JP2016055326A - レーザ切断方法及びレーザ切断装置 - Google Patents

レーザ切断方法及びレーザ切断装置 Download PDF

Info

Publication number
JP2016055326A
JP2016055326A JP2014184753A JP2014184753A JP2016055326A JP 2016055326 A JP2016055326 A JP 2016055326A JP 2014184753 A JP2014184753 A JP 2014184753A JP 2014184753 A JP2014184753 A JP 2014184753A JP 2016055326 A JP2016055326 A JP 2016055326A
Authority
JP
Japan
Prior art keywords
cut
laser
laser beam
torch
laser cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014184753A
Other languages
English (en)
Inventor
今井 浩文
Hirofumi Imai
浩文 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014184753A priority Critical patent/JP2016055326A/ja
Publication of JP2016055326A publication Critical patent/JP2016055326A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

【課題】切断面の粗さ(断面粗さ)を低減することが可能な、新規かつ改良されたレーザ切断方法及びレーザ切断装置を提供することにある。
【解決手段】上記課題を解決するために、本発明のある観点によれば、被切断材料にトーチ部からレーザビームを集光照射し、かつレーザビームの集光点を被切断材料上で走査することで、被切断材料を切断するレーザ切断方法であって、レーザビームの光軸を、トーチ部の移動方向に垂直な基準面に対してトーチ部の移動方向側に傾斜させ、かつ、前記光軸と前記基準面とのなす前傾角度を、カーフフロントの傾斜角度に基づいて調整することを特徴とする、レーザ切断方法が提供される。
【選択図】図4

Description

本発明は、レーザ切断方法及びレーザ切断装置に関する。
レーザ発振器の発達に伴い、特許文献1に開示されるように、レーザビームを用いて被切断材料(例えば金属材料)を所望の形状に切断するレーザ切断方法が広く用いられるようになってきている。レーザ切断方法は、後処理工程不要、自動化が可能、高速切断が可能といった様々な利点を持つことから、広く産業において、各種被切断材料の切断に用いられている。
ここで、従来のレーザ切断方法、すなわち従来のレーザ切断装置が行う処理の概要について説明する。レーザ切断装置は、被切断材料の表面にトーチ部からレーザビームを集光照射する。集光照射されたレーザビームは、被切断材料に吸収される。被切断材料は、レーザビームとの相互作用による熱エネルギーにより加熱され、溶融する。一方、レーザ切断装置は、アシストガスをレーザビームと同軸方向に吹き付ける。これにより、溶融材料はアシストガスにより被切断材料の下方へと排除される。
そして、レーザ切断装置は、レーザビームの集光点を被切断材料上で走査しながら上記の処理を繰り返すことで、被切断材料の溶融及び排除を連続的に行う。これにより、レーザ切断装置は、被切断材料の切断を行う。
ここで、レーザビームの照射により被切断材料が除去された部分は、切断カーフ、又は単にカーフと呼ばれる。また、カーフの先端面はカーフフロントとも称される。カーフフロントは、レーザビームの集光点の下方に形成される。カーフフロントは、トーチ部の移動方向に垂直な基準面に対して傾斜している。具体的には、カーフフロントは、基準面に対してトーチ部の移動方向と逆方向に傾斜している。
特開2013−75331号公報
ところで、従来のレーザ切断装置では、レーザビームの光軸は被切断材料の表面に垂直に入射する(すなわち、基準面上に存在する)ため、カーフフロントの全体にレーザビームを照射することができなかった。このため、切断性が低下してしまい、切断面の断面粗さに影響するという問題があった。一方、特許文献1に開示された技術では、アクシコンレンズによるリングレーザ(リングビーム)を被切断材料Wに照射する。このリングビームの一部は、基準面に対して前傾しているといえる。以下、リングビームのうち、基準面に対して前傾している部分を前傾部分とも称する。
そして、後述するように、レーザビームが基準面に対して前傾している場合、切断性が向上する場合がある。ただし、切断性を向上するための前傾角度は、カーフフロントの傾斜角度に応じて多様に変化する。この点について、特許文献1では、前傾部分の前傾角度は、カーフフロントの傾斜角度によらず一定であった。また、特許文献1では、リングビームの一部である前傾部分だけが前傾しているに過ぎず、後傾部分も同時に照射されているので、切断性改善の効果は極めて小さい。このように、特許文献1では、上記の問題を何ら解決することができなかった。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、切断性を向上、すなわち、安定的に切断面の断面粗さを低く抑えることが可能な、新規かつ改良されたレーザ切断方法及びレーザ切断装置を提供することにある。
本発明者らは、レーザ切断において従来行われていた材料表面へのレーザビームの垂直入射では、レーザビームがカーフフロント全体をカバーできていないことに問題があると考えた。そこで、本発明者らは、カーフフロント全体をカバーできるようレーザビームの走査方向にレービームを前傾して照射することを試みたところ、切断性がよく切断面の断面粗さを低く抑えられることを見出した。本発明者らは、このような知見の下、本発明に想到するに至った。具体的には、上記課題を解決するために、本発明のある観点によれば、被切断材料にトーチ部からレーザビームを集光照射し、かつレーザビームの集光点を被切断材料上で走査することで、被切断材料を切断するレーザ切断方法であって、レーザビームの光軸を、トーチ部の移動方向に垂直な基準面に対してトーチ部の移動方向側に前傾させ、かつ、光軸と基準面とのなす前傾角度を、カーフフロントの傾斜角度に基づいて調整することを特徴とする、レーザ切断方法が提供される。
ここで、光軸と基準面とのなす前傾角度を、カーフフロントの傾斜角度よりも小さくしてもよい。
また、被切断材料の厚さが16mm以上となる場合、傾斜角度を0.3〜0.5°に調整してもよい。
また、傾斜角度を0.4°に調整してもよい。
また、レーザビームの集光点を被切断材料上でトーチ部の移動方向と交差する方向に振動させてもよい。
本発明の他の観点によれば、被切断材料にトーチ部からレーザビームを集光照射し、かつレーザビームの集光点を被切断材料上で走査することで、被切断材料を切断するレーザ切断装置であって、レーザビームの光軸を、トーチ部の移動方向に垂直な基準面に対してトーチ部の移動方向側に前傾させる制御部を備えることを特徴とする、レーザ切断装置が提供される。
以上説明したように本発明によれば、レーザビームをカーフフロントのより広い範囲に照射することができるので、切断性を向上することができる。
本発明の実施形態に係るレーザ切断装置の外観を示す斜視図である。 レーザ切断装置が備えるレーザ振動部及びトーチ部の構成を示す側断面図である。 レーザ切断装置が備える制御装置の内部構成を示すブロック図である。 レーザビームの光軸を基準面から外す制御の概要を示す説明図である。 被切断材料の切断面を概略的に示す説明図である。 集光点の軌跡を示す説明図である。 レーザビームの前傾角度と断面粗さとの相関を示すグラフである。 レーザビームによって被切断材料が切断される様子を示す斜視図である。 基準面に対して光軸を前傾させたレーザビームと基準面に光軸を一致させたレーザビームとがカーフフロントに照射される様子を示す説明図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、以下の説明において、「被切断材料Wの表面」は、被切断材料Wの板厚方向に垂直な2つの平面のうち、レーザビームLB(図2、図4参照)が照射される側の面を意味する。「被切断材料Wの裏面」は、被切断材料Wの板厚方向に垂直な2つの平面のうち、「被切断材料Wの表面」に対向する面を意味する。
<1.本発明者による検討>
本発明者は、従来のレーザ切断装置及びレーザ切断方法を検討することで、本実施形態に係るレーザ切断装置及びレーザ切断方法に想到した。そこで、まず、本発明者が行った検討について説明する。
図8に示すように、従来のレーザ切断装置は、被切断材料Wの表面にトーチ部7からレーザビームLBを集光照射する。ここで、レーザビームLBは、例えばCOレーザ発振器、ファイバレーザ発振器等から射出される。また、レーザビームの光軸(レーザビームの光束の中心軸)LBaは被切断材料Wの表面に直交する。集光照射されたレーザビームLBは、被切断材料Wに吸収される。被切断材料Wは、レーザビームLBとの相互作用による熱エネルギーにより加熱され、溶融する。一方、レーザ切断装置は、アシストガスをレーザビームLBと同軸方向に吹き付ける。これにより、溶融材料(例えば溶鋼)はアシストガスにより被切断材料Wの下方へと排除される。
ここで、アシストガスとして酸素を使用した場合、被切断材料Wは、酸素によって酸化され、これにより発生した熱エネルギーによっても溶融する。すなわち、アシストガスとして酸素を用いるレーザ切断装置は、レーザビームLBとの相互作用による熱エネルギーと、酸素と被切断材料Wとの酸化反応により生じた熱エネルギーとを併用することで、被切断材料Wを溶融させる。
そして、レーザ切断装置は、レーザビームLBの集光点Pを被切断材料W上で走査しながら上記の処理を繰り返すことで、被切断材料Wの溶融及び排除を連続的に行う。これにより、レーザ切断装置は、被切断材料Wの切断を行う。
ここで、レーザビームLBの照射により被切断材料Wが除去された部分は、切断カーフ、又は単にカーフと呼ばれる。また、カーフの先端面はカーフフロントとも称される。図8では、被切断材料WにカーフK及びカーフフロントKfが形成されている。カーフフロントKfは、レーザビームLBの集光点Pの下方に形成される。カーフフロントKfは、トーチ部7の移動方向に垂直な基準面100に対して傾斜している。具体的には、カーフフロントKfは、基準面100に対してトーチ部7の移動方向と逆方向に傾斜している。なお、ベクトルVは、トーチ部7の移動方向を示す。
ところで、従来のレーザ切断装置では、レーザビームLBの光軸LBaは被切断材料Wの表面に直交する(すなわち、基準面100上に存在する)ため、カーフフロントKfの全体にレーザビームLBを照射することができなかった。この様子を図9に示す。図9は、光軸LBa1が被切断材料Wの表面に直交するレーザビームLB1と、光軸LBa2がトーチ部7の移動方向側に傾斜(すなわち前傾)するレーザビームLB2とを示す。なお、図9では、理解を容易にするために、レーザビームLB1、LB2の光束を円柱状とした。図9に示すように、レーザビームLB1は、カーフフロントKfの上端部にしか照射されていない。このため、従来のレーザ切断装置には、切断性が悪くなってしまうという問題があった。
そこで、本発明者は、レーザビームLBをカーフフロントKfのより広い範囲に当てる技術について鋭意検討した。この結果、本発明者は、レーザビームLBの光軸LBaを基準面100に対して前傾させることに想到した。図9のレーザビームLB2の光軸LBa2は、基準面100に対して前傾している。具体的には、レーザビームLB2の光軸LBa2は、基準面100に対して角度cだけ前傾している。以下、レーザビームLBの光軸LBaと基準面100とのなす角度cを「前傾角度c」とも称する。レーザビームLB2は、レーザビームLB1よりもカーフフロントKfの広い範囲に照射されている。
さらに、本発明者は、レーザビームLBをカーフフロントKfの全体に照射するために必要な前傾角度cの範囲についても検討した。この結果、本発明者は、レーザビームLBをカーフフロントKfの全体に照射するためには、前傾角度cを少なくともカーフフロントKfの傾斜角度aよりも小さくする必要があることを見出した。図9に示す例では、レーザビームLB2の前傾角度cは、カーフフロントKfの傾斜角度aよりも小さくなっている。そして、レーザビームLB2は、カーフフロントKfの全体に照射されている。
ただし、図9からも明らかな通り、cが0に近い場合、レーザビームLBはカーフフロントKfの下端部に届かなくなる。さらに、上記の例では、光軸に垂直な光束断面の大きさが一様である。しかし、実際の光束断面は、より複雑な形状を有する。具体的には、光軸に垂直な光束断面は、焦点で最も小さくなり、光束断面から焦点までの距離が大きくなるほど大きくなる。さらに、カーフフロントKfの傾斜角度aは、例えばトーチ部7の移動速度、被切断材料Wの板厚等によって多様に変動しうる。したがって、レーザビームLBをカーフフロントKfの全体に照射させるためには、前傾角度cを0<c<aの範囲内でさらに調整する必要がある。本発明者は、上記知見に基づいて、本実施形態に係るレーザ切断装置1及びレーザ切断方法に想到するに至った。
なお、上述した従来のレーザ切断装置では、前傾角度cは0°となる。特許文献1に開示された技術では、アクシコンレンズによるリングレーザ(リングビーム)を被切断材料Wに照射する。このリングビームの一部、即ち前傾部分は、基準面に対して前傾しているといえる。
そして、上述したように、レーザビームが基準面に対して前傾している場合、切断性が向上する場合がある。ただし、切断性を向上するための前傾角度は、カーフフロントの傾斜角度に応じて多様に変化する。この点について、特許文献1では、前傾部分の前傾角度は、カーフフロントの傾斜角度によらず一定であった。また、特許文献1では、リングビームの一部である前傾部分だけが前傾しているに過ぎないので、切断性改善の効果は極めて小さい。したがって、特許文献1に開示された技術では、上記問題点を何ら解決することができなかった。以下、本実施形態について説明する。
<2.被切断材料>
まず、本実施形態の被切断材料W(図1参照)について説明する。本実施形態の被切断材料Wは、以下の2つの要件を満たす材料であることが好ましい。(1)レーザビームLBとの相互作用による熱エネルギーによって溶融する。(2)酸素によって酸化され、これによって発生した熱エネルギーによって溶融する。すなわち、本実施形態に係るレーザ切断方法は、例えば、レーザビームLBの照射による熱エネルギーと、酸素と被切断材料Wとの反応によって生じた熱エネルギーとを併用することで、被切断材料Wを切断することができる。これらの要件を満たす被切断材料W、すなわち本実施形態に適用可能な被切断材料Wとしては、例えば軟鋼が挙げられる。なお、被切断材料Wの板厚は特に制限されない。
<3.レーザ切断装置の構成>
次に、図1〜図3にもとづいて、本発明の実施形態に係るレーザ切断装置1の構成について説明する。レーザ切断装置1は、図1に示すように、台車2と、レール3と、レーザ発振器4と、ミラーボックス5a〜5cと、レーザ導通管5dと、レーザ振動部6と、トーチ部7と、制御装置8とを備える。
台車2は、レール3上を図1中X軸方向(正方向または負方向)に移動するものであり、第1側面部2a、第2側面部2b、第1底面部2c、及び第2底面部2dを備える。台車2の移動は制御装置8により制御される。第1側面部2aは、台車2の側面を構成し、レール3の長さ方向に伸びる。第2側面部2bは、台車2の側面を構成し、第1側面部2aの長さ方向の一方の端部に設けられる。第2側面部2bの高さは第1側面部2aの高さよりも大きい。
第1底面部2cは、第1側面部2aの上端部同士を連結する平面であり、第1底面部2c上にレーザ発振器4及び制御装置8が載せられる。第2底面部2dは、第2側面部2bの上端部同士を連結する平面であり、第2底面部2d上にミラーボックス5a〜5cが載せられる。第2底面部2dには、第2底面部2dを板厚方向に貫通する貫通穴2eが第2底面部2dの長さ方向に亘って形成されている。この貫通穴2eには、レーザ導通管5dが通される。
レーザ発振器4は、例えば気体レーザ発振器(例えばCOレーザ発振器)、固体レーザ発振器(例えばファイバレーザ発振器)等であり、レーザビームLBをミラーボックス5aに向けて射出する。レーザ発振器4が固体レーザ発振器となる場合、ミラーボックスの代わりに光ファイバを用いてレーザビームLBを伝送してもよい。ミラーボックス5aは、第2底面部2dの長さ方向の両端部の内、一方の端部に設けられる。ミラーボックス5aは、ミラーを内蔵しており、ミラーボックス5aに到達したレーザビームLBをミラーボックス5bに向けて反射する。
ミラーボックス5bは、第2底面部2dの長さ方向の両端部の内、他方の端部に設けられる。ミラーボックス5bは、ミラーを内蔵しており、ミラーボックス5bに到達したレーザビームLBをミラーボックス5cに向けて反射する。すなわち、ミラーボックス5bは、レーザビームLBの光路長を調整するものである。
ミラーボックス5cは、ミラーボックス5a、5bの間に配置される。ミラーボックス5cは、ミラーを内蔵しており、ミラーボックス5cに到達したレーザビームLBをレーザ振動部6に向けて反射する。また、ミラーボックス5cは、第2底面部2d上をY軸方向(正方向及び負方向)に移動可能となっている。ミラーボックス5cの移動は制御装置8によって制御される。レーザ導通管5dは、ミラーボックス5cの下端部に設けられ、ミラーボックス5cとレーザ振動部6とを連結する。また、レーザ導通管5dは、ミラーボックス5cで反射されたレーザビームLBをレーザ振動部6に伝達する。
レーザ振動部6は、レーザ導通管5dの下端部に設けられる。レーザ振動部6は、図2に示すように、ミラーボックス6aと、ミラー6b、6dと、ミラーホルダー6c、6eと、ピエゾ素子6gとを備える。
ミラーボックス6aは、中空構造となっており、ミラー6b、6dと、ミラーホルダー6c、6eと、ピエゾ素子6gとを格納する。レーザ振動部6に導入されたレーザビームLBは、ミラー6b、6dに反射された後、トーチ部7に導入される。
ミラー6bは、ミラーホルダー6cに固定されている。また、ミラー6bの反射面は、ミラー6d及び後述する集光レンズ7dに対向している。ミラーホルダー6cは、ピエゾ素子6gによって互いに直交する2つの回動方向に回動可能となっている。なお、ミラー6bはミラーホルダー6cと一体となって回動する。ミラーホルダー6c、すなわちミラー6bが一方の回動方向(第1の回動方向)に回動することで、レーザビームLBの集光点Pが図1中X軸方向に移動する。また、ミラーホルダー6c、すなわちミラー6bが他方の回動方向(第2の回動方向)に回動することで、レーザビームLBの集光点Pが図1中Y軸方向に移動する。ピエゾ素子6gは、ミラーホルダー6cに設けられており、電気的に伸縮することで、ミラーホルダー6c、すなわちミラー6bを2つの回動方向に回動させる。
具体的には、ピエゾ素子6gは、ミラー6bを第1の回動方向(X軸方向に相当)に回動させるピエゾ素子61gと、ミラー6bを第2の回動方向(Y軸方向に相当)に回動させるピエゾ素子62gとに区分される。ピエゾ素子61g、62gの伸縮、すなわちミラー6bの回動は制御装置8によって制御される。ミラー6dは、ミラーホルダー6eによってレーザ振動部6内に固定されている。また、ミラー6dの反射面は、ミラー6bの反射面に対向している。
本実施形態では、ミラー6bを回動させることで、レーザビームLBの前傾角度cを調整し、かつ、集光点Pをトーチ部7の移動方向と垂直な方向に振動させる。
なお、本実施形態では、ミラー6bを2つの回動方向に回動させることとしたが、ミラー6bを第1の回動方向(または第2の回動方向)に回動させ、かつ、ミラー6dを第2の回動方向(または第1の回動方向)に回動させるようにしてもよい。この場合、ミラーホルダー6eにもピエゾ素子が設けられる。また、ミラーホルダー6eのみにピエゾ素子が設けられていてもよい。また、ミラー6b、6dは直接または間接的に水冷されてもよい。また、レーザビームLBの伝送方向から見てミラー6dの手前のミラー、例えばミラーボックス5cに内蔵されたミラーに同様の機能を具備させることでレーザ振動部6を省略し、ミラー以降のレーザ光路を直線化してミラーボックス5cとトーチ部7とを直結することもできる。その場合、トーチ7の長さを適切な長さに延長して、トーチ7と被切断材料Wの距離を適切に保つ必要があることは言うまでもない。
トーチ部7は、レーザビームLBを被切断材料Wに集光照射するものであり、トーチ本体部7aと、レーザ加工ノズル7bと、アシストガス供給口7cと、集光レンズ7dとを備える。トーチ本体部7aは、中空構造となっている。トーチ本体部7aの上端に集光レンズ7dが配置され、側面にアシストガス供給口7cが配置され、下端(先端)にレーザ加工ノズル7bが配置される。レーザビームLBは、トーチ本体部7aの中空部を通ってレーザ加工ノズル7bから被切断材料Wに集光照射される。
レーザ加工ノズル7bは、レーザビームLB及びアシストガスの出口となる開口面である。アシストガス供給口7cは、図示しないアシストガス供給装置から供給されるアシストガスをトーチ本体部7aの中空部に導入する。アシストガスは、酸素ガスとなる。トーチ本体部7aの中空部に導入されたアシストガスは、レーザ加工ノズル7bから被切断材料Wに吹きつけられる。
集光レンズ7dは、トーチ本体部7a内に導入されたレーザビームLBを被切断材料Wに集光することで、被切断材料WにレーザビームLBの集光点Pを形成する。また、集光レンズ7dは、レーザ振動部6とトーチ部7との隔壁の役割も果たすので、容易にレーザ振動部6の気密性を保つことができる。ここで、集光点Pは、被切断材料Wの表面に形成してもよく、被切断材料Wの内部または上方に形成してもよい。
制御装置8は、概略的には、トーチ部7、すなわち集光点PをXY軸方向に移動させる。さらに、制御装置8は、レーザビームLBの前傾角度cを予め設定された値に調整する。さらに、制御装置8は、集光点Pをトーチ部7の移動方向と直交する方向に振動させることで、集光点Pの軌跡を正弦波形状とする。
図3に示すように、制御装置8は、制御部8aと、移動速度検出部8bと、演算部8cと、振動制御部8dと、アシストガス制御部8eとを備える。ここで、制御装置8は、CPU、ROM、RAM等のハードウェア構成を備え、これらのハードウェア構成によって制御部8aと、移動速度検出部8bと、演算部8cと、振動制御部8dと、アシストガス制御部8eとが実現される。すなわち、ROMには、制御部8aと、移動速度検出部8bと、演算部8cと、振動制御部8dと、アシストガス制御部8eとを実現するために必要なプログラムが記録されており、CPUは、ROMに記録されたプログラムを読みだして実行する。これにより、制御部8aと、移動速度検出部8bと、演算部8cと、振動制御部8dと、アシストガス制御部8eとが実現される。
制御部8aは、レーザ切断装置1全体の制御を行う他、以下の処理を行う。すなわち、制御部8aは、レーザ発振器4からレーザビームLBを射出させる。また、制御部8aは、トーチ部7を予め設定された経路(走査線)、及び移動速度(送り速度)に従って移動させる。具体的には、制御部8aは、台車2及びミラーボックス5cを移動させることで、トーチ部7を移動させる。トーチ部7の経路、及び移動速度は例えばレーザ切断装置1のユーザによって予め設定される。また、制御部8aは、トーチ部7の現在の移動速度(移動速さ及び方向)に関するトーチ部移動速度情報を生成し、移動速度検出部8bに出力する。なお、トーチ部7の移動速度は、X軸方向の速度成分と、Y軸方向の速度成分とで示される。図6にトーチ部7(集光点P)が移動する様子を示す。ベクトルVは、トーチ部7の移動速度を示し、ベクトルVはX軸方向の速度成分を示し、ベクトルVはY軸方向の速度成分を示す。曲線200はトーチ部7の経路を示す。なお、ベクトル210は集光点Pの振動方向を示す。
さらに、制御部8aは、図4に示すように、ピエゾ素子61gにオフセット駆動電圧Ae、ピエゾ素子62gにオフセット駆動電圧Aeを印加することで、レーザビームLBの前傾角度cを調整する。オフセット駆動電圧Ae、Aeがいずれもゼロとなる場合、ミラー6bは通常位置6b−1に配置される。このとき、前傾角度cは0°となる。ただし、ピエゾ素子の伸縮状態をフルストロークの中立点とするためのベースのオフセット電圧は別に印加するものとする。
オフセット駆動電圧Ae、Aeの少なくとも一方がゼロ以外の値になると、ミラー6bは軸外し位置6b−2に配置される。前傾角度cは軸外し位置6b−2によって決まり、軸外し位置6b−2は、オフセット駆動電圧Ae、Aeの値によって決まる。すなわち、制御部8aは、オフセット駆動電圧Ae、Aeを調整することで、前傾角度cを調整することができる。オフセット駆動電圧Ae、Aeは、以下に説明する方法(実験)により予め設定される。
ここで、図4に基づいて、前傾角度c及びオフセット駆動電圧Ae、Aeの設定方法について説明する。まず、前傾角度cを0として被切断材料Wを切断し、カーフフロントKfの傾斜角度aを測定する。なお、前傾角度c以外の切断条件は、レーザビームLBの光軸LBaを前傾させる際の切断条件と同一とする。
ここで、カーフフロントKfの傾斜角度aは、以下のように測定される。すなわち、図5に示すように、被切断材料Wの切断面には、レーザ条痕120が形成される。ここで、レーザ条痕120は、被切断材料Wの切断面に生じる条痕のうち、目視により1つ1つが識別可能であり、かつ略直線状に伸びる条痕を意味する。レーザ条痕の形成には、レーザビームLBとの相互作用による熱エネルギーが被切断材料Wの酸化反応による熱エネルギーよりも大きく寄与する。レーザ条痕が長いほど、切断面の美観が向上する。本実施形態では、後述するように、集光点Pが振動しない(すなわち、集光点Pがトーチ部7の移動方向に垂直な方向に振動しない)場合よりもレーザ条痕120を長くすることができる。傾斜角度aは、レーザ条痕120(より詳細には、レーザ条痕120の上端と下端とを結んだ直線)とトーチ部7の移動方向に垂直な基準面100とがなす角度となる。なお、傾斜角度aにばらつきがある場合、所定数(例えば10個)の測定値を算術平均した値を傾斜角度aとすればよい。
次に、前傾角度cを設定する。上述したように、レーザビームLBの光軸LBaを前傾させることで、カーフフロントKfのより広い範囲にレーザビームLBを照射することができる。ただし、レーザビームLBがカーフフロントKfにどの程度照射されているのかを観察することは非常に困難である。その一方で、レーザビームLBが照射されるカーフフロントKfの範囲(面積)が広いほど、断面粗さが減少するといえる。そこで、前傾角度cを変更しながら被切断材料Wを切断し、各前傾角度cに対する断面粗さを評価することで、前傾角度cを設定する。
ここで、前傾角度cは以下の手順で測定する。すなわち、図4に示すように、被切断材料Wを除去し、レーザビームLBを、被切断材料Wの表面から所定距離L3(例えば1m)下方の測定面300にレーザビームLBを照射する。そして、光軸LBaと測定面300との交点から基準面100までの距離xを測定する。そして、以下の数式(1)にしたがって、前傾角度cを測定(算出)する。
c=arctan(x/L3)・・・(1)
そして、断面粗さを以下の方法で評価する。なお、評価方法は以下の方法に限られず、断面粗さを評価する方法であればどのような方法で評価してもよい。まず、断面上に、被切断材料Wの表面から1mm下方、被切断材料Wの厚さ方向の中心、被切断材料Wの裏面から1mm上方のそれぞれに所定長さ(例えば10mm)の測定線を設定する。各測定線は、被切断材料Wの表面に平行である。そして、粗さ計を用いて各測定線の10点平均粗さRzを測定する。そして、各測定線の10点平均粗さの組み合わせを(平均的な)断面粗さとする。ここで、各測定線の10点平均粗さを組み合わせる方法については、実施例で詳述する。以下、被切断材料Wの表面から1mm下方に設定された測定線、被切断材料Wの厚さ方向の中心に設定された測定線、被切断材料Wの裏面から1mm上方に設定された測定線を、それぞれ上側測定線、中心測定線、下側測定線とも称する。
そして、前傾角度cを振りながら断面粗さを測定すると、0<c<aの範囲内で、断面粗さが最小値をとる。さらに、上側測定線、中心測定線、下側測定線のいずれかの10点平均粗さRz(例えば、中心測定線の10点平均粗さRz)も最小値をとる。断面粗さが最小値となる場合に、レーザビームLBはカーフフロントKfの全体に照射されていると考えられる。すなわち、断面粗さが最も小さく、最も効果的に被切断材の切断加工が行われていると考えられる。言い換えれば、切断性が最高となる。したがって、断面粗さが最小値またはその前後の値となる範囲(以下、「極小範囲」とも称する)内で前傾角度cを設定することが好ましい。極小範囲は、例えば、前傾角度c=0となる場合よりも断面粗さが小さい範囲となる。
すなわち、前傾角度cは、0<c<aの範囲内で設定されることが好ましく、極小範囲内で設定されることがさらに好ましい。前傾角度cの好ましい範囲は、被切断材料Wの板厚によって変動する。例えば、後述する実施例に示されるように、板厚が16mm以上となる場合、極小範囲は0.3〜0.5°となる。また、前傾角度cが0.4°となる場合、断面粗さが最も小さくなる。すなわち、切断性が最高となる。したがって、板厚が16mm以上となる場合、前傾角度cは0.3〜0.5°以下が好ましく、0.4°がより好ましい。
なお、前傾角度cは、カーフフロントKfの傾斜角度aよりも大きくてもよい。この場合であっても、カーフフロントKfのより広い範囲にレーザビームLBを照射することができる。ただし、前傾角度cが大きすぎると、トーチ部7の開口縁にレーザビームLBが掛かる可能性がある。この場合、被切断材料Wに照射されるレーザビームLBの光束が減少する。したがって、前傾角度cは、レーザビームLBが開口縁に掛からない範囲で調整されることが好ましい。上記の方法により、前傾角度cを設定する。
一方、ミラー6bのレーザビーム反射点から集光レンズ7d内の主面までの距離をL1、集光レンズ7dの主面からレーザビームLBの集光点Pまでの距離をL2とすると、ミラー6bの傾斜角度bは、以下の式(2)で示される。ここで、主面は、集光レンズ7dへの入射側の光軸の延長線と集光レンズ7dの出射側の光軸の延長線との交点(主点)がなす平面である。
b=L2/L1×c・・・(2)
そして、ミラー6bを傾斜角度bだけ傾けるのに必要なオフセット駆動電圧Ae、Aeは、以下の式(3)、(4)で示される。
Ae=K1×b・・・(3)
Ae=K2×b・・・(4)
ここで、K1、K2はピエゾ素子の特性によって決まる定数である。したがって、前傾角度cと、上記の数式(2)〜(4)とに基づいて、オフセット駆動電圧Ae、Aeが設定される。
移動速度検出部8bは、制御部8aからトーチ部移動速度情報を取得し、演算部8cに出力する。なお、光学式または電磁式の位置センサをレーザ振動部6の下端面(被切断材料Wに対向する面)に設けておき、移動速度検出部8bは、この位置センサからの信号にもとづいて、トーチ部7の現在の移動速度を算出してもよい。
演算部8cは、トーチ部移動速度情報にもとづいて、ピエゾ素子6gの振動の方向(集光点Pの振動の方向に相当)と振動の時間周波数(集光点Pの振動の時間周波数に相当)を決定する。さらに、演算部8cは、ピエゾ素子6gの駆動電圧の振幅を決定する。具体的には、演算部8cは、集光点Pの振動方向がトーチ部7の移動方向と直交するように、ピエゾ素子61g、62gの振動の振幅を決定する。集光点Pの振動方向の一例を図6に示す。図6に示すベクトルP210は、集光点Pの振動方向を示す。
また、演算部8cは、トーチ部7の移動速度と、以下の式(5)とにもとづいて、ピエゾ素子6gの振動の時間周波数を算出(決定)する。
f=c×v・・・(5)
ここで、fはピエゾ素子6gの振動の時間周波数(Hz)であり、cは定数であり、vはトーチ部7の移動速さ(mm/s)である。
ここで、cは集光点Pの振動の空間周波数、すなわちトーチ部7の移動方向の単位長さ(mm)あたりに生じるレーザ条痕の数に一致する。したがって、cの逆数は、レーザ条痕の幅(ピッチ)に一致する。cを大きくすればレーザ条痕のピッチが小さくなり、cを小さくすればレーザ条痕のピッチが大きくなる。発明者の実験によれば、cは2以上6以下が好ましく、より好ましくはc=4である。c=4の場合、レーザ条痕のピッチは0.25(mm)となる。
演算部8cは、例えば、以下の式(6)にもとづいて、ピエゾ素子6gの駆動電圧の振幅を算出する。
A=2.75−0.15×v・・・(6)
ここで、Aはピエゾ素子6gの駆動電圧の振幅(V)であり、vはトーチ部7の移動速さ(mm/s)である。式(6)によれば、トーチ部7の移動速さが大きいほど、ピエゾ素子6gの駆動電圧が小さくなる。例えば、トーチ部7の移動速さが500(mm/min)=8.33(mm/s)となる場合、ピエゾ素子6gの駆動電圧は1.5(V)となる。だたし、ここではピエゾ素子のフルストローク電圧が10Vであるとして説明している。
ここで、ピエゾ素子6gの駆動電圧の振幅は、集光点Pの振動の振幅に対応する値である。ピエゾ素子6gの駆動電圧の振幅が大きいほど、集光点Pの振動の振幅が大きくなる。したがって、トーチ部7の移動速さが大きいほど、集光点Pの振動の振幅が小さくなる。例えば、ピエゾ素子6gの駆動電圧の振幅が1.5(V)となる場合、集光点Pの振幅は80μmに設定される。したがって、トーチ部7の移動速さが620(mm/min)=10.3(mm/s)となる場合、ピエゾ素子6gの駆動電圧の振幅は式(6)により1.2(V)となり、集光点Pの振幅は80×1.2/1.5=64(μm)となる。
オフセット駆動電圧Ae、Aeを考慮すると、ピエゾ素子6g(ピエゾ素子61g、62g)の駆動電圧は、以下の式(7)、(8)で示される。
=Ae+A・cosθ・sin(2πft)・・・(7)
=Ae+A・sinθ・sin(2πft)・・・(8)
ここで、Aはピエゾ素子61gの駆動電圧であり、Aeは上述したオフセット駆動電圧である。Aはピエゾ素子61g、62gの駆動電圧の振幅である。θは、図6に示すように、トーチ部7の移動方向(ベクトルVの方向)とX軸とのなす角度である。fは式(5)で示される時間周波数であり、tは時間である。Aはピエゾ素子62gの駆動電圧であり、Aeは上述したオフセット駆動電圧である。したがって、ミラー6bは、オフセット駆動電圧Ae、Aeによって決まる軸外し位置6b−2を中心として第1及び第2の回動方向に振動する。
なお、集光点Pの振幅をレーザビームLBのスポット径で除算した値は、0.04以上0.2以下であることが好ましい。ここで、レーザビームLBのスポット径は、被切断材料Wの表面のうち、レーザビームLBが照射される部分(いわゆるスポット)の直径である。この条件が満たされる場合、被切断材料W裏面での溶け落ち量が抑制される。
演算部8cは、上記の各パラメータの他、アシストガス圧を決定してもよい。すなわち、本発明者は、カーフ幅が大きくなるほどアシストガス圧を低下させることで、切断面の美観が向上することを見出した。ここで、カーフ幅は、レーザビームLBの集光照射により溶融した部分、すなわちカーフの幅である。本実施形態では、集光点Pはトーチ部7の移動方向と直交する方向に振動するので、カーフ幅は集光点Pが振動しない場合よりも拡大する。集光点Pの振幅が大きいほど、カーフ幅は拡大する。したがって、演算部8cは、集光点Pの振幅が大きくなるほど、アシストガス圧を小さくする。
例えば、演算部8cは、カーフ幅が0.7mmとなる場合のアシストガス圧を0.025MPaに決定し、カーフ幅が0.82mmとなる場合のアシストガス圧を0.020Mpaに決定してもよい。なお、アシストガス圧の具体的な値は、被切断材料Wの種類毎に設定される。
演算部8cは、ピエゾ素子6gの振動方向、振動の時間周波数、及び駆動電圧の振幅に関する振動制御情報を生成し、振動制御部8dに出力する。演算部8cは、アシストガス圧を決定した場合には、アシストガス圧に関するアシストガス制御情報を生成し、アシストガス制御部8eに出力する。
振動制御部8dは、演算部8cから与えられた振動制御情報にもとづいて、ピエゾ素子6gを駆動する。例えば、振動制御部8dは、集光点Pの振動方向がX軸方向となる場合、ミラー6dが第1の回動方向に振動するように、ピエゾ素子6gを駆動する。振動制御部8dは、集光点Pの振動方向がY軸方向となる場合、ミラー6dが第2の回動方向に振動するように、ピエゾ素子6gを駆動する。また、振動制御部8dは、ミラー6dを集光点Pの振動の時間周波数で振動させる。また、振動制御部8dは、ピエゾ素子6gを振動制御情報が示す駆動電圧の振幅で駆動する。
アシストガス制御部8eは、アシストガスを予め設定されたアシストガス圧及び流量でトーチ本体部7a内に導入する。アシストガス制御部8eは、アシストガス制御情報が与えられた場合には、アシストガスをアシストガス制御情報が示すアシストガス圧でトーチ本体部7a内に導入する。
このように、制御装置8は、レーザビームLBを前傾させる。さらに、制御装置8は、ミラーボックス5cをY軸方向に移動させる際に、ミラー6dを第1の回動方向に振動させる。これにより、制御装置8は、トーチ部7をY軸方向に進行させ、かつ、集光点PをX軸方向に振動させる。一方、制御装置8は、台車2をX軸方向に移動させる際に、ミラー6dを第2の回動方向に振動させる。これにより、制御装置8は、トーチ部7をX軸方向に進行させ、かつ、集光点PをY軸方向に振動させる。これにより、集光点Pの軌跡は正弦波形状となる。
<4.レーザ切断方法>
次に、レーザ切断装置1の動作、すなわちレーザ切断装置1を用いたレーザ切断方法について説明する。
制御部8aは、レーザ発振器4にレーザビームLBを射出させる。レーザビームLBは、ミラーボックス5a〜5c、レーザ振動部6、及びトーチ部7を通って被切断材料Wに集光照射される。さらに、制御部8aは、トーチ部7を予め設定された経路、及び移動速度に従って移動させる。また、制御部8aは、トーチ部7の現在の移動速度に関するトーチ部移動速度情報を生成し、移動速度検出部8bに出力する。さらに、制御部8aは、予め設定されたオフセット駆動電圧Ae、Aeをピエゾ素子61g、62gに印加する。これにより、レーザビームLBが前傾角度cだけ前傾する。
次いで、移動速度検出部8bは、制御部8aからトーチ部移動速度情報を取得し、演算部8cに出力する。演算部8cは、トーチ部移動速度情報に基づいて、ピエゾ素子6gの振動方向、振動の時間周波数、及び駆動電圧の振幅を決定する。演算部8cは、アシストガス圧を決定してもよい。演算部8cは、ピエゾ素子6gの振動方向、振動の時間周波数、及び駆動電圧の振幅に関する振動制御情報を生成し、振動制御部8dに出力する。演算部8cは、アシストガス圧を決定した場合には、アシストガス圧に関するアシストガス制御情報を生成し、アシストガス制御部8eに出力する。
振動制御部8dは、演算部8cから与えられた振動制御情報にもとづいて、ピエゾ素子6gを駆動する。アシストガス制御部8eは、アシストガスを予め設定されたアシストガス圧及び流量でトーチ本体部7a内に導入する。アシストガス制御部8eは、アシストガス制御情報が与えられた場合には、アシストガスをアシストガス制御情報が示すアシストガス圧でトーチ本体部7a内に導入する。トーチ本体部7a内に導入されたアシストガスは、レーザ加工ノズル7bから被切断材料Wに吹きつけられる。
これにより、レーザ切断装置1は、レーザビームLBを被切断材料Wに集光照射し、レーザビームLBの集光点Pを被切断材料W上でトーチ部7の移動方向と直交する方向に振動させながら走査する。これにより、レーザ切断装置1は、被切断材料Wを切断する。具体的には、被切断材料Wは、レーザビームLBとの相互作用による熱エネルギーを吸収することで、溶融する。さらに、レーザ切断装置1は、アシストガス(酸素ガス)を噴射する。未溶融の被切断材料Wは、溶融した被切断材料W、即ち溶融材料から熱エネルギーが与えられ、昇温する。そして、昇温した未溶融の被切断材料Wは、酸素ガスによって酸化され、これによって発生した熱エネルギーによっても溶融する。溶融材料は、アシストガスにより被切断材料Wの下方から排出される。これにより、被切断材料Wが切断される。レーザ切断装置1は、被切断材料Wを切断することで、所望の形状のレーザ切断材料を作製する。
したがって、本実施形態に係るレーザ切断装置1は、レーザビームLBの光軸LBaを前傾させる。これにより、レーザ切断装置1は、カーフフロントKfのより広い範囲にレーザビームLBを照射することができる。この結果、断面粗さを低減することが可能となる。特に、被切断材料Wの板厚が大きくなるほど、被切断材料Wを切断するのにより大きなエネルギーが必要となる。この点、レーザ切断装置1は、レーザビームLBの光軸LBaを前傾させることで、カーフフロントKfにより効果的にエネルギーを供給することができる。したがって、レーザ切断装置1は、板厚の大きな被切断材料Wも効果的に切断することができ、かつ、断面粗さを低減することができる。すなわち、レーザ切断能力が向上する。
また、レーザ切断装置1は、カーフフロントKfに効果的にエネルギーを供給することができるので、トーチ部7の移動速度を大きくすることができる。従来のレーザ切断方法では、カーフフロントKfの上端部だけにしかレーザビームLBを照射することができなかった。このため、レーザビームLBのエネルギーを効果的にカーフフロントKfに供給することができなかった。このため、板厚が大きい場合には、トーチ部7の移動速度を大きく減少させる必要があった。これに対し、本実施形態では、カーフフロントKfのより広い範囲にレーザビームLBを照射することができる。すなわち、被切断材料Wの板厚が大きくなっても、レーザビームLBのエネルギーを効果的にカーフフロントKfに供給することができる。したがって、本実施形態では、板厚が大きい場合であっても、トーチ部7の移動速度を向上することができる。
さらに、レーザ切断装置1は、従来のレーザ切断装置と同一の出力で比較した場合に、切断面の美観が向上する。すなわち、レーザ切断装置1は、カーフフロントKfのより広い範囲にレーザビームLBを照射することができるので、被切断材料Wを効果的に溶融し、除去することができる。すなわち、溶融材料がよりスムーズに溶融し、排出される。このため、被切断材料Wの断面の美観が向上する(例えば、レーザ条痕が長くなる)。また、レーザ切断装置1は、被切断材料Wの切断に要する熱エネルギーを低減することができる。
さらに、レーザ切断装置1は、レーザビームLBの集光点Pを被切断材料W上でトーチ部7の移動方向と直交する方向に振動させるので、カーフの幅を集光点Pが振動しない場合よりも大きくすることができる。したがって、レーザ切断装置1は、集光点Pが振動しない場合よりも溶融材料を効率よく排出することができる。
さらに、レーザ切断装置1は、レーザビームLBの集光点Pを被切断材料W上でトーチ部7の移動方向と直交する方向に振動させるので、被切断材料Wの切断面に一定の空間周波数でレーザビームLBを接触させることができる。したがって、切断面に形成されるレーザ条痕の幅(ピッチ)を一定にすることができる。ここで、レーザ条痕の幅が一定であるとは、レーザ条痕の最大幅(最大ピッチ)と最小幅(最小ピッチ)との比(最大幅/最小幅)が2未満であることを意味する。
ここで、レーザ条痕は、上述したように、被切断材料Wの切断面に生じる条痕のうち、目視により1つ1つが識別可能な条痕を意味する。レーザ条痕の形成には、レーザビームLBとの相互作用による熱エネルギーが被切断材料Wの酸化反応による熱エネルギーよりも大きく寄与する。レーザビームLBとの相互作用による熱エネルギーにより溶融する部分は、レーザビームLBが通過する部分及びその周辺の一定領域に限られるので、レーザ条痕の各々は目視により区別可能である。一方、昇温した未溶融の被切断材料Wはランダムに酸化反応を起こす。したがって、レーザ条痕以外の条痕、すなわち被切断材料Wの酸化反応による熱エネルギーがレーザビームLBとの相互作用による熱エネルギーよりも大きく寄与することで形成された条痕は、目視により区別できない。
このように、レーザ条痕は、切断面の美観に大きく寄与する。本実施形態では、レーザ条痕の幅(ピッチ)を一定にすることができるので、切断面形状が規則的になり、ひいては、切断面の美観が向上する。
さらに、本実施形態では、レーザ条痕の幅(ピッチ)が一定となるので、レーザ条痕を通る溶融材料の流速が一定となる。すなわち、カーフ内での溶融材料の流れが安定する。これにより、被切断材料Wの下方から排出される溶融材料の量がカーフの長さ方向で一定となる。
一方、集光点Pを振動させずに形成したレーザ条痕の幅(ピッチ)はばらつくので、レーザ条痕を通る溶融材料の流速もばらつく。すなわち、溶融材料の流速に脈動が生じる。そして、例えば隣接するレーザ条痕の幅(ピッチ)の比が2倍以上となる領域では、溶融材料がカーフの側方に溢れる。被切断材料Wを構成する材料のうち、溶融材料に接触した部分は昇温し、酸化反応を起こす。そして、酸化反応を起こした部分は、当該酸化反応により発生した熱エネルギーによって溶融する。このため、溶け落ちが発生する。また、溶融材料が過剰に生成されるので、カーフ内で溶融材料が詰まる場合がある。カーフ内に詰まった材料は、未溶融の被切断材料Wを昇温する。昇温した未溶融の被切断材料Wは、酸化反応を起こし、この酸化反応によって発生した熱エネルギーにより溶融する。したがって、溶融材料がさらに過剰になるので、溶け落ち量が増大する他、切断面のえぐれ、セルフバーニングも発生しやすくなる。
これに対し、本実施形態では、被切断材料Wの下方から排出される溶融材料の量がカーフの長さ方向で一定となるので、裏面の溶け落ち量が低減し、切断面のえぐれ、及びセルフバーニングの発生も抑制される。
また、本実施形態では、レーザ条痕を通る溶融材料の流速が一定となることから、本実施形態のレーザ条痕は、集光点Pを振動させずに形成したレーザ条痕よりも長くなる。この点でも、切断面の美観が向上し、かつ、カーフ内での溶融材料の流れが安定する。このように、レーザ条痕の幅(ピッチ)を一定とすること、及びレーザ条痕を長くすることは、裏面の溶け落ち量を低減するための手段であるとともに、切断面の美観を向上するという効果も有する。すなわち、レーザ切断材料には、切断面の美観を向上することが求められている。これに対し、本実施形態では、レーザ条痕を一定にし、かつレーザ条痕を長くすることで、切断面の美観を向上するという目的を達成することができる。
次に、本発明の実施例及び比較例について説明する。実施例及び比較例では、被切断材料WとしてSS400黒皮材を用いた。板厚は32mmであった。また、レーザ切断装置として日酸TANAKA社製LMXVII35−6000を用い、切断条件を以下のように設定した。
線源:CO
レーザ出力:6000W
周波数:500Hz
デューティ比:65%
トーチ部7の移動速度(送り速度):550mm/min
酸素圧:22(*10Pa)
倣い高さ(トーチ部7の下端面から被切断材料Wの表面までの距離):2mm
また、ピエゾ素子6gの振動条件は以下のとおりとした。
駆動電圧の振幅:1.2V
駆動電圧の時間周波数:41Hz
式(5)中のc=4(トーチ部7の移動方向の単位長さ(mm)あたりにレーザ条痕は4つ形成される。レーザ条痕の幅の理論値は0.25mm。)
まず、前傾角度c=0°とし、上記の切断条件、振動条件の下で被切断材料Wを切断した。そして、このときの断面粗さを測定した。具体的には、上側測定線、中心測定線、下側測定線の各々に対する10点平均粗さRz(μm)を測定した。上側測定線と下側測定線は、それぞれ表面から1mmの位置に設定した。粗さ計は東京精密製サーフコム470Aを用いた。さらに、上述した方法によりカーフフロントKfの傾斜角度aを測定した。すなわち、条痕の上端と下端を結んだ直線と基準線とのなす角を傾斜角度aとして計測した。この結果、傾斜角度aは0.6度となった。
そして、前傾角度cを0.1°〜0.5°の範囲内(<傾斜角度a)で振って、上記の切断条件、振動条件の下で被切断材料Wを切断した。そして、各前傾角度cに対する断面粗さを測定した。評価結果を図7にヒストグラムで示す。図7のヒストグラムの「上」は、上側測定線の10点平均粗さRzを示し、「中」は中心測定線の10点平均粗さRzを示し、「下」は下側測定線の10点平均粗さRzを示す。「上」、「中」、「下」のヒストグラムを組み合わせることで、切断面の平均的な断面粗さを求めた。すなわち、「上」、「中」、「下」の間で断面粗さは連続的に変化していると考え、板厚方向を横軸に、断面粗さを縦軸にとった座標軸を考え、「上」、「中」、「下」の断面粗さを示す3点を通る二次曲線を引き、「中」を中心とした板厚方向±15mmの領域で積分した値を板厚方向の領域30mmで除して平均的な断面粗さとした。前傾角度cが0.1°〜0.5°に対する平均的な断面粗さを求め、図7に破線の折れ線で示した。前傾角度c=0.0°は本実施形態の比較例に相当し、前傾角度c=0.1°〜0.5°は本実施形態の実施例に相当する。
図7に示すように、破線の折れ線で示した平均的な断面粗さは、c=0.3,0.4,0.5°で比較例であるc=0.0°に比べて小さくなっていることが判る。ヒストグラムで示した中心測定線の10点平均粗さRzも、c=0.3,0.4,0.5°で比較例であるc=0.0°に比べて小さくなっていることが判る。すなわち、極小範囲は0.3〜0.5°となることもわかった。特に、ヒストグラムで示した中心測定線の10点平均粗さRzと破線の折れ線で示した平均的な断面粗さが前傾角度c=0.4°で最小値をとることがわかった。したがって、前傾角度c=0.4°となる場合に、断面粗さが最も小さく、最も効果的に被切断材の切断加工が行われていると考えられる。なお、「下」の下側測定線の10点平均粗さRzが90μm程度の数値を示しているが、板厚を考慮すれば低い値であり妥当な数値である。一方、前傾角度cが大きくなるほど、ドロス(溶融金属)の排出遅れが減少した。すなわち、ドロスは切断を横から観察した場合に、被切断材料Wの裏面から鉛直下方、もしくはやや切断方向の前方に排出されるのが最良で、ドロスの排出方向がトーチ部7の移動方向に対して逆方向に傾くほどドロスの排出が遅れることになる。すなわち、前傾角度cが大きくなるほど、レーザ光のエネルギーを十分に吸収してドロスが高温になるために粘性が低下し、カーフフロントを滑り落ちやすくなり、アシストガスの運動量を受けて前方に飛び出すようになると考えられる。以上より、前傾角度c=0.4°となる場合に、断面が最も美麗となり、効果的に被切断材の除去加工が行われていると考えられる。
本発明者は、板厚16mm、25mmのSS400黒皮材を用いて同様の実験を行ったが、上述した結果と同様の結果が得られた。これらの結果から、レーザビームLBの光軸LBaを前傾させることで、切断性を向上できることが確認できた。すなわち、傾斜角度aに近い範囲内で前傾角度cの極小範囲が存在し、さらに、前傾角度cの極小範囲内で切断性が最高となる前傾角度cが存在することもわかった。例えば、板厚が16mm以上となる場合、極小範囲は0.3〜0.5°となり、前傾角度cが0.4°となる場合に切断性が最高となることがわかった。
以上により、本実施形態によれば、レーザビームLBの光軸LBaを前傾させ、かつ、前傾角度cをカーフフロントKfの傾斜角度aよりも小さくしたので、レーザビームLBをカーフフロントKfのより広い範囲に照射することができ、ひいては、断面粗さを安定的に低減することができる。すなわち、本実施形態に係るレーザ切断装置1は、切断性を向上することができる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
例えば、上記実施形態では、集光点Pの振動方向をトーチ部7の移動方向と直交する方向としたが、集光点Pの振動方向はトーチ部7の移動方向に交差する方向であれば良い。
また、上述した実施形態では、被切断材料Wとして、軟鋼を挙げたが、被切断材料Wは、レーザビームLBとの相互作用による熱エネルギーによって溶融するものであればどのようなものであってもよい。本実施形態は、被切断材料WをレーザビームLBとの相互作用による熱エネルギーによって切断(溶断)する際にレーザビームLBを前傾させることによって、断面粗さを低減するものである。したがって、被切断材料WとしてレーザビームLBとの相互作用による熱エネルギーによって溶融するものを用いることによって、上記の効果が得られる。
たとえば、被切断材料Wは、軟鋼以外の鋼材、例えば高強度鋼、ステンレス鋼であってもよい。ここで、上述した実施例では軟鋼を切断する際のレーザ切断条件を列挙したが、他の鋼材を被切断材料Wとする際のレーザ切断条件は以下のとおりである。すなわち、高強度鋼をレーザ切断する場合には、溶鋼を排除するアシストガスとしての酸素ガスの圧力を本実施例よりも高く、レーザ出力も高く、また、必要に応じ送り速度を低く設定すれば良い。それ以外のレーザ切断条件は、上述した実施例と同じでよい。また、ステンレス鋼をレーザ切断する場合は、溶鋼を排除するアシストガスを窒素とし、レーザ出力を本実施例よりも高く、また、必要に応じ送り速度を低く設定すれば良い。それ以外のレーザ切断条件は、上述した実施例と同じでよい。また、被切断材料Wは、レーザビームLBとの相互作用による熱エネルギーによって溶融するものであれば軟鋼、高強度鋼、及びステンレス鋼以外の鋼材であってもよく、さらには鋼材以外の材料であってもよい。
1 レーザ切断装置
2 台車
3 レール
4 レーザ発振器
5a〜5c ミラーボックス
5e 道通管
6 レーザ振動部
6a ミラーボックス
6b、6d ミラー
6c、6e ミラーホルダー
6g、61g、62g ピエゾ素子
7 トーチ部
7a トーチ本体部
7b レーザ加工ノズル
7c アシストガス供給口
7d 集光レンズ
8 制御装置

Claims (6)

  1. 被切断材料にトーチ部からレーザビームを集光照射し、かつ前記レーザビームの集光点を前記被切断材料上で走査することで、前記被切断材料を切断するレーザ切断方法であって、
    前記レーザビームの光軸を、前記トーチ部の移動方向に垂直な基準面に対して前記トーチ部の移動方向側に前傾させ、かつ、前記光軸と前記基準面とのなす前傾角度を、カーフフロントの傾斜角度に基づいて調整することを特徴とする、レーザ切断方法。
  2. 前記光軸と前記基準面とのなす前傾角度を、カーフフロントの傾斜角度よりも小さくすることを特徴とする、請求項1記載のレーザ切断方法。
  3. 前記被切断材料の厚さが16mm以上となる場合、前記前傾角度を0.3〜0.5°に調整することを特徴とする、請求項2記載のレーザ切断方法。
  4. 前記前傾角度を0.4°に調整することを特徴とする、請求項3記載のレーザ切断方法。
  5. 前記レーザビームの集光点を前記被切断材料上で前記トーチ部の移動方向と交差する方向に振動させることを特徴とする、請求項1〜4のいずれか1項に記載のレーザ切断方法。
  6. 被切断材料にトーチ部からレーザビームを集光照射し、かつ前記レーザビームの集光点を前記被切断材料上で走査することで、前記被切断材料を切断するレーザ切断装置であって、
    前記レーザビームの光軸を、前記トーチ部の移動方向に垂直な基準面に対して前記トーチ部の移動方向側に前傾させる制御部を備えることを特徴とする、レーザ切断装置。
JP2014184753A 2014-09-11 2014-09-11 レーザ切断方法及びレーザ切断装置 Pending JP2016055326A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014184753A JP2016055326A (ja) 2014-09-11 2014-09-11 レーザ切断方法及びレーザ切断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014184753A JP2016055326A (ja) 2014-09-11 2014-09-11 レーザ切断方法及びレーザ切断装置

Publications (1)

Publication Number Publication Date
JP2016055326A true JP2016055326A (ja) 2016-04-21

Family

ID=55756889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184753A Pending JP2016055326A (ja) 2014-09-11 2014-09-11 レーザ切断方法及びレーザ切断装置

Country Status (1)

Country Link
JP (1) JP2016055326A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116764A1 (ja) * 2016-12-19 2018-06-28 住友電装株式会社 導電部材の製造方法、長尺導電部材及び導電部材
EP3871827A4 (en) * 2018-10-22 2021-12-29 Amada Co., Ltd. Laser machining device and laser machining method
EP3766628A4 (en) * 2018-03-12 2022-01-05 Amada Co., Ltd. CUT TREATMENT DEVICE AND CUT TREATMENT PROCESS
JP2022515952A (ja) * 2018-10-12 2022-02-24 トルンプフ ヴェルクツォイクマシーネン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 加工プロセスの特性値を求める方法および加工機械
JP2022104827A (ja) * 2020-12-29 2022-07-11 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ドーナツキーホールレーザ切断
CN115852792A (zh) * 2023-02-20 2023-03-28 山西首科工程质量检测有限公司 一种混凝土路面粗糙度测试设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236987A (ja) * 1994-02-28 1995-09-12 Mitsubishi Electric Corp レーザ切断方法及びその装置
JPH10263869A (ja) * 1997-03-26 1998-10-06 Nippon Steel Corp レーザ加工装置
JP2012166228A (ja) * 2011-02-14 2012-09-06 Honda Motor Co Ltd 円筒状ワーク切断装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236987A (ja) * 1994-02-28 1995-09-12 Mitsubishi Electric Corp レーザ切断方法及びその装置
JPH10263869A (ja) * 1997-03-26 1998-10-06 Nippon Steel Corp レーザ加工装置
JP2012166228A (ja) * 2011-02-14 2012-09-06 Honda Motor Co Ltd 円筒状ワーク切断装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116764A1 (ja) * 2016-12-19 2018-06-28 住友電装株式会社 導電部材の製造方法、長尺導電部材及び導電部材
JP2018099695A (ja) * 2016-12-19 2018-06-28 住友電装株式会社 導電部材の製造方法、長尺導電部材及び導電部材
CN110087821A (zh) * 2016-12-19 2019-08-02 住友电装株式会社 导电构件的制造方法、长条导电构件及导电构件
US10821554B2 (en) 2016-12-19 2020-11-03 Sumitomo Wiring Systems, Ltd. Method of manufacturing conductive member and conductive member
CN110087821B (zh) * 2016-12-19 2022-02-22 住友电装株式会社 导电构件的制造方法及导电构件
EP3766628A4 (en) * 2018-03-12 2022-01-05 Amada Co., Ltd. CUT TREATMENT DEVICE AND CUT TREATMENT PROCESS
US11433485B2 (en) 2018-03-12 2022-09-06 Amada Co., Ltd. Cutting processing machine and cutting processing method
JP2022515952A (ja) * 2018-10-12 2022-02-24 トルンプフ ヴェルクツォイクマシーネン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 加工プロセスの特性値を求める方法および加工機械
JP7315670B2 (ja) 2018-10-12 2023-07-26 トルンプフ ヴェルクツォイクマシーネン エス・エー プルス コー. カー・ゲー 加工プロセスの特性値を求める方法および加工機械
EP3871827A4 (en) * 2018-10-22 2021-12-29 Amada Co., Ltd. Laser machining device and laser machining method
JP2022104827A (ja) * 2020-12-29 2022-07-11 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ドーナツキーホールレーザ切断
CN115852792A (zh) * 2023-02-20 2023-03-28 山西首科工程质量检测有限公司 一种混凝土路面粗糙度测试设备

Similar Documents

Publication Publication Date Title
JP2016055326A (ja) レーザ切断方法及びレーザ切断装置
JP5136521B2 (ja) レーザ狭開先溶接装置および溶接方法
US3965328A (en) Laser deep cutting process
WO2015156119A1 (ja) レーザ加工装置およびレーザ加工方法
JP5105944B2 (ja) レーザ装置
KR101440671B1 (ko) 노즐 축선에 대해 레이저 절단 비임을 편심되게 배향시켜 경사 절단하는 방법, 이에 상응하는 레이저 가공 헤드 및 레이저 가공 기계
JP5201098B2 (ja) レーザ切断装置及びレーザ切断方法
JP6592563B1 (ja) レーザ加工機及びレーザ加工方法
JP6123469B2 (ja) レーザ切断材料の製造方法及びレーザ切断方法
JP5245844B2 (ja) レーザ切断方法および装置
JP2001276988A (ja) レーザ加工装置
JP2005279730A (ja) レーザ切断方法および装置
JP2015174096A (ja) レーザ切断方法及びレーザ切断装置
US6504130B1 (en) Laser cutting method
JP2003340582A (ja) レーザ溶接装置およびレーザ溶接方法
JP6071996B2 (ja) ワークピースを破断分割するための方法、ワークピース及びレーザー装置
JP3905732B2 (ja) レーザ加工ヘッド、これを用いるレーザ切断装置及びレーザ切断方法
JP4506575B2 (ja) 亜鉛メッキ鋼板レーザろう付け装置、亜鉛メッキ鋼板レーザろう付け方法、ろう付け亜鉛メッキ鋼板製造方法。
JP2015178130A (ja) 溶接装置および溶接方法
EP3819069B1 (en) Laser machining method
JP4915766B2 (ja) レーザ・アークハイブリッド溶接方法
CN112453696B (zh) 一种双构件的激光接合装置
JP5769774B2 (ja) レーザ加工装置
WO2023085160A1 (ja) レーザ加工方法及びレーザ加工機
JP6538910B1 (ja) レーザ加工機及びレーザ加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181127