JP2016057032A - 吸収式冷凍システム - Google Patents

吸収式冷凍システム Download PDF

Info

Publication number
JP2016057032A
JP2016057032A JP2014185947A JP2014185947A JP2016057032A JP 2016057032 A JP2016057032 A JP 2016057032A JP 2014185947 A JP2014185947 A JP 2014185947A JP 2014185947 A JP2014185947 A JP 2014185947A JP 2016057032 A JP2016057032 A JP 2016057032A
Authority
JP
Japan
Prior art keywords
storage tank
heat
cold water
absorption
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014185947A
Other languages
English (en)
Inventor
義裕 市野
Yoshihiro Ichino
義裕 市野
正登 小粥
Masato Kokayu
正登 小粥
元巳 稲垣
Motomi Inagaki
元巳 稲垣
児玉 充
Mitsuru Kodama
充 児玉
陽祐 山田
Yosuke Yamada
陽祐 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2014185947A priority Critical patent/JP2016057032A/ja
Priority to CN201510579008.2A priority patent/CN105423590B/zh
Publication of JP2016057032A publication Critical patent/JP2016057032A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

【課題】吸収式冷凍システムが保有する熱を無駄なく有効に利用して、エネルギー消費の抑制を図ることができる吸収式冷凍システムを提供する。
【解決手段】吸収式冷凍システム1は、吸収式冷凍機21と、吸収式冷凍機21の再生器を加熱するための熱媒を供給する蓄熱槽12と、吸収式冷凍機21の凝縮器及び吸収器に冷却水を供給する冷却塔25と、冷熱を蓄冷する蓄冷槽45と、吸収式冷凍機21・蓄熱槽12・冷却塔25・蓄冷槽45・室内機41についての熱移動を制御するシステムコントローラ50と、を有している。ここで、システムコントローラ50は、吸収式冷凍システム1の条件及びこれを取り巻く環境条件に基づいて、エネルギー消費が少ない制御方法を選択して室内機41に冷水を供給する。
【選択図】図1

Description

本発明は、吸収式冷凍システムに関する。
従来より、蒸発器、吸収器、再生器及び凝縮器による循環サイクルによって外部機器にて使用される冷水を得る吸収式冷凍機が知られている(例えば特許文献1参照)。この吸収式冷凍機を備える吸収式冷凍システムでは、吸収式冷凍機の再生器に熱媒を供給する蓄熱槽を備えており、種々のエンジンなどの排ガス、ボイラーの蒸気、あるいは太陽熱を利用して蓄熱槽への蓄熱を行うことができる。また、この吸収式冷凍システムでは、吸収式冷凍機に入力される熱の無駄を抑制するため、外部機器の運転要求がない場合には、吸収式冷凍機からの冷水を蓄冷槽に導き、蓄冷槽に蓄冷するといったことも行われている。
特開2014−035139号公報
上述のように吸収式冷凍システムでは、温熱や冷熱を保有しているため、これらの熱を無駄なく有効に利用することで、エネルギー消費の抑制に繋がるシステムの構築が望まれている。
本発明はかかる事情に鑑みてなされたものであり、その目的は、吸収式冷凍システムが保有する熱を無駄なく有効に利用して、エネルギー消費の抑制を図ることができる吸収式冷凍システムを提供することである。
かかる課題を解決するために、本発明は、冷水を利用して運転する外部機器に冷却した冷水を供給する吸収式冷凍システムを提供する。この吸収式冷凍システムは、蒸発器、吸収器、再生器及び凝縮器による循環サイクルによって冷水を生成する吸収式冷凍機と、吸収式冷凍機の再生器を加熱するための熱媒を供給する蓄熱槽と、吸収式冷凍機の凝縮器及び吸収器に冷却水を供給する冷却塔と、冷熱を蓄冷する蓄冷槽と、収式冷凍機・蓄熱槽・冷却塔・蓄冷槽・外部機器についての熱移動を制御するコントローラとを有している。そして、コントローラは、システム条件及び環境条件に基づいて、エネルギー消費が少ない制御方法を選択して外部機器に冷水を供給する。
ここで、本発明において、コントローラは、選択可能な制御方法として、外気を導入して運転するために外部機器に冷水を供給しない第1の制御方法と、冷却塔から供給される冷却水を利用するフリークーリングを用いて外部機器に冷水を供給する第2の制御方法と、蓄冷槽の冷熱を用いて外部機器に冷水を供給する第3の制御方法と、吸収式冷凍機を用いて外部機器に冷水を供給する第4の制御方法とを、有していることが好ましい。そして、コントローラは、第1の制御方法から昇順に制御方法の適否を判定して、適当と判定された制御方法を選択することが好ましい。
また、本発明において、蓄熱槽は、太陽熱集熱器により集熱された熱を蓄熱するものであり、吸収式冷凍システムは、蓄熱槽を加熱する補助ボイラーをさらに有していてもよい。この場合、コントローラは、選択可能な制御方法として、補助ボイラーにより蓄熱槽を加熱しつつ、吸収式冷凍機を用いて外部機器に冷水を供給する第5の制御方法をさらに有することが望ましい。
また、本発明において、コントローラは、外部機器の運転要求がない場合には、吸収式冷凍機を用いて蓄冷槽に冷水を供給して当該蓄冷槽の蓄冷を行うことが望ましい。
本発明によれば、エネルギー消費が少ない制御方法を選択することで、吸収式冷凍システムが保有する熱を無駄なく有効に利用することができる。これにより、システム全体のエネルギー消費の抑制を図ることができる。
吸収式冷凍システムを模式的に示す構成図 吸収式冷凍機の一例を示す概略構成図 吸収式冷凍システムの制御方法を示すフローチャート 吸収式冷凍システムの制御方法を示すフローチャート 第1システムにおける集熱ポンプの動作フローチャート 補助ボイラー燃焼要求信号の出力制御の手順を示すフローチャート 補助ボイラーの運転制御の手順を示すフローチャート 第2の実施形態に係る吸収式冷凍システムの変形例を模式的に示す構成図
(第1の実施形態)
図1は、本実施形態に係る吸収式冷凍システム1を模式的に示す構成図である。本実施形態に係る吸収式冷凍システム1は、太陽熱を利用して吸収式冷凍機21の希溶液を加熱するものであり、第1システム10と、第2システム20と、第3システム40と、システムコントローラ50とを備えている。
第1システム10は、太陽熱を蓄熱するシステムであり、太陽熱集熱器11と、蓄熱槽12と、集熱流路13と、集熱ポンプ14と、補助ボイラー16とを備えている。
太陽熱集熱器11は、太陽光を受光することで熱媒を加熱するものであって、例えば屋根の上などの太陽光を受光し易い位置に設置される。熱媒には、水、不凍液(例えばプロピレングリコール水溶液)などが用いられる。
蓄熱槽12は、太陽熱集熱器11によって集熱した熱を蓄熱するものであり、例えば太陽熱集熱器11にて加熱された熱媒を内部に貯留するタンクである。
集熱流路13は、太陽熱集熱器11から蓄熱槽12を経て再度太陽熱集熱器11に熱媒を循環させる配管である。この集熱流路13のうち、蓄熱槽12から太陽熱集熱器11に向かう流路を第1集熱流路13aと称し、太陽熱集熱器11から蓄熱槽12に向かう流路を第2集熱流路13bと称する。
集熱ポンプ14は、第1集熱流路13aに設けられており、熱媒を循環させる動力源となるものである。
本実施形態では、集熱方式は直接集熱式であり、集熱流路13にて太陽熱集熱器11と蓄熱槽12との間を循環する熱媒と、後述する熱媒流路22にて蓄熱槽12と吸収式冷凍機21との間を循環する熱媒とを共用している。しかしながら、集熱方式を間接集熱式とし、集熱流路13にて太陽熱集熱器11と蓄熱槽12との間を循環する熱媒と、熱媒流路22にて蓄熱槽12と吸収式冷凍機21との間を循環する熱媒とを分離して使用するものでもよい。この場合、蓄熱槽12は熱交換器を備えるものとし、集熱流路13を介して循環する熱媒を熱交換器に流して蓄熱槽12を加熱することができる。
補助ボイラー16は、蓄熱槽12の熱媒を強制的に加熱するものである。循環流路15は、蓄熱槽12から補助ボイラー16を経て再度蓄熱槽12へと熱媒を循環させる配管である。循環流路15には、熱媒を補助ボイラー16と蓄熱槽12との間で循環させる補助ボイラー循環ポンプ17が設けられている。
第2システム20は、後述する室内機41にて使用される又は蓄冷槽45にて蓄冷される冷水を得るためのものであり、吸収式冷凍機21と、熱媒流路22と、熱媒ポンプ23と、熱交換器29とを備えている。なお、本実施形態では、室内機41又は蓄冷槽45に冷水を利用するものであるが、冷水に限らず、その他の冷媒を利用するものでもよい。
図2は、吸収式冷凍機21の一例を示す概略構成図である。吸収式冷凍機21は、再生器における希溶液を加熱し、当該再生器、凝縮器、蒸発器及び吸収器の循環サイクルによって冷水を得るものである。吸収式冷凍機21は、再生器101、凝縮器102、蒸発器103及び吸収器104で構成されている。また、吸収式冷凍機21には、冷却塔25と、冷却水流路26とが組み合わされている。
再生器101は、冷媒(例えば水)と、吸収液となる臭化リチウム(LiBr)とが混合された希溶液(吸収液の濃度が低い溶液)を加熱するものである。以下、冷媒が蒸気化したものを「冷媒蒸気」といい、冷媒が液化したものを「液冷媒」という。この再生器101には熱媒流路22が配置されており、熱媒流路22上に希溶液が散布され加熱される。再生器101は、加熱により希溶液から蒸気を放出させることにより、冷媒蒸気と濃溶液(吸収液の濃度が高い溶液)とを生成する。
凝縮器102は、再生器101から供給された冷媒蒸気を液化させるものである。この凝縮器102内には、冷却塔25で冷却された冷却水が流通する伝熱管102aが設けられている。この伝熱管102aには、冷却水が伝熱管102aと冷却塔25との間を循環できるように冷却水流路26が連結されている。蒸発した冷媒蒸気は伝熱管102a内の冷却水によって液化する。凝縮器102にて液化した液冷媒は蒸発器103に供給される。
蒸発器103は、液冷媒を蒸発させるものである。この蒸発器103内には、室内機41に接続される冷水流路42が設けられている。この冷水流路42には、室内機41によって暖められた冷水が流れている。また、蒸発器103内は、真空状態となっている。このため、冷媒である水の蒸発温度は約5℃となる。よって、冷水流路42上に散布された液冷媒は冷水流路42の温度によって蒸発することとなる。一方、冷水流路42内の冷水は、液冷媒の蒸発によって温度が奪われる。これにより、冷水流路42内を流れる冷水は冷却され、この冷却された冷水が室内機41に供給される。
吸収器104は、蒸発器103において蒸発した冷媒を吸収するものである。再生器101から濃溶液が供給され、蒸発した冷媒は濃溶液によって吸収され、希溶液が生成される。この吸収器104内には、冷却塔25で冷却された冷却水が流通する伝熱管104aが設けられている。この伝熱管104aには、冷却水が伝熱管104aと冷却塔25との間を循環できるように冷却水流路26が連結されている。濃溶液の冷媒の吸収により生じる吸収熱は、伝熱管104aを流通する冷却水により除去される。冷媒の吸収により濃度が低下した希溶液は、ポンプ104bによって再生器101に供給される。なお、伝熱管104aは、冷却塔25の冷却水を凝縮器102とで共用するために、凝縮器102の伝熱管102aと接続されている。
冷却塔25は、冷却水を吸収式冷凍機21に供給するとともに、吸収式冷凍機21によって暖められた冷却水を冷却するものである。冷却塔25は、例えば底部に冷却水を収容する槽を有している。この槽にはフロートの上下によって給水が行われ、当該槽は一定の量の冷却水を貯留する。また、冷却塔25は、その上部に、ファンと当該ファンの下方に配置される熱交換部とを有している。吸収式冷凍機21から戻ってきた冷却水は熱交換部に散布され、熱交換部を通過することで冷却される。当該熱交換部により冷却された冷却水は槽に貯留される。
冷却水流路26は、冷却塔25から吸収式冷凍機21の吸収器104及び凝縮器102を経て再度冷却塔25に冷却水を循環させる配管である。このうち、冷却塔25から吸収式冷凍機21に向かう流路を第1冷却水流路26aと称し、吸収式冷凍機21から冷却塔25に向かう流路を第2冷却水流路26bと称する。
第1冷却水流路26aは、冷却塔25の底部(槽の底部分)に連結されており、この第1冷却水流路26aには冷却水ポンプ27が設けられている。冷却水ポンプ27は、冷却水を循環させる動力源となるものである。第2冷却水流路26bは、冷却塔25の上部(ファンと熱交換部との間)に連結されている。
さらに、吸収式冷凍機21は、制御部105を備えている。この制御部105はCPU(Central Processing Unit)を備え、使用者からの空調要求(室内機41の運転要求)に応じて、吸収式冷凍機21の運転を制御するものである。
吸収式冷凍機21を運転する場合、制御部105は、吸収式冷凍機21の内部に設けられている冷水出口温度センサから得られる冷水出口温度に基づいて吸収式冷凍機21の制御を行う。具体的には、制御部105には、通常冷房運転時における温調停止温度と温調開始温度とが記憶されている(通常、温調停止温度<温調開始温度)。制御部105は、冷水出口温度が温調停止温度以下になると、その運転を一時停止させ(温調停止)、冷水出口温度が温調開始温度以上となると、温調停止を解除してその運転を再開する。なお、一時停止中において後述する冷水ポンプ43は動作しており、冷水は循環させられている。
再び図1を参照するに、熱媒流路22は、蓄熱槽12から吸収式冷凍機21の再生器101を経て再度蓄熱槽12に熱媒を循環させる配管である。このうち、蓄熱槽12から吸収式冷凍機21の再生器101に向かう流路を第1熱媒流路22aと称し、吸収式冷凍機21の再生器101から蓄熱槽12に向かう流路を第2熱媒流路22bと称する。
熱媒ポンプ23は、熱媒流路22のうち第1熱媒流路22aに設けられており、熱媒を循環させる動力源となるものである。
熱交換器29は、室内機41に供給される冷水と冷却塔25で冷却された冷却水との間で熱交換を行い、室内機41に供給される冷水を冷却するものである(フリークーリング)。この熱交換器29内には、分岐冷却水流路28及び後述する冷水流路42が設けられている。
分岐冷却水流路28は、第1冷却水流路26aを流れる冷却水を、熱交換器29を経由して第2冷却水流路26bに戻す配管である。この分岐冷却水流路28のうち、第1冷却水流路26aから熱交換器29に向かう流路を第1分岐冷却水流路28aと称し、熱交換器29から第2冷却水流路26bに向かう流路を第2分岐冷却水流路28bと称する。
第1冷却水流路26aから第1分岐冷却水流路28aに分岐する分岐点には、第1切替弁30が設けられている。第1切替弁30は、三方弁であり、冷却塔25から供給される冷却水を吸収式冷凍機21に供給するルートと、熱交換器29に供給するルートとを切り替えることができる。
第3システム40は、冷水を室内機41に供給するものであり、一つ以上(例えば3つ)の室内機41と、冷水流路42と、冷水ポンプ43と、蓄冷槽45とで構成されている。
個々の室内機41は、室内に設けられている。個々の室内機41は、使用者からの空調要求に応じて、冷房運転を行う空調機である。この冷房運転において、個々の室内機41は、室内機41に供給される冷水と室内から取り込んだ空気との間で熱交換を行い、冷水によって空気を冷却し、冷却した空気を室内に送風する。
冷水流路42は、室内機41から吸収式冷凍機21の蒸発器103を経て再度室内機41に冷水を循環させる配管であり、個々の室内機41は並列的に接続されている。
このうち、室内機41から吸収式冷凍機21の蒸発器103に向かう流路を第1冷水流路42aと称し、吸収式冷凍機21の蒸発器103から室内機41に向かう流路を第2冷水流路42bと称する。
冷水ポンプ43は、冷水流路42のうち第1冷水流路42aに設けられており、冷水を循環させる動力源となるものである。
蓄冷槽45は、吸収式冷凍機21によって冷却された冷水を通じて蓄冷するものであり、例えば吸収式冷凍機21にて冷却された冷水を内部に貯留するタンクである。なお、蓄冷槽45は、導入した冷水の冷熱を蓄冷材により蓄冷するものでもよい。この場合、蓄冷材料は、例えば水とゲル剤(天然高分子)との混合物を用いることができるが、特にこれに限られるものではない。また、蓄冷槽45が冷水を流通させる熱交換器を備えるタイプのものであってもよい。
蓄冷槽45には、分岐冷水流路44が設けられている。この分岐冷水流路44は、冷水流路42を流れる冷水を蓄冷槽45を経由して再度冷水流路42に戻す配管である。このうち、第2冷水流路42bから蓄冷槽45に向かう流路を第1分岐冷水流路44aと称し、蓄冷槽45から第1冷水流路42aに向かう流路を第2分岐冷水流路44bと称する。また、分岐冷水流路44には、第2分岐冷水流路44bを流れる冷水を第2冷水流路42bに戻す第3分岐冷水流路44cが含まれている。
第2冷水流路42bから第1分岐冷水流路44aに分岐する分岐点には、第2切替弁46が設けられている。第2切替弁46は、三方弁であり、吸収式冷凍機21から供給される冷水を蓄冷槽45に供給するルートと、室内機41に供給するルートとを切り替えることができる。
また、第2分岐冷水流路44bから第3分岐冷水流路44cに分岐する分岐点には、第3切替弁47が設けられている。第3切替弁47は、三方弁であり、蓄冷槽45から供給される冷水を室内機41(第2冷水流路42b)に供給するルートと、吸収式冷凍機21(第1冷水流路42a)に戻すルートとを切り替えることができる。
システムコントローラ50は、吸収式冷凍システム1全体の制御を司るものである。システムコントローラ50には、制御入力として、各種センサ等からの信号が入力されている。システムコントローラ50は、制御入力に基づいて各種の演算を行い、この演算結果に従った制御出力を吸収式冷凍システム1の各部に出力する。システムコントローラ50としては、CPU、ROM、RAM、I/Oインターフェースを主体に構成されたマイクロコンピュータを用いることができる。
蓄熱槽温度センサ51は、蓄熱槽12の温度を検出するセンサであり、蓄熱槽12の温度に応じた信号をシステムコントローラ50に出力する。集熱器出口温度センサ52は、太陽熱集熱器11から流出した熱媒の温度(集熱器出口温度)を検出するセンサであり、集熱器出口温度に応じた信号をシステムコントローラ50に出力する。
室内機入口温度センサ53は、吸収式冷凍機21から室内機41に供給される冷水の温度(室内機入口温度)を検出するセンサであり、室内機入口温度に応じた信号をシステムコントローラ50に出力する。室内機出口温度センサ54は、室内機41から吸収式冷凍機21に戻る冷水の温度(室内機出口温度)を検出するセンサであり、室内機出口温度に応じた信号をシステムコントローラ50に出力する。
外気温センサ55は、外気温を検出するセンサであり、外気温に応じた信号をシステムコントローラ50に出力する。湿球温度センサ56は、湿球温度を検出するセンサであり、湿球温度に応じた信号をシステムコントローラ50に出力する。蓄冷槽温度センサ57は、蓄冷槽45の温度を検出するセンサであり、蓄冷槽45の温度に応じた信号をシステムコントローラ50に出力する。
本実施形態の特徴の一つとして、システムコントローラ50は、吸収式冷凍機21、蓄熱槽12、冷却塔25、蓄冷槽45、室内機41についての熱移動を制御する。そして、システムコントローラ50は、吸収式冷凍システム1の条件(システム条件)及びこれを取り巻く環境の条件(環境条件)に基づいて、エネルギー消費が少ない制御方法を選択して室内機41に冷水を供給する。
図3及び図4は、吸収式冷凍システム1の制御方法を示すフローチャートである。このフローチャートに示す処理は、所定の周期で呼び出されシステムコントローラ50により実行される。
まず、ステップ10(S10)において、システムコントローラ50は、室内機41に対する空調要求があるか否かを判断する。空調要求がない場合には、ステップ10において否定判定され、ステップ11(S11)の処理に進む。一方、空調要求がある場合には、ステップ10において肯定判定され、ステップ15(S15)の処理に進む。
ステップ11において、システムコントローラ50は、蓄熱槽12の温度が起動判定温度T0よりも大きいか否かを判断する。ここで、起動判定温度T0は、吸収式冷凍機21を起動することができないと判断する蓄熱槽12の温度の上限値を示すものであり、予め設定されている。蓄熱槽12の温度が起動判定温度T0よりも大きい場合には、ステップ11において肯定判定され、ステップ12(S12)に進む。一方、蓄熱槽12の温度が起動判定温度T0以下の場合には、ステップ11において否定判定され、ステップ14(S14)に進む。
ステップ12おいて、システムコントローラ50は、蓄冷槽45の温度が冷房可能温度T1よりも小さいか否かを判断する。ここで、冷房可能温度T1は、蓄冷槽45からの冷水により室内機41の冷房運転を行うことができないと判断する蓄冷槽45の温度の下限値を示すものであり、予め設定されている。蓄冷槽45の温度が冷房可能温度T1以上の場合には、ステップ12において否定判定され、ステップ13(S13)に進む。一方、蓄冷槽45の温度が冷房可能温度T1よりも小さい場合には、ステップ12において肯定判定され、ステップ14に進む。
ステップ13において、システムコントローラ50は、吸収式冷凍機21を運転させて蓄冷槽45に冷熱を蓄冷する。具体的には、システムコントローラ50は、吸収式冷凍機21の制御部105に対して運転指令を出力し、吸収式冷凍機21を運転する。また、システムコントローラ50は、熱媒ポンプ23、冷却水ポンプ27及び冷水ポンプ43に運転指令を出力し、これらのポンプ23,27,43を運転する。さらに、システムコントローラ50は、第2切替弁46を制御して、吸収式冷凍機21から供給される冷水を蓄冷槽45に供給するルートを設定するとともに、第3切替弁47を制御して、蓄冷槽45から供給される冷水を吸収式冷凍機21に戻すルートを設定する。第2切替弁46及び第3切替弁47の制御により、吸収式冷凍機21と蓄冷槽45との間を冷水が循環することとなる。そして、本処理を終了する(RETURN)。
ステップ14において、システムコントローラ50は、吸収式冷凍機21による蓄冷槽45への蓄冷を終了する。具体的には、システムコントローラ50は、吸収式冷凍機21の制御部105に対して休止指令を出力し、吸収式冷凍機21の運転を休止する。また、システムコントローラ50は、熱媒ポンプ23、冷却水ポンプ27及び冷水ポンプ43に停止指令を出力し、これらのポンプ23,27,43の運転を停止する。
ステップ15において、システムコントローラ50は、現在の時刻が夜間に該当するか否かを判定する。夜間となる時間帯は、例えば午後6時から午前6時までの時間帯等として予め定められている。この時間帯は、夏季と冬季といったように季節に応じて異なる時間帯に設定することも可能である。
現在の時刻が夜間に該当する場合には、ステップ15において肯定判定され、ステップ16(S16)に進む。一方、現在の時刻が夜間でない日中である場合には、ステップ15において否定判定され、ステップ21(S21)に進む。
ステップ16において、システムコントローラ50は、外気温が低温判定値よりも低いか否かを判断する。低温判定値は、外気導入による室内機41の冷房運転が可能な程度に外気温が低いか否かを判定する温度であり、予め設定されている。外気温が低温判定値よりも低い場合には、ステップ16において肯定判定され、ステップ17(S17)に進む。一方、外気温が低温判定値以上である場合には、ステップ16において否定判定され、ステップ18(S18)に進む。
ステップ17において、システムコントローラ50は、外気導入による室内機41の冷房運転を指令する。この場合、個々の室内機41は、外気を室内に送風する。そして、本処理を終了する(RETURN)。
ステップ18において、システムコントローラ50は、湿球温度が湿球温度判定値よりも低いか否かを判断する。湿球温度判定値は、フリークーリングに必要な冷却水を冷却塔25により生成可能か否かを判断するための値であり、予め設定されている。湿球温度が湿球温度判定値よりも低い場合には、ステップ18において肯定判定され、ステップ19(S19)に進む。一方、湿球温度が湿球温度判定値以上である場合には、ステップ18において否定判定され、ステップ21に進む。
ステップ19において、システムコントローラ50は、予め設定された基準値と比較することで室内機41の負荷が大きいか否かを判定する。室内機41の負荷は、室内機入口温度と室内機出口温度との温度差に基づいて演算することができる。室内機41の負荷が小さい場合には、ステップ19において否定判定され、ステップ20(S20)に進む。一方、室内機41の負荷が大きい場合には、ステップ19において肯定判定され、ステップ21に進む。
ステップ20において、システムコントローラ50は、フリークーリングを用いた室内機41の冷房運転を指令する。この際、システムコントローラ50は、第1切替弁30を制御して、冷却塔25から供給される冷却水を熱交換器29に供給するルートに設定する。さらに、システムコントローラ50は、冷却水ポンプ27に運転指令を出力し、このポンプ27を運転する。これにより、冷却塔25と熱交換器29との間で冷却水が循環することとなる。また、システムコントローラ50は、第2切替弁46を制御して、吸収式冷凍機21から供給される冷水を室内機41に供給するルートを設定する。さらに、システムコントローラ50は、冷水ポンプ43に運転指令を出力し、このポンプ43を運転する。これにより、熱交換器29と室内機41との間を冷水が循環することとなる。
この冷房運転において、個々の室内機41は、熱交換器29により冷却された冷水と室内から取り込んだ空気との間で熱交換を行い、冷水によって空気を冷却し、冷却した空気を室内に送風する。そして、本処理を終了する(RETURN)。
ステップ21において、システムコントローラ50は、室内機41の冷房運転に必要な温度の冷水が蓄冷槽45にあるか否かを判断する。室内機41の冷房運転に必要な温度の冷水が蓄冷槽45にある場合には、ステップ21において肯定判定されるので、ステップ22(S22)に進む。一方、室内機41の冷房運転に必要な温度の冷水が蓄冷槽45にない場合には、ステップ21において否定判定されるので、ステップ23(S23)に進む。
ステップ22において、システムコントローラ50は、蓄冷槽45の冷水を用いた室内機41の冷房運転を指令する。この際、システムコントローラ50は、第2切替弁46を制御して、室内機41から戻った冷水を吸収式冷凍機21を介して蓄冷槽45に供給するルートを設定するとともに、第3切替弁47を制御して、蓄冷槽45から供給される冷水を室内機41に供給するルートを設定する。また、システムコントローラ50は、冷水ポンプ43に運転指令を出力し、このポンプ43を運転する。これにより、蓄冷槽45と室内機41との間を冷水が循環することとなる。
この冷房運転において、個々の室内機41は、蓄冷槽45から供給される冷水と室内から取り込んだ空気との間で熱交換を行い、冷水によって空気を冷却し、冷却した空気を室内に送風する。そして、本処理を終了する(RETURN)。
ステップ23において、システムコントローラ50は、蓄熱槽12の温度が起動判定温度T0よりも大きいか否かを判断する。蓄熱槽12の温度が起動判定温度T0よりも大きい場合には、ステップ23において肯定判定され、ステップ24(S24)に進む。一方、蓄熱槽12の温度が起動判定温度T0以下の場合には、ステップ23において否定判定され、ステップ25(S25)に進む。
ステップ24において、システムコントローラ50は、吸収式冷凍機21からの冷水を用いた室内機41の冷房運転を指令する。この際、システムコントローラ50は、吸収式冷凍機21の制御部105に対して運転指令を出力し、吸収式冷凍機21の運転を開始する。また、システムコントローラ50は、熱媒ポンプ23、冷却水ポンプ27及び冷水ポンプ43に運転指令を出力し、これらのポンプ23,27,43を運転する。さらに、システムコントローラ50は、第2切替弁46を制御して、吸収式冷凍機21から供給される冷水を室内機41に供給するルートを設定する。第2切替弁46の制御により、吸収式冷凍機21と室内機41との間を冷水が循環することとなる。
この冷房運転において、個々の室内機41は、吸収式冷凍機21から供給される冷水と室内から取り込んだ空気との間で熱交換を行い、冷水によって空気を冷却し、冷却した空気を室内に送風する。そして、本処理を終了する(RETURN)。
ステップ25において、システムコントローラ50は、補助ボイラー16を運転しつつ、吸収式冷凍機21からの冷水を用いた室内機41の冷房運転を指令する。具体的には、システムコントローラ50は、補助ボイラー16に運転指令を出力し、補助ボイラー16により蓄熱槽12の熱媒を加熱する。また、システムコントローラ50は、吸収式冷凍機21の制御部105に対して運転指令を出力し、吸収式冷凍機21の運転を開始する。また、システムコントローラ50は、熱媒ポンプ23、冷却水ポンプ27、冷水ポンプ43及び補助ボイラー循環ポンプ17に運転指令を出力し、これらのポンプ23,27,43,17を運転する。さらに、システムコントローラ50は、第2切替弁46を制御して、吸収式冷凍機21から供給される冷水を室内機41に供給するルートを設定する。第2切替弁46の制御により、吸収式冷凍機21と室内機41との間を冷水が循環することとなる。
この冷房運転において、個々の室内機41は、吸収式冷凍機21から供給される冷水と室内から取り込んだ空気との間で熱交換を行い、冷水によって空気を冷却し、冷却した空気を室内に送風する。そして、本処理を終了する(RETURN)。
図5は、第1システム10における集熱ポンプ14の動作フローチャートである。このフローチャートに示す処理は、システムコントローラ50によって実行される。
まず、ステップ30(S30)において、システムコントローラ50は、蓄熱槽12の温度が蓄熱完了温度よりも小さいか否かを判断する。蓄熱完了温度は、吸収式冷凍機21を運転するために蓄熱槽12に要求する温度であり、予め設定されている。蓄熱槽12の温度が蓄熱完了温度よりも小さい場合には、ステップ30において肯定判定されて、ステップ31(S31)に進む。一方、蓄熱槽12の温度が蓄熱完了温度以上の場合には、ステップ30において否定判定されて、ステップ33(S33)に進む。
ステップ31において、システムコントローラ50は、集熱器出口温度と蓄熱槽12の温度との温度差が、予め設定した判定値以上であるか否かを判断する。当該温度差が判定値以上である場合には、ステップ31において肯定判定され、ステップ32(S32)に進む。一方、当該温度差が判定値よりも小さい場合には、ステップ31において否定判定され、ステップ33に進む。
ステップ32において、システムコントローラ50は、蓄熱槽12への蓄熱を行う。具体的には、システムコントローラ50は、集熱ポンプ24を運転して、太陽熱集熱器11と蓄熱槽12との間で熱媒を循環させる。
ステップ33において、システムコントローラ50は、蓄熱槽12への蓄熱を停止する。具体的には、システムコントローラ50は、集熱ポンプ24を停止して、太陽熱集熱器11と蓄熱槽12との間での熱媒の循環を停止させる。
このように本実施形態の吸収式冷凍システム1は、冷水を利用して運転する室内機41に冷却した冷水を供給するシステムである。この吸収式冷凍システム1は、吸収式冷凍機21と、吸収式冷凍機21の再生器101を加熱するための熱媒を供給する蓄熱槽12と、吸収式冷凍機21の凝縮器102及び吸収器104に冷却水を供給する冷却塔25と、冷熱を蓄冷する蓄冷槽45と、吸収式冷凍機21・蓄熱槽12・冷却塔25・蓄冷槽45・室内機41についての熱移動を制御するシステムコントローラ50と、を有している。ここで、システムコントローラ50は、吸収式冷凍システム1の条件及びこれを取り巻く環境条件に基づいて、エネルギー消費が少ない制御方法を選択して室内機41に冷水を供給する。
この構成によれば、エネルギー消費が少ない制御方法を選択することで、吸収式冷凍システム1が保有する熱を無駄なく有効に利用することができる。これにより、システム全体のエネルギー消費の抑制を図ることができる。
また、本実施形態において、システムコントローラ50は、選択可能な制御方法として、外気を導入して運転するために室内機41に冷水を供給しない第1の制御方法と、冷却塔25から供給される冷却水を利用するフリークーリングを用いて室内機41に冷水を供給する第2の制御方法と、蓄冷槽45の冷熱を用いて室内機41に冷水を供給する第3の制御方法と、吸収式冷凍機21を用いて室内機41に冷水を供給する第4の制御方法とを、有している。そして、システムコントローラ50は、第1の制御方法から昇順に制御方法の適否を判定し、適当と判定された制御方法を選択している。
上述の制御方法は、第1の制御方法、第2の制御方法、第3の制御方法、第4の制御方法の順番でエネルギー消費が大きくなる。そこで、これらの制御方法の適否を第1の制御方法から順番に判定することで、現時点において最もエネルギー消費が小さい制御方法を決定することができる。これにより、吸収式冷凍システム1が保有する熱を無駄なく有効に利用して、エネルギー消費の抑制を図ることができる。
また、本実施形態において、蓄熱槽12は、太陽熱集熱器11により集熱された熱を蓄熱するものである。そして、吸収式冷凍システム1は、蓄熱槽12を加熱する補助ボイラー16をさらに有している。この場合、システムコントローラ50は、選択可能な制御方法として、補助ボイラー16により蓄熱槽12を加熱しつつ、吸収式冷凍機21を用いて室内機41に冷水を供給する第5の制御方法をさらに有している。
太陽熱集熱器11を利用して蓄熱を行う場合には、日射量などの影響により蓄熱槽12への蓄熱が安定して行われない傾向がある。この場合、蓄熱槽12を加熱する補助ボイラー16が必要となる。しかしながら、補助ボイラー16の運転には燃料の使用が伴うところ、エネルギー消費が大きい。そこで、このような制御方法を第5の制御方法として位置付けることで、他の制御方法が優先的に選択されるので、エネルギー消費の少ない制御方法を優先的に選択することができる。また、このような第5の制御方法を選択肢として備えることで、日射量が少ない日中や夜間といったシーンで、吸収式冷凍機21が起動できないといった状況を抑制することができる。
また、本実施形態において、システムコントローラ50は、室内機41の運転要求がない場合には、吸収式冷凍機21を用いて蓄冷槽45に冷水を供給して蓄冷槽45の蓄冷を行う。
この構成によれば、吸収式冷凍機21からの冷熱を蓄冷槽45に蓄冷することで、太陽熱集熱器11にて集熱された熱を無駄にすることなく有効利用することができる。これにより、吸収式冷凍システムが保有する熱を無駄なく有効に利用して、エネルギー消費の抑制を図ることができる。
また、本実施形態では、図5に示すように、集熱ポンプ14の運転制御を適切に行うことができる。これにより、蓄熱槽12の温度上昇による集熱停止を可能な限り抑制し、太陽熱集熱器11による集熱機会の損失を抑制することができる。
(第2の実施形態)
以下、第2の実施形態に係る吸収式冷凍システム1について説明する。第2の実施形態に係る吸収式冷凍システム1では、補助ボイラー16の制御方法を特徴の一つとするものである。第2の実施形態に係る吸収式冷凍システム1は、第1の実施形態のそれと同様の構成を用いることができるが、熱交換器29や蓄冷槽45などを省略することも可能である。
システムコントローラ50では、通常、蓄熱槽12の温度に基づいて、補助ボイラー16の運転制御を行っている。すなわち、システムコントローラ50は、蓄熱槽12の温度が起動判定温度T0以下の場合に、補助ボイラー16に運転指令を出力し、当該補助ボイラー16を起動して蓄熱槽12の追焚きを行う。
しかしながら、この制御方法では、吸収式冷凍機21からの要求の有無に関わらず蓄熱槽12の温度のみで補助ボイラー16を起動させるため、無駄な追焚きが存在していた。例えば、室内機41に対して供給される冷水について必要な温度が得られ、吸収式冷凍機21が熱媒を要求しない場合、すなわち、温調停止の場合には、熱媒ポンプ23は停止する。この時、補助ボイラー16が運転状態だった場合、追焚きにより蓄熱槽12の温度は上がるが、吸収式冷凍機21での熱利用に供さないため無駄な追焚きとなる。また、蓄熱槽12の温度を上げると、太陽熱集熱器11の集熱効率が低下する傾向となるため、必要のない追焚きは集熱効率の低下を招いていた。
そこで、本実施形態では、吸収式冷凍機21の制御部105は、熱媒を要求するシーンでは、補助ボイラー燃焼要求信号をシステムコントローラ50に対しても出力する。そして、システムコントローラ50は、蓄熱槽12の温度と、吸収式冷凍機21からの補助ボイラー燃焼要求信号とに基づいて、補助ボイラー16の運転制御を行う。
なお、制御部105は、吸収式冷凍機21の内部に設けられている冷水出口温度センサから得られる冷水出口温度に基づいて、補助ボイラー燃焼要求信号を出力するか否かを判断する。
冷水出口温度が信号出力判定温度以上となる場合に補助ボイラー燃焼要求信号を出力し、また、信号出力中止判定温度以下になる場合に補助ボイラー燃焼要求信号の出力を中止する。さらに、補助ボイラー燃焼要求信号を出力する場合において、予め設定された時間まで補助ボイラー燃焼要求信号の出力を待機させ、この時間内に冷水出口温度が信号出力判定温度より小さくなる場合には、補助ボイラー燃焼要求信号の出力を中止する。
図6は、補助ボイラー燃焼要求信号の出力制御の手順を示すフローチャートである。このフローチャートに示す処理は、所定の周期で呼び出され吸収式冷凍機21の制御部105により実行される。
まず、ステップ50(S50)において、制御部105は、吸収式冷凍機21の内部に設けられている冷水出口温度センサから得られる冷水出口温度が信号出力中止判定温度TC0以下であるか否かを判断する。冷水出口温度が信号出力中止判定温度TC0以下の場合には、ステップ50において肯定判定され、ステップ56(S56)に進む。一方、冷水出口温度が信号出力中止判定温度TC0よりも大きい場合には、ステップ50において否定判定され、ステップ51(S51)に進む。
ステップ51において、制御部105は、吸収式冷凍機21の内部に設けられている冷水出口温度センサから得られる冷水出口温度が信号出力判定温度TC1以上であるか否かを判断する。冷水出口温度が信号出力判定温度TC1以上の場合には、ステップ51において肯定判定され、ステップ52(S52)に進む。一方、冷水出口温度が信号出力判定温度TC1よりも小さい場合には、ステップ51において否定判定され、本処理を終了する(RETURN)。
ステップ52において、制御部105は、制御部105の内部に設けられているタイマーで時間計測を開始する。そして、ステップ53(S53)に進む。
ステップ53において、制御部105は、吸収式冷凍機21の内部に設けられている冷水出口温度センサから得られる冷水出口温度が信号出力判定温度TC1以上であるか否かを判断する。冷水出口温度が信号出力判定温度TC1以上の場合には、ステップ53において肯定判定され、ステップ54(S54)に進む。一方、冷水出口温度が信号出力判定温度TC1よりも小さい場合には、ステップ53において否定判定され、ステップ56に進む。
ステップ54において、制御部105は、吸収式冷凍機21の内部に設けられている冷水出口温度センサから得られる冷水出口温度が瞬時信号出力判定温度TC2以上であるか否かを判断する。冷水出口温度が瞬時信号出力判定温度TC2以上の場合には、ステップ54において肯定判定され、ステップ57(S57)に進む。一方、冷水出口温度が瞬時信号出力判定温度TC2よりも小さい場合には、ステップ54において否定判定され、ステップ55(S55)に進む。
ステップ55において、制御部105は、制御部105の内部に設けられているタイマーが設定時間t0を経過したか否かを判定する。タイマーが設定時間t0を経過した場合には、ステップ55において肯定判定され、ステップ57に進む。一方、タイマーが設定時間t0を経過していない場合には、ステップ55において否定判定され、ステップ53に戻る。
ステップ56において、制御部105は、システムコントローラ50に対して補助ボイラー燃焼要求信号の出力を中止する(OFF)。そして、本処理を終了する(RETURN)。
ステップ57において、制御部105は、システムコントローラ50に対して補助ボイラー燃焼要求信号を出力する(ON)。そして、本処理を終了する(RETURN)。
なお、太陽熱集熱できない場合には、制御部105の補助ボイラー燃焼要求信号の出力制御は、ステップ52、ステップ53、ステップ54、ステップ55を省略し、冷水出口温度が信号出力判定温度TC1以上であれば、補助ボイラー燃焼要求信号を瞬時にシステムコントローラ50に対して出力する制御でもよい。
図7は、補助ボイラー16の運転制御の手順を示すフローチャートである。このフローチャートに示す処理は、所定の周期で呼び出されシステムコントローラ50により実行される。
まず、ステップ40(S40)において、システムコントローラ50は、蓄熱槽12の温度が起動判定温度T0よりも大きいか否かを判断する。蓄熱槽12の温度が起動判定温度T0よりも大きい場合には、ステップ40において肯定判定され、ステップ43(S43)に進む。一方、蓄熱槽12の温度が起動判定温度T0以下の場合には、ステップ40において否定判定され、ステップ41(S41)に進む。
ステップ41において、システムコントローラ50は、補助ボイラー燃焼要求信号があるか否かを判断する。補助ボイラー燃焼要求信号がある場合には、ステップ41において肯定判定され、ステップ42(S42)に進む。一方、補助ボイラー燃焼要求信号がない場合には、ステップ41において否定判定され、ステップ43に進む。
ステップ42において、システムコントローラ50は、補助ボイラー16に運転指令を出力し、補助ボイラー16を運転する。これにより、補助ボイラー16により蓄熱槽12の熱媒が加熱される。
ステップ43において、システムコントローラ50は、補助ボイラー16に停止指令を出力し、補助ボイラー16を停止する。
このように本実施形態において、システムコントローラ50は、蓄熱槽12の温度が起動判定温度T0以下でも、吸収式冷凍機21からの補助ボイラー燃焼要求信号がない場合には、補助ボイラー16に停止指令を出力する。
この構成によれば、吸収式冷凍機21の熱媒要求に応じて補助ボイラー16の運転制御を行うことで、無駄な追焚きを減らすことができる。これにより、追焚きに要する燃料について削減することができる。また、補助ボイラー16により蓄熱槽12を加熱する時間が減り、集熱効率を高めることができる。
図8は、第2の実施形態に係る吸収式冷凍システム1の変形例を模式的に示す構成図である。この変形例に係る吸収式冷凍システム1では、補助ボイラー16を第1熱媒流路22aに設けている。そして、補助ボイラー16を経由した冷媒を吸収式冷凍機21へと至ることなく蓄熱槽12へと戻すバイパス流路19が設けられている。第1熱媒流路22aからバイパス流路19へと分岐する分岐点には、第4切替弁18が設けられている。第4切替弁18は、三方弁であり、補助ボイラー16を経由した冷媒を吸収式冷凍機21に供給するルートと、吸収式冷凍機21をバイパスして蓄熱槽12へと供給するルートとを切り替えることができる。
この変形例に示す吸収式冷凍システムでは、これにより、蓄熱槽12の温度が起動判定温度T0以下でも、吸収式冷凍機21からの補助ボイラー燃焼要求信号がない場合には、補助ボイラー16に停止指令を出力し、補助ボイラー16の運転を停止する。そして、蓄熱槽12から送り出された熱媒は補助ボイラー16によって追焚きされず、第4切替弁18にて、吸収式冷凍機21をバイパスして蓄熱槽12へと戻される。
また、蓄熱槽12の温度勾配の計測を追加し、蓄熱槽12の温度が予め設定した時間内に設定温度に到達する見込みがあれば、補助ボイラー16への運転指令の出力を待機するとしてもよい。これにより、追焚きが抑制され、より適した運転制御を行うことができる。
以上、本発明の実施形態にかかる吸収式冷凍システムについて説明したが、本発明は上述した実施形態に限定されることなく、その発明の範囲内において種々の変形が可能であることはいうまでもない。
なお、本実施形態において吸収式冷凍機は、太陽熱で加熱した熱媒(温水)を利用する温水焚の方式を利用するものであるが、これに限るものではない。例えば、吸収式冷凍機は、エンジンなどの排ガスの熱を集熱して利用する排ガス焚の方式や、ボイラーなど蒸気の熱を集熱して利用する蒸気焚の方式であってもよい。
また、上述した実施形態では、1台の蓄熱槽を例示したが、蓄熱槽は複数台設けられていてもよい。また、本実施形態では、1つの吸収式冷凍機を例示したが、吸収式冷凍機は複数台設けられていてもよい。
さらに、上述した実施形態では、冷水を利用する機器として、3つの室内機を例示したが、これに限定されず、1台以上の室内機であってもよい。また、室内機以外にも冷水を使用する外部機器であればよい。外部機器としては、例えば工業用冷却装置等が挙げられる。
また、冷却塔(冷却機)は、地中熱や地下水を利用して冷却水を冷却するものでもよい。このようなシステムでは、冷却水を低い温度に保てる為、吸収式冷凍機の冷凍能力を高めることも可能になる。
1 吸収式冷凍システム
10 第1システム
11 太陽熱集熱器
12 蓄熱槽
20 第2システム
21 吸収式冷凍機
101 再生器
102 凝縮器
103 蒸発器
104 吸収器
25 冷却塔
40 第3システム
41 室内機
50 システムコントローラ(コントローラ)

Claims (4)

  1. 冷水を利用して運転する外部機器に冷却した冷水を供給する吸収式冷凍システムにおいて、
    蒸発器、吸収器、再生器及び凝縮器による循環サイクルによって冷水を生成する吸収式冷凍機と、
    前記吸収式冷凍機の再生器を加熱するための熱媒を供給する蓄熱槽と、
    前記吸収式冷凍機の凝縮器及び吸収器に冷却水を供給する冷却塔と、
    冷熱を蓄冷する蓄冷槽と、
    前記吸収式冷凍機、前記蓄熱槽、前記冷却塔、前記蓄冷槽及び前記外部機器についての熱移動を制御するコントローラと、を有し、
    前記コントローラは、システム条件及び環境条件に基づいて、エネルギー消費が少ない制御方法を選択して前記外部機器に冷水を供給することを特徴とする吸収式冷凍システム。
  2. 前記コントローラは、選択可能な制御方法として、
    外気を導入して運転するために前記外部機器に冷水を供給しない第1の制御方法と、
    前記冷却塔から供給される冷却水を利用するフリークーリングを用いて前記外部機器に冷水を供給する第2の制御方法と、
    前記蓄冷槽の冷熱を用いて前記外部機器に冷水を供給する第3の制御方法と、
    前記吸収式冷凍機を用いて前記外部機器に冷水を供給する第4の制御方法とを、有し、
    前記第1の制御方法から昇順に制御方法の適否を判定して、適当と判定された制御方法を選択することを特徴とする請求項1に記載された吸収式冷凍システム。
  3. 前記蓄熱槽は、太陽熱集熱器により集熱された熱を蓄熱するものであり、
    前記吸収式冷凍システムは、前記蓄熱槽を加熱する補助ボイラーをさらに有し、
    前記コントローラは、選択可能な制御方法として、前記補助ボイラーにより蓄熱槽を加熱しつつ、前記吸収式冷凍機を用いて前記外部機器に冷水を供給する第5の制御方法をさらに有することを特徴とする請求項2に記載された吸収式冷凍システム。
  4. 前記コントローラは、前記外部機器の運転要求がない場合には、前記吸収式冷凍機を用いて前記蓄冷槽に冷水を供給して当該蓄冷槽の蓄冷を行うことを特徴とする請求項1から3のいずれかに記載された吸収式冷凍システム。
JP2014185947A 2014-09-12 2014-09-12 吸収式冷凍システム Pending JP2016057032A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014185947A JP2016057032A (ja) 2014-09-12 2014-09-12 吸収式冷凍システム
CN201510579008.2A CN105423590B (zh) 2014-09-12 2015-09-11 吸收式冷冻系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014185947A JP2016057032A (ja) 2014-09-12 2014-09-12 吸収式冷凍システム

Publications (1)

Publication Number Publication Date
JP2016057032A true JP2016057032A (ja) 2016-04-21

Family

ID=55501979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014185947A Pending JP2016057032A (ja) 2014-09-12 2014-09-12 吸収式冷凍システム

Country Status (2)

Country Link
JP (1) JP2016057032A (ja)
CN (1) CN105423590B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883079A (zh) * 2019-03-18 2019-06-14 华南理工大学 一种吸收压缩交互再冷式复合制冷系统及方法
WO2024005080A1 (ja) * 2022-07-01 2024-01-04 ダイキン工業株式会社 エネルギー貯蔵システムの制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107816821B (zh) * 2016-09-14 2020-01-07 北方工业大学 太阳能吸附、吸收梯级制冷及制热系统
CN110118448B (zh) * 2019-05-14 2021-04-06 湖南科技大学 蓄热蓄冷型燃气辅助太阳能吸收式氨水供冷系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948744U (ja) * 1972-07-31 1974-04-27
JPS5653357A (en) * 1979-10-05 1981-05-12 Kogyo Gijutsuin Solar heat cooler
US4273184A (en) * 1978-09-05 1981-06-16 Osaka Gas Kabushiki Kaisha Solar heat utilized air-conditioning system
JPS62242748A (ja) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd 空調制御装置
JPH08100959A (ja) * 1994-09-30 1996-04-16 Toshiba Corp 空気調和装置
JP2013178097A (ja) * 2013-06-26 2013-09-09 Dai-Dan Co Ltd 熱源システム
JP2014035139A (ja) * 2012-08-09 2014-02-24 Hitachi Appliances Inc 太陽光熱利用冷熱発生システム
CN103900183A (zh) * 2014-04-17 2014-07-02 重庆大学 一种可用于数据机房的多能互补复合型热泵空调系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832682B (zh) * 2009-03-13 2014-07-16 潘戈 太阳能吸收式储能制冷系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948744U (ja) * 1972-07-31 1974-04-27
US4273184A (en) * 1978-09-05 1981-06-16 Osaka Gas Kabushiki Kaisha Solar heat utilized air-conditioning system
JPS5653357A (en) * 1979-10-05 1981-05-12 Kogyo Gijutsuin Solar heat cooler
JPS62242748A (ja) * 1986-04-15 1987-10-23 Matsushita Electric Ind Co Ltd 空調制御装置
JPH08100959A (ja) * 1994-09-30 1996-04-16 Toshiba Corp 空気調和装置
JP2014035139A (ja) * 2012-08-09 2014-02-24 Hitachi Appliances Inc 太陽光熱利用冷熱発生システム
JP2013178097A (ja) * 2013-06-26 2013-09-09 Dai-Dan Co Ltd 熱源システム
CN103900183A (zh) * 2014-04-17 2014-07-02 重庆大学 一种可用于数据机房的多能互补复合型热泵空调系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883079A (zh) * 2019-03-18 2019-06-14 华南理工大学 一种吸收压缩交互再冷式复合制冷系统及方法
CN109883079B (zh) * 2019-03-18 2023-05-23 华南理工大学 一种吸收压缩交互再冷式复合制冷系统及方法
WO2024005080A1 (ja) * 2022-07-01 2024-01-04 ダイキン工業株式会社 エネルギー貯蔵システムの制御方法

Also Published As

Publication number Publication date
CN105423590B (zh) 2018-04-06
CN105423590A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
JP6385044B2 (ja) 吸収式冷凍システム
JP5303291B2 (ja) 液体循環式暖房システム
CN102778071B (zh) 利用太阳光热的蒸汽吸收式冷冻机及太阳光热利用系统
JP2014025653A (ja) 冷凍空調方法及び装置
JP2016057032A (ja) 吸収式冷凍システム
JP2011089722A (ja) 冷凍・空調方法及び装置
JP6689801B2 (ja) 太陽熱空調システム
JP5528903B2 (ja) 吸収式冷暖房給湯システム
JP6415378B2 (ja) 冷暖房システム
KR200445537Y1 (ko) 하이브리드 흡수식 냉방 시스템
JP6232251B2 (ja) 吸収式冷温水システム
JP4901655B2 (ja) 吸収冷温水機
JP6871015B2 (ja) 吸収式冷凍システム
JP6814071B2 (ja) 廃熱利用吸収式冷凍システム及び吸収式冷凍機
JP2009236369A (ja) 吸収冷温水機
JP2009236368A (ja) 吸収冷温水機
JP6132821B2 (ja) 吸収式冷凍システム
KR20140002134A (ko) 고효율 하이브리드 흡수식 냉온수기
JP5583435B2 (ja) 冷凍・空調方法及び装置
JP5490841B2 (ja) 水冷媒加熱器およびそれを用いる水冷媒温水器
KR102396955B1 (ko) 가스엔진 발전기용 하이브리드 흡수식 냉동 시스템 및 이의 구동 방법
JP2012067950A (ja) 空調システム
JP2016057005A (ja) 吸収式冷凍システム
JP6347427B2 (ja) 冷凍システム
JPS5854343B2 (ja) 冷暖房装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170411