JP5569703B2 - Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent - Google Patents

Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent Download PDF

Info

Publication number
JP5569703B2
JP5569703B2 JP2012282074A JP2012282074A JP5569703B2 JP 5569703 B2 JP5569703 B2 JP 5569703B2 JP 2012282074 A JP2012282074 A JP 2012282074A JP 2012282074 A JP2012282074 A JP 2012282074A JP 5569703 B2 JP5569703 B2 JP 5569703B2
Authority
JP
Japan
Prior art keywords
component
epoxy
group
epoxy group
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012282074A
Other languages
Japanese (ja)
Other versions
JP2013177552A (en
Inventor
貴史 山口
浩史 藤田
猛 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2012282074A priority Critical patent/JP5569703B2/en
Publication of JP2013177552A publication Critical patent/JP2013177552A/en
Application granted granted Critical
Publication of JP5569703B2 publication Critical patent/JP5569703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3281Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、エポキシ基含有シルセスキオキサン変性エポキシ樹脂に関する。また、硬化性樹脂組成物、当該硬化性樹脂組成物を硬化させてなる硬化物およびコーティング剤に関する。   The present invention relates to an epoxy group-containing silsesquioxane-modified epoxy resin. The present invention also relates to a curable resin composition, a cured product obtained by curing the curable resin composition, and a coating agent.

エポキシ樹脂は硬化剤と組み合わせた組成物として一般的に使用されており、組成物を硬化させた硬化物は電気・電子材料関係、塗料・接着剤関係、土木、建築関係等の分野において賞用されてきた。しかしながら、特に電気・電子材料関係、塗料・接着剤関係分野において、エポキシ樹脂組成物の硬化物に対してより高い密着性、耐熱性、耐湿性等が要求されるようになっている。   Epoxy resin is generally used as a composition in combination with a curing agent, and the cured product obtained by curing the composition is used for awards in fields such as electrical / electronic materials, paint / adhesives, civil engineering, and architecture. It has been. However, higher adhesion, heat resistance, moisture resistance, and the like are required for the cured epoxy resin composition, particularly in the fields of electrical / electronic materials and paint / adhesives.

エポキシ樹脂組成物の硬化物の耐熱性を向上させるため、例えば、エポキシ樹脂および硬化剤に加え、ガラス繊維、ガラス粒子、マイカ等のフィラーを混合した組成物を用いる方法が考えられる。しかし、この方法では十分な耐熱性は得られない。また、この方法では得られる硬化物の透明性が失われ、しかもフィラーとエポキシ樹脂との界面の接着性が劣るため、伸長率等の機械的特性も不十分である。   In order to improve the heat resistance of the cured product of the epoxy resin composition, for example, a method of using a composition in which a filler such as glass fiber, glass particles, mica, etc., in addition to the epoxy resin and the curing agent is considered. However, this method cannot provide sufficient heat resistance. Further, the transparency of the cured product obtained by this method is lost, and the adhesiveness at the interface between the filler and the epoxy resin is inferior, so that the mechanical properties such as the elongation rate are insufficient.

エポキシ樹脂組成物の硬化物の耐熱性を向上させる方法として、エポキシ樹脂とシリカとの複合体を用いる方法が提案されている(特許文献1)。当該複合体は、エポキシ樹脂の部分硬化物の溶液に、加水分解性アルコキシシランを加え、該硬化物を更に硬化すると共に、該アルコキシシランを加水分解してゾル化し、更に重縮合してゲル化することにより得られる。しかし、かかる複合体から得られる硬化物は、エポキシ樹脂単独の硬化物に比して、ある程度耐熱性は向上するものの、複合体中の水や硬化時に生じる水、アルコールに起因して、硬化物中にボイド(気泡)が発生する。また、耐熱性を一層向上させる目的でアルコキシシラン量を増やすと、ゾル−ゲル硬化反応により生成するシリカが凝集して得られる硬化物の透明性が失われて白化するうえ、多量のアルコキシシランをゾル化するために多量の水が必要となり、その結果として硬化物のそり、クラック等を招く。   As a method for improving the heat resistance of a cured product of an epoxy resin composition, a method using a composite of an epoxy resin and silica has been proposed (Patent Document 1). In the composite, hydrolyzable alkoxysilane is added to the partially cured epoxy resin solution, the cured product is further cured, the alkoxysilane is hydrolyzed to form a sol, and further polycondensed to gel. Can be obtained. However, the cured product obtained from such a composite has a certain degree of improvement in heat resistance compared to the cured product of the epoxy resin alone, but the cured product is caused by water in the composite, water generated during curing, or alcohol. Voids (bubbles) are generated inside. In addition, when the amount of alkoxysilane is increased for the purpose of further improving heat resistance, the transparency of the cured product obtained by agglomeration of the silica produced by the sol-gel curing reaction is lost and whitened, and a large amount of alkoxysilane is added. A large amount of water is required to form a sol, resulting in warping of the cured product, cracks, and the like.

また、エポキシ樹脂にシリコーン化合物を反応させたシラン変性エポキシ樹脂と、硬化剤であるフェノールノボラック樹脂とを組み合わせた組成物(特許文献2)や、ビスフェノールA型エポキシ樹脂、テトラビスブロモビスフェノールAおよびメトキシ基含有シリコーン中間体を反応させたシラン変性エポキシ樹脂と、硬化剤であるフェノールノボラック樹脂とを組み合わせた組成物(特許文献3、4)も提案されている。しかし、これらのエポキシ樹脂組成物の硬化物は、シリコーン化合物やメトキシ基含有シリコーン中間体の主構成単位がジオルガノポリシロキサン単位であってシリカを生成できないため、いずれも耐熱性が不十分である。   Further, a composition (Patent Document 2) in which a silane-modified epoxy resin obtained by reacting an epoxy resin with a silicone compound and a phenol novolac resin as a curing agent, bisphenol A type epoxy resin, tetrabisbromobisphenol A and methoxy are combined. A composition (Patent Documents 3 and 4) in which a silane-modified epoxy resin obtained by reacting a group-containing silicone intermediate and a phenol novolac resin as a curing agent is also proposed. However, the cured products of these epoxy resin compositions are insufficient in heat resistance because the main constituent unit of the silicone compound or methoxy group-containing silicone intermediate is a diorganopolysiloxane unit and cannot produce silica. .

一方、本出願人らは、ビスフェノール型エポキシ樹脂とメトキシシラン部分縮合物とを脱メタノール反応させてなるメトキシ基含有シラン変性エポキシ樹脂と、エポキシ樹脂用硬化剤を用いることで、当該樹脂を硬化してなる硬化物がガラス転移点を消失し高耐熱となること、無機材料に対して高い密着性を示すことを、既に見出している(例えば、特許文献5、6)。この方法では、硬化物を得るために、樹脂組成物中のメトキシシリル基をゾル−ゲル硬化させ、エポキシ基をエポキシ硬化させて、エポキシ樹脂−シリカハイブリッド硬化物としている。しかしながら当該硬化物においても、高温高湿下における密着性は不十分であった。   On the other hand, the present applicants cured the resin by using a methoxy group-containing silane-modified epoxy resin obtained by demethanol reaction of a bisphenol-type epoxy resin and a methoxysilane partial condensate and a curing agent for epoxy resin. It has already been found that the cured product thus obtained loses its glass transition point and has high heat resistance, and exhibits high adhesion to inorganic materials (for example, Patent Documents 5 and 6). In this method, in order to obtain a cured product, the methoxysilyl group in the resin composition is sol-gel cured and the epoxy group is epoxy-cured to obtain an epoxy resin-silica hybrid cured product. However, even in the cured product, adhesion under high temperature and high humidity was insufficient.

また、エポキシ基を含むアルコキシシラン類を加水分解、縮合させるなどの方法によって製造されるエポキシ基含有シルセスキオキサン類を、エポキシ樹脂用硬化剤で硬化させた硬化物も、透明性、耐熱性、耐薬品性、機械的特性、電気特性などの諸特性に優れることが知られている。本出願人らも、エポキシ基含有アルコキシシラン類を加水分解、縮合させて得たエポキシ基含有シルセスキオキサン類と酸無水物とからなる組成物の硬化物が、前記特性に優れることを既に見出している(特許文献7)。しかしながら当該硬化物においても、高温高湿下における密着性は不十分であることが多かった。   In addition, a cured product obtained by curing an epoxy group-containing silsesquioxane produced by a method of hydrolyzing or condensing an alkoxysilane containing an epoxy group with a curing agent for epoxy resin is also transparent and heat resistant. It is known that it has excellent properties such as chemical resistance, mechanical properties, and electrical properties. The present applicants have already shown that a cured product of a composition comprising an epoxy group-containing silsesquioxane obtained by hydrolyzing and condensing an epoxy group-containing alkoxysilane and an acid anhydride has excellent properties. (Patent Document 7). However, even in the cured product, the adhesion under high temperature and high humidity is often insufficient.

特開平8−100107号公報JP-A-8-100107 特開平3−201466号公報JP-A-3-2014466 特開昭61−272243号公報JP-A-61-272243 特開昭61−272244号公報JP-A-61-272244 特許第3077695号Japanese Patent No. 3077695 特許第3570380号Japanese Patent No. 3570380 特開2009−108109号公報JP 2009-108109 A

本発明は、耐熱性、無機材密着性に優れ、しかも高温高湿下においても無機材への密着性を失わない硬化物を形成しうる、エポキシ基含有シルセスキオキサン変性エポキシ樹脂、硬化性組成物、コーティング剤および耐熱性、無機材密着性に優れ、しかも高温高湿下においても無機材への密着性を失わない硬化物を提供することを目的とする。   The present invention provides an epoxy group-containing silsesquioxane-modified epoxy resin that is excellent in heat resistance and adhesion to inorganic materials, and can form a cured product that does not lose adhesion to inorganic materials even under high temperature and high humidity. It is an object of the present invention to provide a cured product that is excellent in composition, coating agent, heat resistance, and inorganic material adhesion, and that does not lose adhesion to an inorganic material even under high temperature and high humidity.

本発明者は上記課題を解決すべく鋭意検討した結果、水酸基含有エポキシ樹脂を特定のシルセスキオキサンで変性して得られるエポキシ基含有シルセスキオキサン変性エポキシ樹脂により上記課題を解決しうることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor can solve the above problems with an epoxy group-containing silsesquioxane-modified epoxy resin obtained by modifying a hydroxyl group-containing epoxy resin with a specific silsesquioxane. As a result, the present invention has been completed.

すなわち、本発明は、水酸基含有エポキシ樹脂(A)と、エポキシ基含有アルコキシシラン類(b1)及びエポキシ基を有しない金属アルコキシド類(b2)を加水分解、縮合したものであるエポキシ基およびアルコキシ基を含有するシルセスキオキサン化合物(B)とを脱アルコール縮合反応させて得られるものであり、アルコキシ基当量が150〜3000g/eqであり、エポキシ当量が150〜500g/eqであって、[成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数](モル比)が0.1以上3以下であり、かつ成分(A)と成分(B)との重量比が、成分(B)/成分(A)=0.2〜8であって、前記成分(B)が、原料として[エポキシ基含有アルコキシシラン類(b1)に含まれるエポキシ基のモル数]/[エポキシ基含有アルコキシシラン類(b1)とエポキシ基を含有しない金属アルコキシド類(b2)の合計モル数](モル比:ケイ素原子1つあたりに含まれるエポキシ基の平均個数を示す)が0.10以上0.85以下であることを特徴とする、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)に関する。また本発明は、当該エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)およびエポキシ樹脂用硬化剤(2)とを必須成分とする硬化性樹脂組成物に関する。さらに本発明は、当該硬化性樹脂組成物を硬化してなる硬化物に関する。さらに本発明は、当該硬化性樹脂組成物を含有することを特徴とするコーティング剤に関する。
That is, the present invention provides an epoxy group and an alkoxy group obtained by hydrolysis and condensation of a hydroxyl group-containing epoxy resin (A), an epoxy group-containing alkoxysilane (b1), and a metal alkoxide (b2) having no epoxy group. It is obtained by subjecting a silsesquioxane compound (B) containing a dealcoholization condensation reaction, an alkoxy group equivalent is 150 to 3000 g / eq, an epoxy equivalent is 150 to 500 g / eq, The number of moles of the epoxy group derived from the component (A)] / [number of moles of the epoxy group derived from the component (B)] (molar ratio) is from 0.1 to 3, and the components (A) and (B) The component (B) / component (A) = 0.2-8 , and the component (B) is used as a raw material [epoxy contained in epoxy group-containing alkoxysilanes (b1). Number of moles of xyl group] / [total number of moles of epoxy group-containing alkoxysilanes (b1) and metal alkoxides (b2) not containing epoxy group] (molar ratio: average of epoxy groups contained per silicon atom) The present invention relates to an epoxy group-containing silsesquioxane-modified epoxy resin (1), characterized in that the number thereof is 0.10 or more and 0.85 or less . The present invention also relates to a curable resin composition containing the epoxy group-containing silsesquioxane-modified epoxy resin (1) and the epoxy resin curing agent (2) as essential components. Furthermore, this invention relates to the hardened | cured material formed by hardening | curing the said curable resin composition. Furthermore, this invention relates to the coating agent characterized by containing the said curable resin composition.

本発明によれば、耐熱性、無機材密着性、耐湿熱密着性などの諸特性が改善された硬化物を提供しうる、エポキシ基含有シルセスキオキサン変性エポキシ樹脂を提供できる。また本発明の硬化物は、特にコーティング剤、アンカー剤などとして有用である。   According to the present invention, it is possible to provide an epoxy group-containing silsesquioxane-modified epoxy resin that can provide a cured product having improved properties such as heat resistance, inorganic material adhesion, and wet heat adhesion. The cured product of the present invention is particularly useful as a coating agent, an anchor agent and the like.

本発明では、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)の構成成分として、水酸基含有エポキシ樹脂(A)(以下、成分(A)という)を必須使用する。本発明において使用する成分(A)は、エポキシ基およびアルコキシ基を含有するシルセスキオキサン化合物(B)(以下、成分(B)という)のアルコキシ基との脱メタノール縮合反応により、ケイ酸エステルを形成するための水酸基を有するものであればよい。   In the present invention, a hydroxyl group-containing epoxy resin (A) (hereinafter referred to as component (A)) is essential as a constituent component of the epoxy group-containing silsesquioxane-modified epoxy resin (1). Component (A) used in the present invention is a silicate ester by a demethanol condensation reaction with an alkoxy group of a silsesquioxane compound (B) (hereinafter referred to as component (B)) containing an epoxy group and an alkoxy group. What is necessary is just to have a hydroxyl group for forming.

成分(A)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、前記エポキシ樹脂のベンゼン環を核水添した水添ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂等が挙げられる。   Component (A) includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as bisphenol S type epoxy resin, hydrogenated bisphenol type epoxy resin obtained by nuclear hydrogenation of the benzene ring of the epoxy resin, phenol Examples include novolac type epoxy resins, cresol novolac type epoxy resins, biphenol type epoxy resins, and naphthalene type epoxy resins.

上記成分(A)のうち、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂は多様なものが市販されているため入手が容易であり、種々の分子量のものを組み合わせることによって1分子中に含まれる水酸基の数を調整することが可能であるため好ましい。   Among the above components (A), bisphenol A type epoxy resins and hydrogenated bisphenol A type epoxy resins are easy to obtain because various products are commercially available. This is preferable because the number of hydroxyl groups contained can be adjusted.

なお、水酸基を有さないエポキシ樹脂の場合には、水酸基を有さないエポキシ樹脂のエポキシ基の一部を開環変性させて水酸基を生成させることで成分(A)とすることができる。開環変性する方法については、特に制限はなく、周知慣用の方法を適用できる。具体的には、例えば、水酸基を有さないエポキシ樹脂と活性水素化合物を用いて開環変性する方法が挙げられる。水酸基を有さないエポキシ樹脂としては、1,6−ヘキサンジオール、トリメチロールプロパン等の脂肪族多価アルコールのポリグリシジルエーテル類、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸等の脂環式多価カルボン酸のポリグリシジルエステル類等が挙げられる。活性水素化合物としては、例えば、エチルアミン、イソプロピルアミン、2−エチルヘキシルアミン、3−メトキシプロピルアミン、アリルアミンなどの一級アミン類、ジエチルアミン、ジイソプロピルアミン、ジイソブチルアミンなどの2級アミン類、ギ酸、酢酸、プロピオン酸、シュウ酸、クエン酸、安息香酸、フマル酸、マレイン酸などのカルボン酸類、リン酸、メチルホスホン酸、ジメチルホスホン酸などのリン酸類等が挙げられる。   In addition, in the case of the epoxy resin which does not have a hydroxyl group, it can be set as a component (A) by carrying out ring-opening modification | denaturation of a part of epoxy group of the epoxy resin which does not have a hydroxyl group, and producing | generating a hydroxyl group. There is no restriction | limiting in particular about the method of ring-opening modification | denaturation, A well-known and usual method can be applied. Specifically, for example, a ring-opening modification method using an epoxy resin having no hydroxyl group and an active hydrogen compound can be mentioned. Examples of the epoxy resin having no hydroxyl group include polyglycidyl ethers of aliphatic polyhydric alcohols such as 1,6-hexanediol and trimethylolpropane, and alicyclic polycarboxylic acids such as hexahydrophthalic acid and methyltetrahydrophthalic acid. And polyglycidyl esters of acids. Examples of the active hydrogen compound include primary amines such as ethylamine, isopropylamine, 2-ethylhexylamine, 3-methoxypropylamine and allylamine, secondary amines such as diethylamine, diisopropylamine and diisobutylamine, formic acid, acetic acid and propion. Examples thereof include carboxylic acids such as acid, oxalic acid, citric acid, benzoic acid, fumaric acid and maleic acid, and phosphoric acids such as phosphoric acid, methylphosphonic acid and dimethylphosphonic acid.

成分(A)1分子中に含まれる水酸基の平均個数は、0.3以上5未満となるようにすることが好ましい。   The average number of hydroxyl groups contained in one molecule of component (A) is preferably 0.3 or more and less than 5.

なお、本発明の効果を阻害しない範囲であれば、水酸基を有さないエポキシ樹脂を成分(A)と併用することもできる。ただし、水酸基を有さないエポキシ樹脂は、成分(B)とは反応しないため、未反応のまま硬化性樹脂組成物中に存在することとなる。水酸基を有さないエポキシ樹脂は硬化性樹脂組成物を硬化させる際、溶剤乾燥した後の半硬化膜形成時に、柔軟性および密着性を付与することができる。 In addition, if it is a range which does not inhibit the effect of this invention, the epoxy resin which does not have a hydroxyl group can also be used together with a component (A). However, since the epoxy resin which does not have a hydroxyl group does not react with the component (B), it will be present in the curable resin composition unreacted. An epoxy resin having no hydroxyl group can impart flexibility and adhesiveness when forming a semi-cured film after drying the solvent when curing the curable resin composition.

本発明で使用される成分(B)としては、般式(1):RSi(OR(式中、Rは少なくとも1つのエポキシ基を有する炭素数3〜8の炭化水素基を表し、Rは水素原子、炭素数1〜4の炭化水素基を表す。)で示されるエポキシ基含有アルコキシシラン類(b1)(以下、成分(b1)という)及びエポキシ基を含有しない金属アルコキシド類(b2)(以下、成分(b2)という)を加水分解および縮合して得られる化合物である。成分(b1)の具体例としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリプロポキシシランなどのグリシドキシプロピルトリアルコキシシラン類、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリプロポキシシランなどの(エポキシシクロヘキシル)エチルトリアルコキシシラン類などが挙げられ、該例示化合物はいずれか単独で、または適宜に組み合わせて使用できる。該例示化合物のうち、3−グリシドキシプロピルトリメトキシシランは、加水分解反応の反応性が高く、かつ入手が容易であるため特に好ましい。特に3−グリシドキシプロピルトリメトキシシランを用いることが好ましい。
As the component (B) used in the present invention, one general formula (1): R 1 Si ( OR 2) 3 ( wherein, R 1 represents a hydrocarbon having 3 to 8 carbon atoms having at least one epoxy group Represents an epoxy group-containing alkoxysilane (b1) (hereinafter referred to as component (b1)) and an epoxy group represented by R 2 represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. metal alkoxides (b2) (hereinafter, component (b2) hereinafter) Ru compounds der obtained by a combined hydrolysis and condensation. Specific examples of the component (b1) include glycidoxypropyltrialkoxysilanes such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltripropoxysilane, (Epoxycyclohexyl) such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane Examples include ethyltrialkoxysilanes, and the exemplified compounds can be used alone or in appropriate combination. Of the exemplified compounds, 3-glycidoxypropyltrimethoxysilane is particularly preferable because of its high reactivity of hydrolysis reaction and easy availability. It is particularly preferable to use 3-glycidoxypropyltrimethoxysilane.

また、成分(bの具体例としては、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシランなどのトリアルキルアルコキシシラン類、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、3−メルカプトプロピルメチルジメトキシシランなどのジアルキルジアルコキシシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどのアルキルトリアルコキシシラン類、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどのテトラアルコキシシラン類、テトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトラブトキシチタンなどのテトラアルコキシチタン類、テトラエトキシジルコニウム、テトラプロポキシジルコニウム、テトラブトキシジルコニウムなどのテトラアルコキシジルコニウム類など使用る。成分(b2)は、いずれか単独で、または2種以上を組み合わせて用いることができ、トリアルキルアルコキシシラン類、ジアルキルジアルコキシシラン類、テトラアルコキシシラン類を用いることで、成分(B)の架橋密度を調整することができる。また、アルキルトリアルコキシシラン類を用いることで、成分(B)中に含まれるエポキシ基の量を調整することができる。テトラアルコキシチタン類、テトラアルコキシジルコニウム類を用いることで、最終的に得られる硬化物の屈折率を高くすることができる。該例示化合物のうち、メチルトリメトキシシランは、加水分解反応の反応性が高く、かつ入手が容易であるため特に好ましい。成分(b2)としてはメチルトリメトキシシランを用いることが好ましい。
Specific examples of the component (b 2 ) include trialkylalkoxysilanes such as trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, triethylethoxysilane, triphenylmethoxysilane, and triphenylethoxysilane, dimethyldimethoxysilane, Dialkyldialkoxysilanes such as dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, 3-mercaptopropylmethyldimethoxysilane, methyl Trimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane , Alkyltrialkoxysilanes such as phenyltriethoxysilane, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxy tetraalkoxytitanium such as titanium, to use tetraethoxy zirconium, tetra propoxy zirconium, tetra-alkoxy zirconium such as tetrabutoxyzirconium and the like. Component (b2) can be used either alone or in combination of two or more. By using trialkylalkoxysilanes, dialkyldialkoxysilanes, and tetraalkoxysilanes, crosslinking of component (B) The density can be adjusted. Moreover, the quantity of the epoxy group contained in a component (B) can be adjusted by using alkyl trialkoxysilanes. By using tetraalkoxy titanium and tetraalkoxy zirconium, the refractive index of the finally obtained cured product can be increased. Among the exemplified compounds, methyltrimethoxysilane is particularly preferable because of its high reactivity of hydrolysis reaction and easy availability. As component (b2), it is preferable to use methyltrimethoxysilane.

また、[成分(b1)と成分(b2)に含まれる各アルコキシ基の合計モル数]/[成分(b1)と成分(b2)の合計モル数](モル比:1分子あたりに含まれるアルコキシ基の平均個数を示す)を2.5以上3.5以下とすることが好ましく、2.7以上3.2以下とすることがより好ましい。2.5以上3.5以下とすることで、硬化物の耐湿密着性や耐熱性を向上させることができるため好ましい。 [Total number of moles of each alkoxy group contained in component (b1) and component (b2)] / [Total number of moles of component (b1) and component (b2)] (molar ratio: alkoxy contained per molecule) The average number of groups) is preferably 2.5 or more and 3.5 or less, and more preferably 2.7 or more and 3.2 or less. By setting it to 2.5 or more and 3.5 or less, moisture resistance adhesion and heat resistance of the cured product can be improved, which is preferable.

成分(B)は、成分(b1)および成分(b2)を前記の特定割合でて、それらを加水分解後、縮合させて得ることができる。加水分解反応によって、成分(b1)成分(b2)に含まれるアルコキシ基がシラノール基となり、アルコールが副生する。加水分解反応に必要な水の量は、[加水分解反応に用いる水のモル数]/[成分(b1)と成分(b2)に含まれる各アルコキシ基の合計モル数](モル比)が0.2以上1以下であればよく、好ましくは0.3以上0.7以下である。0.2以上とすることで、得られる成分(B)の分子量を高く維持できるため好ましい。また、1以下とすることで、耐湿熱密着性が向上するため好ましい。成分(B)は、メチルトリメトキシシランおよび3−グリシドキシプロピルトリメトキシシランを加水分解、縮合したものを用いることが、前述のように加水分解性が高く、入手が容易である上、それぞれを任意の割合で共縮合できるため好ましい。
Component (B) may be a component (b1) and the component (b2) and have use in specific proportions wherein, after their hydrolysis, obtained by condensation. By the hydrolysis reaction, the alkoxy group contained in component (b1) and component (b2) becomes a silanol group, and alcohol is by-produced. The amount of water required for the hydrolysis reaction is [number of moles of water used for hydrolysis reaction] / [total number of moles of each alkoxy group contained in component (b1) and component (b2)] (molar ratio). .2 or more and 1 or less, preferably 0.3 or more and 0.7 or less. It is preferable to set it to 0.2 or more because the molecular weight of the component (B) obtained can be kept high. Moreover, it is preferable to set it to 1 or less because the wet heat resistance adhesion is improved. The component (B) is a product obtained by hydrolyzing and condensing methyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, and has high hydrolyzability as described above. Can be co-condensed at an arbitrary ratio.

また、成分(b2)としてテトラアルコキシチタン類、テトラアルコキシジルコニウム類等、特に加水分解性および縮合反応性の高い金属アルコキシド類を併用する場合には、急速に加水分解および縮合反応が進行し、系がゲル化してしまう場合がある。この場合、成分(b1)の加水分解反応を終了させ、実質的にすべての水が消費された状態にした後、該成分(b2)を添加することによって、ゲル化を避けることができる。   In addition, when a component (b2) is used in combination with a tetraalkoxytitanium, tetraalkoxyzirconium or the like, particularly a metal alkoxide having high hydrolyzability and condensation reactivity, the hydrolysis and condensation reaction proceeds rapidly, and the system May gel. In this case, gelation can be avoided by adding the component (b2) after the hydrolysis reaction of the component (b1) has been completed and all the water has been consumed.

加水分解反応に用いる触媒としては、格別限定はされず、従来公知の加水分解触媒を任意に用いることができる。加水分解触媒としては、塩酸、硫酸、硝酸等の無機酸類、ギ酸、酢酸などの有機酸類、アンモニア、水酸化ナトリウムなどの無機塩基、1,8−ジアザ−ビシクロ[5.4.0]ウンデセン−7、2−エチル−4−メチルイミダゾールなどの有機塩基類が挙げられる。また、酸性あるいは塩基性のイオン性基を有する、室温で固体の固体触媒である、イオン交換樹脂、活性白土、カーボン系固体酸等が挙げられる。該例示化合物はいずれか単独で、または適宜に組み合わせて使用できる。これらのうちギ酸は、触媒活性が高く、また引き続く縮合反応の触媒としても機能するので好ましい。また、固体触媒は反応終了後にろ過などの方法によって容易に除去できる点から好ましい。加水分解触媒の添加量は、特に限定されないが、成分(b1)および成分(b2)の合計100重量部に対して0.02〜25重量部であることが好ましく、1〜10重量部であることがより好ましい。反応温度、反応時間は、成分(b1)や成分(b2)の反応性に応じて任意に設定できるが、通常0〜100℃程度、好ましくは20〜60℃、1分〜2時間程度である。該加水分解反応は、溶剤の存在下または不存在下に行うことができる。溶剤の種類は格別限定されず、任意の溶剤を1種類以上選択して用いることができるが、後述の縮合反応に用いる溶剤と同一のものを用いることが好ましい。成分(b1)や成分(b2)の反応性が低い場合は、無溶剤で行うことが好ましい。   The catalyst used for the hydrolysis reaction is not particularly limited, and a conventionally known hydrolysis catalyst can be arbitrarily used. Hydrolysis catalysts include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as formic acid and acetic acid, inorganic bases such as ammonia and sodium hydroxide, 1,8-diaza-bicyclo [5.4.0] undecene- 7, organic bases such as 2-ethyl-4-methylimidazole. Further, ion exchange resins, activated clays, carbon-based solid acids and the like, which are solid catalysts having an acidic or basic ionic group and are solid at room temperature, can be mentioned. These exemplified compounds can be used alone or in appropriate combination. Of these, formic acid is preferred because it has high catalytic activity and also functions as a catalyst for the subsequent condensation reaction. A solid catalyst is preferable because it can be easily removed by a method such as filtration after completion of the reaction. Although the addition amount of a hydrolysis catalyst is not specifically limited, It is preferable that it is 0.02-25 weight part with respect to a total of 100 weight part of a component (b1) and a component (b2), and is 1-10 weight part. It is more preferable. Although reaction temperature and reaction time can be arbitrarily set according to the reactivity of a component (b1) or a component (b2), it is about 0-100 degreeC normally, Preferably it is about 20-60 degreeC, 1 minute-about 2 hours. . The hydrolysis reaction can be performed in the presence or absence of a solvent. The type of the solvent is not particularly limited, and one or more arbitrary solvents can be selected and used, but it is preferable to use the same solvent as that used in the condensation reaction described later. When the reactivity of component (b1) or component (b2) is low, it is preferable to carry out without solvent.

縮合反応においては、前記のシラノール基間で水が副生し、またシラノール基とアルコキシ基間ではアルコールが副生して、シロキサン結合(Si−O−Si)を生成する。縮合反応には、従来公知の脱水縮合触媒を任意に用いることができる。前記のように、ギ酸は触媒活性が高く、加水分解反応の触媒と共用できるため好ましい。また、固体触媒は反応終了後にろ過などの方法によって容易に除去できる点から好ましい。反応温度、反応時間は成分(b1)や成分(b2)の反応性に応じてそれぞれ任意に設定できるが、通常は40〜150℃程度、好ましくは60〜100℃、30分〜12時間程度である。   In the condensation reaction, water is by-produced between the silanol groups, and alcohol is by-produced between the silanol group and the alkoxy group to form a siloxane bond (Si—O—Si). A conventionally known dehydration condensation catalyst can be arbitrarily used for the condensation reaction. As described above, formic acid is preferable because it has high catalytic activity and can be used as a catalyst for hydrolysis reaction. A solid catalyst is preferable because it can be easily removed by a method such as filtration after completion of the reaction. The reaction temperature and reaction time can be arbitrarily set according to the reactivity of the component (b1) and component (b2), respectively, but usually about 40 to 150 ° C., preferably 60 to 100 ° C., about 30 minutes to 12 hours. is there.

当該縮合反応は、成分(b1)成分(b2合計濃度が2〜80重量%程度になるよう溶剤希釈して行うことが好ましく、15〜60重量%であることがより好ましい。溶剤としては、任意の溶剤を1種類以上選択して用いることができる。縮合反応によって生成する水およびアルコールより高い沸点を有する溶剤を用いれば、反応系中よりこれらを留去することができるため好ましい。このような溶剤としては、トルエン、キシレン、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、酢酸ブチルなどが挙げられる。
The condensation reaction is preferably performed by diluting the solvent so that the total concentration of the component (b1) and the component (b2 ) is about 2 to 80% by weight, and more preferably 15 to 60% by weight. As the solvent, one or more arbitrary solvents can be selected and used. It is preferable to use a solvent having a boiling point higher than that of water and alcohol produced by the condensation reaction because these can be distilled off from the reaction system. Examples of such a solvent include toluene, xylene, diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, butyl acetate and the like.

当該縮合反応の終了後、用いた触媒を除去すると、最終的に得られるエポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)の安定性が向上するため好ましい。除去方法は、用いた触媒に応じて各種公知の方法から適宜に選択できる。例えば、ギ酸を用いた場合は、縮合反応の終了後、該沸点以上に加熱したり、減圧したりして容易に除去でき、この点からもギ酸の使用が好ましい。また、固体触媒は反応終了後にろ過などの方法によって容易に除去できる点から好ましい。   It is preferable to remove the catalyst used after completion of the condensation reaction, since the stability of the finally obtained epoxy group-containing silsesquioxane-modified epoxy resin (1) is improved. The removal method can be appropriately selected from various known methods depending on the catalyst used. For example, when formic acid is used, it can be easily removed after completion of the condensation reaction by heating above the boiling point or by reducing the pressure. For this reason, use of formic acid is preferred. A solid catalyst is preferable because it can be easily removed by a method such as filtration after completion of the reaction.

また、[成分(b1)に含まれるエポキシ基のモル数]/[成分(b1)と成分(b2)の合計モル数](モル比:ケイ素原子1つあたりに含まれるエポキシ基の平均個数を示す)が0.10以上0.85以下であることが好ましく、0.15以上0.6以下であることがさらに好ましい。後に述べるように、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)には特定の割合でエポキシ基を含む必要があるが、当該範囲にすることでその割合を満たすことが容易となり、結果として本発明の効果である硬化物の耐湿熱密着性を高く維持することができるため好ましい。 [Mole number of epoxy groups contained in component (b1)] / [Total number of moles of component (b1) and component (b2)] (molar ratio: average number of epoxy groups contained per silicon atom) Is preferably 0.10 or more and 0.85 or less, and more preferably 0.15 or more and 0.6 or less. As will be described later, the epoxy group-containing silsesquioxane-modified epoxy resin (1) needs to contain an epoxy group in a specific ratio. This is preferable because the wet heat and heat adhesion of the cured product, which is an effect of the present invention, can be maintained high.

また、成分(B)中に含まれるアルコキシ基は、成分(A)の水酸基との反応、硬化時の無機材への密着性向上、硬化時の無機成分間での架橋に寄与する。このため、成分(B)中に含まれるアルコキシ基はアルコキシ当量(アルコキシ当量:1当量のアルコキシ基を含む、成分(B)の重量(グラム)を表す)として100〜1000g/eqであることが好ましい。後に述べるように、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)には特定の割合でアルコキシ基を含む必要があるが、当該範囲にすることでその割合を満たすことが容易となり、結果として本発明の効果である硬化物の耐湿熱密着性を高く維持することができるため好ましい。 Moreover, the alkoxy group contained in the component (B) contributes to the reaction with the hydroxyl group of the component (A), the improvement of adhesion to the inorganic material during curing, and the crosslinking between the inorganic components during curing. For this reason, the alkoxy group contained in the component (B) is 100 to 1000 g / eq in terms of alkoxy equivalent (alkoxy equivalent: represents the weight (gram) of the component (B) including one equivalent of alkoxy group). preferable. As will be described later, the epoxy group-containing silsesquioxane-modified epoxy resin (1) needs to contain an alkoxy group in a specific ratio. This is preferable because the wet heat and heat adhesion of the cured product, which is an effect of the present invention, can be maintained high.

本発明のエポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)は、成分(A)と成分(B)とを、溶剤の存在下または無溶剤下で脱アルコール縮合反応させることによって得られる。成分(A)と成分(B)との使用量は特に限定されず、成分(A)と成分(B)との使用比率は特に制限されないが、成分(B)の重量/成分(A)の重量(重量比)が0.2〜8程度であり、好ましくは0.5〜5である。0.2未満である場合、本発明の効果である硬化物の耐湿熱密着性が低下するともに、硬化物の耐熱性や無機材への密着性が低下するため好ましくない。8を超える場合、本発明の効果である硬化物の耐湿熱密着性が低下するともに、硬化物の硬度などの物性についての改善効果も不十分となるため好ましくない。   The epoxy group-containing silsesquioxane-modified epoxy resin (1) of the present invention can be obtained by subjecting component (A) and component (B) to a dealcoholization condensation reaction in the presence or absence of a solvent. The use amount of component (A) and component (B) is not particularly limited, and the use ratio of component (A) and component (B) is not particularly limited, but the weight of component (B) / component (A) The weight (weight ratio) is about 0.2 to 8, preferably 0.5 to 5. If it is less than 0.2, the heat and moisture resistance of the cured product, which is the effect of the present invention, is lowered, and the heat resistance of the cured product and the adhesion to an inorganic material are lowered, which is not preferable. If it exceeds 8, the wet heat and heat adhesion of the cured product, which is the effect of the present invention, is lowered, and the effect of improving the physical properties such as hardness of the cured product is insufficient, which is not preferable.

本発明における脱アルコール縮合反応では、反応温度は50〜130℃程度、好ましくは70〜110℃であり、全反応時間は1〜15時間程度である。この反応は、成分(B)のアルコキシ基の加水分解、縮合反応を防止するため、実質的に無水条件下で行うのが好ましい。ところで、無溶剤下で製造されるエポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)は、無溶剤で使用される用途、例えば接着剤、成形加工品、シーリング剤などの材料として、そのまま使用できる利点がある。なお、当該無溶剤用途に適用するため、成分(A)と成分(B)との相溶性が高い場合には無溶剤下で反応を行うこともできるし、溶剤存在下で製造されたエポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)の有機溶剤溶液を減圧して脱溶剤してもよい。反応溶剤としては、エポキシ基と反応せず、沸点が上記脱アルコール反応の反応温度以上で、成分(A)および成分(B)を溶解するものであれば、従来公知の溶剤を使用することができる。このような有機溶剤としては、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、テトラヒドロフラン、ジメチルジグリコール、ジメチルトリグリコール、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N−メチルピロリドン等が例示できる。これらの中でも、半硬化状態での加工が必要な用途には、メチルエチルケトン、メチルイソブチルケトン、トルエンのような沸点が120℃未満で、乾燥が容易な有機溶剤が好ましい。   In the dealcoholization condensation reaction in the present invention, the reaction temperature is about 50 to 130 ° C, preferably 70 to 110 ° C, and the total reaction time is about 1 to 15 hours. This reaction is preferably carried out under substantially anhydrous conditions in order to prevent hydrolysis and condensation reaction of the alkoxy group of component (B). By the way, the epoxy group-containing silsesquioxane-modified epoxy resin (1) produced in the absence of a solvent can be used as it is as a material such as an adhesive, a molded product, and a sealing agent. There are advantages. In addition, in order to apply to the said solvent-free use, when compatibility with a component (A) and a component (B) is high, it can react without solvent and the epoxy group manufactured in presence of a solvent. The organic solvent solution of the containing silsesquioxane-modified epoxy resin (1) may be depressurized to remove the solvent. As the reaction solvent, a conventionally known solvent can be used as long as it does not react with an epoxy group and has a boiling point equal to or higher than the reaction temperature of the dealcoholization reaction and dissolves the component (A) and the component (B). it can. Examples of such an organic solvent include methyl ethyl ketone, methyl isobutyl ketone, toluene, xylene, tetrahydrofuran, dimethyl diglycol, dimethyl triglycol, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone and the like. Among these, organic solvents that have a boiling point of less than 120 ° C. and can be easily dried, such as methyl ethyl ketone, methyl isobutyl ketone, and toluene, are preferable for applications that require processing in a semi-cured state.

また、上記の脱アルコール縮合反応に際しては、反応促進のために従来公知の触媒の内、エポキシ環を開環しないものを使用することができる。該触媒としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、ストロンチウム、亜鉛、アルミニウム、チタン、コバルト、ゲルマニウム、錫、鉛、アンチモン、砒素、セリウム、硼素、カドミウム、マンガンのような金属;これら金属の酸化物、有機酸塩、ハロゲン化物、メトキシド等があげられる。これらのなかでも、特に有機錫、有機酸錫が好ましく、具体的には、ジブチル錫ジラウレート、ジオクチルスズジラウレート、オクチル酸錫等が有効である。   In the above dealcoholization condensation reaction, a conventionally known catalyst that does not open an epoxy ring can be used to promote the reaction. Examples of the catalyst include lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, strontium, zinc, aluminum, titanium, cobalt, germanium, tin, lead, antimony, arsenic, cerium, boron, cadmium, manganese. And metals such as oxides, organic acid salts, halides, and methoxides of these metals. Among these, organic tin and organic acid tin are particularly preferable, and specifically, dibutyltin dilaurate, dioctyltin dilaurate, tin octylate and the like are effective.

エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)は、その分子中に成分(A)および成分(B)に由来するエポキシ基を有している。このエポキシ基は、どちらもエポキシ樹脂用硬化剤(2)と反応することで架橋構造を形成し、硬化させるために使用される。成分(A)に由来するエポキシ基による架橋構造は、有機成分で構成されているため、硬化物に柔軟性、可とう性、成型性などを付与するのに寄与する。一方、成分(B)に由来するエポキシ基による架橋構造は、成分(B)中の無機成分であるシルセスキオキサン骨格を、成分(A)由来のエポキシ基による有機架橋構造へ強く組み込む作用を持ち、緻密な有機−無機ハイブリッド構造を形成するのに寄与する。このため、硬化物に耐熱性、密着性、耐薬品性、硬度などを付与するのに寄与する。   The epoxy group-containing silsesquioxane-modified epoxy resin (1) has an epoxy group derived from the component (A) and the component (B) in its molecule. Both of these epoxy groups react with the curing agent (2) for epoxy resin to form a crosslinked structure and are used for curing. Since the crosslinked structure by the epoxy group derived from the component (A) is composed of an organic component, it contributes to imparting flexibility, flexibility, moldability and the like to the cured product. On the other hand, the crosslinked structure by the epoxy group derived from the component (B) has a function of strongly incorporating the silsesquioxane skeleton, which is an inorganic component in the component (B), into the organic crosslinked structure by the epoxy group derived from the component (A). And contributes to the formation of a dense organic-inorganic hybrid structure. For this reason, it contributes to imparting heat resistance, adhesion, chemical resistance, hardness and the like to the cured product.

エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)のエポキシ基の合計量がエポキシ当量(エポキシ当量:1当量のエポキシ基を含む、成分(1)の重量(グラム)を表す)として150〜500g/eqであって、成分(A)由来のエポキシ基のモル数と成分(B)由来のエポキシ基のモル数との比率[成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数](モル比)が、0.1以上3以下であればよい。エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)のエポキシ当量が500g/eqを超える場合、エポキシ基による架橋密度が低下し、本願所望の耐湿熱密着性や、耐薬品性、硬度などが低下する傾向がある。一方、150g/eq未満の場合、エポキシ基の架橋構造部分に基づく吸水の影響や、高架橋密度であるため脆くなり、やはり耐湿熱密着性が低下する傾向がある。また、[成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]が0.1未満の場合、すなわち、成分(B)由来のエポキシ基を多く含む場合、有機架橋構造部分が少なくなり、脆くなって耐湿熱密着性が低下する傾向がある。一方、3を超える場合、すなわち、成分(A)由来のエポキシ基を多く含む場合、シルセスキオキサン骨格部分が少なくなり、当該部分に由来するアルコキシ基が少なくなるため、耐湿熱密着性や、耐薬品性、硬度が低下する傾向がある。   The total amount of epoxy groups of the epoxy group-containing silsesquioxane-modified epoxy resin (1) is 150 to 500 g as an epoxy equivalent (epoxy equivalent: the weight of the component (1) (in grams) including 1 equivalent of epoxy group). / Eq, the ratio of the number of moles of epoxy groups derived from component (A) to the number of moles of epoxy groups derived from component (B) [number of moles of epoxy groups derived from component (A)] / [component (B ) Derived epoxy group mole number] (molar ratio) may be 0.1 or more and 3 or less. When the epoxy equivalent of the epoxy group-containing silsesquioxane-modified epoxy resin (1) exceeds 500 g / eq, the crosslinking density due to the epoxy group decreases, and the desired moisture and heat resistance, chemical resistance, hardness, etc. of the present application decrease. Tend to. On the other hand, when it is less than 150 g / eq, it becomes brittle due to the influence of water absorption based on the crosslinked structure portion of the epoxy group and the high crosslinking density, and the moisture-and-heat-resistant adhesion tends to decrease. Further, when [number of moles of epoxy group derived from component (A)] / [number of moles of epoxy group derived from component (B)] is less than 0.1, that is, it contains a large amount of epoxy groups derived from component (B). In such a case, the organic cross-linking structure portion is reduced and the portion becomes brittle and the heat-and-moisture resistance tends to be lowered. On the other hand, when the number exceeds 3, that is, when many epoxy groups derived from the component (A) are contained, the silsesquioxane skeleton portion is reduced, and the alkoxy groups derived from the portion are reduced. Chemical resistance and hardness tend to decrease.

また、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)は、その分子中に成分(B)に由来するアルコキシ基を有している。当該アルコキシ基は、硬化の際、無機材との密着性向上に寄与する。また、ゾル−ゲル反応によって、相互に結合した無機成分による架橋構造も形成する。エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)中に含まれるアルコキシ基の量は150〜3000g/eqであることを要する。3000g/eqを超える場合、無機材への密着性が低下し、本願発明の効果である耐湿熱密着性が発現しなくなる。150g/eq未満の場合、硬化時に無機成分間での架橋が多くなりすぎて脆くなったり、吸水率が高くなったりし、やはり耐湿熱密着性が発現しなくなる。   Moreover, the epoxy group-containing silsesquioxane-modified epoxy resin (1) has an alkoxy group derived from the component (B) in its molecule. The alkoxy group contributes to improvement in adhesion with an inorganic material during curing. Moreover, the crosslinked structure by the inorganic component couple | bonded with each other is also formed by sol-gel reaction. The amount of the alkoxy group contained in the epoxy group-containing silsesquioxane-modified epoxy resin (1) is required to be 150 to 3000 g / eq. When it exceeds 3000 g / eq, the adhesiveness to the inorganic material is lowered, and the wet heat resistant adhesiveness which is the effect of the present invention is not expressed. If it is less than 150 g / eq, the crosslinking between inorganic components becomes too large at the time of curing, resulting in brittleness or a high water absorption rate, and also no moisture and heat resistance is exhibited.

本発明の硬化性樹脂組成物は前記エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)、エポキシ樹脂用硬化剤(2)を含有するものである。   The curable resin composition of the present invention contains the epoxy group-containing silsesquioxane-modified epoxy resin (1) and the epoxy resin curing agent (2).

本発明で用いられるエポキシ樹脂用硬化剤(2)は、格別限定されず、従来公知のエポキシ樹脂用硬化剤を適宜に用いることができる。例えば、フェノール樹脂系硬化剤、ポリアミン系硬化剤、イミダゾール系硬化剤、ポリメルカプタン類、酸無水物などである。また、エポキシ基の開環重合を行う触媒として、カチオン発生剤、イミダゾール系硬化剤などがあげられる。より具体的には、フェノール樹脂系のものとしては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ポリp−ビニルフェノール等があげられ、ポリアミン系硬化剤としてはジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジシアンジアミド、ポリアミドアミン(ポリアミド樹脂)、ケチミン化合物、イソホロンジアミン、m−キシレンジアミン、m−フェニレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、N−アミノエチルピペラジン、4,4′−ジアミノジフェニルメタン、4,4′−ジアミノ−3,3′―ジエチルジフェニルメタン、ジアミノジフェニルスルフォン等があげられ、またイミダゾール系硬化剤としては、2−メチルイミダゾール、2−エチルへキシルイミダゾール、2−ウンデシルイミダゾール、2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウム・トリメリテート、2−フェニルイミダゾリウム・イソシアヌレート等があげられ、ポリメルカプタン類としては、ポリオキシプロピレンポリ−2−ハイドロオキシチオール、エチレングリコール型ジ(ポリ)ハイドロオキシチオール、リモネンジハイドロオキシチオール、ビスフェノールA型ジハイドロオキシチオール、ビスフェノールF型ジハイドロオキシチオール、などのエーテル型ポリメルカプタン類やフタル酸エステル型ジメルカプタン、トリメチロールプロパンポリメルカプトプロピオネート、ペンタエリスリトールポリメルカプトプロピオネート等のエステル型ポリメルカプタン類及び市販品として入手可能な各種変性ポリチオール類等があげられ、酸無水物としては、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、無水ピロメリット酸、無水トリメリット酸、ビフェニルテトラカルボン酸2無水物、テトラヒドロ無水フタル酸、3−メチル−テトラヒドロ無水フタル酸などの不飽和結合を持つ酸無水物、ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、無水コハク酸、ブタンテトラカルボン酸2無水物、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物などがあげられる。カチオン発生剤としては、芳香族スルホニウム、芳香族ヨードニウム、芳香族ジアゾニウム、芳香族アンモニウム、η5−シクロペンタジエル−η6−クメニル−Fe塩系などから選ばれる少なくとも1種のカチオンと、BF 、PF 、SbF から選ばれる少なくとも1種のアニオンとから構成されるオニウム塩などがあげられる。 The epoxy resin curing agent (2) used in the present invention is not particularly limited, and a conventionally known epoxy resin curing agent can be appropriately used. For example, phenol resin curing agents, polyamine curing agents, imidazole curing agents, polymercaptans, acid anhydrides and the like. Examples of the catalyst for ring-opening polymerization of epoxy groups include cation generators and imidazole curing agents. More specifically, examples of phenolic resins include phenol novolac resins, cresol novolac resins, poly p-vinylphenol, and the like, and polyamine curing agents include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dicyandiamide. , Polyamideamine (polyamide resin), ketimine compound, isophoronediamine, m-xylenediamine, m-phenylenediamine, 1,3-bis (aminomethyl) cyclohexane, N-aminoethylpiperazine, 4,4'-diaminodiphenylmethane, 4 4,4'-diamino-3,3'-diethyldiphenylmethane, diaminodiphenylsulfone and the like, and imidazole curing agents include 2-methylimidazole and 2-ethylhexylimidazole. Examples include 2-undecylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-phenylimidazolium isocyanurate, and polymercaptans include polyoxypropylene poly-2-hydro Ether type polymercaptans such as oxythiol, ethylene glycol type di (poly) hydroxythiol, limonene dihydrooxythiol, bisphenol A type dihydrooxythiol, bisphenol F type dihydroxyoxythiol, and phthalate type dimercaptan , Ester type polymercaptans such as trimethylolpropane polymercaptopropionate, pentaerythritol polymercaptopropionate, and various commercially available products Acid anhydrides include phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, pyromellitic anhydride, trimellitic anhydride, biphenyltetracarboxylic acid Dianhydrides, acid anhydrides with unsaturated bonds such as tetrahydrophthalic anhydride, 3-methyl-tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, succinic anhydride, butanetetracarboxylic acid And dianhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, and the like. Examples of the cation generator include at least one cation selected from aromatic sulfonium, aromatic iodonium, aromatic diazonium, aromatic ammonium, η5-cyclopentadiel-η6-cumenyl-Fe salt system, BF 4 , Examples include onium salts composed of at least one anion selected from PF 6 and SbF 6 .

本発明の硬化性樹脂組成物の調製に際してのエポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)とエポキシ樹脂用硬化剤(2)との使用割合は、エポキシの開環重合を行うものを除いては、[成分(1)に含まれるエポキシ基のモル数]/[成分(2)に含まれる反応性基のモル数](モル比)が、0.8〜2.0となるよう配合することが好ましく、より好ましくは1.0〜1.5である。0.8〜2.0とすることで、良好な硬化物を作製でき、耐湿熱密着性が向上するため好ましい。エポキシの開環重合を行うものについては、成分(1)100重量部に対し、0.01〜5重量部の割合で添加することが好ましい。   The ratio of the epoxy group-containing silsesquioxane-modified epoxy resin (1) and the epoxy resin curing agent (2) used in the preparation of the curable resin composition of the present invention is the same as that used for ring-opening polymerization of epoxy. The [number of moles of epoxy group contained in component (1)] / [number of moles of reactive group contained in component (2)] (molar ratio) is 0.8 to 2.0. Preferably, it is 1.0 to 1.5. By setting it as 0.8-2.0, since a favorable hardened | cured material can be produced and wet heat-resistant adhesiveness improves, it is preferable. About what performs ring-opening polymerization of an epoxy, it is preferable to add in the ratio of 0.01-5 weight part with respect to 100 weight part of component (1).

本発明の硬化性樹脂組成物には必要に応じて、触媒を添加することができる。使用可能な触媒としては、格別限定されず、各硬化剤に適合した、従来公知のエポキシ硬化触媒を用いることができる。例えば酸無水物で硬化を行う場合、1,8−ジアザ−ビシクロ[5.4.0]ウンデセン−7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン類;2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾールなどのイミダゾール類などをあげることができる。触媒は、硬化性樹脂組成物100重量部に対し、0.01〜5重量部の割合で使用するのが好ましい。また、ゾル−ゲル反応を促進させるための触媒を当該樹脂組成物中に配合することもできる。ゾル−ゲル反応の触媒としては、酸または塩基性触媒、金属系触媒など従来公知のものをあげることができるが、特にオクチル酸錫やジブチル錫ジラウレートが高活性で、しかも溶解性に優れており好ましい。前記触媒の使用量は使用する触媒の活性、目的とする硬化物の膜厚等により適宜決めることができる。通常、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)のアルコキシ基に対し、モル比率で、触媒能力の高いパラトルエンスルホン酸やオクチル酸錫などで0.01〜5モル%程度、触媒能力の低いギ酸、酢酸などで0.1〜50モル%程度使用される。   A catalyst can be added to the curable resin composition of the present invention as necessary. The catalyst that can be used is not particularly limited, and a conventionally known epoxy curing catalyst suitable for each curing agent can be used. For example, when curing with an acid anhydride, 1,8-diaza-bicyclo [5.4.0] undecene-7, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol And tertiary amines such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, and the like. The catalyst is preferably used in a proportion of 0.01 to 5 parts by weight with respect to 100 parts by weight of the curable resin composition. Further, a catalyst for promoting the sol-gel reaction can be blended in the resin composition. Examples of the sol-gel reaction catalyst include conventional catalysts such as acid or basic catalysts and metal catalysts. In particular, tin octylate and dibutyltin dilaurate are highly active and have excellent solubility. preferable. The amount of the catalyst used can be appropriately determined depending on the activity of the catalyst used, the film thickness of the desired cured product, and the like. Usually, about 0.01 to 5 mol% of the catalytic ability of paratoluenesulfonic acid or tin octylate having high catalytic ability in molar ratio with respect to the alkoxy group of the epoxy group-containing silsesquioxane-modified epoxy resin (1). Is used in a low formic acid, acetic acid, etc. in an amount of about 0.1 to 50 mol%.

硬化性樹脂組成物の有効成分エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)、エポキシ樹脂用硬化剤(2)の濃度は、用途に応じて適宜に決定でき、必要に応じて溶剤を配合することができる。溶剤としては、当該成分と反応しないものであればよく、従来公知のものを適宜選択して用いることができる。硬化性樹脂組成物をコーティング剤として用いる場合は、溶剤で希釈し、所望の粘度とすればよい。また、熱硬化性樹脂組成物を1mm以上の厚膜に硬化させる場合や、接着剤として用いる場合には、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)、エポキシ樹脂用硬化剤(2)の合計濃度を90重量%以上にすることが好ましく、95重量%以上にすることがより好ましい。該合計濃度は、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)とエポキシ樹脂用硬化剤(2)の濃度と硬化性樹脂組成物の仕込み時に加えた溶剤の量とより計算で求めてもかまわないし、硬化性樹脂組成物に含まれる溶剤の沸点以上で2時間程度加熱し、加熱前後の重量変化により求めることもできる。該用途では、90重量%未満の場合、硬化、成形時に発泡したり、硬化物中に溶剤が残存したりして、硬化物の物性が低下する傾向がある。なお、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)の合成の際に溶剤を使用している場合には、反応終了後、不揮発分含有量が90重量%以上となるように溶剤を揮発させておけばよい。また、硬化性樹脂組成物を調製した後、用いた溶剤を揮発させて、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)、エポキシ樹脂用硬化剤(2)の合計濃度を高めることもできる。   The concentration of the epoxy group-containing silsesquioxane-modified epoxy resin (1) and the epoxy resin curing agent (2) can be appropriately determined depending on the application, and a solvent is blended as necessary. can do. Any solvent may be used as long as it does not react with the component, and a conventionally known solvent can be appropriately selected and used. When the curable resin composition is used as a coating agent, it may be diluted with a solvent to obtain a desired viscosity. When the thermosetting resin composition is cured to a thick film of 1 mm or more or used as an adhesive, an epoxy group-containing silsesquioxane-modified epoxy resin (1), an epoxy resin curing agent (2) The total concentration is preferably 90% by weight or more, more preferably 95% by weight or more. The total concentration may be calculated from the concentration of the epoxy group-containing silsesquioxane-modified epoxy resin (1) and the epoxy resin curing agent (2) and the amount of the solvent added when the curable resin composition is charged. It can be obtained by heating for about 2 hours at the boiling point of the solvent contained in the curable resin composition, and by changing the weight before and after heating. In the application, if it is less than 90% by weight, foaming may occur during curing and molding, or a solvent may remain in the cured product, and the physical properties of the cured product tend to decrease. When a solvent is used in the synthesis of the epoxy group-containing silsesquioxane-modified epoxy resin (1), the solvent is volatilized after the reaction so that the nonvolatile content is 90% by weight or more. You can let it go. Moreover, after preparing curable resin composition, the used solvent is volatilized and the total density | concentration of an epoxy-group containing silsesquioxane modified | denatured epoxy resin (1) and the hardening | curing agent for epoxy resins (2) can also be raised. .

さらに、硬化性樹脂組成物には、本発明の効果を損なわない範囲で、各種用途での必要性に応じて、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、フィラー等を配合してもよい。   Furthermore, in the curable resin composition, the plasticizer, weathering agent, antioxidant, thermal stabilizer, lubricant, antistatic agent, as long as the effects of the present invention are not impaired, You may mix | blend a whitening agent, a coloring agent, a electrically conductive agent, a mold release agent, a surface treating agent, a viscosity modifier, a filler, etc.

(コーティング剤への適用)
硬化性樹脂組成物を所望の基材にコーティングし、硬化させることで、コーティング層を得ることができる。基材としては、ガラス、鉄、アルミニウム、銅、スズドープ酸化インジウム(ITO)等の無機基材、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエチレンテレフタレート(PEN)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PSt)、ポリカーボネート(PC)、アクリロニトリル−ブタジエン−スチレン(ABS)、等の有機基材など、各種公知のものを適宜に選択使用できる。また、硬化性組成物を溶剤希釈することで、コーティング性をある程度向上させることもできる。上述のような硬化性組成物をコーティングし、硬化させることで、導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板、プリズム等の光学部材用途に適した物品を得ることができる。
(Application to coating agent)
A coating layer can be obtained by coating a curable resin composition on a desired substrate and curing the composition. As the substrate, inorganic substrates such as glass, iron, aluminum, copper, tin-doped indium oxide (ITO), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polymethyl methacrylate Various known materials such as organic base materials such as (PMMA), polystyrene (PSt), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) can be appropriately selected and used. Moreover, coating property can also be improved to some extent by diluting a curable composition with a solvent. By coating and curing the curable composition as described above, light guide plate, polarizing plate, liquid crystal panel, EL panel, PDP panel, OHP film, optical fiber, color filter, optical disk substrate, lens, plastic substrate for liquid crystal cell Articles suitable for optical member applications such as prisms can be obtained.

また、成分(2)として酸無水物やエポキシ重合触媒を用いた場合、硬化性組成物から得られる硬化膜(コーティング層)を透明なものとすることができる。その屈折率が基材の屈折率より高い場合には、反射防止効果を付与することができる。エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)の製造に際して、成分(b2)を成分(b1)と併用したりすることで、該熱硬化性組成物から得られる硬化膜の屈折率を向上させることができる。そのため、導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板、プリズムに対して適用されるコーティング層に反射防止効果を付与したい場合には、熱硬化性組成物に成分(b2)を併用しておくことが好ましい。   Moreover, when an acid anhydride or an epoxy polymerization catalyst is used as the component (2), a cured film (coating layer) obtained from the curable composition can be made transparent. When the refractive index is higher than the refractive index of the substrate, an antireflection effect can be imparted. In producing the epoxy group-containing silsesquioxane-modified epoxy resin (1), the refractive index of the cured film obtained from the thermosetting composition is improved by using the component (b2) together with the component (b1). Can be made. Therefore, anti-reflection effect is applied to the coating layer applied to the light guide plate, polarizing plate, liquid crystal panel, EL panel, PDP panel, OHP film, optical fiber, color filter, optical disk substrate, lens, plastic substrate for liquid crystal cell, prism. In the case where it is desired to impart, component (b2) is preferably used in combination with the thermosetting composition.

(接着剤への適用)
所定の基材(被着物)に当該硬化性樹脂組成物を塗布し、これの塗布面と別の部材とを貼りあわせ、ついで該組成物を硬化させることで、各種機材を密着させた多層構造体を得ることができる。基材としては、前記のコーティング層形成時に用いたものと同様のものを使用できる。また、接着層の発泡を防ぐため、前述のように硬化性組成物中の揮発成分を10%未満、好ましくは5%未満にするか、張り合わせ前に揮発分を除去しておくのが好ましい。
(Application to adhesive)
A multilayer structure in which various equipments are brought into close contact with each other by applying the curable resin composition to a predetermined substrate (adhered material), pasting the coated surface and another member, and then curing the composition. You can get a body. As the substrate, the same materials as those used when forming the coating layer can be used. In order to prevent foaming of the adhesive layer, it is preferable that the volatile component in the curable composition is less than 10%, preferably less than 5% as described above, or the volatile component is removed before pasting.

(封止材への適用)
硬化性樹脂組成物を厚膜塗布し、または所定の型枠に流し込んだ後、硬化させることで、硬化物で封止された封止物品を得ることができる。このような封止物品は、ICパッケージ、発光素子、受光素子、光電変換素子、光伝送関連部品等の電子部品用途に、特に好適である。
(Application to sealing material)
A curable resin composition is applied in a thick film or poured into a predetermined mold, and then cured to obtain a sealed article sealed with a cured product. Such a sealed article is particularly suitable for use in electronic parts such as IC packages, light emitting elements, light receiving elements, photoelectric conversion elements, and optical transmission related parts.

本発明の硬化性樹脂組成物を用いて所望の硬化物を調製するためには、該組成物を所定の基材にコーティングし、または所定の型枠に充填し、溶剤を含む場合は該溶剤を揮発させた後、熱硬化の場合には加熱、紫外線硬化の場合には紫外線を照射すればよい。溶剤の揮発方法は溶剤の種類、量、膜厚等に応じて適宜決定すればよいが、40〜150℃程度、好ましくは60〜100℃に加熱し、常圧または減圧下で5秒〜2時間程度の条件とされる。熱硬化の場合は溶剤の揮発後、あるいは溶剤の揮発を含めて100〜250℃で硬化させるのが好ましい。紫外線硬化の場合は、紫外線の照射量は、紫外線硬化性樹脂組成物の種類、膜厚等に応じて適宜決定すればよいが、積算光量が50〜10000mJ/cm程度となるよう照射すればよい。 In order to prepare a desired cured product using the curable resin composition of the present invention, the composition is coated on a predetermined substrate or filled in a predetermined mold, and when the solvent is included, the solvent After volatilizing, heat is applied in the case of thermosetting, and ultraviolet light is irradiated in the case of ultraviolet curing. The method for volatilizing the solvent may be appropriately determined according to the type, amount, film thickness, etc. of the solvent, but it is heated to about 40 to 150 ° C., preferably 60 to 100 ° C. The condition is about time. In the case of thermosetting, it is preferable to cure at 100 to 250 ° C. after volatilization of the solvent or including volatilization of the solvent. In the case of ultraviolet curing, the irradiation amount of ultraviolet rays may be appropriately determined according to the type, film thickness, etc. of the ultraviolet curable resin composition, but if the integrated light amount is irradiated so as to be about 50 to 10,000 mJ / cm 2. Good.

また、紫外線照射して得られた硬化物を、更に加熱することで、硬化物の物性を一層向上させることができる。加熱の方法は適宜決定すればよいが、40〜300℃程度、好ましくは100〜250℃に加熱し、1分〜6時間程度の条件とされる。   Moreover, the physical property of hardened | cured material can be improved further by further heating the hardened | cured material obtained by ultraviolet irradiation. The heating method may be appropriately determined, but the heating is performed at about 40 to 300 ° C., preferably 100 to 250 ° C., and the conditions are about 1 minute to 6 hours.

以下、実施例および比較例をあげて本発明を具体的に説明するが、本発明は当該実施例に限定されるものではない。なお、各例中、部および%は重量基準である。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the said Example. In each example, parts and% are based on weight.

製造例1(エポキシ基含有シルセスキオキサン(B−1)の製造)
攪拌機、冷却管、分水器、温度計、窒素吹き込み口を備えた反応装置に、成分(b1)として3−エポキシプロピルトリメトキシシラン(信越化学工業(株)製:商品名「KBM−403」)1000部、成分(b2)としてメチルトリメトキシシラン(多摩化学工業(株)製:商品名「メチルトリメトキシシラン」)1729.2部([成分(b1)に含まれるエポキシ基のモル数]/[成分(b1)と成分(b2)の合計モル数]=0.25)、イオン交換水364.27部([加水分解反応に用いる水のモル数]/[成分(b1)と成分(b2)に含まれるアルコキシ基の合計モル数](モル比)=0.40)、88%ギ酸13.65部、トルエン900部を仕込み、室温で30分間加水分解反応させた。反応後、加熱し、70℃まで昇温したところで、加水分解によって発生したメタノールが留去され始めた。30分かけて75℃まで昇温し、縮合反応によって発生した水を留去した。さらに30分、75℃で反応させた後、50℃で3時間、段階的に圧力を下げながら減圧して、残存するメタノール、水、ギ酸、トルエンを留去しジメチルジエチレングリコール851.1g仕込み、エポキシ基を含有するシルセスキオキサン(B−1)の溶剤溶液を2837g得た。(B−1)の含有率は70%、メトキシ基当量は150g/eq、エポキシ当量は470g/eqであった。
Production Example 1 (Production of epoxy group-containing silsesquioxane (B-1))
3-epoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name “KBM-403”) as a component (b1) in a reaction apparatus equipped with a stirrer, a condenser, a water separator, a thermometer, and a nitrogen inlet ) 1000 parts, methyltrimethoxysilane (manufactured by Tama Chemical Co., Ltd .: trade name “methyltrimethoxysilane”) 1729.2 parts ([number of moles of epoxy group contained in component (b1)] as component (b2) / [Total number of moles of component (b1) and component (b2)] = 0.25), 364.27 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [component (b1) and component ( The total number of moles of each alkoxy group contained in b2) ] (molar ratio) = 0.40), 13.65 parts of 88% formic acid, and 900 parts of toluene were charged and subjected to a hydrolysis reaction at room temperature for 30 minutes. When the reaction was heated and the temperature was raised to 70 ° C., methanol generated by hydrolysis began to distill off. The temperature was raised to 75 ° C. over 30 minutes, and water generated by the condensation reaction was distilled off. After further reacting at 75 ° C. for 30 minutes, the pressure was reduced while gradually reducing the pressure at 50 ° C. for 3 hours, and the remaining methanol, water, formic acid and toluene were distilled off to prepare 851.1 g of dimethyldiethylene glycol, and epoxy was added. 2837 g of a solvent solution of silsesquioxane (B-1) containing a group was obtained. The content of (B-1) was 70%, the methoxy group equivalent was 150 g / eq, and the epoxy equivalent was 470 g / eq.

製造例2(エポキシ基含有シルセスキオキサン(B−2)の製造)
製造例1と同様の反応装置に、成分(b1)として3−エポキシプロピルトリメトキシシラン800部、成分(b2)としてメチルトリメトキシシラン1383.3部([成分(b1)に含まれるエポキシ基のモル数]/[成分(b1)と成分(b2)の合計モル数]=0.25)、イオン交換水437.77部([加水分解反応に用いる水のモル数]/[成分(b1と成分(b2)に含まれるアルコキシ基の合計モル数](モル比)=0.60)、88%ギ酸10.92部、トルエン730部を仕込み、室温で30分間加水分解反応させた。反応後、加熱し、70℃まで昇温したところで、加水分解によって発生したメタノールが留去され始めた。30分かけて75℃まで昇温し、縮合反応によって発生した水を留去した。さらに30分、75℃で反応させた後、50℃で3時間、段階的に圧力を下げながら減圧して、残存するメタノール、水、ギ酸、トルエンを留去しジメチルジエチレングリコール629g仕込み、エポキシ基を含有するシルセスキオキサン(B−2)の溶剤溶液を2096g得た。(B−2)の含有率は70%、メトキシ基当量は240g/eq、エポキシ当量は440g/eqであった。
Production Example 2 (Production of epoxy group-containing silsesquioxane (B-2))
In a reaction apparatus similar to Production Example 1, 800 parts of 3-epoxypropyltrimethoxysilane as component (b1) and 1383.3 parts of methyltrimethoxysilane as component (b2) (of the epoxy group contained in [component (b1) Number of moles] / [total number of moles of component (b1) and component (b2)] = 0.25), 437.77 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [component ( b1 )) The total number of moles of each alkoxy group contained in the component (b2) ] (molar ratio) = 0.60), 90.92 parts of 88% formic acid, and 730 parts of toluene were charged, followed by hydrolysis at room temperature for 30 minutes. When the reaction was heated and the temperature was raised to 70 ° C., methanol generated by hydrolysis began to distill off. The temperature was raised to 75 ° C. over 30 minutes, and water generated by the condensation reaction was distilled off. After further reacting at 75 ° C. for 30 minutes, the pressure was reduced while gradually reducing the pressure at 50 ° C. for 3 hours, and the remaining methanol, water, formic acid and toluene were distilled off to prepare 629 g of dimethyldiethylene glycol. 2096 g of a solvent solution of silsesquioxane (B-2) was obtained. The content of (B-2) was 70%, the methoxy group equivalent was 240 g / eq, and the epoxy equivalent was 440 g / eq.

製造例3(エポキシ基含有シルセスキオキサン(B−3)の製造)
製造例1と同様の反応装置に、成分(b1)として3−エポキシプロピルトリメトキシシラン2500部、成分(b2)としてメチルトリメトキシシラン288.2部([成分(b1)に含まれるエポキシ基のモル数]/[成分(b1)と成分(b2)の合計モル数]=0.83)、イオン交換水341.36部([加水分解反応に用いる水のモル数]/[成分(b1と成分(b2)に含まれるアルコキシ基の合計モル数](モル比)=0.50)、88%ギ酸13.94部、トルエン985部を仕込み、室温で30分間加水分解反応させた。反応後、加熱し、70℃まで昇温したところで、加水分解によって発生したメタノールが留去され始めた。30分かけて75℃まで昇温し、縮合反応によって発生した水を留去した。さらに30分、75℃で反応させた後、50℃で3時間、段階的に圧力を下げながら減圧して、残存するメタノール、水、ギ酸、トルエンを留去しジメチルジエチレングリコール985g仕込み、エポキシ基を含有するシルセスキオキサン(B−3)の溶剤溶液を3284g得た。(B−3)の含有率は70%、メトキシ基当量は200g/eq、エポキシ当量は220g/eqであった。
Production Example 3 (Production of epoxy group-containing silsesquioxane (B-3))
In the same reactor as in Production Example 1, 2500 parts of 3-epoxypropyltrimethoxysilane as component (b1) and 288.2 parts of methyltrimethoxysilane as component (b2) (of the epoxy group contained in [component (b1) Number of moles] / [total number of moles of component (b1) and component (b2)] = 0.83), 341.36 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [component ( b1 )) And the total number of moles of each alkoxy group contained in the component (b2) ] (molar ratio) = 0.50), 13.94 parts of 88% formic acid, and 985 parts of toluene were charged and hydrolyzed at room temperature for 30 minutes. When the reaction was heated and the temperature was raised to 70 ° C., methanol generated by hydrolysis began to distill off. The temperature was raised to 75 ° C. over 30 minutes, and water generated by the condensation reaction was distilled off. After further reacting at 75 ° C. for 30 minutes, the pressure was reduced stepwise at 50 ° C. for 3 hours, and the remaining methanol, water, formic acid and toluene were distilled off to prepare 985 g of dimethyldiethylene glycol, and the epoxy group was removed. 3284 g of a solvent solution of the silsesquioxane (B-3) contained was obtained. The content of (B-3) was 70%, the methoxy group equivalent was 200 g / eq, and the epoxy equivalent was 220 g / eq.

実施例1
攪拌機、冷却管、温度計、窒素吹き込み口を備えた反応装置に、ビスフェノールA型エポキシ樹脂(エポキシ当量255g/eq,三菱化学製,商品名jER834)400.0gおよびジメチルジエチレングリコール680.0gを加え、70℃で溶解した。更に製造例1で得られたエポキシ基を含有するシルセスキオキサン(B−1)溶液395.46g([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=2.7、成分(B)/成分(A)=0.69(重量比))と触媒としてジブチル錫ジラウレート10.4gを加え、100℃で20時間、反応させた。反応後、メタノール112.3gを加え、エポキシ基含有シルセスキオキサン変性エポキシ樹脂の溶剤溶液を1590g得た。エポキシ基含有シルセスキオキサン変性エポキシ樹脂の含有率は40%、メトキシ基当量は450g/eq、エポキシ当量は300g/eqであった。
Example 1
To a reactor equipped with a stirrer, a condenser, a thermometer, and a nitrogen blowing port, 400.0 g of bisphenol A type epoxy resin (epoxy equivalent 255 g / eq, manufactured by Mitsubishi Chemical, trade name jER834) and 680.0 g of dimethyldiethylene glycol were added. Dissolved at 70 ° C. Furthermore, 395.46 g of silsesquioxane (B-1) solution containing the epoxy group obtained in Production Example 1 ([number of moles of epoxy group derived from component (A)] / [epoxy group derived from component (B)] Of component (B) / component (A) = 0.69 (weight ratio)) and 10.4 g of dibutyltin dilaurate as a catalyst were added and reacted at 100 ° C. for 20 hours. After the reaction, 112.3 g of methanol was added to obtain 1590 g of a solvent solution of the epoxy group-containing silsesquioxane-modified epoxy resin. The content of the epoxy group-containing silsesquioxane-modified epoxy resin was 40%, the methoxy group equivalent was 450 g / eq, and the epoxy equivalent was 300 g / eq.

実施例2
実施例1と同様の反応装置に、ビスフェノールA型エポキシ樹脂(エポキシ当量475g/eq,三菱化学製,商品名jER1001)300.0gおよびジメチルジエチレングリコール600.0gを加え、70℃で溶解した。更に製造例3で得られたエポキシ基を含有するシルセスキオキサン(B−3)溶液547.64g([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=0.36、成分(B)/成分(A)=1.3(重量比))と触媒としてジブチル錫ジラウレート4.32gを加え、100℃で20時間、反応させた。反応後、メタノール99.64gを加え、エポキシ基含有シルセスキオキサン変性エポキシ樹脂の溶剤溶液を1550g得た。エポキシ基含有シルセスキオキサン変性エポキシ樹脂の含有率は40%、メトキシ基当量は390g/eq、エポキシ当量は265g/eqであった。
Example 2
300.0 g of bisphenol A type epoxy resin (epoxy equivalent 475 g / eq, manufactured by Mitsubishi Chemical Corporation, trade name jER1001) and 60.0 g of dimethyldiethylene glycol were added to the same reactor as in Example 1, and dissolved at 70 ° C. Furthermore, 547.64 g of silsesquioxane (B-3) solution containing epoxy group obtained in Production Example 3 ([number of moles of epoxy group derived from component (A)) / [epoxy group derived from component (B)] Of component (B) / component (A) = 1.3 (weight ratio)) and 4.32 g of dibutyltin dilaurate as a catalyst were added and reacted at 100 ° C. for 20 hours. After the reaction, 99.64 g of methanol was added to obtain 1550 g of a solvent solution of the epoxy group-containing silsesquioxane-modified epoxy resin. The content of the epoxy group-containing silsesquioxane-modified epoxy resin was 40%, the methoxy group equivalent was 390 g / eq, and the epoxy equivalent was 265 g / eq.

実施例3
実施例1と同様の反応装置に、jER1001を160.0gおよびジメチルジエチレングリコール320.0gを加え、70℃で溶解した。更に製造例3で得られたエポキシ基を含有するシルセスキオキサン(B−3)915.48g([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=0.12、成分(B)/成分(A)=4.0(重量比))と触媒としてジブチル錫ジラウレート0.28gを加え、100℃で20時間反応させ、エポキシ基含有シルセスキオキサン変性エポキシ樹脂の溶剤溶液を1390g得た。エポキシ基含有シルセスキオキサン変性エポキシ樹脂の含有率は40%、メトキシ基当量は190g/eq、エポキシ当量は175g/eqであった。
Example 3
In the same reactor as in Example 1, 160.0 g of jER1001 and 320.0 g of dimethyldiethylene glycol were added and dissolved at 70 ° C. Further, 915.48 g of silsesquioxane (B-3) containing epoxy group obtained in Production Example 3 ([number of moles of epoxy group derived from component (A)) / [of epoxy group derived from component (B)] Mole number] = 0.12, component (B) / component (A) = 4.0 (weight ratio)) and 0.28 g of dibutyltin dilaurate as a catalyst were added and reacted at 100 ° C. for 20 hours to obtain an epoxy group-containing silyl 1390 g of a solvent solution of sesquioxane-modified epoxy resin was obtained. The content of the epoxy group-containing silsesquioxane-modified epoxy resin was 40%, the methoxy group equivalent was 190 g / eq, and the epoxy equivalent was 175 g / eq.

実施例4
実施例1と同様の反応装置に、水添ビスフェノールA型エポキシ樹脂(エポキシ当量305g/eq,三菱化学製,商品名jER YX8034)340.0gおよびジメチルジエチレングリコール578.0gを加え、70℃で溶解した。更に製造例1で得られたエポキシ基を含有するシルセスキオキサン(B−1)402.23g([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=1.9、成分(B)/成分(A)=0.83(重量比))と触媒としてオクチル酸錫0.60gを加え、100℃で2時間、反応させ、エポキシ基含有シルセスキオキサン変性エポキシ樹脂の溶剤溶液を1315g得た。エポキシ基含有シルセスキオキサン変性エポキシ樹脂の含有率は40%、メトキシ基当量は360g/eq、エポキシ当量は310g/eqであった。
Example 4
340.0 g of hydrogenated bisphenol A type epoxy resin (epoxy equivalent 305 g / eq, manufactured by Mitsubishi Chemical Corporation, trade name jER YX8034) and 578.0 g of dimethyldiethylene glycol were added to the same reactor as in Example 1 and dissolved at 70 ° C. . Furthermore, 402.23 g of silsesquioxane (B-1) containing the epoxy group obtained in Production Example 1 ([number of moles of epoxy group derived from component (A)) / [of epoxy group derived from component (B)] Mol number] = 1.9, component (B) / component (A) = 0.83 (weight ratio)) and 0.60 g of tin octylate as a catalyst are added and reacted at 100 ° C. for 2 hours to contain an epoxy group 1315 g of a solvent solution of silsesquioxane-modified epoxy resin was obtained. The content of the epoxy group-containing silsesquioxane-modified epoxy resin was 40%, the methoxy group equivalent was 360 g / eq, and the epoxy equivalent was 310 g / eq.

実施例5
実施例1と同様の反応装置に、jER1001を300.0gおよびジメチルジエチレングリコール600.0gを加え、70℃で溶解した。更に製造例2で得られたエポキシ基を含有するシルセスキオキサン(B−2)523.26g([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=0.76、成分(B)/成分(A)=1.2(重量比))と触媒としてオクチル酸錫0.27gを加え、100℃で2時間、反応させ、エポキシ基含有シルセスキオキサン変性エポキシ樹脂の溶剤溶液を1415g得た。エポキシ基含有シルセスキオキサン変性エポキシ樹脂の含有率は40%、メトキシ基当量は650g/eq、エポキシ当量は390g/eqであった。
Example 5
To the same reactor as in Example 1, 300.0 g of jER1001 and 60.0 g of dimethyldiethylene glycol were added and dissolved at 70 ° C. Further, 523.26 g of silsesquioxane (B-2) containing epoxy group obtained in Production Example 2 ([number of moles of epoxy group derived from component (A)) / [of epoxy group derived from component (B)] Mole number] = 0.76, component (B) / component (A) = 1.2 (weight ratio)) and 0.27 g of tin octylate as a catalyst were added and reacted at 100 ° C. for 2 hours to contain an epoxy group 1415 g of a solvent solution of silsesquioxane-modified epoxy resin was obtained. The content of the epoxy group-containing silsesquioxane-modified epoxy resin was 40%, the methoxy group equivalent was 650 g / eq, and the epoxy equivalent was 390 g / eq.

実施例6
実施例1と同様の反応装置に、jER1001を160.0gおよびジメチルジエチレングリコール600.0gを加え、70℃で溶解した。更に製造例3で得られたエポキシ基を含有するシルセスキオキサン(B−3)915.48g([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=0.12、成分(B)/成分(A)=4.0(重量比))と触媒としてオクチル酸錫0.14gを加え、100℃で2時間、反応させ、エポキシ基含有シルセスキオキサン変性エポキシ樹脂の溶剤溶液を1415g得た。エポキシ基含有シルセスキオキサン変性エポキシ樹脂の含有率は40%、メトキシ基当量は195g/eq、エポキシ当量は175g/eqであった。
Example 6
In the same reactor as in Example 1, 160.0 g of jER1001 and 60.0 g of dimethyldiethylene glycol were added and dissolved at 70 ° C. Further, 915.48 g of silsesquioxane (B-3) containing epoxy group obtained in Production Example 3 ([number of moles of epoxy group derived from component (A)) / [of epoxy group derived from component (B)] Mole number] = 0.12, component (B) / component (A) = 4.0 (weight ratio)) and 0.14 g of tin octylate as a catalyst were added and reacted at 100 ° C. for 2 hours to contain an epoxy group 1415 g of a solvent solution of silsesquioxane-modified epoxy resin was obtained. The content of the epoxy group-containing silsesquioxane-modified epoxy resin was 40%, the methoxy group equivalent was 195 g / eq, and the epoxy equivalent was 175 g / eq.

実施例7
実施例1と同様の反応装置に、jER1001を560.0gおよびジメチルジエチレングリコール850.0gを加え、70℃で溶解した。更に製造例3で得られたエポキシ基を含有するシルセスキオキサン(B−3)230.3g([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=1.6、成分(B)/成分(A)=0.29(重量比))と触媒としてオクチル酸錫0.25gを加え、100℃で2時間、反応させ、エポキシ基含有シルセスキオキサン変性エポキシ樹脂の溶剤溶液を1630g得た。エポキシ基含有シルセスキオキサン変性エポキシ樹脂の含有率は40%、メトキシ基当量は2500g/eq、エポキシ当量は345g/eqであった。
Example 7
In a reactor similar to that in Example 1, 560.0 g of jER1001 and 850.0 g of dimethyldiethylene glycol were added and dissolved at 70 ° C. Furthermore, 230.3 g of silsesquioxane (B-3) containing an epoxy group obtained in Production Example 3 ([number of moles of epoxy group derived from component (A)) / [of epoxy group derived from component (B)] Mol number] = 1.6, component (B) / component (A) = 0.29 (weight ratio)) and 0.25 g of tin octylate as a catalyst were added and reacted at 100 ° C. for 2 hours to contain an epoxy group 1630 g of a solvent solution of silsesquioxane-modified epoxy resin was obtained. The content of the epoxy group-containing silsesquioxane-modified epoxy resin was 40%, the methoxy group equivalent was 2500 g / eq, and the epoxy equivalent was 345 g / eq.

実施例8
実施例1と同様の反応装置に、jER1001を287.0gおよびジメチルジエチレングリコール560.0gを加え、70℃で溶解した。更に製造例1で得られたエポキシ基を含有するシルセスキオキサン(B−1)647.03g([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=0.61、成分(B)/成分(A)=1.6(重量比))と触媒としてジブチル錫ジラウレート8.00gを加え、100℃で2時間、反応させた。反応後、メタノール56.00gを加え、エポキシ基含有シルセスキオキサン変性エポキシ樹脂の溶剤溶液を1550g得た。エポキシ基含有シルセスキオキサン変性エポキシ樹脂の含有率は40%、メトキシ基当量は260g/eq、エポキシ当量は400g/eqであった。
Example 8
To the same reactor as in Example 1, 287.0 g of jER1001 and 560.0 g of dimethyldiethylene glycol were added and dissolved at 70 ° C. Furthermore, 647.03 g of silsesquioxane (B-1) containing the epoxy group obtained in Production Example 1 ([number of moles of epoxy group derived from component (A)) / [of epoxy group derived from component (B)] Mole number] = 0.61, component (B) / component (A) = 1.6 (weight ratio)) and 8.00 g of dibutyltin dilaurate as a catalyst were added and reacted at 100 ° C. for 2 hours. After the reaction, 56.00 g of methanol was added to obtain 1550 g of a solvent solution of the epoxy group-containing silsesquioxane-modified epoxy resin. The content of the epoxy group-containing silsesquioxane-modified epoxy resin was 40%, the methoxy group equivalent was 260 g / eq, and the epoxy equivalent was 400 g / eq.

実施例
実施例1で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液75.0部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物(新日本理化(株):商品名「リカシッドHNA−100」)18.4部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン17.6部を配合し、熱硬化性樹脂組成物とした。
Example 9
With respect to 75.0 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 1, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2 .1] Mixture with heptane-2,3-dicarboxylic acid anhydride (Shin Nippon Rika Co., Ltd .: trade name “Licacid HNA-100”) 18.4 parts ([epoxy group-containing silsesquioxane modified epoxy resin Number of moles of epoxy group contained] / [Methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride and bicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride The number of moles of reactive groups contained in the mixture with the mixture] (molar ratio) = 1.0) and 17.6 parts of methyl isobutyl ketone were blended to obtain a thermosetting resin composition.

実施例1
実施例2で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液66.3部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン17.6部を配合し、熱硬化性樹脂組成物とした。
Example 1 0
With respect to 66.3 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 2, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2 .1] 18.4 parts of a mixture with heptane-2,3-dicarboxylic anhydride ([number of moles of epoxy group contained in epoxy group-containing silsesquioxane-modified epoxy resin] / [methyl bicyclo [2.2. 1] Number of moles of reactive groups contained in a mixture of heptane-2,3-dicarboxylic anhydride and a mixture of bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) ) = 1.0) and 17.6 parts of methyl isobutyl ketone were blended to prepare a thermosetting resin composition.

実施例1
実施例3で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液43.8部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン18.4部を配合し、熱硬化性樹脂組成物とした。
Example 1 1
With respect to 43.8 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 3, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2 .1] 18.4 parts of a mixture with heptane-2,3-dicarboxylic anhydride ([number of moles of epoxy group contained in epoxy group-containing silsesquioxane-modified epoxy resin] / [methyl bicyclo [2.2. 1] Number of moles of reactive groups contained in a mixture of heptane-2,3-dicarboxylic anhydride and a mixture of bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) ) = 1.0) and 18.4 parts of methyl isobutyl ketone were blended to prepare a thermosetting resin composition.

実施例1
実施例4で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液77.5部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン25.2部を配合し、熱硬化性樹脂組成物とした。
Example 1 2
With respect to 77.5 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 4, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2 .1] 18.4 parts of a mixture with heptane-2,3-dicarboxylic anhydride ([number of moles of epoxy group contained in epoxy group-containing silsesquioxane-modified epoxy resin] / [methyl bicyclo [2.2. 1] Number of moles of reactive groups contained in a mixture of heptane-2,3-dicarboxylic anhydride and a mixture of bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) ) = 1.0) and 25.2 parts of methyl isobutyl ketone were blended to prepare a thermosetting resin composition.

実施例1
実施例5で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液97.5部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン25.2部を配合し、熱硬化性樹脂組成物とした。
Example 1 3
With respect to 97.5 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 5, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2 .1] 18.4 parts of a mixture with heptane-2,3-dicarboxylic anhydride ([number of moles of epoxy group contained in epoxy group-containing silsesquioxane-modified epoxy resin] / [methyl bicyclo [2.2. 1] Number of moles of reactive groups contained in a mixture of heptane-2,3-dicarboxylic anhydride and a mixture of bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) ) = 1.0) and 25.2 parts of methyl isobutyl ketone were blended to prepare a thermosetting resin composition.

実施例1
実施例6で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液43.8部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン25.2部を配合し、熱硬化性樹脂組成物とした。
Example 1 4
For 43.8 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 6, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2 .1] 18.4 parts of a mixture with heptane-2,3-dicarboxylic anhydride ([number of moles of epoxy group contained in epoxy group-containing silsesquioxane-modified epoxy resin] / [methyl bicyclo [2.2. 1] Number of moles of reactive groups contained in a mixture of heptane-2,3-dicarboxylic anhydride and a mixture of bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) ) = 1.0) and 25.2 parts of methyl isobutyl ketone were blended to prepare a thermosetting resin composition.

実施例1
実施例7で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液86.3部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン25.2部を配合し、熱硬化性樹脂組成物とした。
Example 1 5
With respect to 86.3 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 7, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2 .1] 18.4 parts of a mixture with heptane-2,3-dicarboxylic anhydride ([number of moles of epoxy group contained in epoxy group-containing silsesquioxane-modified epoxy resin] / [methyl bicyclo [2.2. 1] Number of moles of reactive groups contained in a mixture of heptane-2,3-dicarboxylic anhydride and a mixture of bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) ) = 1.0) and 25.2 parts of methyl isobutyl ketone were blended to prepare a thermosetting resin composition.

実施例1
実施例8で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液100部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン25.2部を配合し、熱硬化性樹脂組成物とした。
Example 1 6
For 100 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 8, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2.1]. 18.4 parts of a mixture with heptane-2,3-dicarboxylic acid anhydride ([number of moles of epoxy groups contained in epoxy group-containing silsesquioxane-modified epoxy resin] / [methylbicyclo [2.2.1] Number of moles of reactive groups contained in a mixture of heptane-2,3-dicarboxylic anhydride and a mixture of bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) = 1.0) and 25.2 parts of methyl isobutyl ketone were blended to prepare a thermosetting resin composition.

実施例1
実施例1で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液110.1部に対し、フェノールノボラック樹脂(荒川化学工業(株):商品名「タマノル759」)の50%メチルエチルケトン溶液32.4部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[フェノールノボラック樹脂に含まれる反応性基のモル数](モル比)=1.0)、2−エチル−4−メチルイミダゾール(四国化成工業(株)製:商品名「キュアゾール2E4MZ」)0.1部を配合し、熱硬化性樹脂組成物とした。
Example 1 7
50% methyl ethyl ketone solution of phenol novolak resin (Arakawa Chemical Industries, Ltd .: trade name “Tamanor 759”) with respect to 110.1 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 1. 4 parts ([number of moles of epoxy group contained in epoxy group-containing silsesquioxane-modified epoxy resin] / [number of moles of reactive group contained in phenol novolac resin] (molar ratio) = 1.0), 2- Ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd .: trade name “Cureazole 2E4MZ”) 0.1 part was blended to prepare a thermosetting resin composition.

実施例1
実施例2で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液120.6部に対し、タマノル759の50%メチルエチルケトン溶液24.6部([エポキシ基含有シルセスキオキサン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[フェノールノボラック樹脂に含まれる反応性基のモル数](モル比)=1.0)、キュアゾール2E4MZ0.1部を配合し、熱硬化性樹脂組成物とした。
Example 1 8
124.6 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 2 is 24.6 parts of 50% methyl ethyl ketone solution of tamanor 759 ([included in epoxy group-containing silsesquioxane-modified epoxy resin The number of moles of epoxy groups] / [number of moles of reactive groups contained in the phenol novolac resin] (molar ratio) = 1.0) and 0.1 part of Curazole 2E4MZ were blended to obtain a thermosetting resin composition.

実施例19
実施例1で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液10部に対し、熱カチオン発生触媒(三新化学工業(株)製、商品名「サンエイド SI−60L」)0.20gを配合し、熱硬化性樹脂組成物とした。
Example 19
For 10 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 1, 0.20 g of a thermal cation generation catalyst (manufactured by Sanshin Chemical Industry Co., Ltd., trade name “Sun-Aid SI-60L”) It mix | blended and it was set as the thermosetting resin composition.

実施例2
実施例1で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液を実施例3で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液に変更した他は、実施例19と同様にして、熱硬化性樹脂組成物とした。
Example 2 0
Except that the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 1 was changed to the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 3, the same procedure as in Example 19 was performed. A thermosetting resin composition was obtained.

実施例2
実施例1で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液を実施例4で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液に変更した他は、実施例19と同様にして、熱硬化性樹脂組成物とした。
Example 2 1
Except that the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 1 was changed to the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Example 4, the same procedure as in Example 19 was performed. A thermosetting resin composition was obtained.

実施例2
実施例で得られた熱硬化性樹脂組成物をガラス上に膜厚100μmで塗布し、100℃で1時間、200℃で1時間硬化反応を行い熱硬化物とした。
Example 2 2
The thermosetting resin composition obtained in Example 9 was applied on glass at a film thickness of 100 μm, and subjected to a curing reaction at 100 ° C. for 1 hour and at 200 ° C. for 1 hour to obtain a thermoset.

実施例2
実施例で得られた熱硬化性樹脂組成物を実施例1で得られた熱硬化性樹脂組成物に変更した他は、実施例2と同様にして熱硬化物とした。
Example 2 3
The exception that the heat-curable resin composition obtained in Example 9 in the thermosetting resin composition obtained in Example 1 0 was heat cured in the same manner as in Example 2 2.

実施例2
実施例で得られた熱硬化性樹脂組成物を実施例1で得られた熱硬化性樹脂組成物に変更した他は、実施例2と同様にして熱硬化物とした。
Example 2 4
The exception that the heat-curable resin composition obtained in Example 9 in the thermosetting resin composition obtained in Example 1 1, was thermally cured in the same manner as in Example 2 2.

実施例2
実施例で得られた熱硬化性樹脂組成物を実施例1で得られた熱硬化性樹脂組成物に変更した他は、実施例2と同様にして熱硬化物とした。
Example 2 5
The exception that the heat-curable resin composition obtained in Example 9 in the thermosetting resin composition obtained in Example 1 2 was heat cured in the same manner as in Example 2 2.

実施例2
実施例で得られた熱硬化性樹脂組成物を実施例1で得られた熱硬化性樹脂組成物に変更した他は、実施例2と同様にして熱硬化物とした。
Example 2 6
The exception that the heat-curable resin composition obtained in Example 9 in the thermosetting resin composition obtained in Example 1 3 was heat cured in the same manner as in Example 2 2.

実施例27
実施例で得られた熱硬化性樹脂組成物を実施例1で得られた熱硬化性樹脂組成物に変更した他は、実施例2と同様にして熱硬化物とした。
Example 27
The exception that the heat-curable resin composition obtained in Example 9 in the thermosetting resin composition obtained in Example 1 4 was heat cured in the same manner as in Example 2 2.

実施例28
実施例で得られた熱硬化性樹脂組成物を実施例1で得られた熱硬化性樹脂組成物に変更した他は、実施例2と同様にして熱硬化物とした。
Example 28
The exception that the heat-curable resin composition obtained in Example 9 in the thermosetting resin composition obtained in Example 1 5 was heat cured in the same manner as in Example 2 2.

実施例29
実施例で得られた熱硬化性樹脂組成物を実施例1で得られた熱硬化性樹脂組成物に変更した他は、実施例2と同様にして熱硬化物とした。
Example 29
The exception that the heat-curable resin composition obtained in Example 9 in the thermosetting resin composition obtained in Example 1 6 was heat cured in the same manner as in Example 2 2.

実施例3
実施例1で得られた熱硬化性樹脂組成物を硬化後膜厚が約0.5mmとなるようアルミカップに流し込み、120℃で1時間、180℃で1時間硬化反応を行い熱硬化物とした。
Example 3 0
Example 17 The thermosetting resin composition obtained in 7 was poured into an aluminum cup so that the film thickness after curing was about 0.5 mm, and a curing reaction was performed at 120 ° C. for 1 hour and at 180 ° C. for 1 hour. It was.

実施例3
実施例1で得られた熱硬化性樹脂組成物を実施例1で得られた熱硬化性樹脂組成物に変更した他は、実施例3と同様にして熱硬化物とした。
Example 3 1
The exception that the heat-curable resin composition obtained a thermosetting resin composition obtained in Example 1 7 Example 1 8, was heat-cured in the same manner as in Example 3 0.

実施例3
実施例19で得られた熱硬化性樹脂組成物をガラス上に膜厚100μmで塗布し、120℃で1時間、180℃で1時間硬化反応を行い熱硬化物とした。
Example 3 2
The thermosetting resin composition obtained in Example 19 was applied on glass at a film thickness of 100 μm and subjected to a curing reaction at 120 ° C. for 1 hour and at 180 ° C. for 1 hour to obtain a thermoset.

実施例3
実施例19で得られた熱硬化性樹脂組成物を実施例2で得られた熱硬化性樹脂組成物に変更した他は、実施例3と同様にして熱硬化物とした。
Example 3 3
The exception that the heat-curable resin composition obtained in Example 19 in the thermosetting resin composition obtained in Example 2 0 was heat cured in the same manner as in Example 3 2.

実施例3
実施例19で得られた熱硬化性樹脂組成物を実施例2で得られた熱硬化性樹脂組成物に変更した他は、実施例3と同様にして熱硬化物とした。
Example 3 4
The exception that the heat-curable resin composition obtained in Example 19 in the thermosetting resin composition obtained in Example 2 1, was thermally cured in the same manner as in Example 3 2.

比較例1
実施例1と同様の反応装置に、jER1001を480gおよびジメチルジプロピレングリコール401.76gを仕込み、窒素気流下に攪拌しながら90℃まで昇温した後、テトラメトキシシラン部分縮合物(多摩化学(株)製、商品名「MS−51」)923.91g([成分(A)由来のエポキシ基のモル数]/[テトラメトキシシラン部分縮合物由来のエポキシ基のモル数]=無限大、テトラメトキシシラン部分縮合物/成分(A)=1.9(重量比))を仕込み、90℃に昇温した。その後、触媒としてジブチル錫ジラウレート0.42gを加え、4時間反応させた。反応系内を室温まで冷却し、1800gのアルコキシシラン変性エポキシ樹脂の溶剤溶液を得た。得られたアルコキシシラン変性エポキシ樹脂の含有量は52%、メトキシ基当量は55g/eq、エポキシ当量は930g/eqであった。
Comparative Example 1
A reactor similar to Example 1 was charged with 480 g of jER1001 and 401.76 g of dimethyldipropylene glycol, heated to 90 ° C. with stirring under a nitrogen stream, and then a tetramethoxysilane partial condensate (Tama Chemical Co., Ltd.). ), Trade name “MS-51”) 923.91 g ([number of moles of epoxy group derived from component (A)) / [number of moles of epoxy group derived from tetramethoxysilane partial condensate] = infinity, tetramethoxy Silane partial condensate / component (A) = 1.9 (weight ratio)) was charged, and the temperature was raised to 90 ° C. Thereafter, 0.42 g of dibutyltin dilaurate was added as a catalyst and reacted for 4 hours. The reaction system was cooled to room temperature to obtain 1800 g of a solvent solution of an alkoxysilane-modified epoxy resin. The content of the obtained alkoxysilane-modified epoxy resin was 52%, the methoxy group equivalent was 55 g / eq, and the epoxy equivalent was 930 g / eq.

比較例2
実施例1と同様の反応装置に、jER1001を700gおよびジメチルジエチレングリコール840gを仕込み、窒素気流下に攪拌しながら70℃まで昇温した後、メチルトリメトキシシラン部分縮合物(多摩化学(株)製、商品名「MTMS−A」)529g([成分(A)由来のエポキシ基のモル数]/[メチルトリメトキシシラン部分縮合物由来のエポキシ基のモル数]=無限大、メチルトリメトキシシラン部分縮合物/成分(A)=0.76(重量比))を仕込み、90℃に昇温した。その後、触媒としてジブチル錫ジラウレート2.0gを加え、7時間反応させた。反応系内を室温まで冷却し、2071gのアルコキシシラン変性エポキシ樹脂の溶剤溶液を得た。得られたアルコキシシラン変性エポキシ樹脂溶液の含有量は50%、メトキシ基当量は155g/eq、エポキシ当量は700g/eqであった。
Comparative Example 2
In a reactor similar to that in Example 1, 700 g of jER1001 and 840 g of dimethyldiethylene glycol were charged, and the temperature was raised to 70 ° C. while stirring under a nitrogen stream. Product name “MTMS-A”) 529 g ([number of moles of epoxy group derived from component (A)) / [number of moles of epoxy group derived from methyltrimethoxysilane partial condensate] = infinity, partial condensation of methyltrimethoxysilane Product / component (A) = 0.76 (weight ratio)) and heated to 90 ° C. Thereafter, 2.0 g of dibutyltin dilaurate was added as a catalyst and reacted for 7 hours. The reaction system was cooled to room temperature to obtain 2071 g of a solvent solution of an alkoxysilane-modified epoxy resin. The content of the resulting alkoxysilane-modified epoxy resin solution was 50%, the methoxy group equivalent was 155 g / eq, and the epoxy equivalent was 700 g / eq.

比較例3
実施例1と同様の反応装置に、jER1001を1050g、jER828を1758.3gおよびグリシドール503.47gを加え、90℃で溶融混合させた。更にMS−51を2252.8g([成分(A)由来のエポキシ基のモル数]/[グリシドール由来のエポキシ基のモル数]=1.7、テトラメトキシシラン部分縮合物/成分(A)=0.80(重量比))、および触媒としてジブチル錫ジラウレート1.13gを加え、窒素気流下にて、90℃で15時間、脱メタノール反応させることにより、5285gのアルコキシシラン変性エポキシ樹脂を得た。得られたアルコキシシラン変性エポキシ樹脂溶液の含有量は100%、メトキシ基当量は124g/eq、エポキシ当量は285g/eqであった。
Comparative Example 3
To the same reactor as in Example 1, 1050 g of jER1001, 1758.3 g of jER828 and 503.47 g of glycidol were added and melt-mixed at 90 ° C. Further, 2252.8 g of MS-51 ([number of moles of epoxy group derived from component (A)) / [number of moles of epoxy group derived from glycidol] = 1.7, tetramethoxysilane partial condensate / component (A) = 0.80 (weight ratio)) and 1.13 g of dibutyltin dilaurate as a catalyst were added, and demethanol reaction was performed at 90 ° C. for 15 hours under a nitrogen stream to obtain 5285 g of an alkoxysilane-modified epoxy resin. . The content of the resulting alkoxysilane-modified epoxy resin solution was 100%, the methoxy group equivalent was 124 g / eq, and the epoxy equivalent was 285 g / eq.

比較例4
製造例1で得られたエポキシ基含有シルセスキオキサン(B−1)の溶剤溶液をそのまま用いた。([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=0、成分(B)/成分(A)=無限大(重量比))、(B−1)の含有率は70%、メトキシ基当量は150g/eq、エポキシ当量は470g/eqであった。
Comparative Example 4
The solvent solution of the epoxy group-containing silsesquioxane (B-1) obtained in Production Example 1 was used as it was. ([Mole number of epoxy group derived from component (A)] / [Mole number of epoxy group derived from component (B)] = 0, component (B) / component (A) = infinity (weight ratio)), ( The content of B-1) was 70%, the methoxy group equivalent was 150 g / eq, and the epoxy equivalent was 470 g / eq.

比較例5
jER828をそのまま用いた。([成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数]=無限大、成分(B)/成分(A)=0(重量比))メトキシ基当量は無限大、エポキシ当量は185g/eqであった。
Comparative Example 5
jER828 was used as it was. ([Number of moles of epoxy group derived from component (A)] / [number of moles of epoxy group derived from component (B)] = infinity, component (B) / component (A) = 0 (weight ratio)) methoxy group The equivalent was infinite and the epoxy equivalent was 185 g / eq.

比較例6
比較例1で得られたアルコキシシラン変性エポキシ樹脂溶液179部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([アルコキシシラン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン28.0部を配合し、熱硬化性樹脂組成物とした。
Comparative Example 6
With respect to 179 parts of the alkoxysilane-modified epoxy resin solution obtained in Comparative Example 1, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2.1] heptane-2, 18.4 parts of mixture with 3-dicarboxylic anhydride ([number of moles of epoxy group contained in alkoxysilane-modified epoxy resin] / [methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride) And the number of moles of reactive groups contained in a mixture of bismuth and bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) = 1.0), methyl isobutyl ketone 28. 0 part was mix | blended and it was set as the thermosetting resin composition.

比較例7
比較例2で得られたアルコキシシラン変性エポキシ樹脂溶液140部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([アルコキシシラン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン28.3部を配合し、熱硬化性樹脂組成物とした。
Comparative Example 7
For 140 parts of the alkoxysilane-modified epoxy resin solution obtained in Comparative Example 2, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2.1] heptane-2, 18.4 parts of mixture with 3-dicarboxylic anhydride ([number of moles of epoxy group contained in alkoxysilane-modified epoxy resin] / [methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride) And the number of moles of reactive groups contained in a mixture of bismuth and bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) = 1.0), methyl isobutyl ketone 28. Three parts were blended to obtain a thermosetting resin composition.

比較例8
比較例3で得られたアルコキシシラン変性エポキシ樹脂溶液28.5部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([アルコキシシラン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン28.3部を配合し、熱硬化性樹脂組成物とした。
Comparative Example 8
With respect to 28.5 parts of the alkoxysilane-modified epoxy resin solution obtained in Comparative Example 3, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2.1] heptane- Mixture with 2,3-dicarboxylic anhydride 18.4 parts ([number of moles of epoxy group contained in alkoxysilane-modified epoxy resin] / [methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid Mole number of reactive groups contained in a mixture of an anhydride and a mixture of bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) = 1.0), methyl isobutyl ketone 28.3 parts was blended to obtain a thermosetting resin composition.

比較例9
比較例4のエポキシ基含有シルセスキオキサン(B−1)溶液67.1部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([アルコキシシラン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン28.3部を配合し、熱硬化性樹脂組成物とした。
Comparative Example 9
With respect to 67.1 parts of the epoxy group-containing silsesquioxane (B-1) solution of Comparative Example 4, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2. 1] 18.4 parts of a mixture with heptane-2,3-dicarboxylic anhydride ([number of moles of epoxy group contained in alkoxysilane-modified epoxy resin] / [methylbicyclo [2.2.1] heptane-2, Number of moles of reactive groups contained in a mixture of 3-dicarboxylic anhydride and a mixture of bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride] (molar ratio) = 1.0) Then, 28.3 parts of methyl isobutyl ketone was blended to prepare a thermosetting resin composition.

比較例10
比較例5のエポキシ樹脂18.5部に対し、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物18.4部([アルコキシシラン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物との混合物との混合物に含まれる反応性基のモル数](モル比)=1.0)、メチルイソブチルケトン28.3部を配合し、熱硬化性樹脂組成物とした。
Comparative Example 10
With respect to 18.5 parts of the epoxy resin of Comparative Example 5, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride 18.4 parts ([number of moles of epoxy group contained in alkoxysilane-modified epoxy resin] / [methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2. 2.1] moles of reactive groups contained in a mixture with a mixture with heptane-2,3-dicarboxylic anhydride] (molar ratio) = 1.0), 28.3 parts of methyl isobutyl ketone A thermosetting resin composition was obtained.

比較例11
比較例1で得られたアルコキシシラン変性エポキシ樹脂溶液10部に対し、熱カチオン発生触媒(三新化学工業(株)製、商品名「サンエイド SI−60L」)0.20gを配し、熱硬化性樹脂組成物とした。
Comparative Example 11
To 10 parts of the alkoxysilane-modified epoxy resin solution obtained in Comparative Example 1, 0.20 g of a thermal cation generating catalyst (manufactured by Sanshin Chemical Industry Co., Ltd., trade name “Sun-Aid SI-60L”) is arranged and thermoset. The resin composition was obtained.

比較例12
比較例11において、比較例1で得られたアルコキシシラン変性エポキシ樹脂溶液を比較例2で得られたアルコキシシラン変性エポキシ樹脂溶液に代えた他は同様にして、熱硬化性樹脂組成物とした。
Comparative Example 12
A thermosetting resin composition was prepared in the same manner as in Comparative Example 11, except that the alkoxysilane-modified epoxy resin solution obtained in Comparative Example 1 was replaced with the alkoxysilane-modified epoxy resin solution obtained in Comparative Example 2.

比較例13
比較例11において、比較例1で得られたアルコキシシラン変性エポキシ樹脂溶液を比較例3で得られたアルコキシシラン変性エポキシ樹脂溶液に代えた他は同様にして熱硬化性樹脂組成物とした。
Comparative Example 13
A thermosetting resin composition was prepared in the same manner as in Comparative Example 11, except that the alkoxysilane-modified epoxy resin solution obtained in Comparative Example 1 was replaced with the alkoxysilane-modified epoxy resin solution obtained in Comparative Example 3.

比較例14
比較例3で得られたエポキシ基含有シルセスキオキサン変性エポキシ樹脂溶液57.0部に対し、タマノル759の50%メチルエチルケトン溶液43.2部([アルコキシシラン変性エポキシ樹脂に含まれるエポキシ基のモル数]/[フェノールノボラック樹脂に含まれる反応性基のモル数](モル比)=1.0)、2−エチル−4−メチルイミダゾール0.1部、ジメチルジエチレングリコール40.0部を配し、熱硬化性樹脂組成物とした。
Comparative Example 14
To 57.0 parts of the epoxy group-containing silsesquioxane-modified epoxy resin solution obtained in Comparative Example 3, 43.2 parts of 50% methyl ethyl ketone solution of tamanor 759 ([mol of epoxy group contained in alkoxysilane-modified epoxy resin) Number] / [number of moles of reactive groups contained in phenol novolac resin] (molar ratio) = 1.0), 0.1 part of 2-ethyl-4-methylimidazole, 40.0 parts of dimethyldiethylene glycol, A thermosetting resin composition was obtained.

比較例15
比較例14において、比較例3で得られたアルコキシシラン変性エポキシ樹脂溶液を比較例5のエポキシ樹脂に代えた他は同様にして熱硬化性樹脂組成物とした。
Comparative Example 15
In Comparative Example 14, a thermosetting resin composition was prepared in the same manner except that the alkoxysilane-modified epoxy resin solution obtained in Comparative Example 3 was replaced with the epoxy resin of Comparative Example 5.

比較例16(熱硬化物の製造)
比較例6で得られた熱硬化性樹脂組成物をガラス上に膜厚100μmで塗布し、100℃で1時間、200℃で1時間硬化反応を行い熱硬化物とした。
Comparative Example 16 (Production of thermoset)
The thermosetting resin composition obtained in Comparative Example 6 was applied on glass at a film thickness of 100 μm, and subjected to a curing reaction at 100 ° C. for 1 hour and at 200 ° C. for 1 hour to obtain a thermoset.

比較例17(熱硬化物の製造)
比較例6で得られた熱硬化性樹脂組成物を比較例7で得られた熱硬化組成物に変更した他は、比較例16と同様にして熱硬化物とした。
Comparative Example 17 (Production of thermoset)
A thermoset was obtained in the same manner as in Comparative Example 16 except that the thermosetting resin composition obtained in Comparative Example 6 was changed to the thermosetting composition obtained in Comparative Example 7.

比較例18(熱硬化物の製造)
比較例6で得られた熱硬化性樹脂組成物を比較例8で得られた熱硬化組成物に変更した他は、比較例16と同様にして熱硬化物とした。
Comparative Example 18 (Production of thermoset)
A thermoset was obtained in the same manner as in Comparative Example 16 except that the thermosetting resin composition obtained in Comparative Example 6 was changed to the thermosetting composition obtained in Comparative Example 8.

比較例19(熱硬化物の製造)
比較例6で得られた熱硬化性樹脂組成物を比較例9で得られた熱硬化組成物に変更した他は、比較例16と同様にして熱硬化物とした。
Comparative Example 19 (Production of thermoset)
A thermoset was obtained in the same manner as in Comparative Example 16 except that the thermosetting resin composition obtained in Comparative Example 6 was changed to the thermosetting composition obtained in Comparative Example 9.

比較例20(熱硬化物の製造)
比較例6で得られた熱硬化性樹脂組成物を比較例10で得られた熱硬化組成物に変更した他は、比較例16と同様にして熱硬化物とした。
Comparative Example 20 (Production of thermoset)
A thermoset was obtained in the same manner as in Comparative Example 16, except that the thermosetting resin composition obtained in Comparative Example 6 was changed to the thermosetting composition obtained in Comparative Example 10.

比較例21(熱硬化物の製造)
比較例11で得られた熱硬化性樹脂組成物を硬化後膜厚が約0.5mmとなるようアルミカップに流し込み、120℃で1時間、180℃で1時間硬化反応を行い熱硬化物とした。
Comparative Example 21 (Production of thermoset)
The thermosetting resin composition obtained in Comparative Example 11 was poured into an aluminum cup so that the film thickness after curing was about 0.5 mm, and a curing reaction was performed at 120 ° C. for 1 hour and at 180 ° C. for 1 hour. did.

比較例22(熱硬化物の製造)
比較例11で得られた熱硬化性樹脂組成物を比較例12で得られた熱硬化性樹脂組成物に変更した他は比較例21と同様にして熱硬化物とした。
Comparative Example 22 (Production of thermoset)
A thermoset was obtained in the same manner as in Comparative Example 21, except that the thermosetting resin composition obtained in Comparative Example 11 was changed to the thermosetting resin composition obtained in Comparative Example 12.

比較例23(熱硬化物の製造)
比較例11で得られた熱硬化性樹脂組成物を比較例13で得られた熱硬化性樹脂組成物に変更した他は比較例21と同様にして熱硬化物とした。
Comparative Example 23 (Production of thermoset)
A thermosetting product was obtained in the same manner as in Comparative Example 21, except that the thermosetting resin composition obtained in Comparative Example 11 was changed to the thermosetting resin composition obtained in Comparative Example 13.

比較例24(熱硬化物の製造)
比較例14で得られた熱硬化性樹脂組成物をガラス上に膜厚100μmで塗布し、120℃で1時間、180℃で1時間硬化反応を行い熱硬化物とした。
Comparative Example 24 (Production of thermoset)
The thermosetting resin composition obtained in Comparative Example 14 was coated on glass at a film thickness of 100 μm, and subjected to a curing reaction at 120 ° C. for 1 hour and at 180 ° C. for 1 hour to obtain a thermoset.

比較例25(熱硬化物の製造)
比較例14で得られた熱硬化性樹脂組成物を比較例15で得られた熱硬化性樹脂組成物に変更した他は比較例12と同様にして熱硬化物とした。
Comparative Example 25 (Production of thermoset)
A thermosetting product was obtained in the same manner as in Comparative Example 12, except that the thermosetting resin composition obtained in Comparative Example 14 was changed to the thermosetting resin composition obtained in Comparative Example 15.

耐湿熱密着性
実施例2〜3および比較例16〜25で得られた熱硬化物を121℃、湿度100%、2気圧下で1時間処理したものをJIS K−5400の一般試験法による碁盤目セロハンテープ剥離試験により評価した。結果を表1に示す。表1より、実施例2〜3では、比較例16〜25と比べて、耐湿熱密着性が大きく向上していることが分かる。
The wet heat adhesiveness Example 2 2-3 4 and Comparative Example thermoset product obtained at 16 to 25 121 ° C., 100% humidity, General Tests JIS K-5400 and those 1 hour under 2 atm It was evaluated by a cross cellophane tape peeling test. The results are shown in Table 1. From Table 1, it can be seen that in Examples 2 2 to 3 4 , the moisture and heat resistant adhesion is greatly improved as compared with Comparative Examples 16 to 25.


耐擦傷性
実施例3、3および比較例21〜23で得られた熱硬化物を#0000のスチールウールに500gの加重をかけ、5往復させて表面を目視で観察し、以下のA〜Cで評価した結果を表2に示す。
A:傷が0〜5本
B:傷が6〜14本
C:傷が15本以上
表2より、実施例3および3では、比較例21〜23と比べて、耐擦傷性が大きく向上していることが分かる。
Scratch resistance Example 3 2, applying a load of 500 g 3 4 and heat cured products obtained in Comparative Examples 21 to 23 steel wool # 0000, 5 is reciprocated by observing the surface visually following A Table 2 shows the results of the evaluation with ~ C.
A: scratches 0-5 present B: scratches 6-14 present C: from scratch 15 or more Table 2, in Examples 3 2 and 3 4, as compared with Comparative Example 21 to 23, greater scratch resistance It can be seen that it has improved.


鉛筆硬度
実施例3〜3および比較例21〜23で得られた熱硬化物をJIS K−5400の一般試験法による鉛筆硬度試験により評価した。結果を表3に示す。表3より、実施例3〜3では、比較例21〜23と比べて、鉛筆高度が大きく向上していることが分かる。
The pencil hardness Example 3 2-3 4 and Comparative Example thermoset product obtained in 21-23 was evaluated by a pencil hardness test according to the general test method of JIS K-5400. The results are shown in Table 3. From Table 3, in Example 3 2-3 4, as compared with Comparative Example 21 to 23, it can be seen that pencil altitude is significantly improved.


吸水率
実施例30、及び比較例24、25で得られた熱硬化物を50℃で24時間乾燥した後、計量し、ついで蒸留水100ml中に浸し、室温で24時間放置した。この各熱硬化物の水分をふき取り、軽量して吸水率を測定した。その結果を表4に示す。表4より、実施例30、では、比較例24および25と比べて、吸水率が向上していることが分かる。
After water absorption Example 3 0, 3 1 and heat cured products obtained in Comparative Examples 24 and 25 were dried at 50 ° C. for 24 hours, weighed, then immersed in distilled water 100 ml, and allowed to stand at room temperature for 24 hours. The water content of each thermoset was wiped off and lightened to measure the water absorption. The results are shown in Table 4. From Table 4, in Example 3 0, 3 1, compared with Comparative Examples 24 and 25, it can be seen that water absorption is improved.


Claims (9)

水酸基含有エポキシ樹脂(A)と、エポキシ基含有アルコキシシラン類(b1)及びエポキシ基を有しない金属アルコキシド類(b2)を加水分解、縮合したものであるエポキシ基およびアルコキシ基を含有するシルセスキオキサン化合物(B)とを脱アルコール縮合反応させて得られるものであり、アルコキシ基当量が150〜3000g/eqであり、エポキシ当量が150〜500g/eqであって、[成分(A)由来のエポキシ基のモル数]/[成分(B)由来のエポキシ基のモル数](モル比)が0.1以上3以下であり、かつ成分(A)と成分(B)との重量比が、成分(B)/成分(A)=0.2〜8であって、前記成分(B)が、原料として[エポキシ基含有アルコキシシラン類(b1)に含まれるエポキシ基のモル数]/[エポキシ基含有アルコキシシラン類(b1)とエポキシ基を含有しない金属アルコキシド類(b2)の合計モル数](モル比:ケイ素原子1つあたりに含まれるエポキシ基の平均個数を示す)が0.10以上0.85以下であることを特徴とする、エポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)。 Silsesquioxy containing an epoxy group and an alkoxy group, which are hydrolyzed and condensed hydroxyl group-containing epoxy resin (A), epoxy group-containing alkoxysilanes (b1) and metal alkoxides (b2) having no epoxy group It is obtained by subjecting a sun compound (B) to a dealcoholization condensation reaction, having an alkoxy group equivalent of 150 to 3000 g / eq, an epoxy equivalent of 150 to 500 g / eq, [derived from component (A) The number of moles of epoxy group] / [number of moles of epoxy group derived from component (B)] (molar ratio) is 0.1 or more and 3 or less, and the weight ratio of component (A) to component (B) is: Component (B) / Component (A) = 0.2 to 8 , and the component (B) is [Mole number of epoxy group contained in epoxy group-containing alkoxysilane (b1)] / [ The total number of moles of epoxy group-containing alkoxysilanes (b1) and metal alkoxides (b2) not containing epoxy groups] (molar ratio: the average number of epoxy groups contained per silicon atom) is 0.10. The epoxy group-containing silsesquioxane-modified epoxy resin (1), which is at least 0.85 . 水酸基含有エポキシ樹脂(A)が、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂からなる群より選ばれる少なくとも1種であることを特徴とする、請求項1に記載のエポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)。   The epoxy group-containing silsesquik according to claim 1, wherein the hydroxyl group-containing epoxy resin (A) is at least one selected from the group consisting of a bisphenol A type epoxy resin and a hydrogenated bisphenol A type epoxy resin. Oxan-modified epoxy resin (1). エポキシ基およびアルコキシ基を含有するシルセスキオキサン化合物(B)が、メチルトリメトキシシランおよび3−グリシドキシプロピルトリメトキシシランを加水分解、縮合したものであることを特徴とする、請求項1または2に記載のエポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)。   The silsesquioxane compound (B) containing an epoxy group and an alkoxy group is obtained by hydrolyzing and condensing methyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane. Or the epoxy group-containing silsesquioxane-modified epoxy resin (1) according to 2; エポキシ基およびアルコキシ基を含有するシルセスキオキサン化合物(B)が、アルコキシ当量(アルコキシ当量:1当量のアルコキシ基を含む、成分(B)の重量(グラム)を表す)として100〜1000g/eqであることを特徴とする、請求項1〜のいずれかに記載のエポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)。 Silsesquioxane compound (B) containing an epoxy group and an alkoxy group is 100 to 1000 g / eq in terms of alkoxy equivalent (alkoxy equivalent: represents the weight (gram) of component (B) including an equivalent of alkoxy group). The epoxy group-containing silsesquioxane-modified epoxy resin (1) according to any one of claims 1 to 3 , wherein 請求項1〜のいずれかに記載のエポキシ基含有シルセスキオキサン変性エポキシ樹脂(1)およびエポキシ樹脂用硬化剤(2)を必須成分として含有することを特徴とする硬化性樹脂組成物。 A curable resin composition comprising the epoxy group-containing silsesquioxane-modified epoxy resin (1) and the epoxy resin curing agent (2) according to any one of claims 1 to 4 as essential components. エポキシ樹脂用硬化剤(2)が、酸無水物およびカチオン発生剤からなる群より選ばれる少なくとも1種である請求項記載の硬化性樹脂組成物。 The curable resin composition according to claim 5, wherein the epoxy resin curing agent (2) is at least one selected from the group consisting of an acid anhydride and a cation generator. 請求項またはに記載の硬化性樹脂組成物を硬化させて得られる硬化物。 Cured product obtained by curing the curable resin composition according to claim 5 or 6. 請求項またはに記載の硬化性樹脂組成物を含有することを特徴とするコーティング剤。 A coating agent comprising the curable resin composition according to claim 5 or 6 . 請求項に記載のコーティング剤を基材に塗工後、硬化させて得られるコーティング物。
A coating obtained by applying the coating agent according to claim 8 to a substrate and then curing the coating.
JP2012282074A 2012-02-02 2012-12-26 Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent Active JP5569703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012282074A JP5569703B2 (en) 2012-02-02 2012-12-26 Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012020478 2012-02-02
JP2012020478 2012-02-02
JP2012282074A JP5569703B2 (en) 2012-02-02 2012-12-26 Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent

Publications (2)

Publication Number Publication Date
JP2013177552A JP2013177552A (en) 2013-09-09
JP5569703B2 true JP5569703B2 (en) 2014-08-13

Family

ID=49215447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012282074A Active JP5569703B2 (en) 2012-02-02 2012-12-26 Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent

Country Status (3)

Country Link
JP (1) JP5569703B2 (en)
KR (1) KR101458525B1 (en)
TW (1) TWI499608B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235332A1 (en) 2018-06-04 2019-12-12 セメダイン株式会社 Adhesion method and adhesive agent
WO2022025234A1 (en) 2020-07-31 2022-02-03 セメダイン株式会社 Two-component adhesive

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048193B2 (en) * 2013-02-13 2016-12-21 味の素株式会社 Resin composition
KR102170818B1 (en) * 2013-12-26 2020-10-28 주식회사 동진쎄미켐 Sisesquioxane which can be molded by hot melt-extrusion, highly transparent and highly heat resistant plastic transparent substrate, and method for manufacturing thereof
JP6011828B2 (en) * 2014-09-30 2016-10-19 荒川化学工業株式会社 Undercoat agent for plastic with aluminum thin film, plastic with aluminum thin film, plastic film with aluminum thin film, decorative film for in-mold molding, and decorative film for insert molding
JP6217832B2 (en) * 2016-11-21 2017-10-25 味の素株式会社 Resin composition
TWI648347B (en) 2017-11-01 2019-01-21 財團法人工業技術研究院 Packaging material and thin film
KR101986298B1 (en) * 2018-03-05 2019-09-30 도우성 Hybrid complex composite of organic/inorganic and method thereof
CN116218410A (en) * 2022-12-27 2023-06-06 超威电源集团有限公司 Epoxy resin-based copper powder conductive adhesive and aluminum electrode
CN118126603A (en) * 2024-03-05 2024-06-04 江苏睿智新材料科技有限公司 Preparation and application of intumescent flame-retardant powder coating

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539486B2 (en) * 2000-06-27 2004-07-07 荒川化学工業株式会社 Coating composition
JP2005263869A (en) * 2004-03-16 2005-09-29 Nagase Chemtex Corp Resin composition for sealing optical semiconductor
KR20060047593A (en) * 2004-04-30 2006-05-18 나가세케무텍쿠스가부시키가이샤 Composition for color filter protective film
JP2006143789A (en) * 2004-11-17 2006-06-08 Arakawa Chem Ind Co Ltd Methoxy group-containing silane-modified epoxy resin, methoxy group-containing silane-modified epoxy resin composition, cured resin article, resin composition for electric insulation and coating composition
JP2009108109A (en) * 2007-10-26 2009-05-21 Arakawa Chem Ind Co Ltd Thermosetting resin composition, cured product, and light emitting diode derived from them
JP2010275411A (en) * 2009-05-28 2010-12-09 Nitto Shinko Kk Epoxy resin composition
JP2011132416A (en) * 2009-12-25 2011-07-07 Nagase Chemtex Corp Thermocurable resin composition and organic-inorganic composite resin
JP2012180463A (en) * 2011-03-02 2012-09-20 Arakawa Chem Ind Co Ltd Curable resin composition, cured material of the same and various articles derived from the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235332A1 (en) 2018-06-04 2019-12-12 セメダイン株式会社 Adhesion method and adhesive agent
WO2022025234A1 (en) 2020-07-31 2022-02-03 セメダイン株式会社 Two-component adhesive

Also Published As

Publication number Publication date
KR20130089596A (en) 2013-08-12
JP2013177552A (en) 2013-09-09
TWI499608B (en) 2015-09-11
KR101458525B1 (en) 2014-11-07
TW201343702A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP5569703B2 (en) Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent
US8840999B2 (en) Silicone composition and a method for preparing the same
CN1125841C (en) Epoxy resin composition and process for producing silane-modified epoxy resin
WO2010001992A1 (en) Modified resin composition, method for producing the same, and curable resin composition containing the same
JP3077695B1 (en) Method for producing alkoxy group-containing silane-modified epoxy resin
JP2001059013A (en) Epoxy resin composition
TW200940590A (en) Silica-containing epoxy curing agent and epoxy resin cured body
JP2012180463A (en) Curable resin composition, cured material of the same and various articles derived from the same
JP2015000952A (en) Epoxy resin composition and cured product thereof
JP2006169368A (en) Resin composition, cured product and method for producing the same
JP2008274013A (en) Curable epoxy resin composition and its manufacturing method
JP5523816B2 (en) Modified resin composition, method for producing the same, and curable resin composition containing the same
JP2009108109A (en) Thermosetting resin composition, cured product, and light emitting diode derived from them
JPS58151318A (en) Synthetic silica and resin composition containing it for sealing electronic parts
JP4399764B2 (en) Epoxy resin having no silane-modified unsaturated bond, and semi-cured product and cured product obtained from the resin-containing composition
WO2013062303A1 (en) Modified silicone resin composition
JP5297598B2 (en) Curable epoxy resin composition and method for producing the same
CN115003759B (en) Resin composition, method for producing same, and multicomponent curable resin composition
JP4189756B2 (en) Process for producing alkoxysilyl group-containing silane-modified phenylene ether resin, alkoxysilyl group-containing silane-modified phenylene ether resin, alkoxysilyl group-containing silane-modified phenylene ether resin composition, and phenylene ether resin-silica hybrid cured product
JP4028672B2 (en) Method for producing reaction product
JP2000281756A (en) Hardener for epoxy resin and epoxy resin composition
JP4861783B2 (en) Method for producing epoxy group-containing organopolysiloxane
JP2005179401A (en) Epoxy resin composition
JP4207770B2 (en) Composite dispersion and cured composite
JP2006036900A (en) Resin composition for protective coat and colorless and transparent protective film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140610

R150 Certificate of patent or registration of utility model

Ref document number: 5569703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250