JP2016060799A - Waste plastic liquefaction processing apparatus - Google Patents

Waste plastic liquefaction processing apparatus Download PDF

Info

Publication number
JP2016060799A
JP2016060799A JP2014188981A JP2014188981A JP2016060799A JP 2016060799 A JP2016060799 A JP 2016060799A JP 2014188981 A JP2014188981 A JP 2014188981A JP 2014188981 A JP2014188981 A JP 2014188981A JP 2016060799 A JP2016060799 A JP 2016060799A
Authority
JP
Japan
Prior art keywords
condenser
oil
pyrolysis
waste plastic
pyrolysis kettle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014188981A
Other languages
Japanese (ja)
Other versions
JP6129801B2 (en
Inventor
健志 福田
Kenji Fukuda
健志 福田
薫 亀山
Kaoru Kameyama
薫 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RECYCLE ENERGY CO Ltd
Original Assignee
RECYCLE ENERGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RECYCLE ENERGY CO Ltd filed Critical RECYCLE ENERGY CO Ltd
Priority to JP2014188981A priority Critical patent/JP6129801B2/en
Publication of JP2016060799A publication Critical patent/JP2016060799A/en
Application granted granted Critical
Publication of JP6129801B2 publication Critical patent/JP6129801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To provide a waste plastic liquefaction processing apparatus in which the fouling of high boiling components to the equipment and piping after a thermal decomposition kettle, is suppressed, and the occurrence of occlusion is prevented.SOLUTION: Provided is a waste plastic liquefaction processing apparatus including a thermal decomposition kettle for thermally decomposing a waste plastic and producing a decomposition gas, and a condenser for cooling and liquefying the decomposition gas obtained by the thermal decomposition kettle to produce a regeneration oil, in which there is provided, above the thermal decomposition kettle, a reflux column for refluxing the decomposition gas obtained by the thermal decomposition kettle and returning the high boiling component in the decomposition gas to the thermal decomposition kettle.SELECTED DRAWING: Figure 1

Description

この発明は、廃プラスチックを分解して再生油を製造するための装置に係る発明であり、詳しくは、熱分解釜で得られた分解ガス中の高沸成分を熱分解釜に戻すことを特徴とする、廃プラスチックから再生油を製造するための装置に係る発明である。   This invention relates to an apparatus for producing recycled oil by decomposing waste plastics, and more specifically, is characterized by returning high boiling components in cracked gas obtained in a pyrolysis kettle to the pyrolysis kettle It is invention which concerns on the apparatus for manufacturing recycled oil from waste plastics.

従来から、プラスチックのリサイクル方法として、廃プラスチックを分解し、再生油等を得る方法が種々検討されている。この方法の例として、廃プラスチックを熱分解釜で熱分解し、分解ガスを生成させ、これを液化して再生油を得る方法が知られている。   Conventionally, as a plastic recycling method, various methods for decomposing waste plastic to obtain recycled oil and the like have been studied. As an example of this method, a method is known in which waste plastic is pyrolyzed in a pyrolysis kettle to generate cracked gas, which is liquefied to obtain recycled oil.

しかし、得られる分解ガス中には、ワックス分等の高沸成分が混入している場合がある。この場合、熱分解釜以降の各種装置や装置間の配管にこの高沸成分が付着することで炭化物を生成し、場合によっては、配管等が閉塞する恐れがある。また、ワックス分濃度が高くなると、後述する比較例でも明らかなように、得られた再生油の固化温度が高くなり、容易に利用することが難しくなる傾向がある。   However, the obtained cracked gas may contain high boiling components such as wax. In this case, the high boiling component adheres to various devices after the pyrolysis kettle and piping between the devices to generate carbides, and in some cases, the piping and the like may be blocked. Moreover, when the wax content concentration is high, the solidification temperature of the obtained reclaimed oil is high, as will be apparent from Comparative Examples described later, and it tends to be difficult to use easily.

これに対し、得られた分解ガスを触媒反応槽に送り、このワックス分等の高沸成分の分解反応を行う方法が知られている(特許文献1等)。   On the other hand, a method is known in which the obtained cracked gas is sent to a catalytic reaction tank and a high-boiling component such as a wax is decomposed (Patent Document 1, etc.).

特開2005−170986号公報JP 2005-170986 A

しかしながら、この触媒反応槽で高沸成分を反応させても、高沸成分が分解せずに残存し、後の装置や配管に汚れや閉塞が生じる恐れがある。
そこで、この発明は、高沸成分が熱分解釜以降の装置や配管に汚れの付着が生じるのを抑制し、閉塞防止を目的とする。
However, even if a high-boiling component is reacted in this catalytic reaction tank, the high-boiling component remains without being decomposed, and there is a possibility that the subsequent apparatus or piping may become dirty or clogged.
Therefore, an object of the present invention is to prevent the high-boiling component from adhering to the apparatus and piping after the pyrolysis kettle and prevent clogging.

この発明は、廃プラスチックを熱分解して分解ガスを生成する熱分解釜、及び熱分解釜で得られた分解ガスを冷却して液化させ、再生油を得る凝縮器を有する廃プラスチック油化処理装置であり、前記熱分解釜の上方に、この熱分解釜で得られた再生油を還流させる還流塔を設け、前記分解ガス内の高沸成分を前記熱分解釜に戻す廃プラスチック油化処理装置を用いることにより、上記課題を解決したのである。   The present invention relates to a pyrolysis kettle that pyrolyzes waste plastic to generate cracked gas, and a waste plastic oil conversion process having a condenser that cools and liquefies the cracked gas obtained in the pyrolysis kettle to obtain recycled oil The apparatus is provided with a reflux tower that recirculates the regenerated oil obtained in the pyrolysis kettle above the pyrolysis kettle, and the waste plastic oil conversion process returns high boiling components in the cracked gas to the pyrolysis kettle By using an apparatus, the above-mentioned problems have been solved.

この発明は、熱分解釜の上方に還流塔を設け、熱分解釜で生成した分解ガスをこの還流塔に送り、還流させるので、選択的に高沸成分を熱分解釜に戻すことができ、それ以降の配管や装置に汚れの付着や閉塞が生じるのを抑制することができる。   In this invention, a reflux tower is provided above the pyrolysis kettle, and the cracked gas generated in the pyrolysis kettle is sent to the reflux tower and refluxed, so that the high boiling component can be selectively returned to the pyrolysis kettle, It is possible to suppress the adhesion and blockage of dirt in subsequent pipes and devices.

この発明に係る廃プラスチック油化処理装置の工程を示すフロー図The flowchart which shows the process of the waste plastic oil conversion processing apparatus which concerns on this invention 図1において、製品の一部を還流塔等に戻す場合を示したフロー図In FIG. 1, a flow diagram showing a case where part of the product is returned to the reflux tower or the like. 図1において、熱分解釜の冷却の工程を示すフロー図In FIG. 1, a flowchart showing a process of cooling the pyrolysis kettle

この発明に係る廃プラスチック油化処理装置は、図1に示すように、廃プラスチックMを熱分解して分解ガスを生成する熱分解釜11a、及び熱分解釜で得られた分解ガスを冷却して液化させ、再生油を得る凝縮器12を有する装置である。   As shown in FIG. 1, the waste plastic oil processing apparatus according to the present invention cools the cracked gas obtained in the pyrolysis kettle 11a which pyrolyzes the waste plastic M to produce cracked gas, and the pyrolysis kettle. It is an apparatus having a condenser 12 that is liquefied to obtain regenerated oil.

この発明の処理対象となる廃プラスチックとしては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリスチレン、ポリアミド等があげられる。   Examples of the waste plastic to be treated in the present invention include polyolefins such as polyethylene and polypropylene, polystyrene, polyamide and the like.

具体的な工程としては、図1に示す工程をあげることができる。まず、処理対象の廃プラスチックMを裁断(図示せず)し、洗浄・乾燥工程13で洗浄・乾燥する。これにより、前記廃プラスチックMに付着しているゴミ及び水分を除くことができると共に、次工程での液化をより容易に行うことができる。この洗浄機としては、Bun−Sen((株)カネミヤ製)等を上げることができる。また、前記乾燥工程は、熱分解釜11aの廃熱を利用して乾燥を行うことができる。   As a specific process, the process shown in FIG. 1 can be mentioned. First, the waste plastic M to be treated is cut (not shown) and washed and dried in the washing and drying step 13. Thereby, dust and moisture adhering to the waste plastic M can be removed, and liquefaction in the next process can be performed more easily. As this washing machine, Bun-Sen (manufactured by Kanemiya Co., Ltd.) and the like can be raised. Moreover, the said drying process can dry using the waste heat of the thermal decomposition pot 11a.

洗浄・乾燥された廃プラスチックMは、液化工程14にて液化されて溶融廃プラスチックが得られる。このときの温度は、対象の廃プラスチックを溶融できる温度であればよく、230℃〜260℃程度であれば十分である。この液化工程に用いられる装置としては、一軸押出機や二軸押出機等の押出機等をあげることができる。   The washed and dried waste plastic M is liquefied in the liquefaction step 14 to obtain molten waste plastic. The temperature at this time should just be the temperature which can melt | dissolve the target waste plastic, and if it is about 230 to 260 degreeC, it is enough. As an apparatus used for this liquefaction process, extruders, such as a single screw extruder and a twin screw extruder, etc. can be mention | raise | lifted.

次に、前記の溶融廃プラスチックは、熱分解釜11aに供給されて熱分解され、分解ガスとなる。この熱分解釜11aは、これを加熱する燃焼炉11bと共に熱分解炉11を構成し、燃焼炉11bにより、熱分解釜11aの温度が調整される。この熱分解釜11aの内部には、溶融廃プラスチックを攪拌する攪拌機(図示せず)が設けられ、これにより、熱分解釜11a内部の温度がほぼ均一になるようにされる。   Next, the molten waste plastic is supplied to the thermal decomposition pot 11a and thermally decomposed into a decomposition gas. This pyrolysis pot 11a constitutes a pyrolysis furnace 11 together with a combustion furnace 11b that heats it, and the temperature of the pyrolysis pot 11a is adjusted by the combustion furnace 11b. An agitator (not shown) for agitating the molten waste plastic is provided inside the pyrolysis kettle 11a, so that the temperature inside the pyrolysis kettle 11a is made substantially uniform.

この熱分解温度は、370℃以上がよく、380℃以上が好ましい。370℃より低いと、前記溶融廃プラスチックを十分に熱分解することが困難となる場合がある。一方、熱分解温度の上限は、400℃がよく、390℃が好ましい。400℃より高いと、熱分解釜からのワックス分の蒸発飛散(留出)も顕著になり、前記再生油の収率が悪化するおそれがあると共に、熱分解釜11a内に炭化物が蓄積することとなる。   The thermal decomposition temperature is preferably 370 ° C. or higher, and preferably 380 ° C. or higher. When it is lower than 370 ° C., it may be difficult to sufficiently thermally decompose the molten waste plastic. On the other hand, the upper limit of the thermal decomposition temperature is preferably 400 ° C, and preferably 390 ° C. When the temperature is higher than 400 ° C., evaporation and distillation (distillation) of the wax from the pyrolysis kettle becomes remarkable, and the yield of the regenerated oil may be deteriorated, and carbides accumulate in the pyrolysis kettle 11a. It becomes.

前記熱分解釜11aで得られた分解ガスは、この熱分解釜11aの上方に設けられた還流塔15に送られ、一部還流される。これにより、前記分解ガスに同伴したワックス分等の高沸成分は、下方の熱分解釜11aに戻される。この還流塔15には、内部で還流が生じる状態、すなわち、前記分解ガスと分解ガスの液化物とが向流する状態が生ずればよく、そのような状態が生じる方法として、還流塔15の高さを、前記した目的を達成できる程度の高さにする方法や、還流塔15の内部の温度が前記分解ガスの液化を可能にし得る程度に還流塔15を冷却する方法等があげられる。また、還流塔15の内部には、必要に応じて、充填材を充填してもよい。充填材を用いることにより、還流塔の高さを低めに設定し、冷却の程度を下げることが可能となる。   The cracked gas obtained in the pyrolysis kettle 11a is sent to the reflux tower 15 provided above the pyrolysis kettle 11a and partially refluxed. As a result, high boiling components such as wax components accompanying the cracked gas are returned to the lower pyrolysis pot 11a. The reflux tower 15 may have a state in which reflux occurs, that is, a state in which the cracked gas and the liquefied gas of the cracked gas counter-flow. Examples thereof include a method of setting the height to such a level that the above-described object can be achieved, a method of cooling the reflux tower 15 to such an extent that the temperature inside the reflux tower 15 can enable liquefaction of the cracked gas, and the like. Moreover, you may fill the inside of the reflux tower 15 with a filler as needed. By using the packing material, the height of the reflux tower can be set low and the degree of cooling can be lowered.

さらに、図2に示すように、後述する貯液タンク18に貯蔵される製品たる再生油Pの一部を抜き出し、凝縮器21で冷却した後、これを還流塔15の上部に戻してもよい。このようにすることにより、還流塔15に上がってきた分解ガスを、製品たる再生油Pで直接接触することにより、冷却することが可能となる。戻す再生油Pの量や温度は、再生油の回収量、再生油に含まれる高沸成分の量、目標とする冷却の程度等に応じて、適宜選択される。そして、このようにすることにより、還流塔15内における冷却の効果をより向上させ、高沸成分の分解ガスからの分離をより容易にすることができる。   Further, as shown in FIG. 2, a part of the regenerated oil P that is a product stored in a liquid storage tank 18 to be described later may be extracted and cooled by the condenser 21, and then returned to the upper part of the reflux tower 15. . By doing in this way, it becomes possible to cool the cracked gas which went up to the reflux tower 15 by making direct contact with the regenerated oil P which is a product. The amount and temperature of the reclaimed oil P to be returned are appropriately selected according to the recovered amount of reclaimed oil, the amount of high boiling components contained in the reclaimed oil, the target degree of cooling, and the like. And by doing in this way, the effect of the cooling in the reflux tower 15 can be improved more, and the separation from the decomposition gas of a high boiling component can be made easier.

前記の充填材としては、規則充填物であっても、不規則充填物であってもよい。前記規則充填物は、還流の状態を一定に保つことができると共に、圧損をより低減することができるので、好ましい。この規則充填物は、多数の孔を有するものであり、多数の孔を開けた平板体や網状体等を円柱状、塔の形状に加工したものがあげられる。そして、この規則充填物は、その径や高さを還流塔15の径や高さに合わせたものが使用される。このような規則充填物としては、MCパック(マツイマシン(株)製)等があげられる。   The filler may be regular packing or irregular packing. The regular packing is preferable because it can keep the reflux state constant and can further reduce the pressure loss. This ordered packing has a large number of holes, and a flat plate or a net-like body having a large number of holes is processed into a cylindrical shape or a tower shape. And this regular packing is used in accordance with the diameter and height of the reflux tower 15. Examples of such regular packing include MC pack (manufactured by Matsui Machine Co., Ltd.) and the like.

前記還流塔15において、液体状の高沸成分や液化した分解ガスは、下方の熱分解釜11aに戻され、一方、残りの分解ガスは、還流塔15の上方から凝縮器12に送られる。そして、ここで液化可能な分解ガスは液化される。次いで、気液分離装置16によって、気液が分離され、気体成分は浄化装置17で浄化されて排気として放出される。
一方、液体成分である再生油Pは、貯液タンク18に貯蓄され、製品として使用される。
In the reflux tower 15, the liquid high-boiling component and the liquefied cracked gas are returned to the lower pyrolysis tank 11 a, while the remaining cracked gas is sent to the condenser 12 from above the reflux tower 15. And the decomposition gas which can be liquefied here is liquefied. Next, the gas-liquid separator 16 separates the gas and liquid, and the gas component is purified by the purifier 17 and released as exhaust.
On the other hand, the regenerated oil P which is a liquid component is stored in the liquid storage tank 18 and used as a product.

前記凝縮器12での冷却効果が不十分な場合、ガス状態の分解ガスが浄化装置17に行く可能性がある。この状態が生じる可能性がある場合は、図2に示すように、貯液タンク18に貯蔵される製品たる再生油Pの一部を抜き出し、凝縮器21で冷却した後、これを還流塔15から凝縮器12への配管に戻してもよい。このようにすることにより、凝縮器12に送られる分解ガスが、再生油Pとの直接接触により冷却され、凝縮器12での冷却を補助することができる。戻す再生油Pの量や温度は、再生油の回収量、再生油に含まれる高沸成分の量、目標とする冷却の程度等に応じて、適宜選択される。   When the cooling effect in the condenser 12 is insufficient, there is a possibility that the decomposition gas in the gas state goes to the purification device 17. When this state may occur, as shown in FIG. 2, a part of the regenerated oil P, which is a product stored in the liquid storage tank 18, is extracted and cooled by the condenser 21. To the pipe to the condenser 12. By doing in this way, the cracked gas sent to the condenser 12 is cooled by the direct contact with the regenerated oil P, and cooling in the condenser 12 can be assisted. The amount and temperature of the reclaimed oil P to be returned are appropriately selected according to the recovered amount of reclaimed oil, the amount of high boiling components contained in the reclaimed oil, the target degree of cooling, and the like.

ところで、高温の分解ガスが凝縮器12内にそのまま入った場合、液化と同時に凝縮器12の熱交換チューブ内面に付着が生じる恐れがある。さらに、場合によっては、高温状態が維持されていると、炭化が生じてしまうこともある。このような場合、凝縮器12内部の洗浄が必要となるが、単なる洗浄では落ちず、削ぎ落としが必要となる場合がある。これに対し、冷却した再生油Pの一部を分岐して凝縮器12への配管にスプレー状で流すことにより、高温ガスと冷却再生油を直接接触させ、分解ガスの温度を低下させることができ、凝縮器12の熱交換チューブ内面に付着や炭化を防止することができる。   By the way, when the high-temperature decomposition gas enters the condenser 12 as it is, there is a possibility that adhesion occurs on the inner surface of the heat exchange tube of the condenser 12 at the same time as liquefaction. Furthermore, in some cases, carbonization may occur if a high temperature state is maintained. In such a case, the inside of the condenser 12 needs to be cleaned, but it may not be removed by simple cleaning, and may need to be scraped off. On the other hand, a part of the cooled regenerated oil P is branched and allowed to flow in the form of a spray to the condenser 12 so that the high temperature gas and the cooled regenerated oil are brought into direct contact with each other, thereby reducing the temperature of the cracked gas. It is possible to prevent adhesion and carbonization to the inner surface of the heat exchange tube of the condenser 12.

また、前記凝縮器12での冷却効果が不十分な場合や、回収する再生油Pの成分を調整したい場合は、気液分離装置16から浄化装置17の配管に、第2の凝縮器と第2の気液分離装置を設けてもよい。このようにすると、前記凝縮器12での冷却効果が不十分な場合、再度の冷却が可能となり、より確実に再生油Pの回収が可能となる。   Further, when the cooling effect in the condenser 12 is insufficient, or when it is desired to adjust the components of the reclaimed oil P to be recovered, the second condenser and the second condenser are connected from the gas-liquid separation device 16 to the piping of the purification device 17. Two gas-liquid separators may be provided. If it does in this way, when the cooling effect in the said condenser 12 is inadequate, it will be possible to cool again and the reproduction | regeneration oil P will be more reliably recoverable.

また、このようにすると、回収する再生油Pの成分を調整したい場合、凝縮器12と第2の凝縮器の冷却温度を異なる温度とし、凝縮器12の冷却温度をより高めとすることにより、凝縮器12によって液化され、貯液タンク18に回収された再生油は、第2の凝縮器によって液化され、第2の貯液タンクに回収された再生油より沸点のより高い成分を回収することが可能となり、使用目的等に応じた再生油の製造が可能となる。   Further, in this case, when the component of the regenerated oil P to be recovered is to be adjusted, the cooling temperature of the condenser 12 and the second condenser is set to different temperatures, and the cooling temperature of the condenser 12 is further increased, The recycled oil liquefied by the condenser 12 and collected in the liquid storage tank 18 is liquefied by the second condenser, and the component having a higher boiling point than the recycled oil collected in the second liquid storage tank is collected. This makes it possible to produce reclaimed oil according to the purpose of use.

ところで、凝縮器12の冷媒として空気等が用いられるが、この凝縮器12で熱が加えられた空気等を、洗浄・乾燥工程13において、乾燥用の熱風として用いると、熱リサイクルの観点から好ましい。
また、製品たる再生油Pの一部を、燃焼炉11bの燃焼原料の一部又は全部として用いると、外部エネルギーの消費を節約でき、装置全体で見ると、省エネルギー化することができる。
By the way, although air etc. are used as a refrigerant | coolant of the condenser 12, when the air etc. which heat was added in this condenser 12 are used as a hot air for drying in the washing | cleaning and drying process 13, it is preferable from a viewpoint of thermal recycling. .
Further, if a part of the regenerated oil P as a product is used as a part or all of the combustion raw material of the combustion furnace 11b, the consumption of external energy can be saved, and the energy saving can be achieved in the whole apparatus.

上記した方法で再生油Pを製造した場合、熱分解釜11aの中には、残渣分が溜まることになる。このため、熱分解釜11aでの廃プラスチックMの熱分解の効率があまり低下しないタイミングで、熱分解釜11aを冷却し、内部の残渣分を、溶融廃プラスチックMと共に取り出すことが必要となる。この場合、自然冷却してもよいが、熱分解釜11aが大きい場合は、冷却に時間がかかることとなり、効率的でない。このような場合、図3に示すように、熱分解釜11aに、この熱分解釜11aの内部ガスを冷却するための冷却部を連結することが好ましい。
この冷却部は、熱分解釜11aの内部ガスを冷却するための凝縮器22、熱分解釜11aの内部ガスを凝縮器22に送るための導出ライン、及び凝縮器22で冷却された内部ガスを熱分解釜11aに戻す導入ラインを有する。
この冷却部を稼働させる場合は、まず、前記燃焼炉11bを一時停止させて、熱分解釜11aの加熱を一時停止する。次いで、熱分解釜11aの内部ガスを前記導出ラインを経由して凝縮器22に送る。そして、凝縮器22で内部ガスを冷却した後、この冷却した内部ガスを前記導入ラインを経由して熱分解釜11aに戻す。
この操作により、熱分解釜11aの内部を強制冷却することができ、冷却時間を短縮できるので好ましい。このとき、熱分解釜11aから凝縮器22への配管で少量の窒素ガス(N)を加えて陽圧にすることが好ましい。そのようにすると、凝縮器22での冷却により、その後の配管が負圧となり、空気、特に酸素が浸入するのを防止することができる。酸素が侵入すると、温度が高いため、酸化が生じる恐れがあるからである。
なお、熱分解釜11a内の残渣分は炭化物なので、できるだけ冷却した方が良い。
When the regenerated oil P is produced by the above-described method, a residue is accumulated in the pyrolysis vessel 11a. For this reason, it is necessary to cool the pyrolysis kettle 11a at a timing at which the thermal decomposition efficiency of the waste plastic M in the pyrolysis kettle 11a is not lowered so much that the internal residue is taken out together with the molten waste plastic M. In this case, natural cooling may be performed. However, when the pyrolysis pot 11a is large, cooling takes time, which is not efficient. In such a case, as shown in FIG. 3, it is preferable to connect a cooling unit for cooling the internal gas of the pyrolysis vessel 11a to the pyrolysis vessel 11a.
The cooling unit includes a condenser 22 for cooling the internal gas of the pyrolysis kettle 11a, a lead-out line for sending the internal gas of the pyrolysis kettle 11a to the condenser 22, and the internal gas cooled by the condenser 22 It has an introduction line that returns to the pyrolysis kettle 11a.
When operating this cooling unit, first, the combustion furnace 11b is temporarily stopped, and the heating of the pyrolysis pot 11a is temporarily stopped. Next, the internal gas of the pyrolysis vessel 11a is sent to the condenser 22 via the lead-out line. And after cooling internal gas with the condenser 22, this cooled internal gas is returned to the thermal decomposition pot 11a via the said introduction line.
This operation is preferable because the inside of the pyrolysis pot 11a can be forcibly cooled and the cooling time can be shortened. At this time, it is preferable to add a small amount of nitrogen gas (N 2 ) to the positive pressure through a pipe from the pyrolysis kettle 11 a to the condenser 22. If it does in that way, the subsequent piping will become a negative pressure by cooling with the condenser 22, and it can prevent that air, especially oxygen enter. This is because when oxygen intrudes, the temperature is high and oxidation may occur.
In addition, since the residue in the pyrolysis pot 11a is a carbide | carbonized_material, it is better to cool as much as possible.

この熱分解釜11aの残渣分を定期的に取り出す方法の具体例としては、次の方法をあげることができる。
この発明に係る廃プラスチック油化処理装置の運転中、熱分解釜11a内の残渣分を取り出す場合、まず、溶融廃プラスチックの熱分解釜11aへの供給をまず止める。このとき、熱分解釜11a内の溶融廃プラスチックの分解は継続している。ただ、還流塔15に送られる分解ガスの量は減少していくので、それに合わせ、凝縮器21から還流塔15上部に供給される再生油Pの供給量を減少させる。
The following method can be given as a specific example of the method for periodically taking out the residue from the pyrolysis kettle 11a.
During the operation of the waste plastic oil converting apparatus according to the present invention, when taking out the residue in the pyrolysis vessel 11a, first, supply of molten waste plastic to the pyrolysis vessel 11a is first stopped. At this time, the decomposition of the molten waste plastic in the thermal decomposition pot 11a continues. However, since the amount of cracked gas sent to the reflux tower 15 decreases, the supply amount of the regenerated oil P supplied from the condenser 21 to the upper part of the reflux tower 15 is reduced accordingly.

次いで、熱分解釜11aの温度が430℃を超えた段階で、熱分解釜11aの加熱を停止する。そして、上記した方法で熱分解釜11aの強制冷却を行う。これに先立ち熱分解釜11aの温度が410℃を超えた段階で、凝縮器21から還流塔15上部や、還流塔15から凝縮器12への配管に供給される再生油Pの供給量を停止させる。さらに、貯液タンク18の出口を閉じる。なお、貯液タンクを2つ(貯液タンク18と第2貯液タンク)を用いている場合は、両者間のライン、及び第2貯液タンクの出口を閉じる。
次に、熱分解釜11aが十分に冷却(50℃〜70℃程度)になった段階で、熱分解釜11aの釜底から内部の残渣分を取り出す。
Next, when the temperature of the pyrolysis kettle 11a exceeds 430 ° C., the heating of the pyrolysis kettle 11a is stopped. Then, forced cooling of the pyrolysis pot 11a is performed by the method described above. Prior to this, when the temperature of the pyrolysis vessel 11a exceeds 410 ° C., the supply amount of the regenerated oil P supplied from the condenser 21 to the upper part of the reflux tower 15 and the piping from the reflux tower 15 to the condenser 12 is stopped. Let Further, the outlet of the liquid storage tank 18 is closed. When two liquid storage tanks (the liquid storage tank 18 and the second liquid storage tank) are used, the line between them and the outlet of the second liquid storage tank are closed.
Next, when the pyrolysis kettle 11a is sufficiently cooled (about 50 ° C. to 70 ° C.), an internal residue is taken out from the bottom of the pyrolysis kettle 11a.

ところで、熱分解釜11aの加熱を停止してからこの作業が終わるまでの間に、熱分解釜11aから還流塔15に送られる分解ガスは存在する。この場合、凝縮器21から還流塔15上部への再生油Pの供給は停止しているので、分解ガス中に含まれる高沸成分が十分に分離されず、貯液タンク18まできてしまうことがある。   By the way, there is cracked gas sent from the pyrolysis kettle 11a to the reflux tower 15 after the heating of the pyrolysis kettle 11a is stopped until this operation is completed. In this case, since the supply of the regenerated oil P from the condenser 21 to the upper part of the reflux tower 15 is stopped, the high-boiling components contained in the cracked gas are not sufficiently separated and can reach the liquid storage tank 18. There is.

次に、残渣分の取り出し後、熱分解釜11aの開放部を閉め、廃プラスチックの供給及び熱分解釜11aの加熱を再開する。このとき、貯液タンク18内の再生油Pは、その全量を凝縮器21を介して還流塔15上部へ戻すことが好ましい。これにより、貯液タンク18内の再生油Pに含まれる高沸成分を再度、還流にかけることができる。また、このとき、貯液タンク18の出口は閉じた状態を維持する。なお、貯液タンクを2つ(貯液タンク18と第2貯液タンク)を用いている場合は、両者間のライン及び第2貯液タンクの出口を閉じた状態を維持し、貯液タンク18内の再生油Pの全量が出された後、第2貯液タンク内の再生油Pを貯液タンク18に移液する。貯液タンク18内に液があると、還流塔15等への再生油Pの供給がすぐ可能となる。   Next, after taking out the residue, the open portion of the pyrolysis vessel 11a is closed, and the supply of waste plastic and the heating of the pyrolysis vessel 11a are resumed. At this time, the entire amount of the regenerated oil P in the liquid storage tank 18 is preferably returned to the upper part of the reflux tower 15 via the condenser 21. Thereby, the high-boiling component contained in the regenerated oil P in the liquid storage tank 18 can be subjected to reflux again. At this time, the outlet of the liquid storage tank 18 is kept closed. If two liquid storage tanks are used (the liquid storage tank 18 and the second liquid storage tank), the line between them and the outlet of the second liquid storage tank are kept closed, and the liquid storage tank After the entire amount of the regenerated oil P in 18 is discharged, the regenerated oil P in the second liquid storage tank is transferred to the liquid storage tank 18. If there is a liquid in the liquid storage tank 18, the regenerated oil P can be immediately supplied to the reflux tower 15 and the like.

そして、熱分解釜11aから還流塔15へ分解ガスが行き始めると、貯液タンク18の出口(貯液タンクを2つ(貯液タンク18と第2貯液タンク)を用いている場合は、両者間のライン及び第2貯液タンクの出口)を開き、貯液タンク18に再生油Pがある程度溜まった状態において、凝縮器21から還流塔15上部や、還流塔15から凝縮器12への配管に供給される再生油Pの供給を再開する。   When the cracked gas starts to flow from the thermal decomposition tank 11a to the reflux tower 15, when the outlet of the liquid storage tank 18 (two liquid storage tanks (the liquid storage tank 18 and the second liquid storage tank) are used, The line between them and the outlet of the second liquid storage tank) are opened, and in a state where the regenerated oil P has accumulated to some extent in the liquid storage tank 18, the condenser 21 is connected to the upper part of the reflux tower 15 and from the reflux tower 15 to the condenser 12. The supply of the regenerated oil P supplied to the pipe is resumed.

この発明に係る廃プラスチック油化処理装置を用いると、従来、廃棄、燃焼処理されていた廃プラスチックから再生油を得ることができ、新たなエネルギー源を得ることができる。   When the waste plastic oil treatment apparatus according to the present invention is used, recycled oil can be obtained from waste plastic that has been conventionally discarded and burned, and a new energy source can be obtained.

以下、この発明を実施例を用いてより具体的に説明する。
[実施例1]
図1及び図2に記載のフローを用いて、廃プラスチックの油化処理を行った。
まず、廃プラスチック(ポリエチレン:75重量%、ポリプロピレン:5重量%、ポリスチレン:5重量%)を洗浄装置((株)カネミヤ製:Bun−Sen)にて水洗し、汚れを落とした。次いで、熱分解釜11aの排熱を利用して、70℃〜80℃の温風を得、これを吹きかけ、乾燥させた。
次いで、一軸押出機(石中鉄工所(株)製)の入り口側の投入口に、約400kg/hで投入した。この一軸押出機は、出口側が約260℃となるように温度条件が設定される。
この一軸押出機で溶融された溶融廃プラスチックは熱分解釜11aに連続供給される。この熱分解炉11の熱分解釜11aは、内径が2m、高さが2mの中央部が円柱状、上部及び下部が楕円状であり、下部に燃焼炉11bが配され、これにより熱分解釜11aが加熱される。この熱分解釜11aは、内温が380℃〜440℃となるように調節されている。
Hereinafter, the present invention will be described more specifically with reference to examples.
[Example 1]
Using the flow described in FIG. 1 and FIG.
First, waste plastics (polyethylene: 75% by weight, polypropylene: 5% by weight, polystyrene: 5% by weight) were washed with a cleaning device (manufactured by Kanemiya Co., Ltd .: Bun-Sen) to remove dirt. Next, warm air of 70 ° C. to 80 ° C. was obtained using the exhaust heat of the pyrolysis pot 11a, and this was blown and dried.
Next, it was charged at about 400 kg / h into the inlet on the inlet side of the single screw extruder (manufactured by Ishinaka Iron Works Co., Ltd.). In this single screw extruder, the temperature condition is set so that the outlet side is about 260 ° C.
The molten waste plastic melted by this single screw extruder is continuously supplied to the pyrolysis vessel 11a. The pyrolysis furnace 11a of the pyrolysis furnace 11 has an inner diameter of 2 m and a height of 2 m, a central part is cylindrical, an upper part and a lower part are elliptical, and a combustion furnace 11b is arranged at the lower part. 11a is heated. The pyrolysis pot 11a is adjusted so that the internal temperature becomes 380 ° C to 440 ° C.

熱分解釜11aで溶融廃プラスチックは熱分解されて分解ガスとなり、熱分解釜11aの上方の還流塔15に移動する。この冷却塔は、内径310.5mm、高さ2150.2mmであり、内部には、規則充填物(マツイマシン(株)製:MCパック)が充填される。
この還流塔15内部では、上部で分解ガスの一部が液化し、還流状態が生じる。これは、還流塔15の上部に向かうにしたがって、分解ガスが放冷して温度が下がるためと、後述するように貯液タンク18に貯められた再生油の一部を冷却して、還流塔15上部に供給し、分解ガスと直接接触させるからである。
この還流塔15で液化した分解ガスの液化液は、熱分解釜11aに戻り、再度、熱分解に供与される。一方、液化しなかった分解ガスは、還流塔15の上部より凝縮器12に送られる。この還流塔15から凝縮器12への配管に、上記した貯液タンク18の再生油の一部を冷却したものの一部を供給し、分解ガスを直接に冷却する。
The molten waste plastic is pyrolyzed in the pyrolysis kettle 11a to become cracked gas and moves to the reflux tower 15 above the pyrolysis kettle 11a. This cooling tower has an inner diameter of 310.5 mm and a height of 2150.2 mm, and is filled with a regular packing (manufactured by Matsui Machine Co., Ltd .: MC pack).
Inside the reflux tower 15, a part of the cracked gas is liquefied at the upper part to generate a reflux state. This is because the cracked gas is allowed to cool as it goes to the upper part of the reflux tower 15 and the temperature is lowered. As will be described later, a part of the regenerated oil stored in the liquid storage tank 18 is cooled to return to the reflux tower. This is because it is supplied to the upper part of 15 and brought into direct contact with the cracked gas.
The liquefied liquid of the cracked gas liquefied in the reflux tower 15 returns to the thermal decomposition tank 11a and is again provided for thermal decomposition. On the other hand, the cracked gas that has not been liquefied is sent to the condenser 12 from above the reflux tower 15. A part of the regenerated oil in the liquid storage tank 18 that has been partially cooled is supplied to the pipe from the reflux tower 15 to the condenser 12 to directly cool the cracked gas.

次いで、凝縮器12にて、分解ガスを冷却する。このときの冷媒としては、空気が用いられる。冷媒として用いられた空気は、凝縮器12通過後、80℃程度になるので、前記した熱風乾燥機の熱風の一部として再利用される。
凝縮器12によって冷却された分解ガスは、液化した液化液、冷却用に直接導入された再生油と共に気液分離装置16に導入されて気液が分離され、気体成分は浄化装置(セイコー化工機(株)製:TRS−F20)17に送られ、アンモニア成分は除去され、残りは排気ガスとして外気放出される。
一方、液体成分は、貯液タンク18に送られて、再生油として貯蔵される。この貯蔵された再生油は、製品として使用される。また、この再生油の一部は、凝縮器21で冷却されて、前記したように、還流塔15や還流塔15から凝縮器12への配管に冷却液として供給される。
この再生油は、凝縮器21によって50℃〜120℃の範囲内に冷却して用いられる。また、還流塔15に供給される再生油の量は、130kg/hであり、還流塔15から凝縮器12への配管に供給される再生油の量は、3.07kg/hである。なお、これらの供給は、貯液タンク18に常時貯液されている再生油を用いて必要な時にいつでも供給される。
Next, the decomposition gas is cooled in the condenser 12. Air is used as the refrigerant at this time. Since the air used as the refrigerant reaches about 80 ° C. after passing through the condenser 12, it is reused as part of the hot air of the hot air dryer described above.
The cracked gas cooled by the condenser 12 is introduced into the gas-liquid separation device 16 together with the liquefied liquefied liquid and the regenerated oil directly introduced for cooling, and the gas-liquid is separated, and the gas component is purified by a purification device (Seiko Chemical Industries). Co., Ltd .: TRS-F20) 17 is sent, the ammonia component is removed, and the remainder is discharged to the outside as exhaust gas.
On the other hand, the liquid component is sent to the liquid storage tank 18 and stored as recycled oil. This stored reclaimed oil is used as a product. A part of the regenerated oil is cooled by the condenser 21 and supplied as a cooling liquid to the reflux tower 15 and the piping from the reflux tower 15 to the condenser 12 as described above.
This regenerated oil is cooled by the condenser 21 within a range of 50 ° C. to 120 ° C. and used. The amount of regenerated oil supplied to the reflux tower 15 is 130 kg / h, and the amount of regenerated oil supplied to the pipe from the reflux tower 15 to the condenser 12 is 3.07 kg / h. These supplies are supplied whenever necessary using regenerated oil that is always stored in the storage tank 18.

これらの流れで再生油を製造し、再生油のうち、初留分(貯液タンク18に最初に溜まる100リットル分。また、再生油の還流塔15及び還流塔15から凝縮器12への配管への供給は始まっていない。)、中留分(貯液タンク18に溜まる量が400リットル〜800リットルの範囲内の留分。)について、留分中の組成を調べた。その結果を表1に示す。   Recycled oil is produced by these flows, and the first fraction of the regenerated oil (100 liters first accumulated in the liquid storage tank 18. Also, the recycle oil reflux tower 15 and the piping from the reflux tower 15 to the condenser 12. The composition in the distillate was examined for the middle distillate (the distillate in the range of 400 liters to 800 liters). The results are shown in Table 1.

なお、参考例1として、灯油の組成を調べたので、併せて示す。   In addition, since the composition of kerosene was investigated as the reference example 1, it shows together.

[比較例1〜4]
実施例1において、熱分解釜11aの内温を変更し、還流塔15を用いず、貯液タンク18中の再生油を還流塔15及び還流塔15から凝縮器12への配管に供給するのを取りやめた以外は、実施例1と同様にして、再生油を製造した。
熱分解釜11aの内温を380℃(比較例1)、390℃(比較例2)、400℃(比較例3)、410℃(比較例4)に変更したときのそれぞれの中留分について組成を調べた。その結果を表1に示す。
[Comparative Examples 1-4]
In the first embodiment, the internal temperature of the pyrolysis vessel 11a is changed, and the regenerated oil in the liquid storage tank 18 is supplied to the reflux tower 15 and the piping from the reflux tower 15 to the condenser 12 without using the reflux tower 15. A regenerated oil was produced in the same manner as in Example 1 except that the oil was removed.
About each middle distillate when the internal temperature of the pyrolysis pot 11a is changed to 380 ° C. (Comparative Example 1), 390 ° C. (Comparative Example 2), 400 ° C. (Comparative Example 3), 410 ° C. (Comparative Example 4) The composition was examined. The results are shown in Table 1.

なお、表1において、「ナフサ分」とは炭素数5〜9の成分をいい、「灯・軽油分」とは炭素数10〜17の成分をいい、「重油分」とは炭素数18〜21の成分をいい、「ワックス分」とは炭素数22以上の成分をいう。
また、表1において、「流動点」とは、当該留分が流動性を示す温度をいう。
In Table 1, “naphtha” means a component having 5 to 9 carbon atoms, “lamp / light oil” means a component having 10 to 17 carbon atoms, and “heavy oil” means 18 to 18 carbon atoms. 21 refers to a component having a carbon number of 22 or more.
In Table 1, “pour point” refers to the temperature at which the fraction exhibits fluidity.

Figure 2016060799
Figure 2016060799

(結果)
実施例1の中留分と比較例4(中留分)との対比から、還流塔を使用する実施例1では、ワックス分が2.7重量%と、ワックス分の再生油への混入を抑制できることが明らかとなった。
また、各比較例の流動点から明らかなように、還流塔を使用しない場合は、熱分解釜内が390℃以上になると、ワックス分の留出が増大し、流動点が8.0℃以上となり、固化しやすくなることが明らかとなった。一方、実施例1においては、熱分解釜内が410℃であるのにもかかわらず、ワックス分が少なく、流動点が−10℃未満で、固化しにくく、装置内のワックスの固化による汚れの付着が生じにくいことがわかった。
(result)
From the comparison between the middle distillate of Example 1 and Comparative Example 4 (middle distillate), in Example 1 using the reflux tower, the wax content was 2.7% by weight, and the wax content was mixed into the recycled oil. It became clear that it could be suppressed.
Further, as apparent from the pour point of each comparative example, when the reflux tower is not used, when the inside of the pyrolysis kettle reaches 390 ° C. or higher, the distillation of the wax increases, and the pour point becomes 8.0 ° C. or higher. It became clear that it became easy to solidify. On the other hand, in Example 1, despite the fact that the inside of the pyrolysis kettle is 410 ° C., the wax content is small and the pour point is less than −10 ° C. It was found that adhesion was difficult to occur.

11 熱分解炉
11a 熱分解釜
11b 燃焼炉
12 凝縮器
13 洗浄・乾燥工程
14 液化工程
15 還流塔
16 気液分離装置
17 浄化装置
18 貯液タンク
21 凝縮器
22 凝縮器
M 廃プラスチック
P 再生油
DESCRIPTION OF SYMBOLS 11 Pyrolysis furnace 11a Pyrolysis pot 11b Combustion furnace 12 Condenser 13 Washing and drying process 14 Liquefaction process 15 Reflux tower 16 Gas-liquid separation apparatus 17 Purification apparatus 18 Liquid storage tank 21 Condenser 22 Condenser M Waste plastic P Recycled oil

Claims (6)

廃プラスチックを熱分解して分解ガスを生成する熱分解釜、及び熱分解釜で得られた分解ガスを冷却して液化させ、再生油を得る凝縮器を有する廃プラスチック油化処理装置であり、
前記熱分解釜の上方に、この熱分解釜で得られた分解ガスを還流させる還流塔を設け、前記分解ガス内の高沸成分を前記熱分解釜に戻す廃プラスチック油化処理装置。
It is a waste plastic oil processing apparatus having a condenser that thermally decomposes waste plastic to generate cracked gas, and a condenser that cools and liquefies the cracked gas obtained in the thermal cracking pot to obtain recycled oil,
A waste plastic oil processing apparatus for providing a reflux tower for refluxing the cracked gas obtained in the pyrolysis kettle above the pyrolysis kettle, and returning high boiling components in the cracked gas to the pyrolysis kettle.
前記凝縮器で得られる再生油の一部を冷却し、前記還流塔、前記還流塔と前記凝縮器との間の配管の少なくとも一方に戻す請求項1に記載の廃プラスチック油化処理装置。   The waste plastic oil treatment apparatus according to claim 1, wherein a part of the regenerated oil obtained in the condenser is cooled and returned to at least one of the reflux tower and a pipe between the reflux tower and the condenser. 前記熱分解釜は、この熱分解釜の内部ガスを冷却するための冷却部が連結され、
この冷却部は、前記熱分解釜の内部ガスを冷却するための凝縮器、前記熱分解釜の内部ガスを前記凝縮器に送るための導出ライン、及び前記凝縮器で冷却された前記内部ガスを前記熱分解釜に戻す導入ラインを有する請求項1又は2に記載の廃プラスチック油化処理装置。
The pyrolysis kettle is connected to a cooling unit for cooling the internal gas of the pyrolysis kettle,
The cooling unit includes a condenser for cooling the internal gas of the pyrolysis kettle, a lead-out line for sending the internal gas of the pyrolysis kettle to the condenser, and the internal gas cooled by the condenser. The waste plastic oil converting apparatus according to claim 1 or 2, further comprising an introduction line for returning to the pyrolysis kettle.
熱分解釜に溶融した廃プラスチックを供給し、
この熱分解釜で前記溶融廃プラスチックを熱分解し、
前記熱分解で得られた分解ガスを、前記熱分解釜の上方に設けられた還流塔に送って還流させ、
前記還流塔から出た分解ガスを凝縮器で冷却して再生油を得る、廃プラスチックから再生油を製造する方法。
Supply molten plastic to the pyrolysis kettle,
The molten waste plastic is pyrolyzed with this pyrolysis kettle,
The cracked gas obtained by the pyrolysis is sent to a reflux tower provided above the pyrolysis kettle to be refluxed,
A method for producing recycled oil from waste plastic, wherein the cracked gas from the reflux tower is cooled by a condenser to obtain recycled oil.
前記凝縮器で得られる再生油の一部を冷却し、前記還流塔、前記還流塔と前記凝縮器との間の配管の少なくとも一方に戻して、前記還流塔内の分解ガス、又は前記配管内の分解ガスと直接接触させる請求項3に記載の廃プラスチックから再生油を製造する方法。   A part of the regenerated oil obtained in the condenser is cooled and returned to at least one of the reflux tower and the pipe between the reflux tower and the condenser, and the cracked gas in the reflux tower, or in the pipe A method for producing reclaimed oil from waste plastics according to claim 3, which is brought into direct contact with the cracked gas. 前記再生油を得る際に、前記熱分解釜に蓄積する残渣分を取り除くため、
前記熱分解釜の加熱を一時停止し、
前記熱分解釜の内部ガスを導出ラインを経由して凝縮器に送り、
前記凝縮器で前記内部ガスを冷却し、
冷却した前記内部ガスを導入ラインを経由して前記熱分解釜に戻すことにより、前記熱分解釜内部を冷却させる請求項4又は5に記載の廃プラスチックから再生油を製造する方法。
When removing the reclaimed oil, in order to remove the residue accumulated in the pyrolysis kettle,
Temporarily stops heating the pyrolysis kettle,
Send the internal gas of the pyrolysis kettle to the condenser via the outlet line,
Cooling the internal gas with the condenser;
The method for producing recycled oil from waste plastic according to claim 4 or 5, wherein the inside of the pyrolysis kettle is cooled by returning the cooled internal gas to the pyrolysis kettle via an introduction line.
JP2014188981A 2014-09-17 2014-09-17 Waste plastic oil processing equipment Active JP6129801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014188981A JP6129801B2 (en) 2014-09-17 2014-09-17 Waste plastic oil processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014188981A JP6129801B2 (en) 2014-09-17 2014-09-17 Waste plastic oil processing equipment

Publications (2)

Publication Number Publication Date
JP2016060799A true JP2016060799A (en) 2016-04-25
JP6129801B2 JP6129801B2 (en) 2017-05-17

Family

ID=55797056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014188981A Active JP6129801B2 (en) 2014-09-17 2014-09-17 Waste plastic oil processing equipment

Country Status (1)

Country Link
JP (1) JP6129801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021178939A (en) * 2020-05-15 2021-11-18 株式会社リサイクルエナジー Apparatus for converting waste plastic into oil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931473A (en) * 1995-07-20 1997-02-04 Hitachi Ltd Liquefaction of waste plastic and electric power system
JPH1088148A (en) * 1996-09-11 1998-04-07 Hitachi Ltd System for conversion of waste plastic into oil and system for conversion into oil and power generation
JPH1180748A (en) * 1997-09-11 1999-03-26 Hitachi Ltd Production of oil from waste plastics
JP2004018563A (en) * 2002-06-12 2004-01-22 Toshiba Corp Apparatus for disposal of waste plastic
JP2011246607A (en) * 2010-05-27 2011-12-08 Kimtec:Kk Liquefaction system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931473A (en) * 1995-07-20 1997-02-04 Hitachi Ltd Liquefaction of waste plastic and electric power system
JPH1088148A (en) * 1996-09-11 1998-04-07 Hitachi Ltd System for conversion of waste plastic into oil and system for conversion into oil and power generation
JPH1180748A (en) * 1997-09-11 1999-03-26 Hitachi Ltd Production of oil from waste plastics
JP2004018563A (en) * 2002-06-12 2004-01-22 Toshiba Corp Apparatus for disposal of waste plastic
JP2011246607A (en) * 2010-05-27 2011-12-08 Kimtec:Kk Liquefaction system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021178939A (en) * 2020-05-15 2021-11-18 株式会社リサイクルエナジー Apparatus for converting waste plastic into oil
JP7145524B2 (en) 2020-05-15 2022-10-03 株式会社リサイクルエナジー Waste plastic oil processing equipment

Also Published As

Publication number Publication date
JP6129801B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP7082763B2 (en) A method for distilling dimethyl sulfoxide and a multi-stage distillation column.
CN104449880B (en) A kind of raw gas purifying method and device
JP6100223B2 (en) Waste plastic oil processing equipment
CN102439122A (en) Method and system for performing chemical processes
KR101076023B1 (en) Recycling equipment and method of waste electric-wire using electricity
KR101239519B1 (en) Apparatus for making regenerated oil from waste plastics using waste oil
JP2023551908A (en) Plastic waste depolymerization process
JP6129801B2 (en) Waste plastic oil processing equipment
JP4768920B2 (en) Thermal decomposition of waste plastic
JP6982764B2 (en) How to treat filtered rolling oil and filter media
CN202450059U (en) High-temperature gas purifying and recovering unit
JP4117244B2 (en) Waste plastic oil processing equipment
JP2012012459A (en) Treatment apparatus for waste and method for treating waste
JP7005042B2 (en) Waste plastic oil treatment equipment
JP4644172B2 (en) Thermal decomposition method for waste tires
JP2009084543A (en) Waste plastic liquefying apparatus
CN109701363A (en) A method of methanol in recycling low temperature washing device for methanol sour gas
KR101684034B1 (en) Method and device for regenerating fuel oil from plastics and vinyls wastes
CN103666513A (en) High-dust-content coal tar separation and upgrading purification process and system
JP2014189599A (en) Cooling method of coke oven gas
JP2009240920A (en) Method and apparatus for condensation of gas
JP4286557B2 (en) Oil processing equipment for waste plastic containing PET
JP7145524B2 (en) Waste plastic oil processing equipment
CN205254032U (en) Sand control dewaxing stove that splashes
CN105237441B (en) A kind of apparatus and method for reclaiming Loprazolam

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6129801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250