JP2016070266A - ガスタービンエンジン - Google Patents

ガスタービンエンジン Download PDF

Info

Publication number
JP2016070266A
JP2016070266A JP2015066649A JP2015066649A JP2016070266A JP 2016070266 A JP2016070266 A JP 2016070266A JP 2015066649 A JP2015066649 A JP 2015066649A JP 2015066649 A JP2015066649 A JP 2015066649A JP 2016070266 A JP2016070266 A JP 2016070266A
Authority
JP
Japan
Prior art keywords
platform
partition member
temperature
inner platform
nozzle guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015066649A
Other languages
English (en)
Other versions
JP6523009B2 (ja
Inventor
龍雄 土居
Tatsuo Doi
龍雄 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JP2016070266A publication Critical patent/JP2016070266A/ja
Application granted granted Critical
Publication of JP6523009B2 publication Critical patent/JP6523009B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)

Abstract

【課題】 ガスタービンエンジンのタービンのノズルガイドベーンと、それを支持する内側プラットフォームに作用する熱応力を低減する。【解決手段】 ガスタービンエンジンのタービン32のノズルガイドベーン35の径方向内端に接続された内側プラットフォーム47と、内側プラットフォーム47から径方向内側に延びる第1隔壁部材48と、第1隔壁部材48に径方向内端部が固定されて内側プラットフォーム47に径方向外端部が対峙する第2隔壁部材50とにより、内側プラットフォーム47の軸方向略全長にオーバラップする環状の中温空間51を形成し、第2隔壁部材50の径方向内側にコンプレッサ23から低温の空気が供給される低温空間52を形成したので、中温空間51の温度を燃焼ガスの温度および空気の温度の中間温度に維持することで、外側プラットフォーム46およびノズルガイドベーン35に対する内側プラットフォーム47の温度差を小さくして熱応力を低減することができる。【選択図】 図2

Description

本発明は、コンプレッサで圧縮した空気に燃料を混合して燃焼室で燃焼させ、燃焼により発生した高温の燃焼ガスが供給されるタービンが、上流側のノズルガイドベーンおよび下流側のタービンブレードを含むガスタービンエンジンに関する。
下記特許文献1には、ガスタービンエンジンのタービンダクトの主流路16を流れる高温の燃焼ガスがエンジン内の低温空間18に漏洩するのを防止することで、エンジン部品を熱的損傷から保護する技術が記載されている。この技術は、タービンダクトの主流路16に配置されたステータベーン(ノズルガイドベーン)24の環状のプラットフォーム25の径方向内側に高温ガス再循環ポケット14を形成したもので、主流路16を流れる燃焼ガスと低温空間18の空気とを高温ガス再循環ポケット14に導入して混合・循環させた後に主流路16に戻すことで、高温ガスが直接低温空間18に漏洩するのを防止するようになっている。
米国特許第5545004号明細書
ところで、この種の従来のガスタービンエンジンでは、主流路に臨むステータベーンと、そのステータベーンを支持する径方向内外のプラットフォームとには比較的に高温の燃焼ガスが接触するが、径方向内側のプラットフォームの外壁面(主流路と反対側の壁面)が比較的に低温の冷却空気に接触して冷却されるため、ステータベーンおよび径方向外側のプラットフォームの温度に対して径方向内側のプラットフォームの温度が低くなり、その温度勾配により特にステータベーンと径方向内側のプラットフォームとの接続部に大きな熱応力が発生する問題がある。
米国特許第5545004号明細書に記載されたものは、ステータベーン24のプラットフォーム25の径方向内側に高温ガス再循環ポケット14が形成されているため、燃焼ガスおよび空気の混合により中温となる高温ガス再循環ポケット14が主流路16と低温空間18との間に介在することで、温度勾配を緩和してステータベーン24とプラットフォーム25との接続部の熱応力を低減できる可能性がある。しかしながら、高温ガス再循環ポケット14はプラットフォーム25の軸方向全長のうちの一部にしか対向しておらず、しかも高温ガス再循環ポケット14の内部に低温の空気を導入して積極的に冷却しているため、プラットフォーム25が過度に冷却されて温度勾配を充分に緩和できず、依然として大きな熱応力が発生する懸念がある。
本発明は前述の事情に鑑みてなされたもので、ガスタービンエンジンのタービンのノズルガイドベーンと、それを支持する内側プラットフォームに作用する熱応力を低減することを目的とする。
上記目的を達成するために、請求項1に記載された発明によれば、 コンプレッサで圧縮した空気に燃料を混合して燃焼室で燃焼させ、燃焼により発生した高温の燃焼ガスが供給されるタービンが、上流側のノズルガイドベーンおよび下流側のタービンブレードを含むガスタービンエンジンであって、前記ノズルガイドベーンの径方向内端を支持する内側プラットフォームと、前記内側プラットフォームから径方向内側に延びる第1隔壁部材と、前記第1隔壁部材に径方向内端部が固定されて前記内側プラットフォームに径方向外端部が対峙する第2隔壁部材とにより、前記内側プラットフォームの軸方向略全長にオーバラップする環状の中温空間を形成し、前記第2隔壁部材の径方向内側に前記コンプレッサから空気が供給される低温空間を形成したことを特徴とするガスタービンエンジンが提案される。
また請求項2に記載された発明によれば、請求項1の構成に加えて、前記内側プラットフォームの下流側端部と前記第2隔壁部材の下流側端部との間に前記タービンブレードのプラットフォームの上流側端部を挿入することで、前記ノズルガイドベーンおよび前記タービンブレード間の隙間からの燃焼ガスの漏れを防止するシール部を構成したことを特徴とするガスタービンエンジンが提案される。
尚、実施の形態の高圧コンプレッサ23は本発明のコンプレッサに対応し、実施の形態の逆流燃焼室29は本発明の燃焼室に対応し、実施の形態の低圧タービン32は本発明のタービンに対応し、実施の形態の第2低温空間52は本発明の低温空間に対応し、実施の形態の低圧タービンブレード56は本発明のタービンブレードに対応する。
請求項1の構成によれば、コンプレッサで圧縮した空気に燃料を混合して燃焼室で燃焼させ、燃焼により発生した高温の燃焼ガスが供給されるタービンは、上流側のノズルガイドベーンおよび下流側のタービンブレードを含む。ノズルガイドベーンの径方向内端を支持する内側プラットフォームの径方向内側にコンプレッサから低温の空気が供給される低温空間を直接形成すると、内側プラットフォームの径方向外側を流れる高温の燃焼ガスとの温度差により内側プラットフォームおよびノズルガイドベーンに大きな熱応力が発生してしまうが、内側プラットフォームと、内側プラットフォームから径方向内側に延びる第1隔壁部材と、第1隔壁部材に径方向内端部が固定されて内側プラットフォームに径方向外端部が対峙する第2隔壁部材とにより、内側プラットフォームの軸方向略全長にオーバラップする環状の中温空間を形成し、第2隔壁部材の径方向内側にコンプレッサから低温の空気が供給される低温空間を形成したので、中温空間の温度を燃焼ガスの温度および空気の温度の中間温度に維持することで、外側プラットフォームおよびノズルガイドベーンに対する内側プラットフォームの温度差を小さくして熱応力を低減することができる。
また請求項2の構成によれば、内側プラットフォームの下流側端部と第2隔壁部材の下流側端部との間にタービンブレードのプラットフォームの上流側端部を挿入してシール部を形成したので、ノズルガイドベーンおよびタービンブレード間の隙間からの燃焼ガスの漏れを防止することができる。このとき、シール部の一方のリップを構成する内側プラットフォームの下流側端部は比較的に高温の燃焼ガスに接触して熱膨張量が大きくなり、シール部の他方のリップを構成する第2隔壁部材の下流側端部は低温の空気に接触して熱膨張量が小さくなるが、内側プラットフォームの下流側端部と第2隔壁部材の下流側端部とは相互に対峙するだけで相互に固定されていないため、前記熱膨張量の差が吸収されて熱応力が緩和される。
ツインスプール型ターボファンエンジンの全体構造を示す図。 図1の2部詳細図。 図2の3部拡大図。
以下、図1〜図3に基づいて本発明の実施の形態を説明する。
図1に示すように、本発明が適用される航空機用のツインスプール型ターボファンエンジンは、アウターケーシング11およびインナーケーシング12を備えており、インナーケーシング12の内部に前部第1ベアリング13および後部第1ベアリング14を介して低圧系シャフト15の前部および後部がそれぞれ回転自在に支持される。低圧系シャフト15の軸方向中間部の外周に筒状の高圧系シャフト16が相対回転自在に嵌合し、高圧系シャフト16の前部が前部第2ベアリング17を介してインナーケーシング12に回転自在に支持されるとともに、高圧系シャフト16の後部が後部第2ベアリング18を介して低圧系シャフト15に相対回転自在に支持される。
低圧系シャフト15の前端には、翼端がアウターケーシング11の内面に臨むフロントファン19が固定されており、フロントファン19が吸入した空気の一部はアウターケーシング11およびインナーケーシング12間に配置されたステータベーン20を通過した後、その一部がアウターケーシング11およびインナーケーシング12間に形成された環状のバイパスダクト21を通過して後方に噴射され、他の一部がインナーケーシング12の内部に配置された軸流式の低圧コンプレッサ22および遠心式の高圧コンプレッサ23に供給される。
低圧コンプレッサ22は、インナーケーシング12の内部に固定されたステータベーン24と、外周にコンプレッサブレードを備えて低圧系シャフト15に固定される低圧コンプレッサホイール25とを備える。高圧コンプレッサ23は、インナーケーシング12の内部に固定されたステータベーン26と、外周にコンプレッサブレードを備えて高圧系シャフト16に固定される高圧コンプレッサホイール27とを備える。
高圧コンプレッサホイール27の外周に接続されたデフューザ28の後方には逆流燃焼室29が配置されており、逆流燃焼室29の内部に燃料噴射ノズル30から燃料が噴射される。逆流燃焼室29の内部で燃料および空気が混合して燃焼し、発生した燃焼ガスが高圧タービン31および低圧タービン32に供給される。
高圧タービン31は、インナーケーシング12の内部に固定されたノズルガイドベーン33と、外周にタービンブレードを備えて高圧系シャフト16に固定される高圧タービンホイール34とを備える。低圧タービン32は、インナーケーシング12の内部に固定されたノズルガイドベーン35と、外周にタービンブレードを備えて低圧系シャフト15に固定される低圧タービンホイール36とを備える。
従って、図示せぬスタータモータで高圧系シャフト16を駆動すると、高圧コンプレッサホイール27が吸い込んだ空気が逆流燃焼室29に供給されて燃料と混合して燃焼し、発生した燃焼ガスが高圧タービンホイール34および低圧タービンホイール36を駆動する。その結果、低圧系シャフト15および高圧系シャフト16が回転してフロントファン19、低圧コンプレッサホイール25および高圧コンプレッサホイール27が空気を圧縮して逆流燃焼室29に供給することで、スタータモータを停止させてもターボファンエンジンの運転が継続される。
ターボファンエンジンの運転中に、フロントファン19が吸い込んだ空気の一部はバイパスダクト21を通過して後方に噴射され、特に低速飛行時に主たる推力を発生する。またフロントファン19が吸い込んだ空気の残部は逆流燃焼室29に供給されて燃料と混合して燃焼し、低圧系シャフト15および高圧系シャフト16を駆動した後に後方に噴射されて推力を発生する。
図2は、ターボファンエンジンの高圧タービン31の出口部分から低圧タービン32の入口部分にかけての詳細図であり、高圧タービンホイール34の外周に設けられた高圧タービンブレード41の下流側に、燃焼ガスを低圧タービン32に導く円環状のインタータービンダクト42が接続される。インタータービンダクト42は径方向外側のアウターダクト43と径方向内側のインナーダクト44とで構成される。低圧タービン32のノズルガイドベーン35は、径方向に放射状に延びる複数のベーン本体45と、ベーン本体45の径方向外端部を支持する環状の外側プラットフォーム46と、ベーン本体45の径方向内端部を支持する環状の内側プラットフォーム47とで構成され、外側プラットフォーム46はアウターダクト43の下流側に連続し、内側プラットフォーム47はインナーダクト44の下流側に連続する。
インタータービンダクト42のインナーダクト44の下流端から第1隔壁部材48が径方向内側に一体に延びており、インナーダクト44の内周面と第1隔壁部材48の外周面との間に、環状の第1低温空間49が区画される。また第1隔壁部材48の中間部に突設したフランジ48aに第2隔壁部材50の一端が接合されており、第2隔壁部材50の他端がノズルガイドベーン35の内側プラットフォーム47の下流端に僅かな隙間を介して、あるいは軽く接触するように対峙することで、内側プラットフォーム47、第1隔壁部材48および第2隔壁部材50間に実質的に閉じた環状の中温空間51が区画される。そして第2隔壁部材50の径方向内側に第2低温空間52が区画される。
高圧コンプレッサホイール27(図1参照)や高圧タービンホイール34を支持する高圧系シャフト16は複数部材に分割されており、それらの間に軸方向に延びる第1空気通路53および第2空気通路54が形成される。第1空気通路53および第2空気通路54の上流端は高圧コンプレッサホイール27の出口に臨んでおり、下流端はそれぞれ第1低温空間49および第2低温空間52に連通する。
図2および図3に示すように、内側プラットフォーム47の下流端から外側リップ47aが突出し、その径方向内側に対峙するように第2隔壁部材50の下流端から内側リップ50aが突出する。低圧タービンホイール36の外周にプラットフォーム55を介して複数の低圧タービンブレード56が放射状に支持されており、プラットフォーム55の上流端から突出する突起55aが外側リップ47aおよび内側リップ50a間に隙間を有して嵌合する。外側リップ47a、内側リップ50aおよび突起55aはシール部57を構成する。
次に、上記構成を備えた本発明の実施の形態の作用を説明する。
逆流燃焼室29の内部で燃料および空気の混合気が燃焼して発生した燃焼ガスは、高圧タービン31のノズルガイドベーン33および高圧タービンブレード41を通過して高圧系シャフト16を駆動した後にインタ−タービンダクト42に流入し、インタ−タービンダクト42の下流の低圧タービン32のノズルガイドベーン35および低圧タービンブレード56を通過して低圧系シャフト15を駆動する。
インタ−タービンダクト42の下流側に配置されたノズルガイドベーン35の外側プラットフォーム46および内側プラットフォーム47の内壁面は、逆流燃焼室29から供給される高温の燃焼ガスに接触して熱膨張する。一方、ガスタービンエンジンの内部を冷却すべく、高圧コンプレッサ23の下流から取り出された比較的に低温の冷却空気は、高圧系シャフト16の内部に形成した第1、第2空気通路53,54を介して第1低温空間49および第2低温空間52に供給される。
このとき、仮に第2隔壁部材50および中温空間51が存在しないとすると、内側プラットフォーム47の外壁面(径方向内面)が直接冷却空気に接触して冷却され、高温の燃焼ガスで加熱された外側プラットフォーム46およびノズルガイドベーン35と、低温の冷却空気で冷却された内側プラットフォーム47との間に大きな温度差が発生し、特にノズルガイドベーン35および内側プラットフォーム47の接続部に大きな熱応力が作用する懸念がある。
しかしながら、本実施の形態によれば、内側プラットフォーム47の径方向内側に第1隔壁部材48および第2隔壁部材50により実質的に閉じられた中温空間51が形成されており、中温空間51の内部の空気の温度は高温の燃焼ガスの温度および低温の冷却空気の温度の中間の温度に維持され、内側プラットフォーム47の両面はそれぞれ高温の燃焼ガスおよび中温の空気に接触することで、内側プラットフォーム47が過度に冷却されることが回避され、温度勾配が緩和されて熱応力が低減する。また中温空間51を区画する第1隔壁部材48および第2隔壁部材50の両面は、それぞれは中温の空気および低温の冷却空気に接触することで、温度勾配が緩和されて熱応力が低減する。
特に、中温空間51は内側プラットフォーム47の軸方向略全長に亙ってオーバラップするように形成されているため、内側プラットフォーム47の外壁面(径方向内面)を均等に中温空気に接触させ、内側プラットフォーム47の温度を軸方向に均一化して熱応力を一層低減することができる。
また内側プラットフォーム47の下流端の外側リップ47aと、第2隔壁部材50の下流端の内側リップ50aとの間に低圧タービンブレード56のプラットフォーム55の突起55aを嵌合させてシール部57を構成したので、低圧タービン32を流れる燃焼ガスが第2低温空間52に漏出するのを防止することができる。このとき、高温の燃焼ガスに接触する内側プラットフォーム47の熱膨張量は大きくなり、低温の冷却空気に接触する第2隔壁部材50の熱膨張量は小さくなるが、内側プラットフォーム47および第2隔壁部材50は相互に結合されることなく相対移動可能に対峙しているため、シール部57の部分に熱膨張量の差による応力が発生するのが防止される。
以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
例えば、実施の形態では軸方向に2段に配置されたノズルガイドベーン35のうち、上流側のノズルガイドベーン35の内側プラットフォーム47に中温空間51を対向させているが、任意のノズルガイドベーン35の内側プラットフォーム47に中温空間51を対向させても良い。
23 高圧コンプレッサ(コンプレッサ)
29 逆流燃焼室(燃焼室)
32 低圧タービン(タービン)
35 ノズルガイドベーン
47 内側プラットフォーム
48 第1隔壁部材
50 第2隔壁部材
51 中温空間
52 第2低温空間(低温空間)
55 プラットフォーム
56 低圧タービンブレード(タービンブレード)
57 シール部

Claims (2)

  1. コンプレッサ(23)で圧縮した空気に燃料を混合して燃焼室(29)で燃焼させ、燃焼により発生した高温の燃焼ガスが供給されるタービン(32)が、上流側のノズルガイドベーン(35)および下流側のタービンブレード(56)を含むガスタービンエンジンであって、
    前記ノズルガイドベーン(35)の径方向内端を支持する内側プラットフォーム(47)と、前記内側プラットフォーム(47)から径方向内側に延びる第1隔壁部材(48)と、前記第1隔壁部材(48)に径方向内端部が固定されて前記内側プラットフォーム(47)に径方向外端部が対峙する第2隔壁部材(50)とにより、前記内側プラットフォーム(47)の軸方向略全長にオーバラップする環状の中温空間(51)を形成し、前記第2隔壁部材(50)の径方向内側に前記コンプレッサ(23)から空気が供給される低温空間(52)を形成したことを特徴とするガスタービンエンジン。
  2. 前記内側プラットフォーム(47)の下流側端部と前記第2隔壁部材(50)の下流側端部との間に前記タービンブレード(56)のプラットフォーム(55)の上流側端部を挿入することで、前記ノズルガイドベーン(35)および前記タービンブレード(56)間の隙間からの燃焼ガスの漏れを防止するシール部(57)を構成したことを特徴とする、請求項1に記載のガスタービンエンジン。
JP2015066649A 2014-09-26 2015-03-27 ガスタービンエンジン Active JP6523009B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/497,828 US10077668B2 (en) 2014-09-26 2014-09-26 Gas turbine engine
US14/497,828 2014-09-26

Publications (2)

Publication Number Publication Date
JP2016070266A true JP2016070266A (ja) 2016-05-09
JP6523009B2 JP6523009B2 (ja) 2019-05-29

Family

ID=55583879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015066649A Active JP6523009B2 (ja) 2014-09-26 2015-03-27 ガスタービンエンジン

Country Status (2)

Country Link
US (1) US10077668B2 (ja)
JP (1) JP6523009B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545004A (en) * 1994-12-23 1996-08-13 Alliedsignal Inc. Gas turbine engine with hot gas recirculation pocket
JPH10274004A (ja) * 1997-03-24 1998-10-13 United Technol Corp <Utc> ガスタービンエンジン用静翼アセンブリ及びその密封方法
US20090317244A1 (en) * 2008-06-12 2009-12-24 Honeywell International Inc. Gas turbine engine with improved thermal isolation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3321179A (en) * 1965-09-13 1967-05-23 Caterpillar Tractor Co Gas turbine engines
US5224822A (en) * 1991-05-13 1993-07-06 General Electric Company Integral turbine nozzle support and discourager seal
US5252026A (en) * 1993-01-12 1993-10-12 General Electric Company Gas turbine engine nozzle
JPH10259703A (ja) * 1997-03-18 1998-09-29 Mitsubishi Heavy Ind Ltd ガスタービンのシュラウド及びプラットフォームシールシステム
JP4016845B2 (ja) * 2003-02-05 2007-12-05 株式会社Ihi ガスタービンエンジン
US7534088B1 (en) * 2006-06-19 2009-05-19 United Technologies Corporation Fluid injection system
US9039357B2 (en) * 2013-01-23 2015-05-26 Siemens Aktiengesellschaft Seal assembly including grooves in a radially outwardly facing side of a platform in a gas turbine engine
US9181816B2 (en) * 2013-01-23 2015-11-10 Siemens Aktiengesellschaft Seal assembly including grooves in an aft facing side of a platform in a gas turbine engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545004A (en) * 1994-12-23 1996-08-13 Alliedsignal Inc. Gas turbine engine with hot gas recirculation pocket
JPH10274004A (ja) * 1997-03-24 1998-10-13 United Technol Corp <Utc> ガスタービンエンジン用静翼アセンブリ及びその密封方法
US20090317244A1 (en) * 2008-06-12 2009-12-24 Honeywell International Inc. Gas turbine engine with improved thermal isolation

Also Published As

Publication number Publication date
US10077668B2 (en) 2018-09-18
US20160090852A1 (en) 2016-03-31
JP6523009B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
US8087249B2 (en) Turbine cooling air from a centrifugal compressor
CA2688099C (en) Centrifugal compressor forward thrust and turbine cooling apparatus
JP6223111B2 (ja) ガスタービン
US10443422B2 (en) Gas turbine engine with a rim seal between the rotor and stator
WO2015056656A1 (ja) ガスタービン
MX2015005683A (es) Sistema de inyeccion de fluido refrigerante externo en un motor de turbina de gas.
JP2013139801A (ja) タービン組立体及びタービン構成部品間の流体の流れを低減するための方法
JPS6325161B2 (ja)
EP2952680A1 (en) Thermally isolated turbine section for a gas turbine engine
JP4709348B2 (ja) 回転シール
JP2007146787A (ja) ガスタービン
US10794214B2 (en) Tip clearance control for gas turbine engine
US10815814B2 (en) Re-use and modulated cooling from tip clearance control system for gas turbine engine
US11098612B2 (en) Blade outer air seal including cooling trench
US9920652B2 (en) Gas turbine engine having section with thermally isolated area
JP2020143850A (ja) ガスタービンエンジンの燃焼器
JP6523009B2 (ja) ガスタービンエンジン
US11754021B2 (en) Propulsion systems for aircraft
US10634055B2 (en) Gas turbine engine having section with thermally isolated area
JP2008144624A (ja) タービン動翼の固定構造
JP2004060544A (ja) ガスタービン圧縮機のクリアランス低減方法及びガスタービンプラント
CN118167480A (zh) 集成式发动机入口框架空气冷却的油冷却设备
JP2024014757A (ja) 停止用ロータ冷却システム
WO2020046375A1 (en) Method of operation of inlet heating system for clearance control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6523009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150