。
<モーメント剛性>
次に、上記従来品及び考案品C〜Eを用いて、以下のような計算条件で、モーメント剛性の比較を行った。表3は、モーメント剛性を比較した結果を示す。
・計算条件
・予圧荷重 950N
・傾き角度 30秒(組合せ軸受としての傾き角)
Figure 2016084936
表3の結果から、外側列軸受40,70の玉ピッチ円径を大きくすることで、組合せ軸受のモーメント剛性の向上を図れることがわかる。考案品D、Eの場合、従来品に比べて約5%のモーメント剛性の向上が期待できる。主軸のラジアル方向の曲げ剛性は、軸受剛性以外にも軸自身の曲げ剛性との組合せで決定される。軸受のモーメント剛性の向上により、軸自身の曲がりも少なくなるので実際の主軸の曲げ剛性としては、本計算結果以上にその効果が期待できる。
<アキシアル剛性>
次に、上記従来品及び考案品C〜Eを用いて、以下のような計算条件で、アキシアル剛性の比較を行った。表4は、アキシアル剛性の比較結果を示す。
・計算条件
・予圧荷重 950N
・アキシアル変位 5.0μm
Figure 2016084936
表4の結果から、外側列軸受40,70の接触角を大きくすることで、組合せ軸受のアキシアル剛性の向上が図れることがわかる。考案品D、Eでは従来品と比較して10%以上のアキシアル剛性の向上が期待できる。主軸のアキシアル方向の剛性は、主軸に搭載されている組合せ軸受のアキシアル剛性でほぼ決まるため、表4の結果より、主軸系のアキシアル剛性も向上することがわかる。
20 主軸装置
22 回転軸
30 ロータ
32 ステータ
40,50,60,70,80,90 前側軸受(アンギュラ玉軸受)
α1、α2、α3、α4、α5、α6 接触角
PCD1,PCD2,PCD3,PCD4、PCD5,PCD6 玉ピッチ円径
d1、d2、d3、d4、d5、d6 玉径
H ハウジング

Claims (4)

  1. 3列以上のアンギュラ玉軸受を軸方向に配列してなる組合せ玉軸受において、
    軸方向外側に配置される前記アンギュラ玉軸受の少なくとも一方の玉径が、軸方向内側に配置される前記アンギュラ玉軸受の玉径よりも大きいことを特徴とする組合せ玉軸受。
  2. 前記軸方向外側に配置される前記アンギュラ玉軸受の接触角は、前記軸方向内側に配置される前記アンギュラ玉軸受の接触角よりも大きいことを特徴とする請求項1に記載の組合せ玉軸受。
  3. 前記軸方向外側に配置される前記アンギュラ玉軸受の玉ピッチ円径が前記軸方向内側に配置される前記アンギュラ玉軸受の玉ピッチ円径よりも大きいことを特徴とする請求項1または2に記載の組合せ玉軸受。
  4. 請求項1〜3のいずれか1項に記載の組合せ玉軸受を備えることを特徴とする工作機械用主軸装置。
JP2015205772A 2014-10-23 2015-10-19 組合せ玉軸受及び工作機械用主軸装置 Pending JP2016084936A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014216306 2014-10-23
JP2014216306 2014-10-23

Publications (1)

Publication Number Publication Date
JP2016084936A true JP2016084936A (ja) 2016-05-19

Family

ID=55760736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205772A Pending JP2016084936A (ja) 2014-10-23 2015-10-19 組合せ玉軸受及び工作機械用主軸装置

Country Status (6)

Country Link
EP (1) EP3211258B1 (ja)
JP (1) JP2016084936A (ja)
KR (1) KR102026075B1 (ja)
CN (1) CN107076203B (ja)
TW (1) TWI591270B (ja)
WO (1) WO2016063691A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6565454B2 (ja) * 2015-08-05 2019-08-28 日本精工株式会社 組合せ玉軸受、及び主軸装置、並びに工作機械
TWI599435B (zh) * 2016-11-04 2017-09-21 Qiu Pu-Xuan Machining spindle bearing preload device
JP7367298B2 (ja) * 2018-09-13 2023-10-24 日本精工株式会社 主軸装置
CN113983071B (zh) * 2021-09-30 2023-06-23 洛阳轴承研究所有限公司 利用预紧力选配面对面及背对背组配轴承隔圈的方法
CN114434323B (zh) * 2021-12-31 2023-08-18 南京理工大学 一种高刚度数控砂轮修整电主轴

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307912A (ja) * 2005-04-27 2006-11-09 Ntn Corp 転がり軸受
JP2006322496A (ja) * 2005-05-18 2006-11-30 Ntn Corp 多列アンギュラ玉軸受
JP2014059060A (ja) * 2013-10-17 2014-04-03 Nsk Ltd 多列組合せアンギュラ玉軸受

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286116A (ja) 2003-03-20 2004-10-14 Ntn Corp 複列転がり軸受
TW200712349A (en) * 2005-04-27 2007-04-01 Ntn Toyo Bearing Co Ltd Bearing assembly
DE102007034813A1 (de) * 2007-07-25 2009-01-29 Schaeffler Kg Schrägkugellager in Tandemanordnung sowie Lageranordnung mit dem Schrägkugellager
EP2679840A4 (en) * 2011-02-25 2017-10-25 NSK Ltd. Multi-row combination ball bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307912A (ja) * 2005-04-27 2006-11-09 Ntn Corp 転がり軸受
JP2006322496A (ja) * 2005-05-18 2006-11-30 Ntn Corp 多列アンギュラ玉軸受
JP2014059060A (ja) * 2013-10-17 2014-04-03 Nsk Ltd 多列組合せアンギュラ玉軸受

Also Published As

Publication number Publication date
CN107076203B (zh) 2019-12-31
WO2016063691A1 (ja) 2016-04-28
KR102026075B1 (ko) 2019-09-27
CN107076203A (zh) 2017-08-18
TWI591270B (zh) 2017-07-11
EP3211258A4 (en) 2017-11-01
EP3211258A1 (en) 2017-08-30
EP3211258B1 (en) 2019-11-20
KR20170056697A (ko) 2017-05-23
TW201615998A (zh) 2016-05-01

Similar Documents

Publication Publication Date Title
JP2016084936A (ja) 組合せ玉軸受及び工作機械用主軸装置
US20070003178A1 (en) Cylindrical roller bearing and retainer for cylindrical roller bearing
JP6728585B2 (ja) アンギュラ玉軸受
JP6527721B2 (ja) 主軸装置
JP6690462B2 (ja) 玉軸受、主軸装置及び工作機械
TWI691656B (zh) 滾珠軸承及工具機用主軸裝置
JP2019074214A (ja) アンギュラ玉軸受及びその製造方法
JP2014059060A (ja) 多列組合せアンギュラ玉軸受
US10302128B2 (en) Combined ball bearing, main spindle device, and machine tool
JP6556454B2 (ja) 玉軸受用保持器
JP2012132507A (ja) 円筒ころ軸受及び工作機械用主軸装置
JP2008110426A (ja) スピンドル装置
JP2007120767A (ja) 工作機械
JP2011052714A (ja) 多列組合せアンギュラ玉軸受
JP2017214965A (ja) ころ軸受
TWI760065B (zh) 角接觸滾珠軸承及工具機用主軸裝置
JP2008032070A (ja) 玉軸受
JP4322641B2 (ja) 円筒ころ軸受
JP7367298B2 (ja) 主軸装置
JP7481851B2 (ja) アンギュラ玉軸受
JP2005240881A (ja) 工作機械用アンギュラ玉軸受
JP2020193698A (ja) 主軸装置、及びモータ装置
KR101424729B1 (ko) 복열 베어링 조립체
JP2003278746A (ja) 円筒ころ軸受
JP2015001286A (ja) 転がり軸受用の保持器、及び転がり軸受

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303