JP2016046588A - フィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置 - Google Patents

フィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置 Download PDF

Info

Publication number
JP2016046588A
JP2016046588A JP2014167761A JP2014167761A JP2016046588A JP 2016046588 A JP2016046588 A JP 2016046588A JP 2014167761 A JP2014167761 A JP 2014167761A JP 2014167761 A JP2014167761 A JP 2014167761A JP 2016046588 A JP2016046588 A JP 2016046588A
Authority
JP
Japan
Prior art keywords
resonator
frequency
variable
resonance frequency
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014167761A
Other languages
English (en)
Other versions
JP6334316B2 (ja
Inventor
熊本 剛
Takeshi Kumamoto
剛 熊本
充良 篠永
Mitsuyoshi Shinonaga
充良 篠永
民雄 河口
Tamio Kawaguchi
民雄 河口
教次 塩川
Noritsugu Shiokawa
教次 塩川
加屋野 博幸
Hiroyuki Kayano
博幸 加屋野
浩平 中山
Kohei Nakayama
浩平 中山
山崎 六月
Mutsuki Yamazaki
六月 山崎
裕章 池内
Hiroaki Ikeuchi
裕章 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014167761A priority Critical patent/JP6334316B2/ja
Publication of JP2016046588A publication Critical patent/JP2016046588A/ja
Application granted granted Critical
Publication of JP6334316B2 publication Critical patent/JP6334316B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】雑音指数を改善することができるフィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置を提供することである。【解決手段】実施形態のフィルタ装置は、第1の共振器と、第2の共振器と、冷却部と、第3の共振器と、周波数設定部とを持つ。前記第1の共振器は、共振周波数が第1の周波数の共振器である。前記第2の共振器は、前記第1の共振器と前記第1の周波数で電磁界結合可能な共振器であって、超伝導体で形成された共振器である。前記冷却部は、前記第2の共振器を冷却する。前記第3の共振器は、前記第1の共振器と前記第1の周波数で電磁界結合可能な共振器であって、共振周波数を変更可能な共振器である。前記周波数設定部は、前記第3の共振器の共振周波数を、前記第1の周波数または前記第1の周波数とは異なる第2の周波数に設定する。【選択図】図2

Description

本発明の実施形態は、フィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置に関する。
近年、通信機器に備えられるフィルタ装置として、超伝導体で形成された超伝導フィルタが用いられている。超伝導フィルタは、急峻なカットオフ特性を有し、目的の周波数範囲外の電波の漏れを少なくすることができるが、超伝導フィルタを機能させるためには、超伝導状態になるまで超伝導フィルタを十分冷却する必要がある。このため、超伝導状態になるまで回路として動作しないため、超伝導フィルタの他に常温で機能する誘電体フィルタを設け、超伝導フィルタと誘電体フィルタとをスイッチで切り替える方法が提案されている。
しかしながら、このようなスイッチを設けた場合、スイッチで損失が発生し、信号強度の減衰や、雑音指数が悪化する問題があった。
特開2004−200478号公報
本発明が解決しようとする課題は、回路切り替えにおける損失および雑音指数を改善することができるフィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置を提供することである。
実施形態のフィルタ装置は、第1の共振器と、第2の共振器と、冷却部と、第3の共振器と、周波数設定部とを持つ。前記第1の共振器は、共振周波数が第1の周波数の共振器である。前記第2の共振器は、前記第1の共振器と前記第1の周波数で電磁界結合可能な共振器であって、超伝導体で形成された共振器である。前記冷却部は、前記第2の共振器を冷却する。前記第3の共振器は、前記第1の共振器と前記第1の周波数で電磁界結合可能な共振器であって、共振周波数を変更可能な共振器である。前記周波数設定部は、前記第3の共振器の共振周波数を、前記第1の周波数または前記第1の周波数とは異なる第2の周波数に設定する。
第1の実施形態のフェーズドアレイアンテナ1の構成図。 第1の実施形態のフィルタ装置100の構成図。 第1の実施形態の共振器の構成図。 超伝導共振器の温度変化に基づくフィルタ特性の変化の一例を示す図。 第1の実施形態における、臨界温度Tc以下まで十分冷却された超伝導共振器105のフィルタ特性と、常温で使用される共振器(常伝導共振器)のフィルタ特性の一例を示す図。 周波数可変共振器103が共振周波数を変更する仕組みを説明するための図。 第1の実施形態の周波数設定部110による処理の流れの一例を示すフローチャート。 第2の実施形態のフィルタ装置100の構成図。 第2の実施形態における、臨界温度Tc以下まで十分冷却された超伝導共振器のフィルタ特性と、常温で使用される常伝導共振器のフィルタ特性の一例を示す図。 第3の実施形態のフィルタ装置100の構成図。 第3の実施形態の周波数設定部110による処理の流れの一例を示すフローチャート。 第4の実施形態のフィルタ装置100の構成図。 第4の実施形態の周波数設定部110による処理の流れの一例を示すフローチャート。 第5の実施形態のフェーズドアレイアンテナ1の一例を示す図。 第6の実施形態の切替装置200の構成図。 第6の実施形態の周波数設定部110による処理の流れの一例を示すフローチャート。
以下、実施形態のフィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置を、図面を参照して説明する。
(第1の実施形態)
図1は、第1の実施形態の受信用フェーズドアレイアンテナ1の構成図である。フェーズドアレイアンテナ1は、複数のアンテナ素子10−1〜10−nと、複数のフィルタ装置100−1〜100−nと、複数のLNA(Low Nose Amplifier)20−1〜20−nと、複数の移相器30−1〜30−nと、合成器40とを備える。
アンテナ素子10−1〜10−nは、信号を受信し、受信した信号を対応するフィルタ装置100−1〜100−nに出力する。フィルタ装置100−1〜100−nは、アンテナ素子10−1〜10−nから入力された信号から、特定の周波数範囲の信号を抽出し、LNA20−1〜20−nに出力する。LNA20−1〜20−nは、ノイズの発生が少ない増幅器である。LNA20−1〜20−nは、フィルタ装置100−1〜100−nから入力された信号を増幅し、移相器30−1〜30−nに出力する。移相器30−1〜30−nは、LNA20−1〜20−nから入力されたそれぞれの信号の位相を調整し、合成器40に出力する。
合成器40は、移相器30−1〜30−nから入力された信号を合成し、合成波を出力する。各移相器30−1〜30−nがそれぞれの信号の位相を調整し、合成器40が位相を調整されたそれぞれの信号を合成することで特定方向からの信号を高感度に受信することができる。
図2は、第1の実施形態のフィルタ装置100の構成図である。以下、いずれの系列のアンテナ素子、フィルタ装置、LNA、または移相器であるかを示す「−」以下の符号を省略して説明する。フィルタ装置100は、アンテナ素子10に接続され信号が入力される第1の端子101と、LNA20に接続され信号が出力される第2の端子104とを備える。また、フィルタ装置100は、第1の端子101に接続された共振器102と、第2の端子104に接続された周波数可変共振器103と、第2の端子104に接続された超伝導共振器105とを備える。
共振器102、周波数可変共振器103、及び超伝導共振器105は、例えば図3に示されるように、基板上に形成されたマイクロストリップラインのパターンを有する構造としてよい。ここで、2つの基板の間隔は、共振器102と超伝導共振器105の間で電磁界結合が成立する距離となるように設定されている。また、基板上における共振器102と周波数可変共振器103の距離も、電磁界結合が成立する距離となるように設定されている。なお、図3では、各共振器が1つのマイクロストリップパターンを有する一例を説明したが、各共振器は複数のマイクロストリップパターンを有してもよい。更に、各共振器間に結合を補助する線路などを配置しても良い。
図2に示されるように、共振器102の共振周波数はfである。共振器102は、第1の端子101から入力された信号から周波数fの信号を抽出し、抽出した信号を出力する。一方、超伝導共振器105の共振周波数もfであるため、共振器102と超伝導共振器105との間に電磁界結合が成立する。ここで、電磁界結合とは、電磁波による無線結合を意味する。
共振器102と超伝導共振器105との間に電磁界結合が成立すると、超伝導共振器105は、共振器102から出力された周波数fの信号を受信し、受信した信号を第2の端子104へと出力することができる。
超伝導共振器105は、冷却板106上に設けられている。冷却板106は、冷却部107によって冷却される。冷却板106には熱伝導率の高い材料を用いることが好ましく、例えば銅等の金属を用いるとよい。また、冷却制御部108は、冷却板106上の測定部としての温度計109によって検知された温度Tに基づき冷却部107を制御する。冷却制御部108は、超伝導共振器105が、超伝導状態となる臨界温度Tc以下となるまで冷却されるように、冷却部107を制御する。
超伝導共振器105は、超伝導状態となる臨界温度Tc以下まで冷却されると、電気抵抗が大きく低下する。このため、臨界温度Tc以下まで十分冷却された超伝導共振器105をフィルタ装置100に用いることで、信号の損失を低減することができる。一例として、超伝導共振器105は、酸化マグネシウム基板上にイットリウム系超伝導体のマイクロストリップラインを設けた構造とすればよい。また、超伝導材料には、ニオブまたはニオブすずといった超伝導体、およびY系銅酸化物高温超伝導を用いても良い。また、超伝導体と銅、金、銀といった金属が複合されても良い。基板は、酸化マグネシウム、サファイアまたはアルミン酸ランタンといった、多様の適した材料を用いても良い。
図4は、超伝導共振器の温度変化に基づくフィルタ特性の変化の一例を示す図である。図4は、超伝導共振器がマイクロストリップパターンを1つ有する場合の変化の一例を示している。図4に示されるように、超伝導共振器の温度が88Kのときには、超伝導共振器はフィルタとして機能しない。しかし、超伝導共振器が86K、80K、70Kと冷却されるにつれて、急峻なフィルタ特性を示すようになる。
図5は、第1の実施形態における、臨界温度Tc以下まで十分冷却された超伝導共振器105のフィルタ特性と、常温で使用される共振器(常伝導共振器)のフィルタ特性の一例を示す図である。この図は、共振器が複数のマイクロストリップパターンを有する場合のフィルタ特性の一例を示している。共振器に複数のマイクロストリップパターンを設けることによって、フィルタのカットオフ特性を急峻にすることができる。また、共振器のフィルタ特性のピークをフラットにし、抽出する信号の周波数範囲を広げることができる。
また、図5に示される通り、超伝導共振器105は常伝導共振器に比べて高いQ値を実現できるため急峻なカットオフ特性を有する。従って、フィルタ装置100に超伝導共振器105を用いることで、目的の周波数範囲の信号を効率よく抽出することができる。
また、超伝導共振器105、冷却板106、冷却部107、及び温度計109は、チャンバー111の内部に収容されている。真空ポンプ112は、チャンバー111の内部の空気を吸い出すことで、チャンバー111の内部を真空に近い状態にする。これによって、高い断熱効果が得られ、冷却部107の冷却効率を高めることができる。
周波数設定部110は、周波数可変共振器103の共振周波数をfとfのいずれかに設定する。周波数設定部110により周波数可変共振器103の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)とは等しくなる。このため、共振器102と周波数可変共振器103との間に電磁界結合が成立する。ここで、結合の例として共振器102と共振器103が同じ共振周波数fとなる場合を扱っているが、若干共振周波数がずれた場合も結合するため、多少の共振周波数のずれは許容できる。
共振器102と周波数可変共振器103との間に電磁界結合が成立すると、周波数可変共振器103は、共振器102から出力された周波数fの信号を受信し、受信した信号を第2の端子104へと出力することができる。
一方、周波数設定部110により周波数可変共振器103の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)とは異なるものとなる。このため、共振器102と周波数可変共振器103との間に電磁界結合が成立しない。従って、周波数可変共振器103は共振器102から出力された周波数fの信号を受信しなくなる。
このように、周波数設定部110が周波数可変共振器103の共振周波数の設定を切り替えることで、共振器102と周波数可変共振器103との間で電磁界結合を成立させるかどうかを切り替えることができる。なお、共振器102と周波数可変共振器103との間の電磁界結合を確実に切断するために、周波数fは周波数fからできるだけ離れた値に設定することが好ましい。
図6は、周波数可変共振器103が共振周波数を変更する仕組みを説明するための図である。周波数可変共振器103の両端部には、可変コンデンサ150、151がそれぞれ設けられている。周波数設定部110は、可変コンデンサ150及び151の静電容量を変更することにより、周波数可変共振器103の共振周波数を切り替えることができる。
なお、周波数可変共振器103の構成は、図6に示すものに限られない。例えば、可変コンデンサに代えて可変コイルを設け、周波数設定部110が可変コイルのインダクタンスを変更するようにしてもよい。また、周波数設定部110が周波数可変共振器103に誘電体を近づけたり遠ざけたりすることで、周波数可変共振器103の共振周波数を変更してもよい。また、スイッチ等により物理的な電気長を可変しても良い。
冷却部107による冷却が不十分な場合や冷却部107が故障した場合には、超伝導共振器105が抵抗体となり、共振器として十分機能しなくなる可能性がある。このため、本実施形態では、超伝導共振器105が基準温度Ta以下まで冷却されている場合は、共振器102から超伝導共振器105への信号伝達ルートが選択され、超伝導共振器105が基準温度Ta以下まで冷却されていない場合は、共振器102から周波数可変共振器103への信号伝達ルートが選択される。
基準温度Taは、例えば、臨界温度Tcと同じ温度、あるいは臨界温度Tcよりも低い温度に予め設定されている。超伝導共振器105の温度は、温度計109によって検知される。温度計109によって検知された温度Tは、冷却制御部108から周波数設定部110に定期的に送信される。
周波数設定部110は、例えば、CPU(Central Processing Unit)やプログラムメモリ、各種インターフェース等を有するマイクロコンピュータである。また、周波数設定部110は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等によって実現されてもよい。周波数設定部110は、以下に説明するように、温度計109によって検知された温度Tが基準温度Ta以下である場合には周波数可変共振器103の共振周波数をfに設定し、温度Tが基準温度Taを超える場合には周波数可変共振器103の共振周波数をfに設定する。
図7は、第1の実施形態の周波数設定部110による処理の流れの一例を示すフローチャートである。まず、周波数設定部110は、温度計109によって検知された温度Tを、冷却制御部108を介して受信するまで待機する(ステップS100)。周波数設定部110が温度Tを受信すると(ステップS100のYES)、周波数設定部110は、温度Tが基準温度Ta以下であるか否かを判定する(ステップS101)。
温度計109から入力される温度Tが基準温度Ta以下である場合(ステップS101のYES)、周波数設定部110は、周波数可変共振器103の共振周波数をfに設定する(ステップS102)。この結果、共振器102と超伝導共振器105との間に電磁界結合が成立するが、共振器102と周波数可変共振器103との間に電磁界結合は成立しなくなる。このため、第1の端子101に入力された信号のうち周波数fの成分は、共振器102及び超伝導共振器105を介して第2の端子104に出力される。
一方、温度計109から入力される温度Tが基準温度Taを超える場合(ステップS101のNO)、周波数設定部110は、周波数可変共振器103の共振周波数をfに設定する(ステップS103)。この結果、共振器102と周波数可変共振器103との間に電磁界結合が成立し得る上に、共振器102と超伝導共振器105の間にも電磁界結合が成立し得ることになる。しかし、十分に冷却されていない超伝導共振器105は抵抗が大きく、かつ図4に示すように低域側の周波数へ周波数シフトするため結合せず、第1の端子101に入力された信号のうち周波数fの成分は、主に共振器102及び周波数可変共振器103を介して第2の端子104に出力される。
ステップS102の処理またはステップS103の処理が完了すると、周波数設定部110はステップS100に戻り、再び温度Tを受信するまで待機する。このように、周波数設定部110が温度Tを受信する度にステップS101〜S103の処理が繰り返し実行される。
なお、上記フローチャートでは、温度Tに対して一つの閾値(基準温度Ta)を用いて制御を行っている。しかし、ハンチングを防止するために、例えば、周波数可変共振器103の共振周波数をfからfに変更する際の閾値を、周波数可変共振器103の共振周波数をfからfに変更する際の閾値よりも低く設定してもよい。
このような制御によって、超伝導共振器105の温度に拘わらず、第1の端子101に入力された信号における所望の周波数成分を、第2の端子104に出力することができる。また、超伝導共振器105が十分に冷却されている場合には、超伝導共振器105を介して信号を伝達するようにすることで、目的の周波数範囲の信号を効率よく伝達することができる。
ここで、超伝導フィルタと誘電体フィルタとをスイッチで切り替えることによっても、上記と同様の制御を行うことは可能である。しかしながら、この場合、入力される信号は常にスイッチを通過するため、スイッチで損失(信号強度の減衰)が発生することにより雑音指数であるNF(Noise Figure)が悪化する場合がある。これに対し、本実施形態の構成によれば、信号伝達ルートを超伝導伝達部と常伝導伝達部とで切り替えるためのスイッチを備えていないため、損失や雑音指数が悪化するのを抑制することができる。従って、損失や雑音指数を改善することができる。
以上説明した本実施形態によれば、共振周波数が第1の周波数(f)である共振器102と、共振器102と電磁界結合可能であり、第1の周波数(f)または第2の周波数(f)で共振可能な周波数可変共振器103と、共振器102と電磁界結合可能な超伝導共振器105と、温度計109により計測された温度Tに基づいて、周波数可変共振器103の共振周波数を、第1の周波数(f)または第2の周波数(f)に設定する周波数設定部110とを備えることにより、損失や雑音指数を改善することができる。
(第2の実施形態)
図8は、第2の実施形態のフィルタ装置100の構成図である。第2の実施形態は、共振器113と、超伝導共振器114と、LNA115とを備える点で第1の実施形態と異なる。以下、係る相違点を中心に説明する。
LNA115は、超伝導共振器105と超伝導共振器114に接続され、超伝導共振器105の出力を増幅して超伝導共振器114に出力する。超伝導共振器114の共振周波数はfである。LNA115を備える構成は、受信信号が微弱で受信感度に高感度が求められる場合に有効である。
共振器113は、周波数可変共振器103、及び超伝導共振器114のそれぞれに対して電磁界結合可能な位置に取り付けられる。共振器113の共振周波数はfである。共振器113は、第2の端子104に接続されている。
超伝導共振器105、LNA115、及び超伝導共振器114は、冷却板106上に設けられている。冷却板106は、冷却部107によって冷却される。また、冷却制御部108は、冷却板106上の温度計109によって検知された温度Tに基づき冷却部107を制御する。超伝導共振器105及び114は、冷却部107により超伝導共振器105及び114が超伝導状態となる臨界温度Tc以下まで冷却される。
フィルタ装置100に超伝導共振器105及び114を用いることで、目的の周波数範囲の信号を効率よく抽出することができる。また、LNA115を冷却し、LNA115の電気抵抗を小さくすることで、LNA115で発生する熱雑音を低減することができる。
また、超伝導共振器105、冷却板106、冷却部107、温度計109、超伝導共振器114、及びLNA115は、チャンバー111の内部に収容されている。真空ポンプ112は、チャンバー111の内部の空気を吸い出すことで、チャンバー111の内部を真空に近い状態にする。これによって、高い断熱効果が得られ、冷却部107の冷却効率を高めることができる。
図9は、第2の実施形態における、臨界温度Tc以下まで十分冷却された超伝導共振器のフィルタ特性と、常温で使用される常伝導共振器のフィルタ特性の一例を示す図である。図9に示されるように、第2の実施形態によれば、超伝導共振器のカットオフ特性を第1の実施形態よりも急峻にすることができるため、目的の周波数範囲の信号をより効率よく抽出することができる。
周波数設定部110は、第1の実施形態と同様、温度計109によって検知された温度Tが基準温度Ta以下である場合には周波数可変共振器103の共振周波数をfに設定し、温度Tが基準温度Taを超える場合には周波数可変共振器103の共振周波数をfに設定する。
周波数設定部110により周波数可変共振器103の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)と共振器113の共振周波数(f)とは等しくなる。このため、共振器102と周波数可変共振器103との間に電磁界結合が成立するとともに、周波数可変共振器103と共振器113との間にも電磁界結合が成立する。
共振器102と周波数可変共振器103との間に電磁界結合が成立すると、周波数可変共振器103は、共振器102から出力された周波数fの信号を受信し、受信した信号を出力することができる。また、周波数可変共振器103と共振器113との間の電磁界結合が成立すると、共振器113は、周波数可変共振器103から出力された周波数fの信号を受信し、受信した信号を第2の端子104へと出力することができる。ここで、共振器102から超伝導共振器105、LNA115、超伝導共振器114に至る信号伝達ルートも周波数fで信号を伝達可能であるが、十分に冷却されていない超伝導共振器105、及び超伝導共振器114は抵抗が大きく、かつ低域側の周波数へ周波数シフトするため結合せず、第1の端子101に入力された信号のうち周波数fの成分は、主に共振器102、周波数可変共振器103、及び共振器113を介して第2の端子104に出力される。
一方、周波数設定部110により周波数可変共振器103の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)とは異なるものとなる。このため、共振器102と周波数可変共振器103との間の電磁界結合は成立せず、周波数可変共振器103は信号を共振器113に伝達しない。この結果、第1の端子101に入力された信号のうち周波数fの成分は、共振器102、超伝導共振器105、LNA115、超伝導共振器114、及び共振器113を介して第2の端子104に出力される。
このように、本実施形態では、超伝導共振器105及び114が基準温度Ta以下まで冷却されている場合は、共振器102から超伝導共振器105、LNA115、超伝導共振器114、及び共振器113への信号伝達ルートが選択され、超伝導共振器105及び114が基準温度Ta以下まで冷却されていない場合は、共振器102から周波数可変共振器103及び共振器113への信号伝達ルートが選択される。これによって、温度に応じた好適な信号伝達ルートが選択され、超伝導共振器と低温LNAのルートを通る信号は、損失や雑音指数が改善され高感度な受信機を構成することができる。
以上説明した本実施形態によれば、共振周波数が第1の周波数(f)である共振器102と、共振器102と電磁界結合可能であり、第1の周波数(f)または第2の周波数(f)で共振可能な周波数可変共振器103と、周波数可変共振器103と電磁界結合可能であり、第1の周波数(f)で共振可能な共振器113と、共振器102と電磁界結合可能であり、第1の周波数(f)で共振可能な超伝導共振器105と、超伝導共振器105と接続されたLNA115と、LNA115に接続され、共振器113と電磁界結合可能であり、第1の周波数(f)で共振可能な超伝導共振器114と、温度計109により計測された温度Tに基づいて、周波数可変共振器103の共振周波数を、第1の周波数(f)または第2の周波数(f)に設定する周波数設定部110とを備えることにより、第1の実施形態と同様に、損失や雑音指数を改善することができる。
また、第1の実施形態と比較すると、超伝導共振器105と超伝導共振器114の間にLNA115を設けているため、超伝導共振器を介した信号伝達において微弱な信号を低雑音で増幅して出力することができる。
(第3の実施形態)
図10は、第3の実施形態のフィルタ装置100の構成図である。第3の実施形態は、周波数可変共振器103と共振器113との間に、常温のLNA118と周波数可変共振器119とを設けた点で、第2の実施形態と異なる。以下、係る相違点を中心に説明する。
LNA118は、周波数可変共振器103と周波数可変共振器119に接続され、周波数可変共振器103の出力を増幅して周波数可変共振器119に出力する。LNA118を備える構成は、共振器102の出力が微弱である場合に有効である。また、周波数可変共振器119は、共振周波数を変更可能であり、共振周波数fで共振器113と電磁界結合可能である。周波数可変共振器119は、共振器113に対して電磁界結合可能な位置に取り付けられる。
周波数設定部110は、温度計109によって検知された温度Tが基準温度Ta以下である場合には周波数可変共振器103及び119の共振周波数をfに設定し、温度Tが基準温度Taを超える場合には周波数可変共振器103及び119の共振周波数をfに設定する。
周波数設定部110により周波数可変共振器103の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)とは等しくなる。このため、共振器102と周波数可変共振器103との間に電磁界結合が成立する。
また、周波数設定部110により周波数可変共振器119の共振周波数がfに設定された場合、周波数可変共振器119の共振周波数(f)と共振器113の共振周波数(f)とは等しくなる。このため、周波数可変共振器119と共振器113との間に電磁界結合が成立する。
共振器102と周波数可変共振器103との間に電磁界結合が成立すると、周波数可変共振器103は、共振器102から出力された周波数fの信号を受信し、受信した信号を出力することができる。周波数可変共振器103には、周波数可変共振器103の出力を増幅するLNA118が接続されている。また、周波数可変共振器119は、LNA118に接続されている。なお、本実施形態のように超伝導側にも常伝導側にもLNAを設ける場合には、フィルタ装置100に接続されるLNA20(図1)を省略しても構わない。
周波数可変共振器119と共振器113との間に電磁界結合が成立すると、共振器113は、周波数可変共振器119から出力された周波数fの信号を受信し、受信した信号を第2の端子104へと出力することができる。
一方、周波数設定部110により周波数可変共振器103の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)とは異なるものとなる。このため、共振器102と周波数可変共振器103との間の電磁界結合は成立しない。また、周波数設定部110により周波数可変共振器119の共振周波数がfに設定された場合、周波数可変共振器119の共振周波数(f)と共振器113の共振周波数(f)とは異なるものとなる。このため、周波数可変共振器119と共振器113との間の電磁界結合は成立しない。従って、共振器113は共振器102から出力された周波数fの信号を、周波数可変共振器103及び119を介して受信できなくなる。
このように、本実施形態では、超伝導共振器105及び114が基準温度Ta以下まで冷却されている場合は、共振器102から超伝導共振器105、LNA115、超伝導共振器114、及び共振器113への信号伝達ルートが選択され、超伝導共振器105及び114が基準温度Ta以下まで冷却されていない場合は、共振器102から周波数可変共振器103、LNA118、周波数可変共振器119、及び共振器113への信号伝達ルートが選択される。これによって、温度に応じた好適な信号伝達ルートが選択され、損失や雑音指数を改善することができる。
図11は、第3の実施形態の周波数設定部110による処理の流れの一例を示すフローチャートである。まず、周波数設定部110は、温度計109によって検知された温度Tを、冷却制御部108を介して受信するまで待機する(ステップS300)。周波数設定部110が温度Tを受信すると(ステップS300のYES)、周波数設定部110は、温度Tが基準温度Ta以下であるか否かを判定する(ステップS301)。
温度計109から入力される温度Tが基準温度Ta以下である場合(ステップS301のYES)、周波数設定部110は、周波数可変共振器103の共振周波数をfに設定する(ステップS302)。また、周波数設定部110は、周波数可変共振器119の共振周波数をfに設定する(ステップS303)。この結果、共振器102と超伝導共振器105との間に電磁界結合が成立するが、共振器102と周波数可変共振器103との間に電磁界結合は成立しなくなるとともに、周波数可変共振器119と共振器113との間についても電磁界結合は成立しなくなる。このため、第1の端子101に入力された信号のうち周波数fの成分は、共振器102、超伝導共振器105、LNA115、超伝導共振器114、及び共振器113を介して第2の端子104に出力される。
一方、温度計109から入力される温度Tが基準温度Taを超える場合(ステップS301のNO)、周波数設定部110は、周波数可変共振器103の共振周波数をfに設定する(ステップS304)。また、周波数設定部110は、周波数可変共振器119の共振周波数をfに設定する(ステップS305)。この結果、共振器102と周波数可変共振器103との間及び周波数可変共振器119と共振器113との間に電磁界結合が成立し得る上に、共振器102と超伝導共振器105の間にも電磁界結合が成立し得ることになる。
しかし、十分に冷却されていない超伝導共振器105及び114は抵抗が大きく、かつ低域側の周波数へ周波数シフトするため結合せず、第1の端子101に入力された信号のうち周波数fの成分は、主に、共振器102、周波数可変共振器103、LNA118、周波数可変共振器119、及び共振器113を介して第2の端子104に出力される。
ステップS303の処理またはステップS305の処理が完了すると、周波数設定部110はステップS300に戻り、再び温度Tを受信するまで待機する。このように、周波数設定部110が温度Tを受信する度にステップS301〜S305の処理が繰り返し実行される。
以上説明した本実施形態によれば、共振周波数が第1の周波数(f)である共振器102と、共振器102と電磁界結合可能であり、第1の周波数(f)または第2の周波数(f)で共振可能な周波数可変共振器103と、周波数可変共振器103に接続されたLNA118と、LNA118に接続され、共振周波数を第1の周波数(f)または第2の周波数(f)に変更可能な周波数可変共振器119と、周波数可変共振器119と電磁界結合可能であり、第1の周波数(f)で共振可能な共振器113と、共振器102と電磁界結合可能な超伝導共振器105と、超伝導共振器105と接続されたLNA115と、LNA115に接続され、共振器113と電磁界結合可能であり、第1の周波数(f)で共振可能な超伝導共振器114と、温度計109により計測された温度Tに基づいて、周波数可変共振器103及び119の共振周波数を、第1の周波数(f)または第2の周波数(f)に設定する周波数設定部110とを備えることにより、第1及び第2の実施形態と同様に、雑音指数を改善することができる。
(第4の実施形態)
図12は、第4の実施形態のフィルタ装置100の構成図である。第4の実施形態は、超伝導共振器105に代えて周波数可変超伝導共振器120を備える点で、第1の実施形態と異なる。以下、係る相違点を中心に説明する。
周波数可変超伝導共振器120は、共振周波数を変更可能であり、共振周波数fで共振器102と電磁界結合可能である。周波数可変超伝導共振器120は、共振器102に対して電磁界結合可能な位置に取り付けられる。
周波数設定部110は、温度計109によって検知された温度Tが基準温度Ta以下である場合には周波数可変共振器103の共振周波数をfに設定すると共に、周波数可変超伝導共振器120の共振周波数をfに設定し、温度Tが基準温度Taを超える場合には周波数可変共振器103の共振周波数をfに設定すると共に、周波数可変超伝導共振器120の共振周波数をfに設定する。
周波数設定部110により周波数可変共振器103の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)とは等しくなる。このため、共振器102と周波数可変共振器103との間に電磁界結合が成立する。
共振器102と周波数可変共振器103との間に電磁界結合が成立すると、周波数可変共振器103は、共振器102から出力された周波数fの信号を受信し、受信した信号を第2の端子104へと出力することができる。
周波数設定部110により周波数可変共振器103の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)とは異なる。このため、共振器102と周波数可変共振器103との間の電磁界結合は成立しない。従って、周波数可変共振器103は共振器102から出力された周波数fの信号を受信できなくなる。
一方、周波数設定部110により周波数可変超伝導共振器120の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変超伝導共振器120の共振周波数(f)とは等しくなる。このため、共振器102と周波数可変超伝導共振器120との間に電磁界結合が成立する。
共振器102と周波数可変超伝導共振器120との間に電磁界結合が成立すると、周波数可変超伝導共振器120は共振器102から出力された周波数fの信号を受信し、受信した信号を第2の端子104へと出力できる。
周波数設定部110により周波数可変超伝導共振器120の共振周波数がfに設定された場合、共振器102の共振周波数(f)と周波数可変超伝導共振器120の共振周波数(f)とは異なるものとなる。このため、共振器102と周波数可変超伝導共振器120との間の電磁界結合は成立しない。従って、周波数可変超伝導共振器120は共振器102から出力された周波数fの信号を受信できなくなる。
このように、本実施形態では、周波数可変超伝導共振器120が基準温度Ta以下まで冷却されている場合は、共振器102から周波数可変超伝導共振器120への信号伝達ルートが選択され、周波数可変超伝導共振器120が基準温度Taまで冷却されていない場合は、共振器102から周波数可変共振器103への信号伝達ルートが選択される。これによって、温度に応じた好適な信号伝達ルートが選択され、損失や雑音指数を改善することができる。また、ここでは例として周波数可変共振器103と周波数可変超伝導共振器120をfとfの同じ周波数に可変しているが、必ずしも同じ周波数にする必要はなく、周波数可変共振器103をfとfに可変、周波数可変超伝導共振器120をfとfに可変しても良い。
図13は、第4の実施形態の周波数設定部110による処理の流れの一例を示すフローチャートである。まず、周波数設定部110は、温度計109によって検知された温度Tを、冷却制御部108を介して受信するまで待機する(ステップS400)。周波数設定部110が温度Tを受信すると(ステップS400のYES)、周波数設定部110は、温度Tが基準温度Ta以下であるか否かを判定する(ステップS401)。
温度計109から入力される温度Tが基準温度Ta以下である場合(ステップS401のYES)、周波数設定部110は、周波数可変共振器103の共振周波数をfに設定する(ステップS402)。また、周波数設定部110は、周波数可変超伝導共振器120の共振周波数をfに設定する(ステップS403)。この結果、共振器102と周波数可変超伝導共振器120との間に電磁界結合が成立するが、共振器102と周波数可変共振器103との間に電磁界結合は成立しなくなる。このため、第1の端子101に入力された信号のうち周波数fの成分は、共振器102及び周波数可変超伝導共振器120を介して第2の端子104に出力される。
一方、温度計109から入力される温度Tが基準温度Taを超える場合(ステップS401のNO)、周波数設定部110は、周波数可変共振器103の共振周波数をfに設定する(ステップS404)。また、周波数設定部110は、周波数可変超伝導共振器120の共振周波数をfに設定する(ステップS405)。この結果、共振器102と周波数可変共振器103との間に電磁界結合が成立する一方、共振器102と周波数可変超伝導共振器120との間には電磁界結合が成立しなくなる。このため、第1の端子101に入力された信号のうち周波数fの成分は、共振器102及び周波数可変共振器103を介して第2の端子104に出力される。また、共振器102と周波数可変超伝導共振器120との間の電磁界結合を切断することで、周波数可変超伝導共振器120側に信号が漏れるのを防止することができる。
ステップS403の処理またはステップS405の処理が完了すると、周波数設定部110はステップS400に戻り、再び温度Tを受信するまで待機する。このように、周波数設定部110が温度Tを受信する度にステップS401〜S405の処理が繰り返し実行される。
以上説明した本実施形態によれば、共振周波数が第1の周波数(f)である共振器102と、共振器102と電磁界結合可能であり、第1の周波数(f)または第2の周波数(f)で共振可能な周波数可変共振器103と、共振器102と電磁界結合可能であり、第1の周波数(f)または第2の周波数(f)で共振可能な周波数可変超伝導共振器120と、温度計109により計測された温度Tに基づいて、周波数可変共振器103及び周波数可変超伝導共振器120の共振周波数を、第1の周波数(f)または第2の周波数(f)に設定する周波数設定部110と、を備えることにより、第1〜第3の実施形態と同様に、損失や雑音指数を改善することができる。また、本実施形態によれば、温度計109から入力される温度Tが基準温度Taを超える場合に、共振器102と周波数可変超伝導共振器120との間の電磁界結合を切断することで、周波数可変超伝導共振器120側に信号が漏れるのを防止することができる。
なお、本実施形態では、第1の実施形態の超伝導共振器105に代えて周波数可変超伝導共振器120を備えることとしたが、第2及び第3の実施形態の超伝導共振器105に代えて周波数可変超伝導共振器120を備えるようにしてもよい。
(第5の実施形態)
図14は、第5の実施形態のフェーズドアレイアンテナ1の一例を示す図である。第1〜第4の実施形態では、アンテナ素子10−1〜10−nを用いて信号を受信する例について説明したが、本実施形態では、アンテナ素子10−1〜10−nを用いて信号を送受信する例について説明する。
フェーズドアレイアンテナ1は、複数のアンテナ素子10−1〜10−nと、複数の受信用フィルタ装置100−1〜100−nと、複数の送信用フィルタ装置300−1〜300−nと、複数のLNA20−1〜20−nと、複数の移相器30−1〜30−nと、合成器40と、複数のPA(Power Amplifier)50−1〜50−nと、移相器60−1〜60−nと、分配器70と、切替器80−1〜80−nとを備える。
切替器80−1〜80−nは、信号の受信時にはアンテナ素子10−1〜10−nを受信用フィルタ装置100−1〜100−nに接続し、信号の送信時にはアンテナ素子10−1〜10−nを送信用フィルタ装置300−1〜300−nに接続する。なお、LNA20−1〜20−n、移相器30−1〜30−n、及び合成器40の構成は、第1の実施形態で説明した構成と同様である。また、受信用フィルタ装置100−1〜100−nとしては、第1〜第4の実施形態に示されるいずれのフィルタ装置を適用してもよい。
アンテナ素子10−1〜10−nを用いて信号を送信する場合、分配器70は送信信号を移相器60−1〜60−nに分配する。移相器60−1〜60−nは、分配されたそれぞれの送信信号の位相を調整し、PA50−1〜50−nへ出力する。PA50−1〜50−nは、移相器60−1〜60−nから入力された信号を増幅し、送信用フィルタ装置300−1〜300−nへと出力する。送信用フィルタ装置300−1〜300−nは、PA50−1〜50−nから入力された信号から特定の周波数範囲の信号を抽出し、切替器80−1〜80−nへ出力する。切替器80−1〜80−nは、送信用フィルタ装置300−1〜300−nから入力された信号を、アンテナ素子10−1〜10−nへと送信する。
なお、送信用フィルタ装置300−1〜300−nとして、第1〜第4の実施形態のいずれのフィルタ装置を適用してもよい。すなわち、送信用フィルタ装置300−1〜300−nは、受信用フィルタ装置100−1〜100−nと同様に超伝導共振器を有してもよい。送信用フィルタ装置300−1〜300−nの構成は、第1〜第4の実施形態におけるフィルタ装置の第1の端子101をPA50−1〜50−nに接続し、第2の端子104を切替器80−1〜80−nに接続した構成とすればよい。これによって、受信用フィルタ装置100−1〜100−nの損失や雑音指数を改善することができるのみならず、送信用フィルタ装置300−1〜300−nの損失を改善することもできる。
本実施形態のように、送信用フィルタ装置300−1〜300−nにも超伝導共振器を設けることで、送信用フィルタ装置300−1〜300−nのフィルタ特性を改善することができる。なお、一般的に、信号の送信時は信号の受信時に比べてフィルタ装置に大きな電流が流れる。超伝導共振器は大電流が流れると超伝導状態を維持できないため、送信時にあまり大きな電流を流さない送信装置に本実施形態を適用することが望ましい。送信用フィルタ装置300−1〜300−nに超伝導共振器を用いない場合は、送信用フィルタ装置300−1〜300−nをBPF(Band-Pass Filter)としてもよい。
以上説明した本実施形態によれば、フィルタ装置において共振器間の電磁界結合を成立させるかどうかを切り替える構成とすることで、第1〜第4の実施形態と同様にフィルタ装置の損失や雑音指数を改善することができる。
(第6の実施形態)
図15は、第6の実施形態の切替装置200の構成図である。第6の実施形態は、図1に示されるフィルタ装置100に代えて切替装置200を設けている。本実施形態の切替装置200は、不図示の外部の制御装置からの切替信号に基づいて、第1の端子101と第2の端子104との間の通信のオン/オフを切り替える装置である。また、本実施形態の切替装置200は共振器間の電磁界結合を成立させることで、第1〜第5の実施形態と同様にフィルタ装置としても機能する。以下、第6の実施形態について詳しく説明する。
切替装置200は、アンテナ素子10と接続される第1の端子101と、LNA20と接続される第2の端子104とを備える。また、切替装置200は、第1の端子101と接続された共振器102と、第2の端子104と接続された周波数可変共振器103とを備える。
図16は、第6の実施形態の周波数設定部110による処理の流れの一例を示すフローチャートである。まず、周波数設定部110は、外部の制御部から切替信号を受信するまで待機する(ステップS600)。切替信号は、第1の端子101と第2の端子104との間を接続させるためのオン信号と、第1の端子101と第2の端子104との間の接続を切断させるためのオフ信号のいずれかである。周波数設定部110が切替信号を受信すると(ステップS600のYES)、周波数設定部110は、受信した切替信号がオン信号であるか否かを判定する(ステップS601)。
受信した切替信号がオン信号である場合(ステップS601のYES)、周波数設定部110は、周波数可変共振器103の共振周波数をfに設定する(ステップS602)。この結果、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)は等しくなり、共振器102と周波数可変共振器103との間に電磁界結合が成立する。従って、第1の端子101に入力された信号のうち周波数fの成分の信号は、第2の端子104に出力される。
一方、受信した切替信号がオン信号ではない場合、即ちオフ信号を受信した場合(ステップS601のNO)、周波数設定部110は、周波数可変共振器103の共振周波数をfに設定する(ステップS603)。この結果、共振器102の共振周波数(f)と周波数可変共振器103の共振周波数(f)とは異なることとなり、共振器102と周波数可変共振器103との間の電磁界結合が成立しなくなる。従って、第1の端子101に入力された信号は、第2の端子104に出力されない。
ステップS602の処理またはステップS603の処理が完了すると、周波数設定部110はステップS600に戻り、再び切替信号を受信するまで待機する。このように、周波数設定部110が切替信号を受信する度にステップS601〜S603の処理が繰り返し実行される。
このように、周波数設定部110が周波数可変共振器103の共振周波数の設定を切り替えることで、共振器102と周波数可変共振器103との間で電磁界結合を成立させるかどうかを切り替えることができる。この構成により、切替装置200は、少ない損失で第1の端子101から第2の端子104への通信のオン/オフを切り替えることができる。
上記各実施形態において、周波数設定部は、温度Tに基づいて周波数の切り替えを行うものとしたが、例えば、超伝導共振器の冷却に必要な時間が予め判明している場合、「冷却開始からの経過時間が所定時間以上となると、超伝導共振器側の信号伝達ルートを選択するように、周波数の切り替えを行う」といった制御を行ってもよい。
以上説明した少なくともひとつの実施形態によれば、共振周波数が第1の周波数(f)である共振器102と、共振器102と第1の周波数(f)で電磁界結合可能な第3の共振器であって、共振周波数を変更可能な周波数可変共振器103と、周波数可変共振器103の共振周波数を、第1の周波数(f)または第2の周波数(f)に設定する周波数設定部110とを持つことにより、損失や雑音指数を改善することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
10…アンテナ、20…LNA、30…移相器、40…合成器、50…PA、60…移相器、70…分配器、80…切替器、100…フィルタ装置、101…第1の端子、102…共振器、103…周波数可変共振器、104…第2の端子、105…超伝導共振器、106…冷却板、107…冷却部、108…冷却制御部、109…温度計、110…周波数設定部、111…チャンバー、112…真空ポンプ

Claims (10)

  1. 共振周波数が第1の周波数である第1の共振器と、
    前記第1の共振器と前記第1の周波数で電磁界結合可能な第2の共振器であって、超伝導体で形成された第2の共振器と、
    前記第2の共振器を冷却する冷却部と、
    前記第1の共振器と前記第1の周波数で電磁界結合可能な第3の共振器であって、共振周波数を変更可能な第3の共振器と、
    前記第3の共振器の共振周波数を、前記第1の周波数または前記第1の周波数とは異なる第2の周波数に設定する周波数設定部と、
    を備えるフィルタ装置。
  2. 前記第2の共振器の温度を測定する測定部を備え、
    前記周波数設定部は、
    前記測定部により測定された温度が予め設定された基準温度以下である場合、前記第3の共振器の共振周波数を前記第2の周波数に設定し、
    前記測定部により測定された温度が予め設定された基準温度を超える場合、前記第3の共振器の共振周波数を前記第1の周波数に設定する、
    請求項1記載のフィルタ装置。
  3. 前記第2の共振器の出力を増幅する第1の増幅器と、
    前記第1の増幅器に接続され、共振周波数が前記第1の周波数であって、超伝導体で形成された第4の共振器と、
    前記第3の共振器及び前記第4の共振器と前記第1の周波数で電磁界結合可能な第5の共振器と、を更に備え、
    前記冷却部は、前記第2の共振器及び前記第4の共振器を冷却する、
    請求項1または2記載のフィルタ装置。
  4. 前記第2の共振器の出力を増幅する第1の増幅器と、
    前記第1の増幅器に接続され、共振周波数が前記第1の周波数であって、超伝導体で形成された第4の共振器と、
    前記第3の共振器の出力を増幅する第2の増幅器と、
    前記第2の増幅器に接続され、共振周波数を変更可能な第6の共振器と、
    前記第4の共振器及び前記第6の共振器と前記第1の周波数で電磁界結合可能な第7の共振器と、を更に備え、
    前記冷却部は、前記第2の共振器及び前記第4の共振器を冷却する、
    請求項1または2記載のフィルタ装置。
  5. 前記第2の共振器は、共振周波数を変更可能な共振器であって、
    前記周波数設定部は、
    前記測定部により測定された温度が予め設定された基準温度以下である場合、前記第2の共振器の共振周波数を前記第1の周波数に設定し、
    前記測定部により測定された温度が予め設定された基準温度を超える場合、前記第2の共振器の共振周波数を前記第2の周波数に設定する、
    請求項2記載のフィルタ装置。
  6. 共振周波数が第1の周波数である第1の共振器と、
    前記第1の共振器と前記第1の周波数で電磁界結合可能な第2の共振器であって、超伝導体で形成された第2の共振器と、
    前記第2の共振器を冷却する冷却部と、
    前記第1の共振器と前記第1の周波数で電磁界結合可能な第3の共振器であって、共振周波数を変更可能な第3の共振器と、
    前記第3の共振器の共振周波数を、前記第1の周波数または前記第1の周波数とは異なる第2の周波数に設定する周波数設定部と、
    を有するフィルタ装置と、
    前記フィルタ装置から出力された信号を増幅する増幅器と、
    を備える受信装置。
  7. 共振周波数が第1の周波数である第1の共振器と、
    前記第1の共振器と前記第1の周波数で電磁界結合可能な第2の共振器であって、超伝導体で形成された第2の共振器と、
    前記第2の共振器を冷却する冷却部と、
    前記第1の共振器と前記第1の周波数で電磁界結合可能な第3の共振器であって、共振周波数を変更可能な第3の共振器と、
    前記第3の共振器の共振周波数を、前記第1の周波数または前記第1の周波数とは異なる第2の周波数に設定する周波数設定部と、
    を有するフィルタ装置と、
    信号を増幅して前記フィルタ装置へ送信する増幅器と、
    を備える送信装置。
  8. 共振周波数が第1の周波数である第1の共振器と、
    前記第1の共振器と前記第1の周波数で電磁界結合可能な第2の共振器であって、超伝導体で形成された第2の共振器と、
    前記第2の共振器を冷却する冷却部と、
    前記第1の共振器と前記第1の周波数で電磁界結合可能な第3の共振器であって、共振周波数を変更可能な第3の共振器と、
    前記第3の共振器の共振周波数を、前記第1の周波数または前記第1の周波数とは異なる第2の周波数に設定する周波数設定部と、
    を有するフィルタ装置と、
    前記フィルタ装置に接続されたアンテナ素子と、
    信号を増幅して前記フィルタ装置へ送信する増幅器と、
    を備える、アンテナ装置。
  9. 前記アンテナ素子は複数設けられ、
    前記第1の共振器、前記第2の共振器、前記第3の共振器、及び前記増幅器は、複数設けられた前記アンテナ素子ごとに設けられ、
    複数の前記増幅器により増幅されたそれぞれの信号の位相を合わせる移相器と、
    前記移相器により位相を合わせられたそれぞれの信号を合成する合成器と、を更に備える、
    請求項8記載のアンテナ装置。
  10. 共振周波数が第1の周波数である第1の共振器と、
    前記第1の共振器と前記第1の周波数で電磁界結合可能な第2の共振器であって、共振周波数を変更可能な第2の共振器と、
    前記第2の共振器の共振周波数を、前記第1の周波数または前記第1の周波数とは異なる第2の周波数に設定する周波数設定部と、を備える、
    切替装置。
JP2014167761A 2014-08-20 2014-08-20 フィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置 Expired - Fee Related JP6334316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014167761A JP6334316B2 (ja) 2014-08-20 2014-08-20 フィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014167761A JP6334316B2 (ja) 2014-08-20 2014-08-20 フィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置

Publications (2)

Publication Number Publication Date
JP2016046588A true JP2016046588A (ja) 2016-04-04
JP6334316B2 JP6334316B2 (ja) 2018-05-30

Family

ID=55636788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014167761A Expired - Fee Related JP6334316B2 (ja) 2014-08-20 2014-08-20 フィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置

Country Status (1)

Country Link
JP (1) JP6334316B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115473019A (zh) * 2022-08-09 2022-12-13 华南理工大学 一种任意通道数量可重构的滤波功分器及射频前端

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199003A (ja) * 1991-06-25 1993-08-06 Lk Prod Oy 調整可能な共振器装置および該共振器装置を備えるフィルタ
JPH06204710A (ja) * 1992-05-14 1994-07-22 Lk Prod Oy 切換スイッチとして作動する高周波フィルタ
JPH09512150A (ja) * 1994-04-14 1997-12-02 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 高パワー高温超伝導フィルター
JPH10126290A (ja) * 1996-10-22 1998-05-15 N T T Ido Tsushinmo Kk 高感度無線機
JPH11510987A (ja) * 1996-06-07 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ ストリップ線路フィルタを持つ受信機及びストリップ線路フィルタ
JP2000101380A (ja) * 1998-09-25 2000-04-07 Murata Mfg Co Ltd 共振回路、フィルタ、送受共用器および通信装置
JP2001211004A (ja) * 2000-01-26 2001-08-03 Daikin Ind Ltd 超伝導フィルタ
JP2001308605A (ja) * 2000-04-20 2001-11-02 Cryodevice Inc フィルタ装置およびフィルタの中心周波数調整方法
JP2004200478A (ja) * 2002-12-19 2004-07-15 Daikin Ind Ltd フロントエンド
JP2009194646A (ja) * 2008-02-14 2009-08-27 Nec Corp マイクロ波スイッチ回路
JP2012130237A (ja) * 2010-11-26 2012-07-05 Semiconductor Energy Lab Co Ltd 給電装置及び当該給電装置を具備する非接触給電システム
JP2013247550A (ja) * 2012-05-28 2013-12-09 Toshiba Corp アンテナ装置
JP2014239349A (ja) * 2013-06-07 2014-12-18 株式会社東芝 位相可変装置、アンテナ装置、ダイプレクサ及びマルチプレクサ

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199003A (ja) * 1991-06-25 1993-08-06 Lk Prod Oy 調整可能な共振器装置および該共振器装置を備えるフィルタ
JPH06204710A (ja) * 1992-05-14 1994-07-22 Lk Prod Oy 切換スイッチとして作動する高周波フィルタ
JPH09512150A (ja) * 1994-04-14 1997-12-02 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 高パワー高温超伝導フィルター
JPH11510987A (ja) * 1996-06-07 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ ストリップ線路フィルタを持つ受信機及びストリップ線路フィルタ
JPH10126290A (ja) * 1996-10-22 1998-05-15 N T T Ido Tsushinmo Kk 高感度無線機
JP2000101380A (ja) * 1998-09-25 2000-04-07 Murata Mfg Co Ltd 共振回路、フィルタ、送受共用器および通信装置
JP2001211004A (ja) * 2000-01-26 2001-08-03 Daikin Ind Ltd 超伝導フィルタ
JP2001308605A (ja) * 2000-04-20 2001-11-02 Cryodevice Inc フィルタ装置およびフィルタの中心周波数調整方法
JP2004200478A (ja) * 2002-12-19 2004-07-15 Daikin Ind Ltd フロントエンド
JP2009194646A (ja) * 2008-02-14 2009-08-27 Nec Corp マイクロ波スイッチ回路
JP2012130237A (ja) * 2010-11-26 2012-07-05 Semiconductor Energy Lab Co Ltd 給電装置及び当該給電装置を具備する非接触給電システム
JP2013247550A (ja) * 2012-05-28 2013-12-09 Toshiba Corp アンテナ装置
JP2014239349A (ja) * 2013-06-07 2014-12-18 株式会社東芝 位相可変装置、アンテナ装置、ダイプレクサ及びマルチプレクサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115473019A (zh) * 2022-08-09 2022-12-13 华南理工大学 一种任意通道数量可重构的滤波功分器及射频前端
CN115473019B (zh) * 2022-08-09 2023-09-26 华南理工大学 一种任意通道数量可重构的滤波功分器及射频前端

Also Published As

Publication number Publication date
JP6334316B2 (ja) 2018-05-30

Similar Documents

Publication Publication Date Title
KR101770471B1 (ko) 방향성 커플러 모듈을 위한 시스템 및 방법
US10476531B2 (en) High-frequency front-end circuit
KR20170093208A (ko) 조정 가능한 rf 커플러
US10205211B2 (en) Thermal insulation waveguide and wireless communication device
US20170288632A1 (en) Variable filter circuit, rf front end circuit and communication device
JP2013239768A (ja) アレイアンテナ装置
KR102297728B1 (ko) 고주파 신호 송수신 회로
JP6058475B2 (ja) 位相可変装置、アンテナ装置、ダイプレクサ及びマルチプレクサ
JP4893654B2 (ja) 電力合成方法、電力分配方法、電力合成分配器及び無線通信装置
JP6334316B2 (ja) フィルタ装置、受信装置、送信装置、アンテナ装置、及び切替装置
KR20190053270A (ko) 다중-모드 능동 전자 주사 어레이를 위한 시스템들 및 방법들
US9136991B2 (en) Power amplifying circuit and front end module including the same
JP6400414B2 (ja) 信号伝送装置、受信装置、および無線通信装置
JP6334315B2 (ja) 切替装置、送受信装置、及びアンテナ装置
KR20110060735A (ko) 고주파 변압기를 이용한 다중 대역 전력증폭기
JP2011155357A (ja) マルチバンド電力増幅器
KR102329448B1 (ko) 고주파 신호 송수신 회로 및 고주파 신호 송수신 장치
JP6215072B2 (ja) チューナブルフィルタ、位相可変装置及びアンテナ装置
JP2016054449A (ja) 切替装置、受信装置及びアンテナ装置
JP5971284B2 (ja) 増幅装置及び無線通信装置
US9088061B2 (en) High directivity directional coupler having stages operating over respective frequency ranges and a switch for selecting a desired frequency range
WO2023017760A1 (ja) 高周波回路、通信装置および高周波回路の電力増幅方法
KR20070020796A (ko) 다중 밴드 프론트앤드모듈
JP2017158107A (ja) 受信回路
JP2013236145A (ja) 送信ダイバーシティ高周波回路及びダ送信方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170911

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180426

R150 Certificate of patent or registration of utility model

Ref document number: 6334316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees