JP4028672B2 - Method for producing reaction product - Google Patents
Method for producing reaction product Download PDFInfo
- Publication number
- JP4028672B2 JP4028672B2 JP2000115588A JP2000115588A JP4028672B2 JP 4028672 B2 JP4028672 B2 JP 4028672B2 JP 2000115588 A JP2000115588 A JP 2000115588A JP 2000115588 A JP2000115588 A JP 2000115588A JP 4028672 B2 JP4028672 B2 JP 4028672B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- reaction
- condensate
- glycidol
- epoxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Epoxy Resins (AREA)
- Silicon Polymers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、特定の反応生成物の製造方法に関する。かかる本発明により得られる反応生成物は、たとえば、IC封止材、エポキシ樹脂系積層板、塗料、接着剤、電気・電子材料のコーティング剤等のさまざまな用途に供される。
【0002】
【従来の技術】
近年、科学技術の発展に伴い、各種分野において用いられる材料に対して、高度の性能が要求されるようになった。たとえば、電気・電子材料分野において賞用されているエポキシ樹脂硬化物には、耐熱性の向上が望まれている。
【0003】
エポキシ樹脂硬化物の耐熱性を向上させる方法としては、たとえば、エポキシ樹脂に硬化剤や、必要に応じてガラス繊維、ガラス粒子、マイカ等のフィラーを混合する方法がある。しかし、この方法では十分な耐熱性は得られない。また、この方法ではエポキシ樹脂硬化物の透明性が失われ、しかもフィラーと樹脂との界面の接着性が劣るため、機械的特性も不十分になる。
【0004】
また、エポキシ樹脂硬化物の耐熱性を向上させる方法としては、エポキシ樹脂にシランカップリング剤を反応させたものを用いる方法がある。しかし、一般的に、シランカップリング剤のシラン部は小さく、有機部位はアルキル鎖であることが多いため、シランカップリング剤の導入によって逆にガラス転移点(Tg)を下げてしまうことも少なくない。またエポキシ樹脂硬化物にガラス成分を大量に導入するには、必然的に、シランカップリング剤の使用量も多くなるが、シランカップリング剤は、一般に高価であるため、その使用により目的物がコスト高になる。
【0005】
また、エポキシ樹脂硬化物の耐熱性を向上させる方法としては、エポキシ樹脂と金属酸化物の複合体を用いる方法が提案されている(特開平8−100107号公報)。当該複合体は、エポキシ樹脂を部分的に硬化させた溶液に、金属アルコキシドを加えて均質ゾル溶液とした後、金属アルコキシドを重縮合することにより得られる。しかし、かかる複合体は、単なるエポキシ樹脂の硬化物に比して、ある程度耐熱性は向上するものの、複合体中の水や硬化時に生じる水、アルコールによって硬化物中にボイド(気泡)が発生する。また、更なる耐熱性向上のため、金属アルコキシド量を増やすと生成するシリカが分散状態を取れなくなり、硬化物の透明性が失われ、白化するうえ、多量の金属アルコキシドのゾル化には多量の水が必要なため、硬化物のそり、クラックを招く。
【0006】
また、エポキシ樹脂を複合化する試みの他にも、耐熱性・強靭性・ガスバリヤー性などの向上を目的として、各種高分子化合物に対してアルコキシシランのゾル−ゲル硬化反応を利用してシリカをハイブリット化させる研究が多数なされている(特開平11−92623号公報、特開平6―192454号公報、特開平10−168386号公報、特開平10−152646号公報、特開平7-118543号公報など)。しかし、ゾル−ゲル硬化反応により得られるハイブリッド体は、主にアルコキシシランの加水分解によって生成するシラノール基と、高分子化合物中の水素結合性官能基との間の水素結合を利用して、シリカを高分子化合物中に分散しているため、水素結合性官能基を有しない高分子化合物や凝集力がある高Tgの高分子化合物に対してはこの反応を応用できない。
【0007】
【発明が解決しようとする課題】
本発明は、エポキシ樹脂等またはその硬化物等の耐熱性を向上しうる反応生成物およびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは前記課題を解決すべく、鋭意検討を重ねた結果、特定のエポキシ変性アルコキシシラン縮合物と、当該エポキシ基と反応しうる官能基を有する高分子化合物とをエポキシ開環反応させることで、前記目的に合致する反応生成物を製造することができることを見出し、本発明を完成するに到った。
【0009】
すなわち、本発明は、グリシドールと、一般式(1):R a m Si(OR b ) 4−m (式中、mは0または1の整数を示し、R a は炭素数1〜8のアルキル基またはアリール基を示し、R b は水素原子または炭素数1〜3のアルキル基を示す。)で表される加水分解性アルコキシシランから得られる加水分解性アルコキシシラン縮合物(該縮合物のSiの平均個数が2〜300である)とを、グリシドールのエポキシ基の当量/加水分解性アルコキシシラン縮合物中に含まれるアルコキシ基の当量=0.05/1〜3/1の比率で、脱アルコール反応させて得られるエポキシ変性アルコキシシラン縮合物(a)(以下、(a)成分という)と、ポリアミック酸(c)(以下、(c)成分という)とを該縮合物(a)中のアルコキシシリル基が縮合する温度以下でエポキシ開環反応させることを特徴とする反応生成物の製造方法に関する。
【0023】
本発明で用いる(a)成分は、前記のように、グリシドールと、一般式(1):R a m Si(OR b ) 4−m (式中、mは0または1の整数を示し、R a は炭素数1〜8のアルキル基またはアリール基を示し、R b は水素原子または炭素数1〜3のアルキル基を示す。)で表される加水分解性アルコキシシランから得られる縮合物(縮合物のSiの平均個数が2〜300である)とを脱アルコール反応させて得られる。式中、Rbが炭素数1〜3のアルキル基である場合は、ORbとしては、メトキシ基、エトキシ基、n−プロポキシ基等があげられる。当該アルコキシ基の炭素数は、最終的に得られる反応生成物の物性、例えばガラス部位の縮合速度に多大な影響を与えるため、低温度で硬化させる場合や、硬化速度を速くしたい場合にはメトキシ基が好ましい。また、Raにおいて、炭素数1〜8のアルキル基またはアリール基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、イソブチル基、n−ヘキシル基、シクロへキシル基、n−オクチル基、フェニル基、フェネシル基等があげられる。Raが長鎖のアルキル基である場合は、最終的に得られる反応生成物やその硬化物の柔軟性(伸縮率)の向上に寄与するものの、当該硬化物のガラス転移点を下げることが多いため、耐熱性の点からはメチル基が好ましい。
【0025】
なお、グリシジルエーテル基は、必ずしも(a)成分の各分子中に前記割合で存在する必要はなく、(a)成分全体において前記割合で存在すればよい。
【0026】
また、(a)成分におけるSiの平均個数は2〜300である。通常、Siの平均個数が多い場合には、得られる(a)成分が分岐鎖を有する傾向にあるが、Siの平均個数が2〜8程度の場合には、分岐構造が殆どまたは全くなく、取り扱いが容易である。
【0031】
(a)成分の製造において、前記加水分解性アルコキシシラン縮合物とグリシドールの使用割合は、グリシドールのエポキシ基の当量/該アルコキシシラン縮合物のアルコキシ基の当量=0.05〜3/1の仕込み比率とされる。当該仕込み比率が少なくなるとエポキシ変性されていない該アルコキシシラン縮合物の割合が増加するため、当該仕込み比率は、該アルコキシシラン縮合物のアルコキシ基1当量に対し、グリシドールのエポキシ基の当量を0.1以上とすることが好ましい。また、当該仕込み比率が大きくなると、残存する未反応グリシドールによって硬化物の耐熱性が悪くなる傾向があるため、当該仕込み比率は、該アルコキシシラン縮合物のアルコキシ基1当量に対し、グリシドールのエポキシ基の当量を1以下とするのが好ましい。
【0032】
アルコキシシラン縮合物とグリシドールの反応は、たとえば、前記各成分を仕込み、加熱して生成するアルコールを留去しながらエステル交換反応を行なう。反応温度は50〜150℃程度、好ましくは70〜110℃であり、全反応時間は1〜15時間程度である。
【0033】
なお、150℃を超える温度で脱アルコール反応を行うと、アルコキシシランの縮合を伴って、反応生成物が高分子量化するため、高粘度化、ゲル化する傾向が見られるため好ましくない。また、反応温度が50℃位未満ではアルコールが反応系から除去できず、反応が進行しない。
【0034】
また、上記のエステル交換反応に際しては、反応促進のために従来公知のエステルと水酸基のエステル交換触媒の内、エポキシ環を開環しないものを使用することができる。たとえば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、バリウム、ストロンチウム、亜鉛、アルミニウム、チタン、コバルト、ゲルマニウム、錫、鉛、アンチモン、砒素、セリウム、硼素、カドミウム、マンガンのような金属や、これら酸化物、有機酸塩、ハロゲン化物、アルコキシド等があげられる。これらのなかでも、特に有機錫、有機酸錫が好ましく、具体的には、ジブチル錫ジラウレートが有効である。
【0035】
また、上記反応は溶剤中で行うこともできる。溶剤としては、アルコキシシラン縮合物とグリシドールを溶解する有機溶剤であれば特に制限はない。このような有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、メチルエチルケトン、トルエン、キシレンなどの非プロトン性極性溶媒を用いるのが好ましい。
【0036】
こうして得られた(a)成分は、前述の如く、当該全ての分子が、グリシジルエーテル基を有している必要はなく、未反応のアルコキシシラン縮合物を含有していてもよい。
【0048】
本発明によれば反応生成物は、前記(a)成分と(c)成分をエポキシ開環反応させることにより製造することができる。
【0050】
本発明の製造法は、ゾル−ゲル法ではハイブリッド化が困難であった水素結合性官能基を有しない高分子化合物や凝集力の強い高Tgの高分子化合物などを製造するのに極めて有効である。すなわち本発明の(c)成分としては、ポリアミック酸が用いられる。
【0051】
前記(c)成分と(a)成分との反応比率、反応温度、時間など反応条件については、(a)成分の有するエポキシ基の当量と(c)成分の有する官能基の当量とを考慮し、得られる反応生成物がゲル化しないように適宜に調整する。アルコキシシリル基が縮合する温度(メトキシシリル基では110℃)以下で、反応を行うのが好ましい。
【0052】
また、こうして得られた反応生成物には、当該反応生成物の性質に応じ、相分離のない範囲内で、必要に応じてさらに、一般式(2):R c r Si(OR d ) 4−r (式中、rは0〜2の整数を示し、R c は炭素原子に直結した官能基を有していてもよい炭素数1〜3のアルキル基、アリール基または不飽和脂肪族残基を示し、それぞれ同一でも異なっていてもよい。R d は水素原子または炭素数1〜3のアルキル基を示し、それぞれ同一でも異なっていてもよい。)で表される加水分解性アルコキシシランおよび/またはその縮合物(b)(以下、(b)成分という)を配合することもできる。(b)成分に相当する加水分解性アルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン等のテトラアルコキシシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3,4−エポキシシクロヘキシルエチルトリメトキシシラン、3,4−エポキシシクロヘキシルエチルトリメトキシシラン等のトリアルコキシシラン類、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン等のジアルコキシシラン類等があげられる。これらのなかでも、テトラアルコキシシラン類およびまたは/トリアルコキシシラン類の縮合物が好ましい。さらに、反応生成物には、本発明の効果を損なわない範囲で、必要に応じて、溶剤、充填剤、離型剤、表面処理剤、難燃剤、粘度調節剤、可塑剤、抗菌剤、防黴剤、レベリング剤、消泡剤、着色剤、安定剤、カップリング剤等を配合してもよい。
【0053】
【発明の効果】
本発明の製造法は、従来、シリカハイブリッドの形成が難しかった高分子化合物にも適用でき、本目的とする反応生成物を容易に製造できる。また、本発明製造法により得られる反応生成物は、加熱硬化させることにより強靭で耐熱性に優れた硬化物を提供でき、たとえば、IC封止材、エポキシ樹脂系積層板、塗料、接着剤、電気・電子材料のコーティング剤等のさまざまな用途に供することができる。
【0054】
【実施例】
以下、製造例、実施例および比較例をあげて本発明を具体的に説明する。なお、各例中、%は特記ない限り重量基準である。
【0055】
製造例1 攪拌機、分水器、温度計、窒素吹き込み口を備えた1リットル容の4ツ口フラスコに、グリシドール(日本油脂(株)製,商品名エピオールOH)350gおよびテトラメトキシシラン縮合物(多摩化学(株)製,商品名メチルシリケート51:一般式(1)でORbはいずれもメトキシ基、Siの平均個数が4)671.8gを仕込み、窒素気流下、攪拌しながら、80℃に昇温後、触媒としてジブチル錫ジラウレート1gを加え、80℃で反応させた。反応中、メタノールを反応系内から分水器を使って留去し、その量が、約130gに達した時点で、冷却した。昇温後冷却までに要した時間は6時間であった。50℃に冷却後、窒素吹き込み栓と分水器を取り去り、減圧ラインを繋いで、1kPaで約15分間、系内に残存するメタノールを減圧によって除去した。この間、減圧によって約25gのメタノールが除去された。その後、フラスコを室温まで冷却し、869.7gの(a)成分を得た。なお、仕込み時の、グリシドールのエポキシ基の当量/アルコキシシラン縮合物のアルコキシ基の当量=0.33/1である。
【0056】
グリシドール(図1)及び製造例1の反応生成物(図2)の1H-NMR(アセトン-d6溶液)を示す。図2には図1のグリシドールのオキシラン環のメチレンピークa(2.56ppm付近,2.68ppm付近)及びメチンピークb(3.02ppm付近)が反応に関与せず保持されていること、一方、図2には図1のグリシドール中の水酸基のピークd(3.86ppm付近)が消失していることが認められる。また、図1のグリシドールの水酸基に隣接するメチレンピークc(3.47ppm付近,3.75ppm付近)は、水酸基がアルコキシシランと反応する事によって、図2の(a)成分では、c’(3.78ppm付近,4.08ppm付近)へシフトしている。また、図2には、新たにアルコキシシラン縮合物由来のメトキシ基のピーク(3.6ppm付近)が見られた。これらから、製造例1で得られた(a)成分は、図2に示すような化合物を主体とするものであると判断した。
【0057】
製造例2
製造例1と同様の反応装置に、グリシドール(日本油脂(株)製,商品名エピオールOH)350gおよびメチルトリメトキシシラン縮合物(多摩化学(株)製,試作品MTMS-A:一般式(1)でOR b はメトキシ基、R a はメチル基、Siの平均個数が4.5)626.2gを仕込み、窒素気流下、攪拌しながら、80℃に昇温後、触媒としてジブチル錫ジラウレート1gを加え、80℃で反応させた。反応中、メタノールを反応系内から分水器を使って留去し、その量が、約130gに達した時点で、冷却した。昇温後冷却までに要した時間は8時間であった。50℃に冷却後、窒素吹き込み栓と分水器を取り去り、減圧ラインを繋いで、1kPaで約15分間、系内に残存するメタノールを減圧によって除去した。この間、減圧によって約22gのメタノールの除去された。その後、フラスコを室温まで冷却し、825.0gの(a)成分を得た。なお、仕込み時の、グリシドールのエポキシ基の当量/アルコキシシラン縮合物のアルコキシ基の当量=0.5/1である。
【0058】
製造例1の場合と同様に、グリシドール及び製造例2で得られた(a)成分の1H-NMR(アセトン−d6溶液)を比較した。反応生成物は、オキシラン環のメチレンピーク(2.56ppm付近,2.68ppm付近)及びメチンピーク(3.02ppm付近)が反応に関与せず保持されていた。一方、グリシドール中の水酸基のピークd(3.86ppm付近)が消失していた。また、グリシドールの水酸基に隣接するメチレンピークc(3.47ppm付近,3.75ppm付近)は、水酸基がアルコキシシランと反応する事によって、(3.78ppm付近,4.08ppm付近)へシフトしていた。また新たにアルコキシシラン縮合物由来のメトキシ基のピーク(3.6ppm付近)とメチル基のピーク(0.15ppm)が見られた。これらから、製造例2で得られた(a)成分は、メチルトリメトキシシラン縮合物のメトキシ基の所定量がグリシジルエーテル基となった化合物であると判断した。
【0059】
製造例3
製造例1と同様の反応装置に、グリシドール(日本油脂(株)製,商品名エピオールOH)350gおよびテトラメトキシシラン縮合物(多摩化学(株)製,試作品MS−56:一般式(1)でOR b はいずれもメトキシ基、Siの平均個数が18)636.4gを仕込み、窒素気流下、攪拌しながら、80℃に昇温後、触媒としてジブチル錫ジラウレート1gを加え、80℃で反応させた。反応中、メタノールを反応系内から分水器を使って留去し、その量が、約130gに達した時点で、冷却した。昇温後冷却までに要した時間は7.5時間であった。50℃に冷却後、窒素吹き込み栓と分水器を取り去り、減圧ラインを繋いで、1kPaで約15分間、系内に残存するメタノールを減圧によって除去した。この間、減圧によって約20gのメタノールが除去された。その後、フラスコを室温まで冷却し、835.4gの(a)成分を得た。なお、仕込み時の、グリシドールのエポキシ基の当量/アルコキシシラン縮合物のアルコキシ基の当量=0.42/1である。
【0060】
製造例1の場合と同様に、グリシドール及び製造例3の反応生成物の1H-NMR(アセトン−d6溶液)を比較したところ、製造例1のチャートと同様の結果が得られた。これらから、製造例3で得られた(a)成分は、テトラメトキシシラン縮合物のメトキシ基の所定量がグリシジルエーテル基となった化合物であると判断した。
【0067】
製造例4
製造例1と同様の反応装置に、グリシドール(日本油脂(株)製,商品名エピオールOH)178.7gおよびテトラメトキシシラン縮合物(多摩化学(株)製,前記試作品MS−56)892.6gを仕込み、窒素気流下、攪拌しながら、80℃に昇温後、触媒としてジブチル錫ジラウレート1gを加え、80℃で反応させた。反応中、メタノールを反応系内から分水器を使って留去し、その量が、約73gに達した時点で、冷却した。昇温後冷却までに要した時間は4時間であった。50℃に冷却後、窒素吹き込み栓と分水器を取り去り、減圧ラインを繋いで、1kPaで約15分間、系内に残存するメタノールを減圧によって除去した。この間、減圧によって約10gのメタノールが除去された。その後、フラスコを室温まで冷却し、989.4gの反応生成物を得た。なお、仕込み時の、グリシドールのエポキシ基の当量/アルコキシシラン縮合物のアルコキシ基の当量=0.14/1である。
【0068】
製造例1の場合と同様に、グリシドール及び製造例4の反応生成物の1H−NMR(アセトン−d6溶液)を比較したところ、製造例1のチャートと同様の結果が得られた。これらから、反応生成物はテトラメトキシシラン縮合物のメトキシ基の所定量がグリシジルエーテル基となった化合物であると判断した。
【0069】
実施例1
攪拌機、冷却管、温度計、窒素吹き込み口を備えた1.5リットル容の4ツ口フラスコに、ビス−(4−アミノフェニル)エーテル100gとジメチルアセトアミド879.6gを加え、攪拌しながら、119.9gのピロメリット酸を攪拌しながら、室温で、ゆっくり加えた。そのまま1時間攪拌し、末端に酸無水物基を有するポリアミック酸を得た。更に、製造例4で得られた(a)成分61.5gを加え、95℃で3時間反応させ、目的とする反応生成物を得た(グリシジルエーテル基の当量/酸無水物基の当量=1.5)。更にこの溶液をガラス板上に流し、100℃1時間加熱して、ジメチルアセトアミドを除き、さらに300℃で加熱して淡黄色で透明な硬化膜を得た(シリカ/ポリイミド=0.14(重量比))。
【0070】
比較例2
実施例1と同様の反応装置に、ビス−(4−アミノフェニル)エーテル100gとジメチルアセトアミド836gを加え、攪拌しながら、109gのピロメリット酸を攪拌しながら、室温で、ゆっくり加えた。そのまま1時間攪拌し、末端に酸無水物基を有するポリアミック酸を得た。更に、テトラメトキシシラン縮合物(多摩化学(株)製,前記商品名メチルシリケート51)を54.9gと水5.2gを加え室温で1時間攪拌した。更にこの溶液をガラス板上に流し、100℃1時間加熱して、ジメチルアセトアミドを除き、さらに300℃で加熱したが、シリカはポリイミドから相分離し、白濁したフィルムとなった(シリカ/ポリイミド=0.14(重量比))。
【図面の簡単な説明】
【図1】 グリシドールの1H-NMRチャートである。
【図2】 製造例1で得られた(a)成分の1H-NMRチャートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a specific reaction product. The reaction product obtained by the present invention is used in various applications such as IC sealing materials, epoxy resin laminates, paints, adhesives, and coating materials for electrical / electronic materials.
[0002]
[Prior art]
In recent years, with the development of science and technology, high performance has been required for materials used in various fields. For example, improvement in heat resistance is desired for cured epoxy resins that have been used in electrical and electronic materials.
[0003]
As a method for improving the heat resistance of the cured epoxy resin, for example, there is a method in which a curing agent and, if necessary, a filler such as glass fiber, glass particles, and mica are mixed with the epoxy resin. However, this method cannot provide sufficient heat resistance. Further, in this method, the transparency of the cured epoxy resin is lost, and the adhesive property at the interface between the filler and the resin is inferior, so that the mechanical properties are also insufficient.
[0004]
Moreover, as a method of improving the heat resistance of the cured epoxy resin, there is a method of using an epoxy resin reacted with a silane coupling agent. However, in general, since the silane portion of the silane coupling agent is small and the organic part is often an alkyl chain, the glass transition point (Tg) is hardly lowered by the introduction of the silane coupling agent. Absent. In addition, in order to introduce a large amount of glass component into the cured epoxy resin, the amount of the silane coupling agent is inevitably increased. However, since the silane coupling agent is generally expensive, the use of the silane coupling agent results in High cost.
[0005]
Further, as a method for improving the heat resistance of the cured epoxy resin, a method using a composite of an epoxy resin and a metal oxide has been proposed (Japanese Patent Laid-Open No. 8-100107). The composite is obtained by adding a metal alkoxide to a solution obtained by partially curing an epoxy resin to obtain a homogeneous sol solution, and then polycondensing the metal alkoxide. However, although such a composite has heat resistance improved to some extent as compared with a cured product of a simple epoxy resin, voids (bubbles) are generated in the cured product due to water in the composite, water generated during curing, or alcohol. . In addition, for further improvement in heat resistance, when the amount of metal alkoxide is increased, the generated silica cannot be dispersed, the transparency of the cured product is lost and whitening occurs. Since water is required, warping of the cured product and cracks are caused.
[0006]
In addition to attempts to compound epoxy resins, silica is also used to improve the heat resistance, toughness, gas barrier properties, etc. by utilizing the sol-gel curing reaction of alkoxysilanes for various polymer compounds. Many studies have been made to hybridize (Japanese Patent Laid-Open Nos. 11-92623, 6-192454, 10-168386, 10-152646, and 7-118543). Such). However, the hybrid obtained by the sol-gel curing reaction is produced by using a hydrogen bond between a silanol group generated mainly by hydrolysis of alkoxysilane and a hydrogen bonding functional group in the polymer compound. Is dispersed in the polymer compound, the reaction cannot be applied to a polymer compound having no hydrogen bonding functional group or a high Tg polymer compound having a cohesive force.
[0007]
[Problems to be solved by the invention]
The present invention aims to provide a reaction product and a manufacturing method thereof capable of improving the heat resistance such as e epoxy resin or a cured product thereof.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have caused an epoxy ring-opening reaction between a specific epoxy-modified alkoxysilane condensate and a polymer compound having a functional group capable of reacting with the epoxy group. As a result, it was found that a reaction product meeting the above purpose could be produced, and the present invention was completed.
[0009]
That is, the present invention relates to glycidol and general formula (1): R a m Si (OR b ) 4-m (wherein m represents an integer of 0 or 1 and R a is alkyl having 1 to 8 carbon atoms. It represents a group or an aryl group, R b is Si hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) represented by hydrolyzable alkoxy hydrolysable obtained from silane alkoxysilane condensate (condensate The average number of the glycidol is equivalent to the equivalent of the epoxy group of glycidol / the equivalent of the alkoxy group contained in the hydrolyzable alkoxysilane condensate = 0.05 / 1 to 3/1. An epoxy-modified alkoxysilane condensate (a) (hereinafter referred to as (a) component) obtained by alcohol reaction and polyamic acid (c) (hereinafter referred to as (c) component) in the condensate (a) Alkoxysil The present invention relates to a method for producing a reaction product, characterized in that an epoxy ring-opening reaction is carried out at a temperature lower than the temperature at which a ru group is condensed .
[0023]
As described above, the component (a) used in the present invention is glycidol and general formula (1): R a m Si (OR b ) 4-m (wherein m represents an integer of 0 or 1, R a represents a C 1-8 alkyl group or aryl group, and R b represents a hydrogen atom or a C 1-3 alkyl group.) A condensate (condensation) obtained from a hydrolyzable alkoxysilane represented by The average number of Si in the product is 2 to 300). In the formula, when R b is an alkyl group having 1 to 3 carbon atoms, examples of OR b include a methoxy group, an ethoxy group, and an n-propoxy group. The number of carbon atoms of the alkoxy group has a great influence on the physical properties of the reaction product finally obtained, for example, the condensation rate of the glass part. Therefore, when curing at low temperatures or when increasing the curing rate, methoxy is required. Groups are preferred. In R a , examples of the alkyl group or aryl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, isobutyl group, n-hexyl group, cyclohexyl group, n -An octyl group, a phenyl group, a phenesyl group, etc. are mention | raise | lifted. When Ra is a long-chain alkyl group, it contributes to improving the flexibility (stretch rate) of the reaction product finally obtained and its cured product, but it can lower the glass transition point of the cured product. Since there are many, a methyl group is preferable from a heat resistant point.
[0025]
In addition, the glycidyl ether group does not necessarily need to exist in the above-mentioned proportion in each molecule of the component (a), and may exist in the above-mentioned proportion in the whole component (a) .
[0026]
Moreover, the average number of Si in the component (a) is 2 to 300 . Usually, when the average number of Si is large, the component (a) obtained tends to have a branched chain, but when the average number of Si is about 2 to 8, there is little or no branching structure, Easy to handle.
[0031]
(A) in the manufacture of components, the proportion of the hydrolyzable alkoxysilane condensate and glycidol, alkoxy group equivalent / the alkoxysilane condensate of epoxy groups grayed Rishidoru eq = 0.05-3 / 1 It is charging ratio. The ratio of the alkoxysilane condensate which is not epoxy-modified when the charging ratio is less increases, the charging ratio, compared alkoxy group 1 equivalent of the alkoxysilane condensate, 0 equivalents of epoxy groups of the glycidol. It is preferable to set it to 1 or more. Also, the when the charging ratio is increased, there is a tendency that heat resistance becomes poor of the cured product by unreacted glycidol remaining, the charging ratio, compared alkoxy group 1 equivalent of the alkoxysilane condensate, epoxy group glycidol The equivalent of is preferably 1 or less.
[0032]
In the reaction of the alkoxysilane condensate and glycidol, for example, the above components are charged and the ester exchange reaction is performed while distilling off the alcohol produced by heating. The reaction temperature is about 50 to 150 ° C., preferably 70 to 110 ° C., and the total reaction time is about 1 to 15 hours.
[0033]
If the dealcoholization reaction is carried out at a temperature exceeding 150 ° C., the reaction product increases in molecular weight with the condensation of alkoxysilane, which is not preferable because the viscosity tends to increase and gel. If the reaction temperature is less than about 50 ° C., the alcohol cannot be removed from the reaction system and the reaction does not proceed.
[0034]
In the transesterification reaction, a conventionally known ester-hydroxyl transesterification catalyst that does not open an epoxy ring can be used to promote the reaction. For example, metals such as lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, barium, strontium, zinc, aluminum, titanium, cobalt, germanium, tin, lead, antimony, arsenic, cerium, boron, cadmium, manganese, , These oxides, organic acid salts, halides, alkoxides and the like. Among these, organic tin and organic acid tin are particularly preferable, and specifically, dibutyltin dilaurate is effective.
[0035]
Moreover, the said reaction can also be performed in a solvent. The solvent is not particularly limited as long as it is an organic solvent that dissolves the alkoxysilane condensate and glycidol. As such an organic solvent, it is preferable to use an aprotic polar solvent such as dimethylformamide, dimethylacetamide, tetrahydrofuran, methyl ethyl ketone, toluene, and xylene.
[0036]
As described above, the component (a) thus obtained does not require that all the molecules have a glycidyl ether group, and may contain an unreacted alkoxysilane condensate.
[0048]
The reaction product according to the present invention, the (a) component and (c) component may be granulated steel Ri by the fact to epoxy ring-opening reaction.
[0050]
The production method of the present invention is extremely effective for producing a polymer compound having no hydrogen bonding functional group or a high Tg polymer compound having strong cohesive force, which has been difficult to hybridize by the sol-gel method. is there. That is, polyamic acid is used as the component (c) of the present invention.
[0051]
Wherein component (c) and (a) the reaction ratios of the components, the reaction temperature, For the reaction conditions time, taking into account the equivalent of functional group of the equivalent weight and the component (c) epoxy groups of component (a) And it adjusts suitably so that the reaction product obtained may not gelatinize . Below (110 ° C. in trimethoxysilyl group) temperature A alkoxysilyl group is condensed, preferably to carry out the reaction.
[0052]
In addition, the resulting reaction product thus, depending on the nature of the reaction product, within no phase separation, optionally further general formula (2): R c r Si (OR d) 4 -r (wherein, r is an integer of 0 to 2, R c is an alkyl group having 1 to 3 carbon atoms which may have a functional group directly bonded to a carbon atom, an aryl group or an unsaturated aliphatic residue R d represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and each may be the same or different, and a hydrolyzable alkoxysilane represented by the following formula: / Or its condensate (b) (hereinafter referred to as component (b)) can also be blended. Specific examples of the hydrolyzable alkoxysilane corresponding to the component (b) include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, and methyltriethoxysilane. , Methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane , Phenyltrimethoxysilane, phenyltriethoxysilane, 3,4-epoxycyclohexylethyltrimethoxysilane, trialkoxysilanes such as 3,4-epoxycyclohexylethyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyl And dialkoxysilanes such as dimethoxysilane and diethyldiethoxysilane. Among these, tetraalkoxysilanes and / or condensates of trialkoxysilanes are preferable. Furthermore, the reaction product may contain a solvent, a filler, a mold release agent, a surface treatment agent, a flame retardant, a viscosity modifier, a plasticizer, an antibacterial agent, an antibacterial agent, as necessary, as long as the effects of the present invention are not impaired. A glaze, a leveling agent, an antifoaming agent, a coloring agent, a stabilizer, a coupling agent and the like may be blended.
[0053]
【The invention's effect】
The production method of the present invention can be applied to a polymer compound that has conventionally been difficult to form a silica hybrid, and the reaction product of interest can be easily produced. In addition, the reaction product obtained by the production method of the present invention can provide a cured product excellent in heat resistance by heating and curing, for example, an IC sealing material, an epoxy resin-based laminate, a paint, an adhesive, It can be used for various applications such as coating agents for electrical and electronic materials.
[0054]
【Example】
Hereinafter, the present invention will be specifically described with reference to production examples, examples and comparative examples. In each example, “%” is based on weight unless otherwise specified.
[0055]
Production Example 1 Into a 1-liter four-necked flask equipped with a stirrer, a water separator, a thermometer, and a nitrogen blowing port, 350 g of glycidol (manufactured by NOF Corporation, trade name Epiol OH) and a tetramethoxysilane condensate ( Tama Chemical Co., Ltd., trade name: Methyl silicate 51: In general formula (1), OR b is a methoxy group and the average number of Si is 4 ) 671.8 g is charged, and stirred at 80 ° C. under a nitrogen stream. After raising the temperature, 1 g of dibutyltin dilaurate was added as a catalyst and reacted at 80 ° C. During the reaction, methanol was distilled off from the reaction system using a water separator, and when the amount reached about 130 g, it was cooled. The time required for cooling after raising the temperature was 6 hours. After cooling to 50 ° C., the nitrogen blowing stopper and the water separator were removed, and the pressure reduction line was connected, and methanol remaining in the system was removed under reduced pressure at 1 kPa for about 15 minutes. During this time, about 25 g of methanol was removed by vacuum. Thereafter, the flask was cooled to room temperature to obtain 869.7 g of component (a). In addition, the equivalent of the epoxy group of glycidol / the equivalent of the alkoxy group of the alkoxysilane condensate at the time of preparation = 0.33 / 1.
[0056]
1 H-NMR (acetone-d 6 solution) of glycidol (FIG. 1) and the reaction product of Production Example 1 (FIG. 2) are shown. FIG. 2 shows that the methylene peak a (around 2.56 ppm, around 2.68 ppm) and methine peak b (around 3.02 ppm) of the oxirane ring of glycidol in FIG. 1 are retained without participating in the reaction. In FIG. 2, it is recognized that the peak d (approximately 3.86 ppm) of the hydroxyl group in glycidol in FIG. Further, (near 3.47Ppm, around 3.75 ppm) methylene peak c adjacent to the hydroxyl group of glycidol in Figure 1, by a hydroxyl group to react with the alkoxysilane, the component (a) in FIG. 2, c '(3 .78 ppm vicinity, 4.08 ppm vicinity). Moreover, in FIG. 2, the peak (near 3.6 ppm) of the methoxy group newly derived from the alkoxysilane condensate was seen. From these, it was determined that the component (a) obtained in Production Example 1 was mainly composed of a compound as shown in FIG.
[0057]
Production Example 2
In the same reaction apparatus as in Production Example 1, 350 g of glycidol (manufactured by NOF Corporation, trade name Epiol OH) and methyltrimethoxysilane condensate (manufactured by Tama Chemical Co., Ltd., prototype MTMS-A: general formula ( 1 ) in OR b is methoxy, R a is a methyl group, the average number of Si is 4.5) were charged 626.2G, under nitrogen flow, while stirring, temperature was raised to 80 ° C., the catalyst as dibutyl tin dilaurate 1g And reacted at 80 ° C. During the reaction, methanol was distilled off from the reaction system using a water separator, and when the amount reached about 130 g, it was cooled. It took 8 hours to cool after raising the temperature. After cooling to 50 ° C., the nitrogen blowing stopper and the water separator were removed, and the pressure reduction line was connected, and methanol remaining in the system was removed under reduced pressure at 1 kPa for about 15 minutes. During this time, about 22 g of methanol was removed by vacuum. Thereafter, the flask was cooled to room temperature to obtain 825.0 g of component (a) . In addition, the equivalent of the epoxy group of glycidol / the equivalent of the alkoxy group of the alkoxysilane condensate at the time of preparation = 0.5 / 1.
[0058]
In the same manner as in Production Example 1, glycidol and 1 H-NMR (acetone-d 6 solution) of component (a) obtained in Production Example 2 were compared. In the reaction product, the methylene peak (around 2.56 ppm, around 2.68 ppm) and the methine peak (around 3.02 ppm) of the oxirane ring were retained without being involved in the reaction. On the other hand, the hydroxyl group peak d (around 3.86 ppm) in glycidol disappeared. Further, the methylene peak c adjacent to the hydroxyl group of glycidol (around 3.47 ppm, around 3.75 ppm) was shifted to (around 3.78 ppm, around 4.08 ppm) due to the reaction of the hydroxyl group with alkoxysilane. . Further, a methoxy group peak (around 3.6 ppm) and a methyl group peak (0.15 ppm) derived from the alkoxysilane condensate were observed. From these, it was judged that the component (a) obtained in Production Example 2 was a compound in which a predetermined amount of the methoxy group of the methyltrimethoxysilane condensate was a glycidyl ether group.
[0059]
Production Example 3
In the same reactor as in Production Example 1, 350 g of glycidol (manufactured by NOF Corporation, trade name Epiol OH) and tetramethoxysilane condensate (manufactured by Tama Chemical Co., Ltd., prototype MS-56: general formula ( 1 )) OR b is a methoxy group and Si has an average number of 18) of 636.4 g. While stirring under a nitrogen stream, the temperature is raised to 80 ° C., 1 g of dibutyltin dilaurate is added as a catalyst, and the reaction is carried out at 80 ° C. I let you. During the reaction, methanol was distilled off from the reaction system using a water separator, and when the amount reached about 130 g, it was cooled. The time required for cooling after raising the temperature was 7.5 hours. After cooling to 50 ° C., the nitrogen blowing stopper and the water separator were removed, and the pressure reduction line was connected, and methanol remaining in the system was removed under reduced pressure at 1 kPa for about 15 minutes. During this time, about 20 g of methanol was removed by vacuum. Thereafter, the flask was cooled to room temperature to obtain 835.4 g of component (a) . In addition, the equivalent of the epoxy group of glycidol / the equivalent of the alkoxy group of the alkoxysilane condensate at the time of preparation = 0.42 / 1.
[0060]
As in the case of Production Example 1, 1 H-NMR (acetone-d 6 solution) of glycidol and the reaction product of Production Example 3 was compared, and the same results as in the chart of Production Example 1 were obtained. From these, it was judged that the component (a) obtained in Production Example 3 was a compound in which a predetermined amount of the methoxy group of the tetramethoxysilane condensate was a glycidyl ether group.
[0067]
Production Example 4
In the same reactor as in Example 1, glycidol (manufactured by NOF Corp., trade name EPIOL OH) 178.7G and tetramethoxysilane condensate (Tama Chemicals Co., Ltd., the prototype MS-5 6) 892 .6 g was charged, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream. Then, 1 g of dibutyltin dilaurate was added as a catalyst and reacted at 80 ° C. During the reaction, methanol was distilled off from the reaction system using a water separator, and when the amount reached about 73 g, the reaction system was cooled. The time required for cooling after raising the temperature was 4 hours. After cooling to 50 ° C., the nitrogen blowing stopper and the water separator were removed, and the pressure reduction line was connected, and methanol remaining in the system was removed under reduced pressure at 1 kPa for about 15 minutes. During this time, about 10 g of methanol was removed by vacuum. Thereafter, the flask was cooled to room temperature, and 989.4 g of a reaction product was obtained. In addition, the equivalent of the epoxy group of glycidol / the equivalent of the alkoxy group of the alkoxysilane condensate at the time of preparation = 0.14 / 1.
[0068]
As in the case of Production Example 1, glycidol and 1 H-NMR (acetone-d 6 solution) of the reaction product of Production Example 4 were compared, and the same results as the chart of Production Example 1 were obtained. From these, it was judged that the reaction product was a compound in which a predetermined amount of methoxy groups of the tetramethoxysilane condensate became glycidyl ether groups.
[0069]
Example 1
100 g of bis- (4-aminophenyl) ether and 879.6 g of dimethylacetamide were added to a 1.5-liter four-necked flask equipped with a stirrer, a condenser, a thermometer, and a nitrogen blowing port, and the mixture was stirred while stirring. 9 g of pyromellitic acid was added slowly at room temperature with stirring. The mixture was stirred as it was for 1 hour to obtain a polyamic acid having an acid anhydride group at the terminal. Furthermore, 61.5 g of component (a) obtained in Production Example 4 was added and reacted at 95 ° C. for 3 hours to obtain the desired reaction product (equivalent of glycidyl ether group / equivalent of acid anhydride group = 1.5). Further, this solution was poured on a glass plate, heated at 100 ° C. for 1 hour to remove dimethylacetamide, and further heated at 300 ° C. to obtain a light yellow and transparent cured film (silica / polyimide = 0.14 (weight) ratio)).
[0070]
Comparative Example 2
To the same reactor as in Example 1 , 100 g of bis- (4-aminophenyl) ether and 836 g of dimethylacetamide were added, and 109 g of pyromellitic acid was slowly added at room temperature while stirring. The mixture was stirred as it was for 1 hour to obtain a polyamic acid having an acid anhydride group at the terminal. Furthermore, tetramethoxysilane condensate (Tama Chemicals Co., Ltd., the trade name Methyl Silicate 5 1) was stirred at room temperature for 1 hour added 54.9g of water 5.2 g. Furthermore, this solution was poured on a glass plate and heated at 100 ° C. for 1 hour to remove dimethylacetamide and further heated at 300 ° C., but the silica phase-separated from the polyimide and became a cloudy film (silica / polyimide = 0.14 (weight ratio)).
[Brief description of the drawings]
FIG. 1 is a 1 H-NMR chart of glycidol.
2 is a 1 H-NMR chart of component (a) obtained in Production Example 1. FIG.
Claims (1)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000115588A JP4028672B2 (en) | 1999-07-15 | 2000-04-17 | Method for producing reaction product |
EP00946328A EP1123944B1 (en) | 1999-07-15 | 2000-07-14 | Partial condensate of glycidyl ether group-containing alkoxysilane, silane-modified resin, compositions thereof, and preparation methods thereof |
CNB008014175A CN1202154C (en) | 1999-07-15 | 2000-07-14 | Glycidyl ether group-contg. partial alkoxysilane condensate, silane-modified resin, compsns. of these, and processes for producing these |
AT00946328T ATE423800T1 (en) | 1999-07-15 | 2000-07-14 | CONTAINING GLYCIDYL ETHER GROUP PARTIAL ALKOXYSILANE CONDENSATE, SILANE-MODIFIED RESIN, COMPOSITION THEREOF AND METHOD FOR THE PRODUCTION THEREOF |
TW089114096A TW483907B (en) | 1999-07-15 | 2000-07-14 | Glycidyl ether group-containing partial condensate of alkoxysilane, silane-modified resins, their compositions and their preparing methods |
US09/786,644 US6506868B1 (en) | 1999-07-15 | 2000-07-14 | Partial condensate of glycidyl ether group-containing alkoxysilane, silane-modified resin, compositions thereof and preparation methods thereof |
DE60041630T DE60041630D1 (en) | 1999-07-15 | 2000-07-14 | CONTAINING GLYCIDYL ETHER GROUP PARTIAL ALKOXYSILANE CONDENSATE, SILANO MODIFIED RESIN, COMPOSITION, AND METHOD FOR THE PRODUCTION THEREOF |
CNB2003101027588A CN1240744C (en) | 1999-07-15 | 2000-07-14 | Preparing methods of glycidyl ether group-containing partial condensate of alkoxysilane |
PCT/JP2000/004737 WO2001005862A1 (en) | 1999-07-15 | 2000-07-14 | Glycidyl ether group-containing partial alkoxysilane condensate, silane-modified resin, compositions of these, and processes for producing these |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20144699 | 1999-07-15 | ||
JP11-201446 | 1999-07-15 | ||
JP22595999 | 1999-08-10 | ||
JP11-225959 | 1999-08-10 | ||
JP2000115588A JP4028672B2 (en) | 1999-07-15 | 2000-04-17 | Method for producing reaction product |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003127854A Division JP2003286327A (en) | 1999-07-15 | 2003-05-06 | Epoxy-modified alkoxysilane condensate and its production method, and composition containing the condensate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001114897A JP2001114897A (en) | 2001-04-24 |
JP4028672B2 true JP4028672B2 (en) | 2007-12-26 |
Family
ID=27327949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000115588A Expired - Lifetime JP4028672B2 (en) | 1999-07-15 | 2000-04-17 | Method for producing reaction product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4028672B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005028537A1 (en) * | 2003-09-18 | 2005-03-31 | Kaneka Corporation | Photocuring resin composition containing organic polymer having epoxy group and/or oxethane group-containing silicon group at end, and method for producing same |
US8168737B2 (en) * | 2006-12-21 | 2012-05-01 | Dow Corning Corporation | Dual curing polymers and methods for their preparation and use |
JP4948211B2 (en) * | 2007-03-12 | 2012-06-06 | 古河電気工業株式会社 | Foam, circuit board using foam, and manufacturing method thereof |
JP6147561B2 (en) * | 2012-06-26 | 2017-06-14 | 株式会社日本触媒 | Curable resin composition and sealing material |
JP6770779B2 (en) * | 2017-06-01 | 2020-10-21 | 東レ・ファインケミカル株式会社 | Siloxane resin composition |
JP2021042340A (en) * | 2019-09-13 | 2021-03-18 | 味の素株式会社 | Resin composition |
-
2000
- 2000-04-17 JP JP2000115588A patent/JP4028672B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001114897A (en) | 2001-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6525160B1 (en) | Epoxy resin composition and process for producing silane-modified epoxy resin | |
KR101289960B1 (en) | Resin composition for sealing optical device, cured product thereof, and method of sealing semiconductor element | |
US20050171318A1 (en) | Curable resin composition | |
US6506868B1 (en) | Partial condensate of glycidyl ether group-containing alkoxysilane, silane-modified resin, compositions thereof and preparation methods thereof | |
JP3468195B2 (en) | Epoxy resin composition | |
JP3077695B1 (en) | Method for producing alkoxy group-containing silane-modified epoxy resin | |
JP5569703B2 (en) | Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent | |
JP3458379B2 (en) | Silane-modified epoxy resin composition and cured product thereof | |
CN110591557B (en) | Organic silicon coating adhesive and preparation method thereof | |
JP2018512487A (en) | High refractive index siloxane monomers, their polymerization and applications | |
JP4028672B2 (en) | Method for producing reaction product | |
JP3387882B2 (en) | Silane-modified polyamideimide resin, resin composition thereof and production method thereof. | |
KR101772549B1 (en) | Insulation coating composition and manufacturing method thereof | |
JP4159937B2 (en) | Polysilazane composition | |
JP4457783B2 (en) | Curable resin composition | |
JP2001294639A (en) | Alkoxy-containing silane-modified phenolic resin, resin composition, epoxy resin hardener and organic-inorganic hybrid material | |
JP3681582B2 (en) | Epoxy group-containing silicone resin | |
JP4399764B2 (en) | Epoxy resin having no silane-modified unsaturated bond, and semi-cured product and cured product obtained from the resin-containing composition | |
WO2013062303A1 (en) | Modified silicone resin composition | |
JP4189756B2 (en) | Process for producing alkoxysilyl group-containing silane-modified phenylene ether resin, alkoxysilyl group-containing silane-modified phenylene ether resin, alkoxysilyl group-containing silane-modified phenylene ether resin composition, and phenylene ether resin-silica hybrid cured product | |
TWI825299B (en) | Curable composition, cured product and method of using curable composition | |
JP2002249539A (en) | Alkoxy group-containing silane modified epoxy resin, its manufacturing method, epoxy resin composition and its cured product | |
JP4446216B2 (en) | Process for producing alkoxy group-containing silane-modified organic carboxylic acids | |
JP2003048953A (en) | Methoxy group-containing silane-modified novolak epoxy resin and semicured material and cured material obtained from the same resin composition | |
JP3991651B2 (en) | Thermosetting composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050915 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20051027 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070913 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071012 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4028672 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |