JP2016074888A - Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorated film for in-mold molding, and decorated film for insert molding - Google Patents

Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorated film for in-mold molding, and decorated film for insert molding Download PDF

Info

Publication number
JP2016074888A
JP2016074888A JP2015191070A JP2015191070A JP2016074888A JP 2016074888 A JP2016074888 A JP 2016074888A JP 2015191070 A JP2015191070 A JP 2015191070A JP 2015191070 A JP2015191070 A JP 2015191070A JP 2016074888 A JP2016074888 A JP 2016074888A
Authority
JP
Japan
Prior art keywords
component
parts
thin film
aluminum thin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015191070A
Other languages
Japanese (ja)
Other versions
JP6011828B2 (en
Inventor
彰寛 山崎
Akihiro Yamazaki
彰寛 山崎
東本 徹
Toru Higashimoto
徹 東本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Publication of JP2016074888A publication Critical patent/JP2016074888A/en
Application granted granted Critical
Publication of JP6011828B2 publication Critical patent/JP6011828B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel undercoat agent which, even when kept a plastic with an aluminum thin film under high temperature and high humidity, does not cause drop in adhesion between the aluminum thin film and a plastic substrate, and does not generate whitened portions or fine transparent portions on a surface of the aluminum thin film.SOLUTION: The undercoat agent for a plastic with an aluminum thin film comprises: a prescribed acrylic copolymer (A) having a glass transition temperature of 0 to 100°C and a hydroxyl equivalent of 0.8 to 3.5 meq/g; an isocyanate composition (B) comprising a reaction product of triisocyanates (b1), and diols and/or water (b2), and having an isocyanate group equivalent of 1 to 10 meq/g; and an epoxy group-containing silicon compound (C) comprising a prescribed epoxy group-containing alkoxysilane (c1) and/or an epoxy group-containing silsesquioxane (c2) formed by subjecting the alkoxysilane to a hydrolysis reaction or a condensation reaction.SELECTED DRAWING: None

Description

本発明は、プラスチック基材にアルミニウム薄膜を密着させるために使用するアンダーコート剤、並びに当該アンダーコート剤を用いて得られるアルミニウム薄膜付プラスチック及びアルミニウム薄膜付プラスチックフィルム、並びに該プラスチックフィルムを部材とするインモールド成型及びインサート成型用の加飾フィルムに関する。   The present invention relates to an undercoat agent used for adhering an aluminum thin film to a plastic substrate, a plastic with an aluminum thin film obtained by using the undercoat agent, a plastic film with an aluminum thin film, and the plastic film as a member. The present invention relates to a decorative film for in-mold molding and insert molding.

アルミニウム薄膜付プラスチックとは、プラスチック基材の表面にアルミニウムからなる薄膜が形成されているものをいう。特に数十nm程度の厚みのアルミニウム薄膜をプラスチックフィルムに積層したものは、インモールド成型用又はインサート成型用の加飾フィルムの部材として賞用されており、成形品に金属調ないしミラー感等の意匠性を付与できることから、近年、例えば、携帯電話やオーディオ製品、パソコン、自動車内装部品等種々の電子製品の筐体に供されている。   The plastic with an aluminum thin film is one in which a thin film made of aluminum is formed on the surface of a plastic substrate. In particular, an aluminum thin film with a thickness of about several tens of nanometers laminated on a plastic film is awarded as a member of a decorative film for in-mold molding or insert molding. In recent years, it has been used in various electronic products such as mobile phones, audio products, personal computers, automobile interior parts, and the like because it can provide design properties.

ところで、アルミニウム薄膜とプラスチック基材とを密着させるためには、各種ポリマーを主成分とするアンダーコート剤が使用されることが多い。   By the way, in order to make an aluminum thin film and a plastic base material contact | adhere, the undercoat agent which has various polymers as a main component is used in many cases.

例えば特許文献1には、所定のガラス転移温度及び水酸基当量を有するポリオールとポリイソシアネートとを含むアンダーコート剤が記載されており、このものによれば、プラスチックフィルムとアルミニウム薄膜との密着性が良好になるとされる。   For example, Patent Document 1 describes an undercoat agent containing a polyol and a polyisocyanate having a predetermined glass transition temperature and a hydroxyl group equivalent. According to this, the adhesion between a plastic film and an aluminum thin film is good. It will be.

また、特許文献2には、特定のアルキル(メタ)アクリレートと水酸基含有(メタ)アクリレートとからなる所定水酸基濃度のアクリルコポリマー及びポリイソシアネートを含むアンダーコート剤が記載されている。そしてこのものによれば、プラスチックフィルムとアルミニウム蒸着膜との密着性が良好になるだけでなく、該アルミニウム薄膜付プラスチックフィルムを高温状態に置いてもアルミニウム薄膜に白化が生じないとされる。   Patent Document 2 describes an undercoat agent containing an acrylic copolymer having a specific hydroxyl group concentration and a polyisocyanate, each of which comprises a specific alkyl (meth) acrylate and a hydroxyl group-containing (meth) acrylate. And according to this thing, not only the adhesiveness of a plastic film and an aluminum vapor deposition film becomes favorable, but even if it puts this plastic film with an aluminum thin film in a high temperature state, it is supposed that whitening does not arise in an aluminum thin film.

特開2009−227837号公報JP 2009-227837 A 特開2011−132521号公報JP 2011-132521 A

しかし、特許文献1のアンダーコート剤を用いて得られるアルミニウム薄膜付プラスチックを高温高湿状態に置くと、プラスチック基材とアルミニウム薄膜との密着性が低下したり、アルミニウム薄膜に白化部分が生じたりする問題があった。   However, when the plastic with an aluminum thin film obtained using the undercoat agent of Patent Document 1 is placed in a high-temperature and high-humidity state, the adhesion between the plastic substrate and the aluminum thin film is reduced, or a whitened portion is generated in the aluminum thin film There was a problem to do.

また、特許文献2に係るアルミニウム薄膜付プラスチックを高温高湿状態に置くと、図2で示すように、アルミニウム薄膜に微小な透明部分(以下、「抜け」ともいう。)が多数生じる等の問題が見出された。   Moreover, when the plastic with an aluminum thin film according to Patent Document 2 is placed in a high-temperature and high-humidity state, as shown in FIG. Was found.

本発明は、高温高湿下でもアルミニウム薄膜とプラスチック基材の密着性を低下させず、かつ、アルミニウム薄膜に白化部分や抜けを生じさせない新規なアンダーコート剤を提供することを課題とする。   It is an object of the present invention to provide a novel undercoat agent that does not deteriorate the adhesion between an aluminum thin film and a plastic substrate even under high temperature and high humidity, and that does not cause whitening or omission in the aluminum thin film.

本発明者は、前記「抜け」が、アルミニウムと水の何らかの反応物で形成されており、これが可視光領域で透明であることから、図2で示すように、あたかもアルミニウム薄膜に無数の微小な穴が生じているように見えるのであろうと考えた。   The present inventor believes that the “missing” is formed of some reaction product of aluminum and water, and is transparent in the visible light region. As shown in FIG. I thought that a hole would appear.

そして、抜けの問題を解消しつつ、密着性及び耐白化性は維持する手段について検討した結果、所定のアクリルポリオールとポリイソシアネートを含むアンダーコート剤に所定のエポキシ基含有シラン化合物を更に添加することによって、前記課題を解決可能なアンダーコート剤が得られることを見出した。   And as a result of studying means for maintaining adhesion and whitening resistance while eliminating the problem of omission, a predetermined epoxy group-containing silane compound is further added to an undercoat agent containing a predetermined acrylic polyol and polyisocyanate. Thus, it was found that an undercoat agent capable of solving the above-described problems can be obtained.

即ち本発明は、ヒドロキシ基不含有アルキル(メタ)アクリレート類(a1)及びヒドロキシ基含有アルキル(メタ)アクリレート類(a2)の反応物であって、ガラス転移温度が0〜100℃であり、かつ水酸基当量が0.8〜3.5meq/gであるアクリルコポリマー(A)と、トリイソシアネート類(b1)並びにジオール類及び/又は水(b2)(b2)の反応物を含み、かつイソシアネート基当量が1〜10meq/gであるイソシアネート組成物(B)と、一般式(1):X−Si(R(OR3−a(式中、Xはエポキシ基を含む炭素数1〜8の炭化水素基を、Rは水素又は炭素数1〜8の炭化水素基を、Rは炭素数1〜8の炭化水素基を、aは0又は1を示す。)で表されるエポキシ基含有アルコキシシラン(c1)並びに/又はこれを加水分解反応及び縮合反応させてなるエポキシ基含有シルセスキオキサン(c2)からなるエポキシ基含有ケイ素化合物(C)とを含有するアルミニウム薄膜付プラスチック用アンダーコート剤、に関する。 That is, the present invention is a reaction product of hydroxy group-free alkyl (meth) acrylates (a1) and hydroxy group-containing alkyl (meth) acrylates (a2), having a glass transition temperature of 0 to 100 ° C., and A reaction product comprising an acrylic copolymer (A) having a hydroxyl group equivalent of 0.8 to 3.5 meq / g, a triisocyanate (b1), a diol and / or water (b2) (b2), and an isocyanate group equivalent Is an isocyanate composition (B) in which 1 to 10 meq / g and the general formula (1): X-Si (R 1 ) a (OR 2 ) 3-a (wherein X is carbon number 1 containing an epoxy group) -8 hydrocarbon group, R 1 represents hydrogen or a hydrocarbon group having 1 to 8 carbon atoms, R 2 represents a hydrocarbon group having 1 to 8 carbon atoms, and a represents 0 or 1. Epoxy group-containing alkoxy Undercoat agent for plastics with aluminum thin film containing silane (c1) and / or an epoxy group-containing silicon compound (C) composed of an epoxy group-containing silsesquioxane (c2) obtained by subjecting it to a hydrolysis reaction and a condensation reaction , Regarding.

また、本発明は、プラスチック基材(プラスチックフィルムを除く。)と、前記アンダーコート剤からなる層と、アルミニウム薄膜層とを有するアルミニウム薄膜付プラスチックにも関する。   The present invention also relates to a plastic with an aluminum thin film having a plastic substrate (excluding a plastic film), a layer made of the undercoat agent, and an aluminum thin film layer.

また、本発明は、プラスチックフィルムと、前記アンダーコート剤からなる層と、アルミニウム薄膜層とを有する、アルミニウム薄膜付プラスチックフィルムにも関する。   Moreover, this invention relates also to the plastic film with an aluminum thin film which has a plastic film, the layer which consists of said undercoat agent, and an aluminum thin film layer.

また、本発明は、前記アルミニウム薄膜付プラスチックフィルムを部材とするインモールド成型用加飾フィルム及びインサート成型用の加飾フィルムにも関する。   Moreover, this invention relates also to the decorative film for in-mold shaping | molding which uses the said plastic film with an aluminum thin film as a member, and the decorative film for insert molding.

本発明のアンダーコート剤は透明な組成物であり、室温でのポットライフも長い。当該アンダーコート剤によれば、アルミニウム薄膜とプラスチック基材との初期密着性(以下、単に初期密着性ともいう。)、高温高湿下におけるアルミニウム薄膜とプラスチック基材との密着性(以下、耐湿熱密着性ともいう。)、並びにアルミニウム薄膜面の耐白化性及び耐抜け性(以下、順に、単に耐白化性、耐抜け性ともいう。)が良好になる。   The undercoat agent of the present invention is a transparent composition and has a long pot life at room temperature. According to the undercoat agent, the initial adhesion between the aluminum thin film and the plastic substrate (hereinafter also simply referred to as initial adhesion), the adhesion between the aluminum thin film and the plastic substrate under high temperature and high humidity (hereinafter referred to as moisture resistance). As well as whitening resistance and drop resistance of the aluminum thin film surface (hereinafter, also simply referred to as “whitening resistance” and “drop resistance” in order).

本発明に係るアルミニウム薄膜付プラスチック(フィルム状のものを除く。)は、初期密着性、耐湿熱密着性、耐白化性及び耐抜け性が全て良好である。このものは、例えばボトルやキャップ、携帯電話やオーディオ製品、パソコン、自動車内装部品等種々の電子製品の筐体等の用途に供し得る。   The plastic with an aluminum thin film according to the present invention (except for a film-like one) has good initial adhesion, wet heat resistance, whitening resistance, and slip-out resistance. This can be used for applications such as bottles and caps, mobile phones, audio products, personal computers, and housings for various electronic products such as automobile interior parts.

本発明に係るアルミニウム薄膜付プラスチックフィルムは、同じく初期密着性、耐湿熱密着性、耐白化性及び耐抜け性の全てが良好である。このものは、例えばインモールド成型用又はインサート成型用の加飾フィルムの部材に適する他、ガスバリアフィルム等の包装材や、透明導電シート、フィルムコンデンサ、表示用ラベルの部材として好適である。   The plastic film with an aluminum thin film according to the present invention is also good in initial adhesion, wet heat and heat resistance, whitening resistance, and dropout resistance. In addition to being suitable as a member of a decorative film for in-mold molding or insert molding, this material is suitable as a packaging material such as a gas barrier film, a transparent conductive sheet, a film capacitor, or a member for a display label.

実施例1に係るアルミニウム蒸着PETフィルムの蒸着面の顕微鏡写真(400倍)であり、極めて平滑であり、抜けが生じていないことが解る。It is a microscope picture (400 times) of the vapor deposition surface of the aluminum vapor deposition PET film which concerns on Example 1, and it turns out that it is extremely smooth and the missing has not arisen. 比較例1に係るアルミニウム蒸着PETフィルムの蒸着面の顕微鏡写真(400倍)であり、蒸着面に抜けが生じていることが解る。It is a microscope picture (400 times) of the vapor deposition surface of the aluminum vapor deposition PET film which concerns on the comparative example 1, and it turns out that the omission has arisen in the vapor deposition surface.

本発明のアンダーコート剤は、所定のアクリルコポリマー(A)(以下、(A)成分ともいう。)、イソシアネート組成物(B)(以下、(B)成分ともいう。)及びエポキシ基含有ケイ素化合物(C)(以下、(C)成分ともいう。)を必須成分とする組成物である。   The undercoat agent of the present invention comprises a predetermined acrylic copolymer (A) (hereinafter also referred to as component (A)), an isocyanate composition (B) (hereinafter also referred to as component (B)), and an epoxy group-containing silicon compound. It is a composition containing (C) (hereinafter also referred to as component (C)) as an essential component.

(A)成分は、ヒドロキシ基不含有アルキル(メタ)アクリレート類(a1)(以下、(a1)成分ともいう。)及びヒドロキシ含有アルキル(メタ)アクリレート類(a2)(以下、(a2)成分ともいう。)を反応させてなる共重合体である。   The component (A) includes hydroxy group-free alkyl (meth) acrylates (a1) (hereinafter also referred to as (a1) component) and hydroxy-containing alkyl (meth) acrylates (a2) (hereinafter referred to as (a2) component). It is a copolymer obtained by reacting.

(a1)成分としては、分子内にヒドロキシ基を有しないアルキル(メタ)アクリレートであれば各種公知のものを特に制限なく使用できる。具体的には、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec−ブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イコシル、(メタ)アクリル酸ドコシル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロペンタニル及び(メタ)アクリル酸イソボルニル等が挙げられ、これらは一種を単独で、又は二種以上を組み合わせて使用できる。これらの中でも、本発明のアンダーコート剤の特に耐抜け性の向上に寄与することから、アルキル基の炭素数が1〜20程度のアルキル(メタ)アクリレートが好ましい。また、アルキル基の炭素数が異なる(a1)成分を併用することによって、(A)成分のガラス転移温度等の物性が調節可能となる。   As the component (a1), various known compounds can be used without particular limitation as long as they are alkyl (meth) acrylates having no hydroxy group in the molecule. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, (meth) acrylic Tert-butyl acid, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hexadecyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, icosyl (meth) acrylate, ( Examples thereof include docosyl acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, cyclopentanyl (meth) acrylate, and isobornyl (meth) acrylate, and these may be used alone or in combination. The above can be used in combination. Among these, the alkyl (meth) acrylate having about 1 to 20 carbon atoms in the alkyl group is preferable because it contributes to the improvement of the slip resistance of the undercoat agent of the present invention. Moreover, physical properties, such as a glass transition temperature of (A) component, can be adjusted by using together (a1) component from which carbon number of an alkyl group differs.

(a2)成分は、(A)成分にヒドロキシ基を付与し、これと(B)成分及び(C)成分とを反応させることを目的として必須使用するモノマーであり、分子内にヒドロキシ基を有するアルキル(メタ)アクリレートであれば、各種公知のものを特に制限なく使用できる。具体的には、例えば、(メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシブチル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸ヒドロキシシクロヘキシル、(メタ)アクリル酸4−(ヒドロキシメチル)シクロヘキシルメチル及び2−ヒドロキシプロピオン酸4−(ヒドロキシメチル)シクロヘキシルメチル等が挙げられ、これらは一種を単独で、又は二種以上を組み合わせて使用できる。これらの中でも、本発明に係るアンダーコート剤のポットライフ等の観点より、ヒドロキシアルキル基の炭素数が1〜4程度のものが好ましい。   The component (a2) is a monomer that is essential for the purpose of imparting a hydroxy group to the component (A) and reacting this with the component (B) and the component (C), and has a hydroxy group in the molecule. Any known alkyl (meth) acrylate can be used without particular limitation. Specifically, for example, hydroxymethyl (meth) acrylate, hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-methacrylic acid 3- Hydroxybutyl, 4-hydroxybutyl (meth) acrylate, hydroxycyclohexyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl (meth) acrylate, 4- (hydroxymethyl) cyclohexylmethyl 2-hydroxypropionate, etc. These may be used alone or in combination of two or more. Among these, those having about 1 to 4 carbon atoms of the hydroxyalkyl group are preferable from the viewpoint of the pot life of the undercoat agent according to the present invention.

なお、本発明では、(A)成分の構成モノマーとして、(a1)成分及び(a2)成分のいずれにも該当しないモノマー(以下、(a3)成分ともいう。)を併用できる。具体的には、例えば、(メタ)アクリル酸、2−カルボキシエチル(メタ)アクリレート、3−カルボキシプロピル(メタ)アクリレート、4−カルボキシブチル(メタ)アクリレート、3−ブテン酸、4−ペンテン酸、5−ヘキセン酸、マレイン酸、クロトン酸、無水マレイン酸、フマル酸及びイタコン酸等のα,β不飽和カルボン酸類;スチレン、α−メチルスチレン及びt−ブチルスチレン等のスチレン類;2,4,4−トリメチル−1−ペンテン、3−メチル−1−ブテン、3−メチル−1−ペンテン、1−ヘキセン、ビニルシクロヘキサン及び2−メチルビニルシクロヘキサン等のαオレフィン;(メタ)アリルアルコール、4−ペンテン−1−オール、1−メチル−3−ブテン−1−オール及び5−ヘキセン−1−オール等の不飽和アルコール;(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル及び(メタ)アクリル酸4−メチルベンジル等のアリール(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート等のジアルキルアミノアルキル(メタ)アクリレート及びジメチルアミノエチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド及びジエチルアミノプロピル(メタ)アクリルアミド等のジアルキルアミノアルキル(メタ)アクリルアミ及びそれらの塩;N,N−ジメチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンカルボン酸及びそれらの塩等の連鎖移動性モノマー;ビニルアミン、(メタ)アクリル酸アミノエチル、アリルメルカプタン及びグリシジル(メタ)アクリレート等の他の単官能モノマー;メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド及びヘキサメチレンビス(メタ)アクリルアミド等のビス(メタ)アクリルアミド;エチレングリコールジ(メタ)アクリルエステル及びジエチレングリコールジ(メタ)アクリルエステル等のジ(メタ)アクリルエステル;アジピン酸ジビニル及びセバシン酸ジビニル等のジビニルエステル;ジアリルジメチルアンモニウム、ジアリルフタレート、ジアリルクロレンデート及びジビニルベンゼン等の二官能性モノマー;1,3,5トリアクリロイルヘキサヒドロ−S−トリアジン、トリアリルイソシアヌレート、トリアリルアミン、トリアリルトリメリテート及びN,N−ジアリルアクリルアミド等の三官能性モノマー;テトラメチロールメタンテトラアクリレート、テトラアリルピロメリテート及びN,N,N’,N’−テトラアリル−1,4ジアミノブタン等の四官能性モノマー;アクリロニトリル及びメタクリロニトリル等のアクリロニトリル;アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド及びN−メチロールメタクリルアミド等のアクリルアミドなどが挙げられる。   In the present invention, as a constituent monomer of the component (A), a monomer that does not correspond to either the component (a1) or the component (a2) (hereinafter also referred to as the component (a3)) can be used in combination. Specifically, for example, (meth) acrylic acid, 2-carboxyethyl (meth) acrylate, 3-carboxypropyl (meth) acrylate, 4-carboxybutyl (meth) acrylate, 3-butenoic acid, 4-pentenoic acid, Α, β unsaturated carboxylic acids such as 5-hexenoic acid, maleic acid, crotonic acid, maleic anhydride, fumaric acid and itaconic acid; styrenes such as styrene, α-methylstyrene and t-butylstyrene; Α-olefins such as 4-trimethyl-1-pentene, 3-methyl-1-butene, 3-methyl-1-pentene, 1-hexene, vinylcyclohexane and 2-methylvinylcyclohexane; (meth) allyl alcohol, 4-pentene Insaturation such as -1-ol, 1-methyl-3-buten-1-ol and 5-hexen-1-ol Alcohol; aryl (meth) acrylates such as phenyl (meth) acrylate, benzyl (meth) acrylate and 4-methylbenzyl (meth) acrylate; dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, diethylamino Dialkylaminoalkyl (meth) acrylates such as ethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) acrylate, and dimethylaminoethyl (meth) acrylamide, diethylaminoethyl (meth) acrylamide, dimethylaminopropyl (meth) ) Dialkylaminoalkyl (meth) acrylamids and their salts such as acrylamide and diethylaminopropyl (meth) acrylamide; N, N-dimethyl (meth) acrylamide, Chain transfer monomers such as diacetone (meth) acrylamide, isopropyl (meth) acrylamide, 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2- (meth) acrylamide-2-methylpropanecarboxylic acid and salts thereof Other monofunctional monomers such as vinylamine, aminoethyl (meth) acrylate, allyl mercaptan and glycidyl (meth) acrylate; bis such as methylene bis (meth) acrylamide, ethylene bis (meth) acrylamide and hexamethylene bis (meth) acrylamide (Meth) acrylamide; di (meth) acrylic esters such as ethylene glycol di (meth) acrylic ester and diethylene glycol di (meth) acrylic ester; dibi such as divinyl adipate and divinyl sebacate Bifunctional monomers such as diallyldimethylammonium, diallylphthalate, diallylchlorendate and divinylbenzene; 1,3,5 triacryloylhexahydro-S-triazine, triallyl isocyanurate, triallylamine, triallyl trimellitate And trifunctional monomers such as N, N-diallylacrylamide; tetrafunctional monomers such as tetramethylolmethane tetraacrylate, tetraallyl pyromellitate and N, N, N ′, N′-tetraallyl-1,4 diaminobutane; Examples include acrylonitrile such as acrylonitrile and methacrylonitrile; acrylamide such as acrylamide, methacrylamide, N-methylolacrylamide, and N-methylolmethacrylamide.

(A)成分の構成モノマーとして(a1)成分及び(a2)成分のみを使用する場合、それらの使用比率は特に限定されないが、通常は以下の通りである。
(a1)成分:通常45〜97モル%程度、好ましくは65〜90モル%程度
(a2)成分:通常3〜45モル%程度、好ましくは10〜35モル%程度
When only the component (a1) and the component (a2) are used as the constituent monomer of the component (A), their use ratio is not particularly limited, but is usually as follows.
(A1) component: usually about 45 to 97 mol%, preferably about 65 to 90 mol% (a2) component: usually about 3 to 45 mol%, preferably about 10 to 35 mol%

また、(a1)成分及び(a2)成分とともに(a3)成分を併用する場合、それらの使用比率も特に限定されないが、通常、以下の通りである。
(a1)成分:通常65〜90モル%程度、好ましくは70〜85モル%程度
(a2)成分:通常5〜35モル%程度、好ましくは10〜30モル%程度
(a3)成分:通常1〜20モル%程度、好ましくは1〜15モル%程度
In addition, when the component (a3) is used in combination with the component (a1) and the component (a2), the use ratio thereof is not particularly limited, but is usually as follows.
(A1) component: usually about 65 to 90 mol%, preferably about 70 to 85 mol% (a2) component: usually about 5 to 35 mol%, preferably about 10 to 30 mol% (a3) component: usually 1 to About 20 mol%, preferably about 1 to 15 mol%

(A)成分は、各種公知の方法で製造できる。具体的には、例えば、(a1)成分及び(a2)成分並びに必要に応じて前記(a3)成分を、無溶剤下又は有機溶剤(D)(以下、(D)成分ともいう。)の中で、通常はラジカル重合開始剤の存在下、80〜180℃程度において、1〜10時間程度共重合反応させればよい。   The component (A) can be produced by various known methods. Specifically, for example, the component (a1) and the component (a2) and, if necessary, the component (a3) are used in the absence of a solvent or in an organic solvent (D) (hereinafter also referred to as component (D)). In general, a copolymerization reaction may be performed for about 1 to 10 hours at about 80 to 180 ° C. in the presence of a radical polymerization initiator.

(D)成分としては、例えば、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノン等のケトン系溶剤;トルエン及びキシレン等の芳香族系溶剤;メチルアルコール、エチルアルコール、ノルマルプロピルアルコール、イソプロピルアルコール及びブチルアルコール等の低分子アルコール系溶剤;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル及びプロピレングリコールモノメチルエーテルアセテート等のグリコールエーテル系溶剤;酢酸エチル、酢酸ブチル、メチルセロソルブアセテート及びセロソルブアセテート等のエステル系溶剤;ソルベッソ#100及びソルベッソ#150(いずれも商品名。エクソン社製。)等の石油系溶剤;その他クロロホルム及びジメチルホルムアミド等が挙げられ、その使用量は、(A)成分を含む溶液の固形分重量が10〜50重量%程度となる範囲である。   Examples of the component (D) include ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; aromatic solvents such as toluene and xylene; and low solvents such as methyl alcohol, ethyl alcohol, normal propyl alcohol, isopropyl alcohol and butyl alcohol. Molecular alcohol solvents; glycol ether solvents such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether and propylene glycol monomethyl ether acetate; ethyl acetate, butyl acetate, methyl cellosolve acetate and cellosolve acetate Ester solvents such as Solvesso # 100 Petroleum solvents such as Sorbesso # 150 (both trade names, manufactured by Exxon); and other solvents such as chloroform and dimethylformamide are used, and the amount used is 10 to 10% by weight of the solid content of the solution containing the component (A). The range is about 50% by weight.

前記ラジカル重合開始剤としては、例えば、過酸化水素、過硫酸アンモニウム、過硫酸カリウム、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、ラウリルパーオキサイド、2,2’−アゾビスイソブチロニトリル及びジメチル−2,2’−アゾビスイソブチレート等が挙げられ、その使用量は通常、(A)成分を構成するモノマーの総重量に対して0.1〜2重量%程度となる範囲である。   Examples of the radical polymerization initiator include hydrogen peroxide, ammonium persulfate, potassium persulfate, t-butyl peroxybenzoate, dicumyl peroxide, lauryl peroxide, 2,2′-azobisisobutyronitrile and dimethyl. -2,2'-azobisisobutyrate etc. are mentioned, The usage-amount is the range used as about 0.1 to 2 weight% normally with respect to the total weight of the monomer which comprises (A) component.

こうして得られる(A)成分は、ガラス転移温度が0〜100℃であり、且つ水酸基当量0.8〜3.5meq/gである。そのような(A)成分は、(B)成分及び(C)成分と良く相溶するため、本発明のアンダーコート剤が透明となり、かつ室温での長期保存も可能になる。また、そのような(A)成分と(B)成分及び(C)成分とを反応させることにより、前記初期密着性、耐湿熱密着性、耐白化性及び耐抜け性が良好になる。かかる観点より、(A)成分のガラス転移温度は好ましくは25〜80℃程度であり、水酸基当量は好ましくは1〜2.5meq/g程度である。   The component (A) thus obtained has a glass transition temperature of 0 to 100 ° C. and a hydroxyl group equivalent of 0.8 to 3.5 meq / g. Since the component (A) is well compatible with the component (B) and the component (C), the undercoat agent of the present invention becomes transparent and can be stored for a long time at room temperature. Moreover, by making such (A) component, (B) component, and (C) component react, the said initial stage adhesiveness, wet heat resistant adhesiveness, whitening resistance, and drop-out resistance become favorable. From this viewpoint, the glass transition temperature of the component (A) is preferably about 25 to 80 ° C., and the hydroxyl group equivalent is preferably about 1 to 2.5 meq / g.

また、前記(a3)成分を併用する場合、(A)成分の酸価は、特に耐白化性を考慮すると、通常0.06〜0.4meq/g程度、好ましくは0.09〜0.18meq/g程度である。   When the component (a3) is used in combination, the acid value of the component (A) is usually about 0.06 to 0.4 meq / g, preferably 0.09 to 0.18 meq, particularly considering whitening resistance. / G or so.

また、(A)成分の他の物性は特に限定されないが、前記アンダーコート剤の初期密着性、耐湿熱密着性、耐白化性及び耐抜け性の観点より、重量平均分子量が通常3000〜100000程度、好ましくは10000〜80000程度である。   In addition, the other physical properties of the component (A) are not particularly limited, but the weight average molecular weight is usually about 3000 to 100,000 from the viewpoint of the initial adhesion, wet heat resistance, whitening resistance, and slipping resistance of the undercoat agent. Preferably, it is about 10000-80000.

(B)成分は、トリイソシアネート類(b1)(以下、(b1)成分ともいう。)及びジオール類(b2)(以下、(b2)成分ともいう。)の反応物を含む組成物である。   Component (B) is a composition containing a reaction product of triisocyanates (b1) (hereinafter also referred to as (b1) component) and diols (b2) (hereinafter also referred to as (b2) component).

(b1)成分としては、各種公知のジイソシアネートの多量体としてのトリイソシアネートが好ましい。該ジイソシアネートとしては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート及びキシリレンジイソシアネート等の芳香族ジイソシアネートや、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート及びリジンジイソシアネート等の脂肪族ジイソシアネート、並びにジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、1,4−シクロヘキサンジイソシアネート、水添キシレンジイソシアネート及び水添トリレンジイソシアネート等の脂環式ジイソシアネートが挙げられる。また、多量体としては、イソシアヌレート体(1,3,5−トリアジン-2,4,6−(1H、3H、5H)トリオン体)やアダクト体が挙げられる。これらの中でも、特に耐湿熱性、耐白化性及び耐抜け性の観点より、芳香族ジイソシアネートのイソシアヌレート体及び/又はアダクト体が好ましい。   As the component (b1), triisocyanate as a multimer of various known diisocyanates is preferable. Examples of the diisocyanate include aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate, aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate and lysine diisocyanate, and dicyclohexylmethane diisocyanate, isophorone diisocyanate, 1 , 4-cyclohexane diisocyanate, hydrogenated xylene diisocyanate and hydrogenated tolylene diisocyanate. Examples of multimers include isocyanurate bodies (1,3,5-triazine-2,4,6- (1H, 3H, 5H) trione bodies) and adduct bodies. Among these, an isocyanurate body and / or an adduct body of aromatic diisocyanate are particularly preferable from the viewpoints of heat-and-moisture resistance, whitening resistance and slip-out resistance.

(b2)成分としては、各種公知のジオール及び/又は水が挙げられる。ジオールとしては、具体的には、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、オクタンジオール、ジプロピレングリコール、ポリエチレングリコール及びポリプロピレングリコール等が挙げられる。これらの中でも、特にアルミニウム薄膜との密着性の観点より、炭素数2〜20程度、好ましくは2〜8程度、特に4〜8程度のアルキレンジオール、及び/又は水が好ましい。   (B2) As a component, various well-known diol and / or water are mentioned. Specific examples of the diol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, neopentyl glycol, 1,6-hexanediol, octanediol, and diene. Examples include propylene glycol, polyethylene glycol, and polypropylene glycol. Among these, particularly from the viewpoint of adhesion to the aluminum thin film, alkylene diols having about 2 to 20 carbon atoms, preferably about 2 to 8 carbon atoms, and particularly about 4 to 8 carbon atoms, and / or water are preferable.

(B)成分は、各種公知のウレタン化反応により製造することができる。(b1)成分と(b2)成分の使用比率は特に限定されないが、特にアルミニウム薄膜との密着性の観点より、通常、(b1)成分のイソシアネート基(NCO’)と(b2)成分のうちジオール類の水酸基(OH’)との当量比[NCO’/OH’]が通常5〜20程度、好ましくは10〜20程度となる範囲であればよい。一方、(b2)成分として水(HO)を用いる場合には、(b1)成分のイソシアネート基と水分子が反応した後、脱炭酸(CO↑)過程を経て一級アミノ基(−NH)が生成する。次いで、この一級アミノ基と、別の(b1)成分のNCO’基とが反応する。ここに、この一連の反応過程において、水分子1モルによって(b1)成分のイソシアネート基2モルが消費される。そのため、(b2)成分として水(HO)を用いる場合は、これが水酸基を二つ有するものと見做して、前記当量比[NCO’/OH’]を計算する。反応の際、必要に応じてイソシアネート基と反応しない有機溶剤、例えば前記ケトン系溶剤やグリコールエーテル系溶剤、エステル系溶剤を使用できる。 The component (B) can be produced by various known urethanization reactions. The use ratio of the component (b1) and the component (b2) is not particularly limited, but in particular, from the viewpoint of adhesion to the aluminum thin film, the diol of the isocyanate group (NCO ′) and the component (b2) of the component (b1) is usually used. The equivalent ratio [NCO ′ / OH ′] to the hydroxyl group (OH ′) of the class is usually in the range of about 5 to 20, preferably about 10 to 20. On the other hand, when water (H 2 O) is used as the component (b2), the isocyanate group of the component (b1) reacts with a water molecule, and then undergoes a decarboxylation (CO 2 ↑) process to form a primary amino group (—NH 2 ) is generated. Next, this primary amino group reacts with the NCO ′ group of another component (b1). Here, in this series of reaction processes, 2 mol of the isocyanate group of the component (b1) is consumed by 1 mol of water molecules. Therefore, when water (H 2 O) is used as the component (b2), the equivalent ratio [NCO ′ / OH ′] is calculated on the assumption that it has two hydroxyl groups. In the reaction, if necessary, an organic solvent that does not react with an isocyanate group, for example, the ketone solvent, glycol ether solvent, or ester solvent can be used.

こうして得られる(B)成分は、本発明のアンダーコート剤の相溶性やポットライフ、初期密着性、耐湿熱密着性、耐白化性及び耐抜け性の観点より、そのイソシアネート基当量が1〜10meq/g程度、好ましくは3〜6meq/g程度である。   The component (B) thus obtained has an isocyanate group equivalent of 1 to 10 meq from the viewpoint of compatibility of the undercoat agent of the present invention, pot life, initial adhesion, wet heat and heat resistance, whitening resistance and slipping resistance. / G, preferably about 3 to 6 meq / g.

なお、本発明においては、(B)成分とともに、必要に応じ、前記ジイソシアネートや、
リジントリイソシアネート等の(b1)成分以外のトリイソシアネート、6官能のポリイソシアネート(製品名「デュラネートMHG−80B」、旭化成ケミカルズ(株)製)等を使用できる。
In the present invention, together with the component (B), if necessary, the diisocyanate,
Triisocyanate other than the component (b1) such as lysine triisocyanate, hexafunctional polyisocyanate (product name “Duranate MHG-80B”, manufactured by Asahi Kasei Chemicals Corporation) and the like can be used.

(A)成分及び(B)成分の使用比率は特に制限されないが、本発明のアンダーコート剤の相溶性やポットライフ、特に耐白化性及び耐抜性を考慮すると、通常、(A)成分の水酸基当量と(B)成分のイソシアネート基当量の比〔NCO/OH〕が1〜6程度、好ましくは2〜5程度となる範囲である。   The use ratio of the component (A) and the component (B) is not particularly limited. However, considering the compatibility and pot life of the undercoat agent of the present invention, in particular, the whitening resistance and the anti-extraction property, the component (A) The ratio [NCO / OH] of the hydroxyl group equivalent to the isocyanate group equivalent of the component (B) is about 1 to 6, preferably about 2 to 5.

(C)成分としては、各種公知のエポキシ基含有ケイ素化合物を使用できる。具体的には、例えば、一般式(1):X−Si(R(OR3−a(式中、Xはエポキシ基を含む炭素数1〜8の炭化水素基を、Rは水素又は炭素数1〜8の炭化水素基を、Rは炭素数1〜8の炭化水素基を、aは0又は1を示す。)で表されるエポキシ基含有アルコキシシラン(c1)(以下、(c1)成分ともいう。)並びに/又はこれを加水分解反応及び縮合反応させてなるエポキシ基含有シルセスキオキサン(c2)(以下、(c2)成分ともいう。)が挙げられる。 As the component (C), various known epoxy group-containing silicon compounds can be used. Specifically, for example, general formula (1): X—Si (R 1 ) a (OR 2 ) 3-a (wherein X represents a hydrocarbon group having 1 to 8 carbon atoms including an epoxy group, R 1 represents hydrogen or a hydrocarbon group having 1 to 8 carbon atoms, R 2 represents a hydrocarbon group having 1 to 8 carbon atoms, and a represents 0 or 1.) Epoxy group-containing alkoxysilane (c1) (Hereinafter also referred to as component (c1)) and / or an epoxy group-containing silsesquioxane (c2) (hereinafter also referred to as component (c2)) obtained by subjecting this to a hydrolysis reaction and a condensation reaction.

(c1)成分としては、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン及び3−グリシドキシプロピルトリプロポキシシラン等のグリシドキシプロピルトリアルコキシシランや、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン及び2−(3,4−エポキシシクロヘキシル)エチルトリプロポキシシラン等の(エポキシシクロヘキシル)エチルトリアルコキシシラン等が挙げられ、これらは2種以上を組み合わせることができる。   Examples of the component (c1) include glycidoxypropyltrialkoxysilane such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropyltripropoxysilane, and 2 (Epoxycyclohexyl) ethyl such as-(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane A trialkoxysilane etc. are mentioned, These can combine 2 or more types.

なお、(c1)成分に代えて、前記一般式(1)中のXが例えばイソシアネート基のものや、アルキル基及びフェニル基等の炭化水素基のものを用いると、前記耐湿熱密着性、耐白化性及び耐抜け性のバランスが不良になりやすい。   In place of the component (c1), when X in the general formula (1) is, for example, an isocyanate group or a hydrocarbon group such as an alkyl group and a phenyl group, the moisture and heat resistance, The balance between whitening and dropout resistance tends to be poor.

(c2)成分は、(c1)成分を加水分解反応及び縮合反応させてなるシルセスキオキサンである。また、そのエポキシ基の含有量を調節する目的で、前記(c1)成分のみならず、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン及びフェニルトリエトキシシラン等のエポキシ基非含有アルキルトリアルコキシシラン(以下、(c1’)成分ともいう。)を原料としてもよい。   The component (c2) is silsesquioxane obtained by subjecting the component (c1) to a hydrolysis reaction and a condensation reaction. For the purpose of adjusting the content of the epoxy group, not only the component (c1), but also methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane and phenyltrimethoxysilane. An epoxy group-free alkyltrialkoxysilane such as ethoxysilane (hereinafter also referred to as (c1 ′) component) may be used as a raw material.

(c2)成分を得るには、先ず、(c1)成分及び必要に応じて用いる(c1’)成分を加水分解反応させる。具体的には、例えば、(c1)成分及び必要に応じて用いる(c1’)成分を、水及び触媒の存在下に加水分解反応させればよい。なお、水の量は特に限定されないが、[加水分解反応に用いる水のモル数]/[(c1)成分及び必要に応じて用いる(c1’)成分に含まれるアルコキシ基の合計モル数](モル比)が通常0.4〜10程度、好ましくは1程度となる量である。また、触媒としては、例えば酸性触媒(塩酸、硫酸、硝酸等の無機酸、ギ酸、酢酸等の有機酸)や塩基性触媒(1,8−ジアザ−ビシクロ[5.4.0]ウンデセン−7、2−エチル−4−メチルイミダゾール等の有機塩や、アンモニア及び水酸化ナトリウム等の無機塩)が挙げられ、その使用量は通常、(c1)成分及び必要に応じて用いる(c1’)成分の総重量に対して0.1〜25重量%程度、好ましくは1〜10重量%となる範囲である。加水分解反応の条件も特に限定されないが、通常、反応温度が0〜100℃程度、好ましくは20〜60℃程度であり、反応時間が1分〜2時間程度である。   In order to obtain the component (c2), first, the component (c1) and the component (c1 ′) used as necessary are hydrolyzed. Specifically, for example, the component (c1) and the component (c1 ′) used as necessary may be subjected to a hydrolysis reaction in the presence of water and a catalyst. The amount of water is not particularly limited, but [number of moles of water used in hydrolysis reaction] / [total number of moles of alkoxy groups contained in component (c1) and component (c1 ′) used as necessary] ( The molar ratio is usually about 0.4 to 10, preferably about 1. Examples of the catalyst include acidic catalysts (inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as formic acid and acetic acid) and basic catalysts (1,8-diaza-bicyclo [5.4.0] undecene-7. , Organic salts such as 2-ethyl-4-methylimidazole, and inorganic salts such as ammonia and sodium hydroxide), and the amount used is usually the component (c1) and the component (c1 ′) used as necessary The total weight is about 0.1 to 25% by weight, preferably 1 to 10% by weight. The conditions for the hydrolysis reaction are not particularly limited, but usually the reaction temperature is about 0 to 100 ° C, preferably about 20 to 60 ° C, and the reaction time is about 1 minute to 2 hours.

また、前記加水分解反応の際には、前記した有機溶剤を用いることができ、特に前記アルコール系溶剤やグリコールエーテルが好適である。   In the hydrolysis reaction, the organic solvent described above can be used, and the alcohol solvent and glycol ether are particularly preferable.

得られた加水分解反応物を更に縮合反応させることにより、目的とする(c2)成分が得られる。縮合反応の条件は特に限定されず、通常、反応温度が40〜150℃程度、好ましくは60〜100℃であり、反応時間が30分〜12時間程度である。また、縮合反応時も前記有機溶剤を使用することができる。   By subjecting the obtained hydrolysis reaction product to a condensation reaction, the desired component (c2) can be obtained. The conditions for the condensation reaction are not particularly limited. Usually, the reaction temperature is about 40 to 150 ° C., preferably 60 to 100 ° C., and the reaction time is about 30 minutes to 12 hours. The organic solvent can also be used during the condensation reaction.

(c2)成分の恒数は特に限定されないが、例えば[(c2)成分中の未反応の水酸基及びアルコキシ基のモル数]/[(c1)成分及び必要に応じて用いる(c1’)成分にもともと含まれていたアルコキシ基のモル数]が通常0.3以下であり、またエポキシ基の当量が固形換算で100〜600g/eq程度であり、また不揮発分が50〜90重量%程度である。なお、得られた(c2)成分からは、必要により、残存アルコール、水、触媒及び溶剤等を減圧下に除去してもよい。   The constant of the component (c2) is not particularly limited. For example, the component [c2] is the number of moles of unreacted hydroxyl groups and alkoxy groups in the component] / [(c1) component and the component (c1 ′) used as necessary. The number of moles of the alkoxy group originally contained] is usually 0.3 or less, the equivalent of the epoxy group is about 100 to 600 g / eq in solid conversion, and the non-volatile content is about 50 to 90% by weight. . In addition, from the obtained component (c2), if necessary, residual alcohol, water, catalyst, solvent and the like may be removed under reduced pressure.

なお、(c2)成分に代えて、前記一般式(1)中のXがメトキシ基やエトキシ基等のアルコキシ基のものの部分縮合物やその加水分解物、或いは各種公知のシリカ粒子を用いると、本発明の所期の効果、特に前記アンダーコート剤の初期密着性、耐湿熱密着性、耐白化性及び耐抜け性のバランスがとり難くなる。   In place of the component (c2), when X in the general formula (1) is a partial condensate or hydrolyzate of an alkoxy group such as a methoxy group or an ethoxy group, or various known silica particles, The desired effects of the present invention, in particular, the initial adhesiveness, wet heat resistant adhesiveness, whitening resistance, and dropout resistance of the undercoat agent are difficult to balance.

(C)成分の使用量は特に限定されないが、(A)成分及び(B)成分の合計100重量部(固形分換算)に対して通常3〜20重量部(固形分換算)程度、好ましくは通常5〜15重量部(固形分換算)程度である。かかる範囲の場合、前記アンダーコート剤の初期密着性、耐湿熱密着性、耐白化性及び耐抜け性が特に良好になる。   Although the usage-amount of (C) component is not specifically limited, About 3-20 weight part (solid content conversion) grade is preferable with respect to a total of 100 weight part (solid content conversion) of (A) component and (B) component, Preferably Usually about 5 to 15 parts by weight (in terms of solid content). In such a range, the initial adhesion, wet heat resistance, whitening resistance and drop resistance of the undercoat agent are particularly good.

本発明のアンダーコート剤は、前記(D)成分の溶液として使用するのが好ましく、その固形分重量は通常5〜50重量%程度である。また、本発明のアンダーコート剤には、他にも、ウレタン化触媒(スズ系、第3級アミン系等)、ルイス酸触媒、レベリング剤、酸化防止剤及び紫外線吸収剤等の添加剤や、希釈溶剤として前記(D)成分を加えることができる。   The undercoat agent of the present invention is preferably used as a solution of the component (D), and its solid content weight is usually about 5 to 50% by weight. In addition, the undercoat agent of the present invention includes other additives such as urethanization catalysts (tin-based, tertiary amine-based, etc.), Lewis acid catalysts, leveling agents, antioxidants and ultraviolet absorbers, The component (D) can be added as a diluent solvent.

本発明のアルミニウム薄膜付プラスチックは、各種公知のプラスチック基材(プラスチックフィルムを除く。)と、本発明に係るアンダーコート剤からなる層と、アルミニウム薄膜層とを有する構造体である。   The plastic with an aluminum thin film of the present invention is a structure having various known plastic substrates (excluding plastic films), a layer made of the undercoat agent according to the present invention, and an aluminum thin film layer.

前記プラスチック基材としては、例えば、ポリエステル(PET等)、ポリ塩化ビニル、ポリアミド、ポリイミド、ポリカーボネート、ABS、ポリエチレン及びポリプロピレン等が挙げられる。これらの中でも、アンダーコート層との密着性等を考慮すると、ポリエステルが好ましい。また、該プラスチックの形状は特に限定されず、例えば球状、円柱状、円筒状、直方体状、板状であってよく、凹凸や曲面を有していてもよい。   Examples of the plastic substrate include polyester (PET, etc.), polyvinyl chloride, polyamide, polyimide, polycarbonate, ABS, polyethylene, and polypropylene. Among these, polyester is preferable in consideration of adhesion with the undercoat layer. The shape of the plastic is not particularly limited, and may be, for example, spherical, columnar, cylindrical, rectangular parallelepiped, or plate-like, and may have irregularities or curved surfaces.

本発明のアルミニウム薄膜付プラスチックフィルムは、各種公知のプラスチックフィルムと、本発明のアンダーコート剤からなる層と、アルミニウム薄膜層とを有する複合基材である。   The plastic film with an aluminum thin film of the present invention is a composite substrate having various known plastic films, a layer comprising the undercoat agent of the present invention, and an aluminum thin film layer.

前記プラスチックフィルムとしては、例えば、ポリエステルフィルム、ポリ塩化ビニルフィルム、ポリアミドフィルム、ポリイミドフィルム、ポリカーボネートフィルム、ポリエチレンフィルム及びポリプロピレンフィルム等が挙げられる。これらの中でも、アンダーコート層との密着性等を考慮すると、ポリエステルフィルムが好ましい。   Examples of the plastic film include polyester film, polyvinyl chloride film, polyamide film, polyimide film, polycarbonate film, polyethylene film, and polypropylene film. Among these, a polyester film is preferable in consideration of adhesion with the undercoat layer.

なお、前記プラスチック基材及び前記プラスチックフィルムには、予め離型層、ハードコート層、ハードコート層用アンカー層、柄インキ層等の機能層が予め設けられていても良い。   The plastic substrate and the plastic film may be previously provided with functional layers such as a release layer, a hard coat layer, a hard coat layer anchor layer, and a pattern ink layer.

アンダーコート層は、前記プラスチック基材又は前記プラスチックフィルム上に、本発明のアンダーコート剤を、各種公知の塗工手段によって塗工し、通常80〜185℃程度において、10秒〜5分程度加熱硬化させることにより得ることができる。該塗工手段は特に限定されず、例えばスプレー、ロールコーター、リバースロールコーター、グラビアコーター、ナイフコーター、バーコーター及びドットコーター等が挙げられる。また、アンダーコート剤の塗工量も特に限定されないが、通常は乾燥固形分として0.01〜10g/m程度である。 The undercoat layer is formed by applying the undercoat agent of the present invention on the plastic substrate or the plastic film by various known coating means, and usually heating at about 80 to 185 ° C. for about 10 seconds to 5 minutes. It can be obtained by curing. The coating means is not particularly limited, and examples thereof include sprays, roll coaters, reverse roll coaters, gravure coaters, knife coaters, bar coaters, and dot coaters. Moreover, the coating amount of the undercoat agent is not particularly limited, but is usually about 0.01 to 10 g / m 2 as a dry solid content.

アルミニウム薄膜層は、硬化アンダーコート層の上に、各種公知の薄膜形成法によりアルミニウム種を更に形成することにより得ることができる。該薄膜形成法としては、各種の物理的方法(真空熱蒸着、スパッタリング等)や、化学的方法(化学的気相反応等)が挙げられる。また、アルミニウム薄膜層の厚みは特に限定されないが、通常5〜500nm程度、好ましくは5〜50nm程度である。   The aluminum thin film layer can be obtained by further forming an aluminum seed on the cured undercoat layer by various known thin film forming methods. Examples of the thin film forming method include various physical methods (vacuum thermal vapor deposition, sputtering, etc.) and chemical methods (chemical vapor phase reaction, etc.). The thickness of the aluminum thin film layer is not particularly limited, but is usually about 5 to 500 nm, preferably about 5 to 50 nm.

本発明のアルミニウム薄膜付プラスチック及びアルミニウム薄膜付プラスチックフィルムには、それらの用途に応じ、他の機能性層が設けられていてもよい。例えば当該フィルムをインモールド成型用加飾フィルム又はインサート成型用加飾フィルムに供する場合には、プラスチックフィルム層とアンダーコート層との間に離型層、ハードコート層、ハードコート層用アンカー層及び柄インキ層等を設けることができる。また、アルミニウム薄膜層の上には接着剤層を設けることもできる。   Other functional layers may be provided in the plastic with an aluminum thin film and the plastic film with an aluminum thin film of the present invention according to their use. For example, when the film is used for a decorative film for in-mold molding or a decorative film for insert molding, a release layer, a hard coat layer, an anchor layer for a hard coat layer, and a plastic film layer and an undercoat layer A pattern ink layer or the like can be provided. An adhesive layer can also be provided on the aluminum thin film layer.

以下、実施例及び比較例を通じて本発明を更に詳細に説明するが、本発明の範囲はこれらによって限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail through an Example and a comparative example, the scope of the present invention is not limited by these.

また、実施例中の「部」は重量基準を表す。また、ガラス転移温度は、市販の測定器具(製品名「DSC8230B」、理学電機(株)製)を用いて測定した値である。水酸基当量及びイソシアネート基当量は、原料の仕込み部数から算出される計算値である。また、重量平均分子量は、市販のゲルパーミエーションクロマトグラフィー機器(製品名「HLC−8220GPC」、東ソー(株)製)を用いて測定した値である。また、図1〜2における顕微鏡写真は、市販の共焦点レーザー顕微鏡(製品名「VK−9500」、(株)キーエンス製)を用いて撮影したものである。   Further, “parts” in the examples represent weight standards. The glass transition temperature is a value measured using a commercially available measuring instrument (product name “DSC8230B”, manufactured by Rigaku Corporation). The hydroxyl group equivalent and the isocyanate group equivalent are calculated values calculated from the number of charged parts of the raw material. The weight average molecular weight is a value measured using a commercially available gel permeation chromatography instrument (product name “HLC-8220GPC”, manufactured by Tosoh Corporation). The micrographs in FIGS. 1 and 2 are taken using a commercially available confocal laser microscope (product name “VK-9500”, manufactured by Keyence Corporation).

<(A)成分の調製>
製造例1
撹拌機、温度計、還流冷却管、滴下ロート及び窒素導入管を備えた反応容器に、メタクリル酸メチル192.0部、アクリル酸ノルマルブチル7.2部、及びアクリル酸2−ヒドロキシエチル40.8部、並びにメチルエチルケトン360部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度70℃、水酸基当量1.42meq/g(水酸基価80mgKOH/g)、及び重量平均分子量50000のアクリルコポリマー(A−1)の溶液(不揮発分30%)を得た。
<Preparation of component (A)>
Production Example 1
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping funnel and a nitrogen introduction tube, 192.0 parts of methyl methacrylate, 7.2 parts of normal butyl acrylate, and 2-hydroxyethyl acrylate 40.8 And 360 parts of methyl ethyl ketone were charged, and the reaction system was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, by cooling the reaction system to room temperature, a solution (nonvolatile content) of an acrylic copolymer (A-1) having a glass transition temperature of 70 ° C., a hydroxyl group equivalent of 1.42 meq / g (hydroxyl value of 80 mgKOH / g), and a weight average molecular weight of 50,000. 30%).

製造例2
製造例1と同様の反応容器に、メタクリル酸メチル189.6部、アクリル酸ノルマルブチル4.8部、及びメタクリル酸2−ヒドロキシエチル45.6部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度90℃、水酸基当量1.42meq/g(水酸基価80mgKOH/g)、及び重量平均分子量50000のアクリルコポリマー(A−2)の溶液(不揮発分30%)を得た。
Production Example 2
A reaction vessel similar to Production Example 1 was charged with 189.6 parts of methyl methacrylate, 4.8 parts of normal butyl acrylate, 45.6 parts of 2-hydroxyethyl methacrylate, and 360.0 parts of methyl ethyl ketone. Was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, whereby a glass transition temperature of 90 ° C., a hydroxyl group equivalent of 1.42 meq / g (hydroxyl value of 80 mg KOH / g), and a solution (nonvolatile content) of an acrylic copolymer (A-2) having a weight average molecular weight of 50,000. 30%).

製造例3
製造例1と同様の反応容器に、メタクリル酸メチル117.6部、アクリル酸ノルマルブチル81.6部、及びアクリル酸2−ヒドロキシエチル40.8部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度10℃、水酸基当量1.42meq/g(水酸基価80mgKOH/g)、及び重量平均分子量55000のアクリルコポリマー(A−3)の溶液(不揮発分30%)を得た。
Production Example 3
A reaction vessel similar to Production Example 1 was charged with 117.6 parts of methyl methacrylate, 81.6 parts of normal butyl acrylate, 40.8 parts of 2-hydroxyethyl acrylate, and 360.0 parts of methyl ethyl ketone. Was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, whereby a solution (nonvolatile content) of an acrylic copolymer (A-3) having a glass transition temperature of 10 ° C., a hydroxyl group equivalent of 1.42 meq / g (hydroxyl value of 80 mgKOH / g), and a weight average molecular weight of 55,000. 30%).

製造例4
製造例1と同様の反応容器に、メタクリル酸メチル194.4部、アクリル酸ノルマルブチル14.4部、及びアクリル酸2−ヒドロキシエチル31.2部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度70℃、水酸基当量1.07meq/g(水酸基価60mgKOH/g)、及び重量平均分子量50000のアクリルコポリマー(A−4)の溶液(不揮発分30%)を得た。
Production Example 4
In a reaction vessel similar to Production Example 1, 194.4 parts of methyl methacrylate, 14.4 parts of normal butyl acrylate, 31.2 parts of 2-hydroxyethyl acrylate, and 360.0 parts of methyl ethyl ketone were charged. Was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, whereby a glass transition temperature of 70 ° C., a hydroxyl equivalent of 1.07 meq / g (hydroxyl value of 60 mg KOH / g), and a solution (nonvolatile content) of an acrylic copolymer (A-4) having a weight average molecular weight of 50000 30%).

製造例5
製造例1と同様の反応容器に、メタクリル酸メチル201.6部、アクリル酸ノルマルブチル4.8部、及びメタクリル酸2−ヒドロキシエチル33.6部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度90℃、水酸基当量1.07meq/g(水酸基価60mgKOH/g)、及び重量平均分子量52000のアクリルコポリマー(A−5)の溶液(不揮発分30%)を得た。
Production Example 5
In a reaction vessel similar to Production Example 1, 201.6 parts of methyl methacrylate, 4.8 parts of normal butyl acrylate, 33.6 parts of 2-hydroxyethyl methacrylate, and 360.0 parts of methyl ethyl ketone were charged. Was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, whereby a solution (nonvolatile content) of an acrylic copolymer (A-5) having a glass transition temperature of 90 ° C., a hydroxyl group equivalent of 1.07 meq / g (hydroxyl value of 60 mgKOH / g), and a weight average molecular weight of 52,000. 30%).

製造例6
製造例1と同様の反応容器に、メタクリル酸メチル70.8部、アクリル酸ノルマルブチル84.0部、アクリル酸2−ヒドロキシエチル64.8部、及びスチレン20.4部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度0℃、水酸基当量2.31meq/g(水酸基価130mgKOH/g)、及び重量平均分子量55000のアクリルコポリマー(A−6)の溶液(不揮発分30%)を得た。
Production Example 6
In the same reaction vessel as in Production Example 1, 70.8 parts of methyl methacrylate, 84.0 parts of normal butyl acrylate, 64.8 parts of 2-hydroxyethyl acrylate, 20.4 parts of styrene, and 360.0 methyl ethyl ketone The reaction system was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, whereby a solution (nonvolatile content) of an acrylic copolymer (A-6) having a glass transition temperature of 0 ° C., a hydroxyl group equivalent of 2.31 meq / g (hydroxyl value of 130 mgKOH / g), and a weight average molecular weight of 55,000. 30%).

製造例7
製造例1と同様の反応容器に、メタクリル酸メチル148.8部、アクリル酸ノルマルブチル60.0部、及びアクリル酸2−ヒドロキシエチル31.2部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度30℃、水酸基当量1.07meq/g(水酸基価60mgKOH/g)、及び重量平均分子量50000のアクリルコポリマー(A−7)の溶液(不揮発分30%)を得た。
Production Example 7
A reaction vessel similar to Production Example 1 was charged with 148.8 parts of methyl methacrylate, 60.0 parts of normal butyl acrylate, 31.2 parts of 2-hydroxyethyl acrylate, and 360.0 parts of methyl ethyl ketone. Was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, by cooling the reaction system to room temperature, a solution (nonvolatile content) of an acrylic copolymer (A-7) having a glass transition temperature of 30 ° C., a hydroxyl group equivalent of 1.07 meq / g (hydroxyl value of 60 mgKOH / g), and a weight average molecular weight of 50,000. 30%).

製造例8
製造例1と同様の反応容器に、メタクリル酸メチル166.8部、アクリル酸ノルマルブチル8.4部、アクリル酸ステアリル24.0部、アクリル酸2−ヒドロキシエチル40.8部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度60℃、水酸基当量1.42meq/g(水酸基価80mgKOH/g)、及び重量平均分子量53000のアクリルコポリマー(A−8)の溶液(不揮発分30%)を得た。
Production Example 8
In the same reaction vessel as in Production Example 1, 166.8 parts of methyl methacrylate, 8.4 parts of normal butyl acrylate, 24.0 parts of stearyl acrylate, 40.8 parts of 2-hydroxyethyl acrylate, and 360. 0 parts was charged and the reaction system was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, whereby a solution (nonvolatile content) of an acrylic copolymer (A-8) having a glass transition temperature of 60 ° C., a hydroxyl group equivalent of 1.42 meq / g (hydroxyl value of 80 mg KOH / g), and a weight average molecular weight of 53,000. 30%).

製造例9
製造例1と同様の反応容器に、メタクリル酸メチル184.8部、アクリル酸ノルマルブチル7.2部、アクリル酸2−ヒドロキシエチル40.8部、アクリル酸7.2部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度70℃、水酸基当量1.42meq/g(水酸基価80mgKOH/g)、カルボキシル基当量0.41meq/g(酸価23mgKOH/g)及び重量平均分子量54000のアクリルコポリマー(A−9)の溶液(不揮発分30%)を得た。
Production Example 9
In a reaction vessel similar to Production Example 1, 184.8 parts of methyl methacrylate, 7.2 parts of normal butyl acrylate, 40.8 parts of 2-hydroxyethyl acrylate, 7.2 parts of acrylic acid, and 360.0 methyl ethyl ketone The reaction system was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, whereby a glass transition temperature of 70 ° C., a hydroxyl group equivalent of 1.42 meq / g (hydroxyl value 80 mgKOH / g), a carboxyl group equivalent of 0.41 meq / g (acid value 23 mgKOH / g) and a weight average. A solution (non-volatile content 30%) of an acrylic copolymer (A-9) having a molecular weight of 54,000 was obtained.

製造例10
製造例1と同様の反応容器に、メタクリル酸メチル184.8部、アクリル酸ノルマルブチル7.2部、アクリル酸2−ヒドロキシエチル40.8部、メタクリル酸7.2部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度70℃、水酸基当量1.42meq/g(水酸基価80mgKOH/g)、カルボキシル基当量0.34meq/g(酸価19mgKOH/g)及び重量平均分子量55000のアクリルコポリマー(A−10)の溶液(不揮発分30%)を得た。
Production Example 10
In a reaction vessel similar to Production Example 1, 184.8 parts methyl methacrylate, 7.2 parts normal butyl acrylate, 40.8 parts 2-hydroxyethyl acrylate, 7.2 parts methacrylic acid, and 360.0 methyl ethyl ketone The reaction system was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, by cooling the reaction system to room temperature, glass transition temperature 70 ° C., hydroxyl group equivalent 1.42 meq / g (hydroxyl value 80 mgKOH / g), carboxyl group equivalent 0.34 meq / g (acid value 19 mgKOH / g) and weight average. A solution (non-volatile content 30%) of an acrylic copolymer (A-10) having a molecular weight of 55000 was obtained.

比較製造例1
製造例1と同様の反応容器に、メタクリル酸メチル177.6部、アクリル酸ノルマルブチル20.9部、アクリル酸2−ヒドロキシエチル17.5部、及びスチレン24.0部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度70℃、水酸基当量0.62meq/g(水酸基価35mgKOH/g)、及び重量平均分子量45000のアクリルコポリマー(イ)の溶液(不揮発分30%)を得た。
Comparative production example 1
In the same reaction vessel as in Production Example 1, 177.6 parts of methyl methacrylate, 20.9 parts of normal butyl acrylate, 17.5 parts of 2-hydroxyethyl acrylate, 24.0 parts of styrene, and 360.0 methyl ethyl ketone The reaction system was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, whereby a glass transition temperature of 70 ° C., a hydroxyl equivalent of 0.62 meq / g (hydroxyl value of 35 mgKOH / g), and a solution of acrylic copolymer (A) having a weight average molecular weight of 45000 (nonvolatile content: 30% )

比較製造例2
製造例1と同様の反応容器に、メタクリル酸メチル123.6部、アクリル酸ノルマルブチル16.8部、及びアクリル酸2−ヒドロキシエチル99.6部、並びにメチルエチルケトン360.0部を仕込み、反応系を80℃に設定した。次いで、アゾビスイソブチロニトリル1.2部を仕込み、80℃付近で5時間保温した。次いで、アゾビスイソブチロニトリル2.4部を仕込み、反応系を同温度付近において更に4時間保温した。その後反応系を室温まで冷却することにより、ガラス転移温度30℃、水酸基当量3.56meq/g(水酸基価200mgKOH/g)、及び重量平均分子量48000のアクリルコポリマー(ロ)の溶液(不揮発分30%)を得た。
Comparative production example 2
A reaction vessel similar to Production Example 1 was charged with 123.6 parts of methyl methacrylate, 16.8 parts of normal butyl acrylate, 99.6 parts of 2-hydroxyethyl acrylate, and 360.0 parts of methyl ethyl ketone. Was set to 80 ° C. Next, 1.2 parts of azobisisobutyronitrile was charged, and the temperature was kept at around 80 ° C. for 5 hours. Next, 2.4 parts of azobisisobutyronitrile was charged, and the reaction system was further kept at the same temperature for 4 hours. Thereafter, the reaction system was cooled to room temperature, whereby a solution of an acrylic copolymer (b) having a glass transition temperature of 30 ° C., a hydroxyl group equivalent of 3.56 meq / g (hydroxyl value of 200 mgKOH / g), and a weight average molecular weight of 48,000 (nonvolatile content: 30% )

MMA:メタクリル酸メチル
nBA:アクリル酸n−ブチル
SMA:アクリル酸ステアリル
HEA:アクリル酸2−ヒドロキシエチル
HEMA:メタクリル酸2−ヒドロキシエチル
AA:アクリル酸
MAA:メタクリル酸
St:スチレン
MMA: methyl methacrylate nBA: n-butyl acrylate SMA: stearyl acrylate HEA: 2-hydroxyethyl acrylate HEMA: 2-hydroxyethyl methacrylate AA: acrylic acid MAA: methacrylic acid St: styrene

<(B)成分の調製>
製造例11
製造例1と同様の反応容器に、トリレンジイソシアネートのイソシアヌレート体(製品名「コロネート2030」、イソシアネート基当量3.8meq/g)を445.5部、1,6−ヘキサンジオールを5.0部、及びメチルエチルケトンを308.6部仕込み、60℃で3時間ウレタン化反応を実施した。その後室温に冷却することによって、イソシアネート組成物(B−1)(イソシアネート基当量3.3meq/g)を得た。
<Preparation of component (B)>
Production Example 11
In a reaction vessel similar to Production Example 1, 445.5 parts of isocyanurate of tolylene diisocyanate (product name “Coronate 2030”, isocyanate group equivalent 3.8 meq / g) and 5.0 of 1,6-hexanediol were added. And 308.6 parts of methyl ethyl ketone were charged, and urethanization reaction was carried out at 60 ° C. for 3 hours. Thereafter, by cooling to room temperature, an isocyanate composition (B-1) (isocyanate group equivalent: 3.3 meq / g) was obtained.

製造例12
製造例1と同様の反応容器に、前記コロネート2030を445.5部、水を0.75部、メチルエチルケトンを273.5部、プロピレングリコールモノメチルエーテルアセテートを25.2部仕込み、60℃で3時間ウレタン化反応を実施した。その後室温に冷却することによって、イソシアネート組成物(B−2)(イソシアネート基当量3.3meq/g)を得た。
Production Example 12
The same reaction vessel as in Production Example 1 was charged with 445.5 parts of Coronate 2030, 0.75 parts of water, 273.5 parts of methyl ethyl ketone, and 25.2 parts of propylene glycol monomethyl ether acetate at 60 ° C. for 3 hours. Urethane reaction was carried out. Thereafter, by cooling to room temperature, an isocyanate composition (B-2) (isocyanate group equivalent: 3.3 meq / g) was obtained.

<(c2)成分の調製>
製造例1と同様の反応容器に、(c1)成分として3−グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製:商品名「KBM−403」)300g、イオン交換水71.8g([加水分解反応に用いる水のモル数]/[3−グリシドキシプロピルトリメトキシシランに含まれるアルコキシ基の合計モル数](モル比)=1.05)、95%ギ酸1.5g、トルエン100gを仕込み、室温で30分間加水分解反応させた。なお、加水分解反応における[3−グリシドキシプロピルトリメトキシシランを加水分解反応させたことにより生じる水酸基のモル数]/[3−グリシドキシプロピルトリメトキシシランにもともと含まれるアルコキシ基のモル数](モル比)は0.9であった。加水分解反応後、反応系を70℃となるまで昇温させたところで、加水分解により発生したメタノールが系外に留去され始めた。30分かけて75℃まで昇温し、縮合反応によって発生した水を留去した。さらに30分、75℃で反応させた後、ジエチレングリコールジメチルエーテル100gを加え、50℃で3時間、段階的に圧力を下げながら減圧して、残存するメタノール、水、ギ酸、トルエンを留去した。固形分濃度が15%になるようさらにジエチレングリコールジメチルエーテルを加え、エポキシ基含有シルセスキオキサン(c2)(以下、(c2)成分ともいう。)の溶液1500gを得た。(c2)のエポキシ当量は1200g/eq(固形換算180g/eq)であった。
<Preparation of component (c2)>
In a reaction vessel similar to Production Example 1, 300 g of 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name “KBM-403”) as component (c1), 71.8 g of ion-exchanged water ( [Mole number of water used in hydrolysis reaction] / [Total number of moles of alkoxy groups contained in 3-glycidoxypropyltrimethoxysilane] (molar ratio) = 1.05), 1.5 g of 95% formic acid, toluene 100 g was charged and hydrolyzed at room temperature for 30 minutes. In the hydrolysis reaction, [number of moles of hydroxyl group generated by hydrolyzing 3-glycidoxypropyltrimethoxysilane] / [number of moles of alkoxy group originally contained in 3-glycidoxypropyltrimethoxysilane] ] (Molar ratio) was 0.9. After the hydrolysis reaction, when the temperature of the reaction system was raised to 70 ° C., methanol generated by the hydrolysis began to be distilled out of the system. The temperature was raised to 75 ° C. over 30 minutes, and water generated by the condensation reaction was distilled off. After further reacting at 75 ° C. for 30 minutes, 100 g of diethylene glycol dimethyl ether was added, and the pressure was reduced stepwise at 50 ° C. for 3 hours to distill off the remaining methanol, water, formic acid, and toluene. Diethylene glycol dimethyl ether was further added so that the solid content concentration was 15%, to obtain 1500 g of an epoxy group-containing silsesquioxane (c2) (hereinafter also referred to as component (c2)). The epoxy equivalent of (c2) was 1200 g / eq (180 g / eq in solid conversion).

<アンダーコート剤の調製>
実施例1
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、(c1)成分としてエポキシ基含有アルコキシシラン(商品名「KBM−403」、信越化学工業(株)製)0.56部、及びメチルエチルケトン10.6部をよく混合し、アンダーコート剤を調製した。
<Preparation of undercoat agent>
Example 1
(A-1) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), (c1) Epoxy group-containing alkoxysilane (trade name “KBM-403”, 0.56 parts (manufactured by Shin-Etsu Chemical Co., Ltd.) and 10.6 parts of methyl ethyl ketone were mixed well to prepare an undercoat agent.

実施例2
(A−2)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、KBM−403 0.56部、及びメチルエチルケトン10.6部をよく混合し、アンダーコート剤を調製した。
Example 2
(A-2) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), KBM-403 0.56 parts, and methyl ethyl ketone 10.6 parts are mixed well. An undercoat agent was prepared.

実施例3
(A−3)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、KBM−403 0.56部、及びメチルエチルケトン10.6部をよく混合し、アンダーコート剤を調製した。
Example 3
(A-3) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), KBM-403 0.56 parts, and methyl ethyl ketone 10.6 parts are mixed well. An undercoat agent was prepared.

実施例4
(A−4)成分10.0部、(B−1)成分6.5部(NCO/OH=2.0)、KBM−403 0.5部、及びメチルエチルケトン10.2部をよく混合し、アンダーコート剤を調製した。
Example 4
(A-4) Component 10.0 parts, (B-1) Component 6.5 parts (NCO / OH = 2.0), KBM-403 0.5 part, and methyl ethyl ketone 10.2 parts are mixed well. An undercoat agent was prepared.

実施例5
(A−5)成分10.0部、(B−1)成分6.5部(NCO/OH=2.0)、KBM−403 0.5部、及びメチルエチルケトン10.2部をよく混合し、アンダーコート剤を調製した。
Example 5
(A-5) Component 10.0 parts, (B-1) Component 6.5 parts (NCO / OH = 2.0), KBM-403 0.5 part, and methyl ethyl ketone 10.2 parts are mixed well. An undercoat agent was prepared.

実施例6
(A−6)成分10.0部、(B−1)成分14.0部(NCO/OH=2.0)、KBM−403 0.72部、及びメチルエチルケトン14.8部をよく混合し、アンダーコート剤を調製した。
Example 6
(A-6) Component 10.0 parts, (B-1) Component 14.0 parts (NCO / OH = 2.0), KBM-403 0.72 parts, and methyl ethyl ketone 14.8 parts are mixed well. An undercoat agent was prepared.

実施例7
(A−7)成分10.0部、(B−1)成分6.5部(NCO/OH=2.0)、KBM−403 0.5部、及びメチルエチルケトン10.2部をよく混合し、アンダーコート剤を調製した。
Example 7
(A-7) Component 10.0 parts, (B-1) Component 6.5 parts (NCO / OH = 2.0), KBM-403 0.5 part, and methyl ethyl ketone 10.2 parts are mixed well. An undercoat agent was prepared.

実施例8
(A−8)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、KBM−403 0.56部、及びメチルエチルケトン10.6部をよく混合し、アンダーコート剤を調製した。
Example 8
(A-8) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), KBM-403 0.56 part, and methyl ethyl ketone 10.6 parts are mixed well. An undercoat agent was prepared.

実施例9
(A−9)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、KBM−403 0.56部、及びメチルエチルケトン10.6部をよく混合し、アンダーコート剤を調製した。
Example 9
(A-9) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), KBM-403 0.56 parts, and methyl ethyl ketone 10.6 parts are mixed well. An undercoat agent was prepared.

実施例10
(A−10)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、KBM−403 0.56部、及びメチルエチルケトン10.6部をよく混合し、アンダーコート剤を調製した。
Example 10
(A-10) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), KBM-403 0.56 parts, and methyl ethyl ketone 10.6 parts are mixed well. An undercoat agent was prepared.

実施例11
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、前記調製例で得た(c2)成分0.7部、及びメチルエチルケトン11.4部をよく混合し、アンダーコート剤を調製した。
Example 11
10. (A-1) component 10.0 parts, (B-1) component 8.6 parts (NCO / OH = 2.0), (c2) component 0.7 part obtained in the said preparation example, and methyl ethyl ketone 11. Four parts were mixed well to prepare an undercoat agent.

実施例12
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、前記調製例で得た(c2)成分0.35部、及びメチルエチルケトン10.7部をよく混合し、アンダーコート剤を調製した。
Example 12
(A-1) component 10.0 parts, (B-1) component 8.6 parts (NCO / OH = 2.0), (c2) component 0.35 parts obtained in the above preparation example, and methyl ethyl ketone 10. 7 parts were mixed well to prepare an undercoat agent.

実施例13
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、KBM−403 0.28部、及びメチルエチルケトン10.4部をよく混合し、アンダーコート剤を調製した。
Example 13
(A-1) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), KBM-403 0.28 parts, and methyl ethyl ketone 10.4 parts are mixed well. An undercoat agent was prepared.

実施例14
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、KBM−403 0.84部、及びメチルエチルケトン12.6部をよく混合し、アンダーコート剤を調製した。
Example 14
(A-1) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), KBM-403 0.84 part, and methyl ethyl ketone 12.6 parts were mixed well. An undercoat agent was prepared.

実施例15
(A−1)成分10.0部、(B−1)成分4.3部(NCO/OH=1.0)、KBM−403 0.21部、及びメチルエチルケトン8.3部をよく混合し、アンダーコート剤を調製した。
Example 15
(A-1) Component 10.0 parts, (B-1) Component 4.3 parts (NCO / OH = 1.0), KBM-403 0.21 part, and methyl ethyl ketone 8.3 parts are mixed well. An undercoat agent was prepared.

実施例16
(A−1)成分10.0部、(B−1)成分12.8部(NCO/OH=3.0)、KBM−403 0.34部、及びメチルエチルケトン12.7部をよく混合し、アンダーコート剤を調製した。
Example 16
(A-1) Component 10.0 parts, (B-1) Component 12.8 parts (NCO / OH = 3.0), KBM-403 0.34 parts, and methyl ethyl ketone 12.7 parts were mixed well. An undercoat agent was prepared.

実施例17
(A−1)成分10.0部、(B−2)成分6.5部(NCO/OH=2.0)、KBM−403 0.5部、及びメチルエチルケトン10.6部をよく混合し、アンダーコート剤を調製した。
Example 17
(A-1) Component 10.0 parts, (B-2) Component 6.5 parts (NCO / OH = 2.0), KBM-403 0.5 part, and methyl ethyl ketone 10.6 parts are mixed well. An undercoat agent was prepared.

比較例1
(イ)成分10.0部、(B−1)成分3.8部(NCO/OH=2.0)、KBM−403 0.42部、及びメチルエチルケトン8.6部をよく混合し、アンダーコート剤を調製した。
Comparative Example 1
(A) Component 10.0 parts, (B-1) Component 3.8 parts (NCO / OH = 2.0), KBM-403 0.42 part, and methyl ethyl ketone 8.6 parts are mixed well, and undercoat An agent was prepared.

比較例2
(ロ)成分10.0部、(B−1)成分10.7部(NCO/OH=2.0)、KBM−403 0.63部、及びメチルエチルケトン12.8部をよく混合し、アンダーコート剤を調製した。
Comparative Example 2
(B) Component 10.0 parts, (B-1) Component 10.7 parts (NCO / OH = 2.0), KBM-403 0.63 parts, and methyl ethyl ketone 12.8 parts are mixed well, and undercoat An agent was prepared.

比較例3
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、(c1)成分に代えて3−イソシアネートプロピルトリエトキシシラン(商品名「KBE−9007」信越化学工業(株)製)0.56部、及びメチルエチルケトン11.5部をよく混合し、アンダーコート剤を調製した。
Comparative Example 3
(A-1) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), (c1) Instead of component 3-isocyanatopropyltriethoxysilane (trade name “KBE”) -9007 "(Shin-Etsu Chemical Co., Ltd.) 0.56 part and 11.5 parts of methyl ethyl ketone were mixed well to prepare an undercoat agent.

比較例4
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、(c1)成分に代えてトリス−(トリメトキシシリルプロピル)イソシアヌレート(商品名「KBM−9659」信越化学工業(株)製)0.56部、及びメチルエチルケトン11.5部をよく混合し、アンダーコート剤を調製した。
Comparative Example 4
(A-1) component 10.0 parts, (B-1) component 8.6 parts (NCO / OH = 2.0), (c1) instead of component tris- (trimethoxysilylpropyl) isocyanurate The name “KBM-9659” manufactured by Shin-Etsu Chemical Co., Ltd.) 0.56 part and 11.5 parts of methyl ethyl ketone were mixed well to prepare an undercoat agent.

比較例5
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、(c1)成分に代えてデシルトリメトキシシラン(商品名「KBM−3103」信越化学工業(株)製)0.56部、及びメチルエチルケトン11.5部をよく混合し、アンダーコート剤を調製した。
Comparative Example 5
(A-1) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), (c1) In place of component, decyltrimethoxysilane (trade name “KBM-3103” 0.56 parts (manufactured by Shin-Etsu Chemical Co., Ltd.) and 11.5 parts of methyl ethyl ketone were mixed well to prepare an undercoat agent.

比較例6
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、(c1)成分に代えてフェニルトリメトキシシラン(商品名「KBM−103」信越化学工業(株)製)0.56部、及びメチルエチルケトン11.5部をよく混合し、アンダーコート剤を調製した。
Comparative Example 6
(A-1) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), (c1) Instead of component phenyltrimethoxysilane (trade name “KBM-103” 0.56 parts (manufactured by Shin-Etsu Chemical Co., Ltd.) and 11.5 parts of methyl ethyl ketone were mixed well to prepare an undercoat agent.

比較例7
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、(c1)成分に代えてメチルトリメトキシシラン(商品名「KBM−13」信越化学工業(株)製)0.56部、及びメチルエチルケトン11.5部をよく混合し、アンダーコート剤を調製した。
Comparative Example 7
(A-1) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), (c1) In place of component, methyltrimethoxysilane (trade name “KBM-13”) 0.56 parts (manufactured by Shin-Etsu Chemical Co., Ltd.) and 11.5 parts of methyl ethyl ketone were mixed well to prepare an undercoat agent.

比較例8
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、(c1)成分に代えてメチルシリケートオリゴマー(商品名「MKCシリケートMS−51」三菱化学(株)製)0.56部、及びメチルエチルケトン11.5部をよく混合し、アンダーコート剤を調製した。
Comparative Example 8
(A-1) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), (c1) Instead of component, methyl silicate oligomer (trade name “MKC silicate MS-51 “Mitsubishi Chemical Co., Ltd.) 0.56 part and methyl ethyl ketone 11.5 parts were mixed well to prepare an undercoat agent.

比較例9
(A−1)成分10.0部、(B−1)成分8.6部(NCO/OH=2.0)、(c2)成分に代えてオルガノシリカゾル(商品名「MEK−ST」日産化学工業(株)製)1.86部、及びメチルエチルケトン10.2部をよく混合し、アンダーコート剤を調製した。
Comparative Example 9
(A-1) Component 10.0 parts, (B-1) Component 8.6 parts (NCO / OH = 2.0), (c2) In place of component, organosilica sol (trade name “MEK-ST” NISSAN CHEMICAL 1.86 parts of Kogyo Co., Ltd. and 10.2 parts of methyl ethyl ketone were mixed well to prepare an undercoat agent.

比較例10
(A−1)成分10.0部、コロネート2030 7.5部(NCO/OH=2.0)、KBM−403 0.68部、及びメチルエチルケトン10.6部をよく混合し、アンダーコート剤を調製した。
Comparative Example 10
(A-1) 10.0 parts of component, 7.5 parts of coronate 2030 (NCO / OH = 2.0), 0.68 parts of KBM-403, and 10.6 parts of methyl ethyl ketone are mixed well, and an undercoat agent is added. Prepared.

<試験用パネルの作製>
離型処理されたポリエチレンテレフタレートフィルムに、市販のハードコート剤(商品名「アロニックスM305」、ペンタエリスリトールトリ及びテトラアクリレートの混合物、東亜合成(株)製)を、バーコーターにて、乾燥・硬化後の膜厚が5μmとなるように塗工し、照度100mj/cm2にて硬化処理を実施した。次いで、ハードコート層上に、実施例1に係るアンダーコート剤を、バーコーターにて、乾燥膜厚が1μmとなるように塗工した。
<Preparation of test panel>
After drying and curing a commercially available hard coating agent (trade name “Aronix M305”, a mixture of pentaerythritol tri and tetraacrylate, manufactured by Toa Gosei Co., Ltd.) on a polyethylene terephthalate film that has been subjected to mold release treatment The film was coated so that the film thickness was 5 μm, and the curing treatment was performed at an illuminance of 100 mj / cm 2 . Next, the undercoat agent according to Example 1 was applied onto the hard coat layer with a bar coater so that the dry film thickness was 1 μm.

次いで、得られた塗工フィルムを、順風乾燥機にて硬化処理した(150℃、60秒間)。次いで当該塗工フィルムを市販の蒸着装置(製品名「NS−1875−Z」、西山製作所(株)製)を使用し、蒸着層の厚みが50nmであるアルミニウム蒸着フィルムを得た。   Next, the obtained coated film was cured by a normal air dryer (150 ° C., 60 seconds). Next, a commercially available vapor deposition apparatus (product name “NS-1875-Z”, manufactured by Nishiyama Seisakusho Co., Ltd.) was used for the coating film to obtain an aluminum vapor deposition film having a vapor deposition layer thickness of 50 nm.

次いで、アルミ蒸着層上に、塩化ビニル−酢酸ビニル共重合体系接着剤(商品名「カネビラックL−CM」 (株)カネカ製)を、バーコーターにて、乾燥膜厚が1μmとなるように塗工した。次いで、得られた塗工フィルムを、順風乾燥機にて乾燥処理した(80℃、10秒間)。これを市販のアクリル板に熱転写し、実施例1の試験用パネルとして用いた。他の実施例及び比較例のアンダーコート剤についても同様にして試験用パネルを作製した。   Next, a vinyl chloride-vinyl acetate copolymer adhesive (trade name “Kanevirak L-CM” manufactured by Kaneka Co., Ltd.) is applied on the aluminum vapor-deposited layer with a bar coater so that the dry film thickness becomes 1 μm. Worked. Next, the obtained coated film was dried with a normal air dryer (80 ° C., 10 seconds). This was thermally transferred to a commercially available acrylic plate and used as a test panel of Example 1. Test panels were similarly prepared for the undercoat agents of other examples and comparative examples.

(初期密着性)
各試験用パネルについてハードコート面にカッターナイフで100マスの碁盤目を入れ、粘着テープ(製品名「セロテープ(登録商標)」、ニチバン(株)製)を貼り付け、垂直方向に勢い良く引き剥がしたが、アルミニウム面は剥がれなかった。(各表において5と示した。)
(Initial adhesion)
For each test panel, put 100 square grids on the hard coat surface with a cutter knife, affix an adhesive tape (product name “Serotape (registered trademark)”, manufactured by Nichiban Co., Ltd.), and peel it off in a vertical direction. However, the aluminum surface did not peel off. (Indicated in each table as 5)

(耐湿熱密着性)
各試験用パネルを65℃、95%×24時間の恒温恒湿条件下に置いた後の密着性について、上記初期密着性と同様の方法に従い、以下の基準で評価した。
(Moisture and heat adhesion)
The adhesion after each test panel was placed under constant temperature and humidity conditions of 65 ° C. and 95% × 24 hours was evaluated according to the following criteria according to the same method as the above initial adhesion.

5…剥離が認められない
4…アルミニウム面に5%未満の剥離が認められる。
3…アルミニウム面に5%以上〜20%未満の剥離が認められる。
2…アルミニウム面に20%以上〜50%未満の剥離が認められる。
1…アルミニウム面に50%以上〜100%の剥離が認められる。
5 ... No peeling is observed 4 ... Less than 5% peeling is observed on the aluminum surface.
3: Peeling of 5% or more and less than 20% is observed on the aluminum surface.
2: Peeling of 20% to less than 50% is observed on the aluminum surface.
1 ... 50% to 100% peeling is observed on the aluminum surface.

(耐白化性)
各試験用パネルを65℃、95%×24時間の恒温恒湿条件下に置いた後の白化状態を以下の規準で目視評価した。
5…アルミニウム面に白化が生じておらず、金属光沢を維持している。
4…アルミニウム面に部分的に白化が僅かに生じているが、ほぼ金属光沢を維持している。
3…アルミニウム面の全体に白化が僅かに生じており、若干の金属光沢の消失が見られる。
2…アルミニウム面の全体に白化が強く生じており、金属光沢の消失が見られる。
1…アルミニウム面の全体に白化がより強く生じており、金属光沢が完全に消失している。
(Whitening resistance)
The whitening state after each test panel was placed under constant temperature and humidity conditions of 65 ° C. and 95% × 24 hours was visually evaluated according to the following criteria.
5 ... No whitening occurs on the aluminum surface, and the metallic luster is maintained.
4 ... Slight whitening occurs on the aluminum surface, but the metallic luster is almost maintained.
3 ... Slight whitening occurs on the entire aluminum surface, and a slight loss of metallic luster is observed.
2 ... The whitening of the entire aluminum surface is strongly generated, and the loss of metallic luster is observed.
1 ... Whitening occurs more strongly on the entire aluminum surface, and the metallic luster is completely lost.

(耐抜け性)
各試験用パネルを65℃、95%×24時間の恒温恒湿条件下に置いた後のアルミニウム層の抜けの状態を以下の規準で目視評価した。
(Omission resistance)
Each test panel was visually evaluated according to the following criteria for the state of the aluminum layer coming off after being placed under constant temperature and humidity conditions of 65 ° C. and 95% × 24 hours.

5…アルミニウム面に抜けが生じていない。
4…アルミニウム面に部分的に抜けが僅かに生じている。
3…アルミニウム面の全体に抜けが僅かに生じている。
2…アルミニウム面の全体に抜けが多数生じている。
1…アルミニウム面の全体に大きな抜けが多数生じている。
5 ... There are no gaps on the aluminum surface.
4 ... Slight detachment has occurred partially on the aluminum surface.
3 ... Slight detachment occurs on the entire aluminum surface.
2 ... Many omissions occur on the entire aluminum surface.
1 ... Many large omissions occur on the entire aluminum surface.

Claims (11)

ヒドロキシ基不含有アルキル(メタ)アクリレート類(a1)及びヒドロキシ基含有アルキル(メタ)アクリレート類(a2)の反応物であって、ガラス転移温度が0〜100℃であり、かつ水酸基当量が0.8〜3.5meq/gであるアクリルコポリマー(A)と、
トリイソシアネート類(b1)並びにジオール類及び/又は水(b2)の反応物を含み、かつイソシアネート基当量が1〜10meq/gであるイソシアネート組成物(B)と、
一般式(1):X−Si(R(OR3−a(式中、Xはエポキシ基を含む炭素数1〜8の炭化水素基を、Rは水素又は炭素数1〜8の炭化水素基を、Rは炭素数1〜8の炭化水素基を、aは0又は1を示す。)で表されるエポキシ基含有アルコキシシラン(c1)並びに/又はこれを加水分解反応及び縮合反応させてなるエポキシ基含有シルセスキオキサン(c2)からなるエポキシ基含有ケイ素化合物(C)と、
を含有する、アルミニウム薄膜付プラスチック用アンダーコート剤。
A reaction product of a hydroxy group-free alkyl (meth) acrylate (a1) and a hydroxy group-containing alkyl (meth) acrylate (a2), having a glass transition temperature of 0 to 100 ° C. and a hydroxyl group equivalent of 0.00. An acrylic copolymer (A) that is 8-3.5 meq / g;
An isocyanate composition (B) containing a reaction product of triisocyanates (b1) and diols and / or water (b2) and having an isocyanate group equivalent of 1 to 10 meq / g;
Formula (1): X-Si ( R 1) a (OR 2) 3-a ( wherein, X is a hydrocarbon group having 1 to 8 carbon atoms containing an epoxy group, R 1 is hydrogen or a carbon atoms An epoxy group-containing alkoxysilane (c1) represented by ˜8 hydrocarbon group, R 2 is a hydrocarbon group having 1 to 8 carbon atoms, and a is 0 or 1. An epoxy group-containing silicon compound (C) comprising an epoxy group-containing silsesquioxane (c2) obtained by reaction and condensation reaction;
An undercoat agent for plastics with an aluminum thin film, containing
(a1)成分のアルキル基の炭素数が1〜20である、請求項1のアンダーコート剤。 The undercoat agent of Claim 1 whose carbon number of the alkyl group of (a1) component is 1-20. (a2)成分のヒドロキシアルキル基の炭素数が1〜4である、請求項1又は2のアンダーコート剤。 The undercoat agent according to claim 1 or 2, wherein the hydroxyalkyl group of the component (a2) has 1 to 4 carbon atoms. (b1)成分が芳香族ジイソシアネートの三量体であり、かつ(b2)成分が炭素数2〜8のアルキレンジオールである、請求項1〜3のいずれかのアンダーコート剤。 The undercoat agent according to any one of claims 1 to 3, wherein the component (b1) is an aromatic diisocyanate trimer and the component (b2) is an alkylene diol having 2 to 8 carbon atoms. (A)成分の水酸基当量と(B)成分のイソシアネート基当量の比〔NCO/OH〕が1〜6である、請求項1〜4のいずれかのアンダーコート剤。 The undercoat agent according to any one of claims 1 to 4, wherein a ratio [NCO / OH] of the hydroxyl group equivalent of the component (A) and the isocyanate group equivalent of the component (B) is 1 to 6. (A)成分及び(B)成分の合計を100重量部に対する(C)成分の使用量が3〜20重量部である、請求項1〜5のいずれかのアンダーコート剤。 The undercoat agent according to any one of claims 1 to 5, wherein the amount of component (C) used is 3 to 20 parts by weight relative to 100 parts by weight of the sum of component (A) and component (B). 有機溶剤(D)の溶液として使用する、請求項1〜6のいずれかのアンダーコート剤。 The undercoat agent according to any one of claims 1 to 6, which is used as a solution of an organic solvent (D). プラスチック基材(プラスチックフィルムを除く。)と、請求項1〜7のいずれかのアンダーコート剤からなる層と、アルミニウム薄膜層とを有する、アルミニウム薄膜付プラスチック。 A plastic with an aluminum thin film, comprising a plastic substrate (excluding a plastic film), a layer comprising the undercoat agent according to any one of claims 1 to 7, and an aluminum thin film layer. プラスチックフィルムと、請求項1〜7のいずれかのアンダーコート剤からなる層と、アルミニウム薄膜層とを有する、アルミニウム薄膜付プラスチックフィルム。 The plastic film with an aluminum thin film which has a plastic film, the layer which consists of an undercoat agent in any one of Claims 1-7, and an aluminum thin film layer. 請求項9のアルミニウム薄膜付プラスチックフィルムを部材とする、インモールド成型用加飾フィルム。 A decorative film for in-mold molding, comprising the plastic film with an aluminum thin film according to claim 9 as a member. 請求項9のアルミニウム薄膜付プラスチックフィルムを部材とする、インサート成型用加飾フィルム。 A decorative film for insert molding, comprising the plastic film with an aluminum thin film according to claim 9 as a member.
JP2015191070A 2014-09-30 2015-09-29 Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorative film for in-mold molding, and decorative film for insert molding Active JP6011828B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014199935 2014-09-30
JP2014199935 2014-09-30

Publications (2)

Publication Number Publication Date
JP2016074888A true JP2016074888A (en) 2016-05-12
JP6011828B2 JP6011828B2 (en) 2016-10-19

Family

ID=55600640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015191070A Active JP6011828B2 (en) 2014-09-30 2015-09-29 Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorative film for in-mold molding, and decorative film for insert molding

Country Status (4)

Country Link
JP (1) JP6011828B2 (en)
KR (1) KR102392747B1 (en)
CN (1) CN105462467B (en)
TW (1) TWI666275B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104853A (en) * 2014-10-31 2016-06-09 荒川化学工業株式会社 Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorative film for in-mold molding and decorative film for insert molding
DE112018000814T5 (en) 2017-02-14 2019-10-24 Idemitsu Unitech Co., Ltd. Laminate, molding and method for producing a molded part
WO2020059715A1 (en) * 2018-09-21 2020-03-26 富士フイルム株式会社 Film for manufacturing mold, molding method, molded article, and curable composition for manufacturing mold
JP2021147468A (en) * 2020-03-18 2021-09-27 横浜ゴム株式会社 Primer composition
CN115353775A (en) * 2022-10-19 2022-11-18 广东骊虹新材料有限公司 High-barrier high-strength composite packaging film and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131653A (en) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd Undercoating material composition for metallization
JP2010167648A (en) * 2009-01-22 2010-08-05 Nippon Carbide Ind Co Inc Film with metallic tone
JP2011132521A (en) * 2009-11-30 2011-07-07 Arakawa Chem Ind Co Ltd Undercoating agent for plastic with inorganic thin film, plastic with inorganic thin film, and decorating film for in-mold molding or insert molding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184166B2 (en) 2008-03-24 2013-04-17 アイカ工業株式会社 Film for insert molding
JP2009249491A (en) * 2008-04-07 2009-10-29 Asia Kogyo Kk Primer composition for modification
CN101328247B (en) * 2008-07-29 2010-12-22 中国科学技术大学 Preparation of siloxane modified polyurethane-acrylic ester composite emulsion
CN101602846B (en) * 2009-07-03 2011-05-25 烟台德邦电子材料有限公司 Three-functionality-degree organosilicon polyurethane acrylate and synthetic method thereof
JP5569703B2 (en) * 2012-02-02 2014-08-13 荒川化学工業株式会社 Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent
JP5849873B2 (en) * 2012-07-07 2016-02-03 荒川化学工業株式会社 Thermosetting resin composition, metal thin film overcoating agent, silver thin film overcoating agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131653A (en) * 2002-10-11 2004-04-30 Mitsubishi Rayon Co Ltd Undercoating material composition for metallization
JP2010167648A (en) * 2009-01-22 2010-08-05 Nippon Carbide Ind Co Inc Film with metallic tone
JP2011132521A (en) * 2009-11-30 2011-07-07 Arakawa Chem Ind Co Ltd Undercoating agent for plastic with inorganic thin film, plastic with inorganic thin film, and decorating film for in-mold molding or insert molding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104853A (en) * 2014-10-31 2016-06-09 荒川化学工業株式会社 Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorative film for in-mold molding and decorative film for insert molding
DE112018000814T5 (en) 2017-02-14 2019-10-24 Idemitsu Unitech Co., Ltd. Laminate, molding and method for producing a molded part
WO2020059715A1 (en) * 2018-09-21 2020-03-26 富士フイルム株式会社 Film for manufacturing mold, molding method, molded article, and curable composition for manufacturing mold
JPWO2020059715A1 (en) * 2018-09-21 2021-04-30 富士フイルム株式会社 Molding film, molding method, molded product, and curable composition for molding process
JP7084492B2 (en) 2018-09-21 2022-06-14 富士フイルム株式会社 Film for molding, molding method, molded product, and curable composition for molding
JP2021147468A (en) * 2020-03-18 2021-09-27 横浜ゴム株式会社 Primer composition
JP7395087B2 (en) 2020-03-18 2023-12-11 シーカ テクノロジー アクチェンゲゼルシャフト Primer composition
CN115353775A (en) * 2022-10-19 2022-11-18 广东骊虹新材料有限公司 High-barrier high-strength composite packaging film and preparation method thereof
CN115353775B (en) * 2022-10-19 2023-01-03 广东骊虹新材料有限公司 High-barrier and high-strength composite packaging film and preparation method thereof

Also Published As

Publication number Publication date
CN105462467B (en) 2019-01-08
JP6011828B2 (en) 2016-10-19
TW201627430A (en) 2016-08-01
KR102392747B1 (en) 2022-04-28
TWI666275B (en) 2019-07-21
KR20160038855A (en) 2016-04-07
CN105462467A (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP6011828B2 (en) Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorative film for in-mold molding, and decorative film for insert molding
TWI686314B (en) Laminated film for decoration of three-dimensional molded products for vacuum forming, manufacturing method thereof, and three-dimensional molded product decoration method
JP5365038B2 (en) UV curable paint, hard coat layer, transparent polycarbonate sheet
JP6127363B2 (en) Active energy ray-curable resin composition and laminate using the same
TWI494397B (en) A plastic primer for an inorganic film, a plastic film containing an inorganic film, and a decorative film for molding or insert molding
TWI687307B (en) Laminated film for decoration of 3-dimensional molded product, its manufacturing method and 3-dimensional decoration method
JP6164456B2 (en) Urethane resin composition, primer, laminate and image display device
TWI661015B (en) Primer for base material with copper film, method for manufacturing base material with copper film, base material with copper film, and conductive film
JP5655629B2 (en) Undercoat agent for plastic with inorganic thin film, plastic with inorganic thin film, decorative film for in-mold molding, and decorative film for insert molding
TW201033240A (en) Curable resin composition, coating, and plastic molded object
JP6708946B2 (en) Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorative film for in-mold molding and decorative film for insert molding
TW201107386A (en) Surface treated substrate, protecting sheet of light receiving face for solar cell using the same and a solar cell module
JP6599654B2 (en) 3D molded product decorative laminated film for vacuum forming, 3D molded product decoration method and decorative molded body
TWI830005B (en) Primer for base material with metal thin film, hardened material, base material with metal thin film, manufacturing method thereof, and film
JP2015145103A (en) Laminate film for decorating molded article, paint composition and decorative molded article
JP6423947B2 (en) Coating composition for forming a clear coating layer of a laminated film for decorating a three-dimensional molded product
TW201443172A (en) Active-energy-ray-curable coating composition
TW202010789A (en) Active energy ray-curable resin composition, cured product and laminate wherein the cured product has an excellent workability and viscosity, and is provided with scratch resistance
JP5941288B2 (en) Method for producing hard coat film
JP2019171838A (en) Laminate
JP7369558B2 (en) Laminated film for decorating 3D molded products
JP7205100B2 (en) Undercoating agents and films
JP2012167231A (en) Active energy-ray curing composition, laminated film-shape material, and laminated molded article
JP2023037111A (en) Thermosetting coating composition and decorative film
JP2023145550A (en) Copolymer, curable polymer composition, cured product, and laminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6011828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250