JP2016046026A - 電気化学素子電極用複合粒子の製造方法 - Google Patents

電気化学素子電極用複合粒子の製造方法 Download PDF

Info

Publication number
JP2016046026A
JP2016046026A JP2014168176A JP2014168176A JP2016046026A JP 2016046026 A JP2016046026 A JP 2016046026A JP 2014168176 A JP2014168176 A JP 2014168176A JP 2014168176 A JP2014168176 A JP 2014168176A JP 2016046026 A JP2016046026 A JP 2016046026A
Authority
JP
Japan
Prior art keywords
composite particles
active material
slurry
particles
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014168176A
Other languages
English (en)
Other versions
JP6398461B2 (ja
Inventor
一道 嶋原
Kazumichi Shimabara
一道 嶋原
広司 小林
Koji Kobayashi
広司 小林
後藤 伸幸
Nobuyuki Goto
伸幸 後藤
近藤 佳久
Yoshihisa Kondo
佳久 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2014168176A priority Critical patent/JP6398461B2/ja
Publication of JP2016046026A publication Critical patent/JP2016046026A/ja
Application granted granted Critical
Publication of JP6398461B2 publication Critical patent/JP6398461B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 低目付で厚み精度の高い電極を作製することができる電気化学素子電極用複合粒子の製造方法を提供する。【解決手段】 電極活物質及びバインダーを含むスラリーを作製するスラリー作製工程と、前記スラリーを造粒して複合粒子を得る造粒工程と、面内運動式篩分け装置を用いて前記複合粒子から粗大粒子及び/または微小粒子を除去する除去工程とを含む。【選択図】 なし

Description

本発明は、電気化学素子電極用複合粒子の製造方法に関するものである。
小型で軽量であり、エネルギー密度が高く、さらに繰り返し充放電が可能な特性を活かして、リチウムイオン二次電池、電気二重層キャパシタ及びリチウムイオンキャパシタなどの電気化学素子は、その需要を急速に拡大している。リチウムイオン二次電池は、エネルギー密度が比較的大きいことから、携帯電話やノート型パーソナルコンピュータなどのモバイル分野で利用されている。一方、電気二重層キャパシタは急速な充放電が可能なので、パーソナルコンピュータ等のメモリーバックアップ小型電源として利用されている他、電気二重層キャパシタは電気自動車等の補助電源としての応用が期待されている。さらに、リチウムイオン二次電池と電気二重層キャパシタの長所を生かしたリチウムイオンキャパシタは、電気二重層キャパシタよりエネルギー密度、出力密度ともに高いことから電気二重層キャパシタが適用される用途、および電気二重層キャパシタの性能では仕様を満たせなかった用途への適用が検討されている。これらのうち、特に、リチウムイオン二次電池では近年ハイブリッド電気自動車、電気自動車などの車載用途のみならず、電力貯蔵用途にまでその応用が検討されている。
これら電気化学素子への期待が高まる一方で、これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性や生産性の向上など、より一層の改善が求められている。このような状況において、電気化学素子用電極に関してもより生産性の高い製造方法が求められている。
電気化学素子用電極は、通常、電極活物質と、必要に応じて用いられる導電材とをバインダーで結着することにより形成された電極活物質層を集電体上に積層してなるものである。電気化学素子用電極には、電極活物質、バインダー、導電材等を含む塗布電極用スラリーを集電体上に塗布し、溶剤を熱などにより除去する方法で製造される塗布電極があるが、バインダーなどのマイグレーションにより、均一な電気化学素子の製造が困難であった。また、この方法はコスト高で作業環境が悪くなり、また、製造装置が大きくなる傾向があった。
それに対して、複合粒子を得て粉体成形することにより均一な電極活物質層を有する電気化学素子を得ることが提案されている。このような電極活物質層を形成する方法として、例えば特許文献1には、電極活物質、バインダー及び分散媒を含むスラリーを噴霧、乾燥することにより複合粒子を得て、この複合粒子を用いてプレス成形等の乾式成形を行うことにより電極活物質層を形成する方法が開示されている。
また、特許文献2には、複合粒子に微小粒子を外添し流動性を制御することにより大きな厚みを有する活物質層を形成する方法が開示されている。
ところで、近年高出力用の電気化学素子においては、電極活物質層を形成する際に複合粒子の目付け量を低目付け量とした低目付電極が求められている。この場合に加圧成形装置に少量の複合粒子を安定的に定量供給することが求められる。しかし、特許文献1及び2により得られる複合粒子は成形ロール等の加圧成形部に対して複合粒子を定量供給するための定量フィーダーのホッパー内、あるいは複合粒子製造過程における複合粒子梱包工程の定量フィーダーのホッパー内において時折ブリッジ、ラットホールといった種々のホッパートラブルを起こす虞があるため、低目付で厚み精度の高い電極を作製することが困難であった。
特許4929792号公報 特許5141002号公報
本発明の目的は、低目付で厚み精度の高い電極を作製することができる電気化学素子電極用複合粒子の製造方法を提供することである。
本発明者は、上記課題を解決するために鋭意検討の結果、粗大粒子及び/または微小粒子が少ない複合粒子を製造することにより、上記目的を達成できることを見出し、本発明を完成するに至った。
即ち、本発明によれば、
(1) 電極活物質及びバインダーを含むスラリーを作製するスラリー作製工程と、前記スラリーを造粒して複合粒子を得る造粒工程と、面内運動式篩分け装置を用いて前記複合粒子から粗大粒子及び/または微小粒子を除去する除去工程とを含む電気化学素子電極用複合粒子の製造方法、
(2) 前記面内運動式篩分け装置における全振幅が30〜150mmであって、回転数が100〜400r/minである(1)記載の電気化学素子電極用複合粒子の製造方法
が提供される。
本発明の電気化学素子電極用複合粒子の製造方法によれば、低目付で厚み精度の高い電極を作製することができる。
本発明に用いるロール加圧成形装置の概略図である。
以下、本発明の電気化学素子電極用複合粒子の製造方法について説明する。本発明の電気化学素子電極用複合粒子(以下、「複合粒子」ということがある。)の製造方法は、電極活物質及びバインダーを含むスラリーを作製するスラリー作製工程と、前記スラリーを造粒して複合粒子を得る造粒工程と、面内運動式篩分け装置を用いて前記複合粒子から粗大粒子及び/または微小粒子を除去する除去工程とを含む。
なお、以下において、「正極活物質」とは正極用の電極活物質を意味し、「負極活物質」とは負極用の電極活物質を意味する。また、「正極活物質層」とは正極に設けられる電極活物質層を意味し、「負極活物質層」とは負極に設けられる電極活物質層を意味する。
(スラリー作製工程)
本発明のスラリー作製工程で作製されるスラリーは、電極活物質及びバインダーを含む。
(電極活物質)
電気化学素子がリチウムイオン二次電池である場合の正極活物質としては、リチウムイオンをドープ及び脱ドープ可能な活物質が用いられ、無機化合物からなるものと有機化合物からなるものとに大別される。
無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。
遷移金属酸化物としては、MnO、MnO2、V25、V613、TiO2、Cu223、非晶質V2O−P25、MoO3、V25、V613等が挙げられ、中でもサイクル安定性と容量からMnO、V25、V613、TiO2が好ましい。遷移金属硫化物としては、TiS2、TiS3、非晶質MoS2、FeS等が挙げられる。リチウム含有複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
層状構造を有するリチウム含有複合金属酸化物としてはリチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物等が挙げられる。スピネル構造を有するリチウム含有複合金属酸化物としてはマンガン酸リチウム(LiMn24)やMnの一部を他の遷移金属で置換したLi[Mn3/21/2]O4(ここでMは、Cr、Fe、Co、Ni、Cu等)等が挙げられる。オリビン型構造を有するリチウム含有複合金属酸化物としてはLiXMPO4(式中、Mは、Mn,Fe,Co,Ni,Cu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoから選ばれる少なくとも1種、0≦X≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。
有機化合物としては、例えば、ポリアセチレン、ポリ−p−フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた正極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
電気化学素子がリチウムイオンキャパシタである場合の正極活物質としては、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンとを可逆的に担持できるものであればよい。具体的には、炭素の同素体を好ましく用いることができ、電気二重層キャパシタで用いられる電極活物質が広く使用できる。炭素の同素体の具体例としては、活性炭、ポリアセン(PAS)、カーボンウィスカ、カーボンナノチューブ及びグラファイト等が挙げられる。
また、電気化学素子がリチウムイオン二次電池である場合の負極活物質としては電気化学素子の負極において電子の受け渡しをできる物質が挙げられる。電気化学素子がリチウムイオン二次電池である場合の負極活物質としては、通常、リチウムを吸蔵及び放出できる物質を用いることができる。
リチウムイオン二次電池に好ましく用いられる負極活物質の例としては、アモルファスカーボン、グラファイト(天然黒鉛、人造黒鉛)、メソカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性高分子;ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属又はこれらの合金;前記金属又は合金の酸化物又は硫酸塩;金属リチウム;Li−Al、Li−Bi−Cd、Li−Sn−Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等が挙げられる。また、負極活物質として、当該負極活物質の粒子の表面に、例えば機械的改質法によって導電材を付着させたものを用いてもよい。また、負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
また、電気化学素子がリチウムイオンキャパシタである場合に好ましく用いられる負極活物質としては、上記炭素で形成された負極活物質が挙げられる。
電極活物質層における電極活物質の含有量は、リチウムイオン二次電池の容量を大きくでき、また、電極の柔軟性、及び、集電体と電極活物質層との結着性を向上させることができる観点から、好ましくは90〜99.9重量%、より好ましくは95〜99重量%である。
電極活物質の体積平均粒子径は、スラリーを調製する際のバインダーの配合量を少なくすることができ、電池の容量の低下を抑制できる観点、および、スラリーを噴霧するのに適正な粘度に調製することが容易になり、均一な電極を得ることができる観点から、好ましくは1〜50μm、より好ましくは2〜30μmである。
(バインダー)
本発明に用いるバインダーとしては、上述の電極活物質を相互に結着させることができる物質であれば特に限定はない。バインダーとしては、溶媒に分散する性質のある分散型のバインダーを好ましく用いることができる。
分散型のバインダーとして、例えば、シリコン系重合体、フッ素含有重合体、共役ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、好ましくはフッ素含有重合体、共役ジエン系重合体およびアクリレート系重合体、より好ましくは共役ジエン系重合体およびアクリレート系重合体が挙げられる。これらの重合体は、それぞれ単独で、または2種以上混合して、分散型のバインダーとして用いることができる。
フッ素含有重合体は、フッ素原子を含む単量体単位を含有する重合体である。フッ素含有重合体の具体例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、エチレン・テトラフルオロエチレン共重合体、エチレン・クロロトリフルオロエチレン共重合体、パーフルオロエチレン・プロペン共重合体が挙げられる。中でも、PVDFを含むことが好ましい。
共役ジエン系重合体は、共役ジエン系単量体の単独重合体もしくは共役ジエン系単量体を含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。共役ジエン系単量体として、1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3ブタジエン、2−クロル−1,3−ブタジエン、置換直鎖共役ペンタジエン類、置換および側鎖共役ヘキサジエン類などを用いることが好ましく、電極とした際における柔軟性を向上させることができ、割れに対する耐性を高いものとすることができる点で1,3−ブタジエンを用いることがより好ましい。また、単量体混合物においてはこれらの共役ジエン系単量体を2種以上含んでもよい。
共役ジエン系重合体が、上述した共役ジエン系単量体と、これと共重合可能な単量体との共重合体である場合、かかる共重合可能な単量体としては、たとえば、α,β−不飽和ニトリル化合物や酸成分を有するビニル化合物などが挙げられる。
共役ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン系単量体単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル系単量体・共役ジエン系単量体共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル系単量体・共役ジエン系単量体共重合体;水素化SBR、水素化NBR等が挙げられる。
共役ジエン系重合体中における共役ジエン系単量体単位の割合は、好ましくは20〜60重量%であり、より好ましくは30〜55重量%である。共役ジエン系単量体単位の割合が多すぎると、バインダーを含む複合粒子を用いて電極を製造した場合に、耐電解液性が低下する傾向がある。共役ジエン系単量体単位の割合が少なすぎると、複合粒子と集電体との十分な密着性が得られない傾向がある。
アクリレート系重合体は、一般式(1):CH2=CR1−COOR2(式中、R1は水素原子またはメチル基を、R2はアルキル基またはシクロアルキル基を表す。R2はさらにエーテル基、水酸基、リン酸基、アミノ基、カルボキシル基、フッ素原子、またはエポキシ基を有していてもよい。)で表される化合物〔(メタ)アクリル酸エステル〕由来の単量体単位を含む重合体、具体的には、一般式(1)で表される化合物の単独重合体、または前記一般式(1)で表される化合物を含む単量体混合物を重合して得られる共重合体である。一般式(1)で表される化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸イソボニル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、および(メタ)アクリル酸トリデシル等の(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸エトキシジエチレングリコール、(メタ)アクリル酸メトキシジプロピレングリコール、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフルフリル等のエーテル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸−2−ヒドロキシ−3−フェノキシプロピル、2−(メタ)アクリロイロキシエチル−2−ヒドロキシエチルフタル酸等の水酸基含有(メタ)アクリル酸エステル;2−(メタ)アクリロイロキシエチルフタル酸、2−(メタ)アクリロイロキシエチルフタル酸等のカルボン酸含有(メタ)アクリル酸エステル;(メタ)アクリル酸パーフロロオクチルエチル等のフッ素基含有(メタ)アクリル酸エステル;(メタ)アクリル酸リン酸エチル等のリン酸基含有(メタ)アクリル酸エステル;(メタ)アクリル酸グリシジル等のエポキシ基含有(メタ)アクリル酸エステル;(メタ)アクリル酸ジメチルアミノエチル等のアミノ基含有(メタ)アクリル酸エステル;等が挙げられる。
なお、本明細書において、「(メタ)アクリル」は「アクリル」及び「メタクリル」を意味する。また、「(メタ)アクリロイル」は「アクリロイル」及び「メタクリロイル」を意味する。
これら(メタ)アクリル酸エステルは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、および(メタ)アクリル酸n−ブチルやアルキル基の炭素数が6〜12である(メタ)アクリル酸アルキルエステルがより好ましい。これらを選択することにより、電解液に対する膨潤性を低くすることが可能となり、サイクル特性を向上させることができる。
また、アクリレート系重合体が、上述した一般式(1)で表される化合物と、これと共重合可能な単量体との共重合体である場合、かかる共重合可能な単量体としては、たとえば、2つ以上の炭素−炭素二重結合を有するカルボン酸エステル類、芳香族ビニル系単量体、アミド系単量体、オレフィン類、ジエン系単量体、ビニルケトン類、及び複素環含有ビニル化合物などのほか、α,β−不飽和ニトリル化合物や酸成分を有するビニル化合物が挙げられる。
上記共重合可能な単量体の中でも、電極を製造した際に変形しにくく強度が強いものとすることができ、また、電極活物質層と集電体との十分な密着性が得られる点で、芳香族ビニル系単量体を用いることが好ましい。芳香族ビニル系単量体としては、スチレン等が挙げられる。
なお、芳香族ビニル系単量体の割合が多すぎると電極活物質層と集電体との十分な密着性が得られない傾向がある。また、芳香族ビニル系単量体の割合が少なすぎると、電極を製造した際に耐電解液性が低下する傾向がある。
アクリレート系重合体中における(メタ)アクリル酸エステル単位の割合は、電極とした際における柔軟性を向上させることができ、割れに対する耐性を高いものとする観点から、好ましくは50〜95重量%であり、より好ましくは60〜90重量%である。
分散型のバインダーを構成する重合体に用いられる、前記α,β−不飽和ニトリル化合物としては、アクリロニトリル、メタクリロニトリル、α−クロロアクリロニトリル、及びα−ブロモアクリロニトリルなどが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、アクリロニトリル及びメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。
分散型のバインダー中におけるα,β−不飽和ニトリル化合物単位の割合は、好ましくは0.1〜40重量%、より好ましくは0.5〜30重量%、さらに好ましくは1〜20重量%である。分散型のバインダー中にα,β−不飽和ニトリル化合物単位を含有させると、電極を製造した際に変形しにくく強度が強いものとすることができる。また、分散型のバインダー中にα,β−不飽和ニトリル化合物単位を含有させると、複合粒子を含む電極活物質層と集電体との密着性を十分なものとすることができる。
なお、α,β−不飽和ニトリル化合物単位の割合が多すぎると電極活物質層と集電体との十分な密着性が得られない傾向がある。また、α,β−不飽和ニトリル化合物単位の割合が少なすぎると、電極を製造した際に耐電解液性が低下する傾向がある。
前記酸成分を有するビニル化合物としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、及びフマル酸などが挙げられる。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、アクリル酸、メタクリル酸、およびイタコン酸が好ましく、接着力が良くなる点でメタクリル酸がより好ましい。
分散型のバインダー中における酸成分を有するビニル化合物単位の割合は、スラリーとした際における安定性が向上する観点から、好ましくは0.5〜10重量%、より好ましくは1〜8重量%、さらに好ましくは2〜7重量%である。
なお、酸成分を有するビニル化合物単位の割合が多すぎると、スラリーの粘度が高くなり、取扱いが困難になる傾向がある。また、酸成分を有するビニル化合物単位の割合が少なすぎるとスラリーの安定性が低下する傾向がある。
分散型のバインダーの形状は、特に限定はないが、粒子状であることが好ましい。粒子状であることにより、結着性が良く、また、製造した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができる。粒子状のバインダーとしては、例えば、ラテックスのごときバインダーの粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。
分散型のバインダーの平均粒子径は、スラリーとした際における安定性を良好なものとしながら、得られる電極の強度及び柔軟性が良好となる点から、好ましくは0.001〜10μm、より好ましくは10〜5000nm、さらに好ましくは50〜1000nmである。
また、本発明に用いるバインダーの製造方法は特に限定されず、乳化重合法、懸濁重合法、分散重合法または溶液重合法等の公知の重合法を採用することができる。中でも、乳化重合法で製造することが、バインダーの粒子径の制御が容易であるので好ましい。また、本発明に用いるバインダーは、2種以上の単量体混合物を段階的に重合することにより得られるコアシェル構造を有する粒子であっても良い。
本発明の複合粒子中におけるバインダーの配合量は、得られる電極活物質層と集電体との密着性が十分に確保でき、かつ、電気化学素子の内部抵抗を低くすることができる観点から、電極活物質100重量部に対して、乾燥重量基準で好ましくは0.1〜20重量部、より好ましくは0.5〜10重量部、さらに好ましくは1〜5重量部である。
(水溶性高分子)
本発明に用いるスラリーは、水溶性高分子を含むことが好ましい。本発明に用いる水溶性高分子とは、25℃において、高分子0.5gを100gの純水に溶解させた場合の未溶解分が10.0重量%未満の高分子をいう。
水溶性高分子の具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩、アルギン酸プロピレングリコールエステルなどのアルギン酸エステル、ならびにアルギン酸ナトリウムなどのアルギン酸塩、ポリアクリル酸、およびポリアクリル酸(またはメタクリル酸)ナトリウムなどのポリアクリル酸(またはメタクリル酸)塩、ポリビニルアルコール、変性ポリビニルアルコール、ポリ−N−ビニルアセトアミド、ポリエチレンオキシド、ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。また、非水溶性多糖高分子と組み合わせて用いてもよく、そうすることで、複合粒子の補強効果が得られる。
ここで、非水溶性多糖高分子繊維としては、多糖高分子のナノファイバーを用いることが好ましく、多糖高分子のナノファイバーのなかでも柔軟性を有し、かつ、繊維の引張強度が大きいため複合粒子の補強効果が高く、粒子強度を向上させることができる観点、および、導電材の分散性が良好となる観点から、セルロースナノファイバー、キチンナノファイバー、キトサンナノファイバーなどの生物由来のバイオナノファイバーから選ばれる単独又は任意の混合物を使用するのがより好ましい。これらのなかでも、セルロースナノファイバーを使用するのがさらに好ましく、竹、針葉樹、広葉樹、綿を原料とするセルロースナノファイバーを使用するのが特に好ましい。
(導電材)
本発明に用いるスラリーは、必要に応じて導電材を含んでいてもよい。必要に応じて用いられる導電材としては、ファーネスブラック、アセチレンブラック(以下、「AB」と略記することがある。)、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)、カーボンナノチューブ、カーボンナノホーン、グラフェンなどの導電性カーボンが好ましく用いられる。これらの中でも、アセチレンブラックがより好ましい。導電材の平均粒子径は、特に限定されないが、より少ない使用量で十分な導電性を発現させる観点から、電極活物質の平均粒子径よりも小さいものが好ましく、好ましくは0.001〜10μm、より好ましくは0.005〜5μm、さらに好ましくは0.01〜1μmである。
導電材を添加する場合における導電材の配合量は、電極活物質100重量部に対して、好ましくは1〜10重量部、より好ましくは1〜5重量部である。
(その他の添加剤)
本発明の複合粒子は、さらに必要に応じてその他の添加剤を含有していてもよい。その他の添加剤としては、例えば、界面活性剤が挙げられる。界面活性剤としては、アニオン性、カチオン性、ノニオン性、ノニオニックアニオン等の両性の界面活性剤が挙げられるが、中でもアニオン性またはノニオン性界面活性剤が好ましい。界面活性剤の配合量は、特に限定されないが、複合粒子中において、電極活物質100重量部に対して好ましくは0〜50重量部、より好ましくは0.1〜10重量部、さらに好ましくは0.5〜5重量部である。界面活性剤を添加することで、スラリーから得られる液滴の表面張力を調整することができる。
(スラリーの作製方法)
本発明で用いるスラリーは、電極活物質、バインダー、必要に応じて添加される水溶性高分子及び導電材を含有する。スラリーは、電極活物質、バインダー、必要に応じて添加される水溶性高分子及び導電材を、溶媒に分散又は溶解させることにより調製することができる。なお、この場合において、バインダーが溶媒に分散されたものである場合には、溶媒に分散させた状態で添加することができる。
スラリーを得るために用いる溶媒としては、水を用いることが好ましいが、水と有機溶媒との混合溶媒を用いてもよく、有機溶媒のみを単独または数種組み合わせて用いてもよい。この場合に用いることができる有機溶媒としては、たとえば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等のアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン等のアミド類;等が挙げられる。有機溶媒を用いる場合には、アルコール類が好ましい。これにより、スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。
また、スラリーの粘度は、噴霧乾燥造粒による複合粒子の生産性を向上させる観点から、室温において、好ましくは10〜3,000mPa・s、より好ましくは30〜1,500mPa・s、さらに好ましくは50〜1,000mPa・sである。
なお、本明細書において記載する粘度は25℃、せん断速度10s-1における粘度である。ブルックフィールドデジタル粘度計DV−II+Proを用いることで測定が可能である。
スラリーを調製する際に使用する溶媒の量は、スラリー中にバインダーを均一に分散させる観点から、スラリーの固形分濃度が、好ましくは1〜50重量%、より好ましくは5〜50重量%、さらに好ましくは10〜40重量%となる量である。
電極活物質、バインダー、必要に応じて添加される水溶性高分子及び導電材等を溶媒に分散又は溶解する方法又は順番は、特に限定されず、例えば、溶媒に電極活物質、バインダー、水溶性高分子および導電材を添加し混合する方法、溶媒に水溶性高分子を溶解した後、電極活物質及び導電材を添加して混合し、最後に溶媒に分散させたバインダー(例えば、ラテックス)を添加して混合する方法、溶媒に分散させたバインダーに電極活物質および導電材を添加して混合し、この混合物に溶媒に溶解させた水溶性高分子を添加して混合する方法等が挙げられる。
また、混合装置としては、たとえば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等を用いることができる。混合は、好ましくは室温〜80℃で、10分〜数時間行う。
(造粒工程)
本発明の造粒工程では、スラリー作製工程で得られたスラリーを造粒して複合粒子を得る。スラリーの「造粒」とは、スラリーから溶媒を除去して乾燥させることと、スラリーの成分である電極活物質、バインダー及び必要に応じて添加される導電材の粒子のそれぞれ複数からなり、さらに必要に応じて添加される水溶性高分子を含有する複合粒子を形成させること、の両方を含む、複合粒子の製造工程のことである。
造粒工程におけるスラリーの造粒方法は特に限定されないが、噴霧乾燥造粒法、噴霧凝固造粒法、流動層造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出造粒法、破砕型造粒法、流動層多機能型造粒法、および溶融造粒法などの製造方法を採用することができる。
複合粒子の製造方法は、粒子径制御の容易性、生産性、粒子径分布の制御の容易性などの観点から、複合粒子の成分等に応じて最適な方法を適宜選択すればよいが、以下に説明する噴霧乾燥造粒法は、複合粒子を比較的容易に製造することができるため、好ましい。
以下、噴霧乾燥造粒法について説明する。
噴霧乾燥造粒法は、熱風中にスラリーを噴霧して乾燥する方法である。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーとしては、回転円盤方式、カップ方式、二流体ノズル方式及び加圧方式などの装置が挙げられ、回転円盤方式とカップ方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。回転円盤方式において、円盤の回転速度は円盤の大きさに依存するが、好ましくは5,000〜30,000rpm、より好ましくは15,000〜30,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、ピン型アトマイザーが好ましい。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。
カップ方式に用いるカップ型アトマイザーは、所定の回転数で回転するアトマイザー先端のカップにスラリーを導入し、スラリーに回転力を加えながらカップの端部から吐出させることにより、遠心力でスラリーの噴霧を行い霧状の液滴を得るように構成されている。また、カップの向きは上向き、下向きがあるが、そのいずれか片方に限るものではなく、いずれも良好な霧化が可能である。
回転円盤方式またはカップ方式における円盤またはカップの回転速度は、特に限定されないが、好ましくは5,000〜40,000rpm、さらに好ましくは15,000〜30,000rpmである。円盤またはカップの回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の平均粒子径が大きくなる。
また、加圧方式は、スラリーを加圧してノズルからスラリーを霧状にする方式である。
また、静電微粒化法を用いることによりスラリーから液滴を生成させてもよい。即ち、静電噴霧によりスラリーの噴霧を行ってもよい。
噴霧されるスラリーの温度は、好ましくは室温であるが、加温して室温より高い温度としてもよい。また、噴霧乾燥時の熱風温度は、好ましくは25〜250℃、より好ましくは50〜200℃、さらに好ましくは80〜150℃である。噴霧乾燥法において、熱風の吹き込み方法は特に限定されず、たとえば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
また、噴霧凝固造粒法は、スラリーを噴霧することにより得られた液滴を凝固液に接触させ、球状又は粒状の複合粒子を得る方法である。なお、噴霧凝固造粒法におけるスラリーの噴霧方法としては、噴霧乾燥造粒法において用いることができる噴霧方法と同様の噴霧方法を用いることができる。
(除去工程)
本発明においては、面内運動式篩分け装置を用いて造粒工程で得られた複合粒子から粗大粒子及び/または微小粒子を除去する。面内運動式篩分けとしては、篩網を用いた篩分けであって、水平方向にのみ振動するものなど、篩分けの際の垂直振動成分がないか、無視できるほど小さい方式の篩分け、軸偏心ラジアル傾斜、タンジェンシャル傾斜を組み合わせた3次元の動きにより複合粒子をソフトに篩分けする方式等が挙げられる。
面内運動式篩分けにおける全振幅は、好ましくは30〜150mm、より好ましくは40〜120mm、さらに好ましくは50〜90mmである。面内運動式篩分けにおける全振幅が大きすぎると、粒子同士または装置壁面との衝突により複合粒子が破壊され、粒度分布がブロードになる。また、面内運動式篩分けにおける全振幅が小さすぎると、粗大粒子の除去工程においては、造粒工程で得た複合粒子の篩通過能力が低下し、粗大粒子以外の複合粒子も除去されるため、ロスが多くなる。また、微小粒子の除去工程においては、造粒工程で得た複合粒子の篩通過能力が低下し、微小粒子が製品粒子としての複合粒子中に残留するため、粒度分布がブロードになる。その結果、目付け精度、厚み精度が悪化する。
また、面内運動式篩分けにおける回転数は、好ましくは100〜400r/min、より好ましくは150〜350r/min、さらに好ましくは200〜300r/minである。面内運動式篩分けにおける回転数が大きすぎると、粒子同士または装置壁面との衝突により複合粒子が破壊され、粒度分布がブロードになる。その結果、目付け精度、厚み精度が悪化する。また、面内運動式篩分けにおける回転数が小さすぎると、粗大粒子の除去工程においては、造粒工程で得た複合粒子の篩通過能力が低下し、粗大粒子以外の複合粒子も除去されるため、ロスが多くなる。また、微小粒子の除去工程においては、造粒工程で得た複合粒子の篩通過能力が低下し、微小粒子が製品粒子としての複合粒子中に残留するため、粒度分布がブロードになる。その結果、目付け精度、厚み精度が悪化する。
なお、粗大粒子及び/または微小粒子を除去する方法として、振動式篩分け、風力篩分け、乾式分級(遠心力分級、重力分級、慣性力分級)等の面内運動式篩分け以外の方式による篩分けを行うと、複合粒子への負荷が大きく、複合粒子が破壊される。一方、面内運動式による篩分けを行うと、複合粒子への負荷が小さいため、複合粒子を破壊することなく効率的に粗大粒子及び/または微小粒子の除去を行うことができる。
また、除去工程においては、所望の目開きの篩網を用いることにより粗大粒子及び/または微小粒子を除去することができる。
(複合粒子の物性)
本発明の複合粒子の形状は、流動性が良好でホッパートラブルを防止できる観点、ホッパーからの複合粒子の供給が良好であり、厚み精度の良い電極を得ることができる観点から実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をls、長軸径をll、la=(ls+ll)/2としたとき、(ll−ls)×100/laで表される球形度(%)が好ましくは15%以下、より好ましくは13%以下、さらに好ましくは12%以下、最も好ましくは10%以下である。ここで、短軸径lsおよび長軸径llは、透過型電子顕微鏡または走査型電子顕微鏡の写真像から測定することができる。球形度が大きすぎると、複合粒子の流動性が悪化し、ホッパートラブルが起きやすくなる。また、電極の目付精度が悪化し、厚み精度のよい電極が得難くなる。
本発明の複合粒子の粒子径は、複合粒子の流動性が良好で、ホッパートラブルが起きにくく、さらに、厚み精度の高い均一な電極を得る観点から、レーザー光回折・散乱法を用いた粒子径測定により得られる個数換算の粒子径分布において、好ましくは40μm以下の粒子が全体の50%以下、より好ましくは40%以下、さらに好ましくは10%以下、特に好ましくは5%以下である。なお、粒子径分布は、レーザー回折・散乱式粒度分布測定装置(たとえば、SALD−3100;島津製作所製、マイクロトラックMT−3200II;日機装株式会社製)にて測定することにより得られる。
個数換算の粒子径分布において40μm以下の粒子の割合が多すぎると、複合粒子の流動性が悪化し、ホッパートラブルが起きやすくなる。また、得られる電極の厚み精度が悪化する。
また、本発明の複合粒子の粒子径は、流動性が良好でホッパートラブルを防止でき、また、ホッパーからの複合粒子の供給が良好であり、厚み精度の良い電極を得る観点から、レーザー光回折・散乱法を用いた粒子径測定により得られる体積換算の粒子径分布において、累積95%径(D95径)が好ましくは300μm以下、より好ましくは40〜250μm、さらに好ましくは50〜225μm、特に好ましくは60〜200μmである。
体積換算の粒子径分布において累積95%径(D95径)が大きすぎると、複合粒子中の粗大粒子が多いため、電極活物質層を成形する際に厚みムラが生じる。また、体積換算の粒子径分布において累積95%径(D95径)が小さすぎると、複合粒子の流動性が悪化し、ホッパートラブルが起きやすくなる。また、電極活物質層を成形する際に厚みムラが生じる。
また、本発明の複合粒子の粒子径は、レーザー光回折・散乱法を用いた粒子径測定により得られる体積換算の粒子径分布において累積50%径(D50径)は、好ましくは50〜160μm、より好ましくは50〜130μm、さらに好ましくは50〜110μmである。
また、本発明の複合粒子の圧縮度は、複合粒子の流動性が良好でホッパートラブルを防止できる観点、ホッパーからの複合粒子の供給が良好であり、厚み精度の良い電極が得ることができる観点から、15%以下であることが好ましい。複合粒子の圧縮度が大きすぎると、複合粒子の流動性が悪くなるため、ホッパートラブルが起きやすくなり、また、得られる電極の厚み精度が悪化する。なお、圧縮度は、例えば、ホソカワミクロン社製パウダテスタ−PT−S型等の粉体物性測定装置を用いて測定することができる。
(電気化学素子電極)
本発明の電気化学素子電極用複合粒子を含む電極活物質層を集電体上に積層することにより、電気化学素子電極を得ることができる。集電体の材料としては、たとえば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。金属としては、通常、銅、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から、銅、アルミニウム又はアルミニウム合金を使用するのが好ましい。また、高い耐電圧性が要求される場合には特開2001−176757号公報等で開示される高純度のアルミニウムを好適に用いることができる。集電体は、フィルム又はシート状であり、その厚みは、使用目的に応じて適宜選択されるが、好ましくは1〜200μm、より好ましくは5〜100μm、さらに好ましくは10〜50μmである。
電極活物質層を集電体上に積層する際には、複合粒子をシート状に成形し、次いで集電体上に積層してもよいが、集電体上で複合粒子を直接加圧成形する方法が好ましい。加圧成形する方法としては、例えば、一対のロールを備えたロール式加圧成形装置を用い、集電体をロールで送りながら、振動フィーダーやスクリューフィーダー等の供給装置で複合粒子をロール式加圧成形装置に供給することで、集電体上に電極活物質層を成形するロール加圧成形法や、複合粒子を集電体上に散布し、複合粒子をブレード等でならして厚みを調整し、次いで加圧装置で成形する方法、複合粒子を金型に充填し、金型を加圧して成形する方法などが挙げられる。これらのなかでも、ロール加圧成形法が好ましい。特に、本発明の複合粒子は、高い流動性を有しているため、その高い流動性により、ロール加圧成形による成形が可能であり、これにより、生産性の向上が可能となる。
ロール加圧成形を行う際のロール温度は、均一な電極を作成するためには、好ましくは10〜100℃、より好ましくは20〜60℃、さらに好ましくは20〜50℃である。また、電極活物質層と集電体との密着性を十分なものとすることができる観点から、好ましくは25〜200℃、より好ましくは50〜150℃、さらに好ましくは80〜120℃である。均一な電極を作成するのに好ましい温度領域と、密着性を高めるために好ましい温度領域とが重なり合わない場合は、多段階でロール加圧することで、それらを両立させることが可能である。また、ロール加圧成形時のロール間のプレス線圧は、電極活物質の破壊を防ぐ観点から、好ましくは10〜1000kN/m、より好ましくは200〜900kN/m、さらに好ましくは300〜600kN/mである。また、ロール加圧成形時の成形速度は、好ましくは0.1〜20m/分、より好ましくは4〜10m/分である。
また、成形した電気化学素子電極の厚みのばらつきを無くし、電極活物質層の密度を上げて高容量化を図るために、必要に応じてさらに後加圧を行ってもよい。後加圧の方法は、ロールによるプレス工程が好ましい。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませることにより加圧する。この際においては、必要に応じて、ロールは加熱又は冷却等、温度調節してもよい。
また、電極活物質層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよく、中でも、導電性接着剤層を形成するのが好ましい。
電極活物質層の密度は、特に制限されないが、通常は0.30〜10g/cm3、好ましくは0.35〜8.0g/cm3、より好ましくは0.40〜6.0g/cm3である。また、電極活物質層の厚みは、特に制限されないが、通常は5〜1000μm、好ましくは20〜500μm、より好ましくは30〜300μmである。
(電気化学素子)
本発明の電気化学素子は、上述のようにして得られる正極、負極、セパレーターおよび電解液を備え、正極または負極のうちの少なくとも一方に本発明の電気化学素子電極を用いる。電気化学素子としては、例えば、リチウムイオン二次電池、リチウムイオンキャパシタ等が挙げられる。
(セパレーター)
セパレーターとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や、芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;などを用いることができる。具体例を挙げると、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜;ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜;ポリオレフィン系の繊維を織ったもの又はその不織布;絶縁性物質粒子の集合体等が挙げられる。これらの中でも、セパレーター全体の膜厚を薄くすることができ、リチウムイオン二次電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
セパレーターの厚さは、リチウムイオン二次電池においてセパレーターによる内部抵抗を小さくすることができる観点、および、リチウムイオン二次電池を製造する際の作業性に優れる観点から、好ましくは0.5〜40μm、より好ましくは1〜30μm、さらに好ましくは1〜25μmである。
(電解液)
リチウムイオン二次電池用の電解液としては、例えば、非水溶媒に支持電解質を溶解した非水電解液が用いられる。支持電解質としては、リチウム塩が好ましく用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liが好ましい。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。解離度の高い支持電解質を用いるほど、リチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
電解液における支持電解質の濃度は、支持電解質の種類に応じて、0.5〜2.5モル/Lの濃度で用いることが好ましい。支持電解質の濃度が低すぎても高すぎても、イオン伝導度が低下する可能性がある。
非水溶媒としては、支持電解質を溶解できるものであれば特に限定されない。非水溶媒の例を挙げると、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類;1,2−ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;支持電解質としても使用されるイオン液体などが挙げられる。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。非水溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。一般に、非水溶媒の粘度が低いほどリチウムイオン伝導度が高くなり、誘電率が高いほど支持電解質の溶解度が上がるが、両者はトレードオフの関係にあるので、溶媒の種類や混合比によりリチウムイオン伝導度を調節して使用するのがよい。また、非水溶媒は全部あるいは一部の水素をフッ素に置き換えたものを併用あるいは全量用いてもよい。
また、電解液には添加剤を含有させてもよい。添加剤としては、例えば、ビニレンカーボネート(VC)などのカーボネート系;エチレンサルファイト(ES)などの含硫黄化合物;フルオロエチレンカーボネート(FEC)などのフッ素含有化合物が挙げられる。
添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
なお、リチウムイオンキャパシタ用の電解液としては、上述のリチウムイオン二次電池に用いることができる電解液と同様のものを用いることができる。
(電気化学素子の製造方法)
リチウムイオン二次電池やリチウムイオンキャパシタ等の電気化学素子の具体的な製造方法としては、例えば、正極と負極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電を防止してもよい。リチウムイオン二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。電池容器の材質は、電池内部への水分の侵入を阻害するものであればよく、金属製、アルミニウムなどのラミネート製など特に限定されない。
本発明の電気化学素子電極用複合粒子の製造方法によれば、低目付で厚み精度の高い電極を作製することができる。
以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨及び均等の範囲を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において量を表す「%」及び「部」は、特に断らない限り、重量基準である。
実施例及び比較例において、目付精度、電極の外観及び厚み精度の評価はそれぞれ以下のように行った。
<目付精度>
実施例及び比較例において作製した電極(リチウムイオン二次電池負極またはリチウムイオン二次電池正極)を、幅方向(TD方向)10cm、長さ方向(MD方向)1mにカットし、カットした電極について、TD方向に均等に3点、及びMD方向に均等に5点の合計15点(=3点×5点)を円状に2cm2打ち抜き重量測定を行い、打ち抜いた電極から集電箔の重さを差し引いたものを目付とし、その平均値A及び平均値から最も離れた値Bを求めた。そして、平均値A及び最も離れた値Bから、下記式(1)にしたがって、目付ムラを算出し、下記基準にて成形性を評価した。目付ムラが小さいほど電極の均一性に優れ、目付精度に優れていると判断できる。
目付ムラ(%)=(|A−B|)×100/A…(1)
A:目付ムラが5%未満
B:目付ムラが5%以上、10%未満
C:目付ムラが10%以上、15%未満
D:目付ムラが15%以上
E:電極層に穴が開いている
<電極の外観>
実施例及び比較例において作製した電極(リチウムイオン二次電池負極またはリチウムイオン二次電池正極)の外観を検査し、欠け、カスレ等の不良がないか確認した。なお、表面にスジ模様が見られる場合をカスレあり、クレーターや亀裂、集電体が剥き出している部分が見られる場合を欠けがあると判定した。
<厚み精度>
実施例及び比較例において作製した電極(リチウムイオン二次電池負極またはリチウムイオン二次電池正極)の上記外観検査において、欠け、カスレ等が認められない箇所を長手方向に2mにカットし、幅方向(TD方向)の中央から両端にかけて均等に5cm間隔で3点、長さ方向(MD方向)に均等に10cm間隔で膜厚測定を行い、膜厚の平均値A及び平均値から最も離れた値Bを求めた。そして、平均値A及び最も離れた値Bから、下記式(2)にしたがって、厚みムラを算出し、下記基準にて成形性を評価した。厚みムラが小さいほど、厚みの均一性、即ち、厚み精度に優れていると判断できる。
厚みムラ(%)=(|A−B|)×100/A ・・・(2)
A:厚みムラが2.5%未満
B:厚みムラが2.5%以上、5.0%未満
C:厚みムラが5.0%以上、7.5%未満
D:厚みムラが7.5%以上、10%未満
E:厚みムラが10%以上
(実施例1)
(バインダーの製造)
攪拌機付き5MPa耐圧容器に、スチレン62部、1,3−ブタジエン34部、メタクリル酸3部、ドデシルベンゼンスルホン酸ナトリウム4部、イオン交換水150部、連鎖移動剤としてt−ドデシルメルカプタン0.4部および重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状のバインダーS(スチレン・ブタジエン共重合体;以下、「SBR」と略記することがある。)を得た。
(スラリーの作製)
負極活物質として人造黒鉛(平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値)):0.354nm)を100部、上記粒子状のバインダーSを固形分換算量で1部、水溶性高分子としてカルボキシメチルセルロース(BSH−12;第一工業製薬社製)(以下、「CMC」ということがある。)を固形分換算量で1部を混合し、さらにイオン交換水を固形分濃度が35wt%となるように加え、混合分散してスラリーを得た。
(複合粒子の製造)
上記スラリーを回転円盤方式のピン型アトマイザー(直径84mm)を用いたスプレー乾燥機(大川原化工機社製)に255mL/分で供給し、回転数17,000rpm、熱風温度150℃、粒子回収出口の温度を90℃の条件で噴霧乾燥造粒を行った。得られた複合粒子の体積平均粒子径は85μmであった。
(複合粒子の除去工程)
上記で得られた複合粒子を、有効網面積0.3m2の面内運動式篩分け装置を使用し、全振幅70mm、回転数250r/min、篩網目開き135μmの条件にて篩分けを行い、粗大粒子を除去した。続けて全振幅70mm、回転数250r/min、篩網目開き75μmの条件にて篩分けを行い、微小粒子を除去して負極用複合粒子を得た。
(リチウムイオン二次電池負極の作製)
リチウムイオン二次電池負極の製造は、図1に示すロール加圧成形装置を用いて行った。ここで、図1に示すようにロール加圧成形装置2は、ホッパー4と、ホッパー4に定量フィーダー16を介して供給された複合粒子6を導電性接着剤層付集電箔8に圧縮する一対のロール(10A,10B)からなるプレ成形ロール10、プレ成形ロール10により形成されたプレ成形体をさらにプレスする一対のロール(12A,12B)からなる成形ロール12、および一対のロール(14A,14B)からなる成形ロール14を備えている。
まず、ロール加圧成形装置2において50℃に加熱されたロール径50mmφの一対のプレ成形ロール10(ロール10A,10B)上に導電性接着剤層付集電箔8を設置した。ここで、導電性接着剤層付集電箔8は、導電性接着剤を銅集電体上にダイコーターで塗布、乾燥することで得た導電性接着剤層付銅集電箔である。次に、定量フィーダー16を介して、前記プレ成形ロール10の上部に設けられたホッパー4に複合粒子6として上記にて得られた複合粒子を供給した。プレ成形ロール10の上部に設けられたホッパー4内の前記複合粒子6の堆積量がある一定高さになったところで、10m/分の速度でロール加圧成形装置2を稼働させ、前記プレ成形ロール10で複合粒子6を加圧成形し、前記導電性接着剤層付銅集電箔上に負極活物質層のプレ成形体を形成した。その後、前記ロール加圧成形装置2のプレ成形ロール10の下流に設けられ、100℃に加熱された二対の300mmφ成形ロール12、14で前記負極活物質層がプレ成形された電極をプレスし、前記電極の表面を均すとともに電極密度を高めた。このままロール加圧成形装置2を連続して10分間稼働し、リチウムイオン二次電池負極を約100m作製した。
(実施例2)
(バインダーの製造)
メカニカルスターラー及びコンデンサを装着した反応器に、窒素雰囲気下、脱イオン水210部及び濃度30%のアルキルジフェニルオキシドジスルホネート(ダウファックス(登録商標)2A1、ダウ・ケミカル社製)を固形分換算量で1.67部仕込み、撹拌しながら70℃に加熱し、1.96%過硫酸カリウム水溶液25.5部を反応器に添加した。次いで、メカニカルスターラーを装着した上記とは別の容器に、窒素雰囲気下、アクリル酸ブチル35部、メタクリル酸エチル62.5部、メタクリル酸2.4部、濃度30%のアルキルジフェニルオキシドジスルホネート(ダウファックス(登録商標)2A1、ダウ・ケミカル社製)を固形分換算量で1.67部、及び脱イオン水22.7部を添加し、これを攪拌し、乳化させて単量体混合液を調製した。そして、この単量体混合液を攪拌し、乳化させた状態にて、2.5時間かけて一定の速度で、脱イオン水210部及び過硫酸カリウム水溶液を仕込んだ反応器に添加し、重合転化率が95%になるまで反応させて、粒子状のバインダーA(アクリレート系重合体)の水分散液を得た。
(スラリーの作製)
正極活物質としてのLiCoO2(以下、「LCO」ということがある。)100部、導電材としてのアセチレンブラック(HS−100、電気化学工業社製)(以下、「AB」ということがある。)4部、バインダーとして粒子状のバインダーA(アクリレート系重合体)の水分散液を固形分換算で1部、水溶性高分子としてカルボキシメチルセルロース(BSH−12;第一工業製薬社製)を固形分換算量で1部混合し、さらにイオン交換水を適量加え、プラネタリーミキサーにて混合分散して固形分濃度50%の正極用のスラリーを調製した。
(複合粒子の製造)
上記スラリーを回転円盤方式のピン型アトマイザー(直径84mm)を用いたスプレー乾燥機(大川原化工機社製)に255mL/分で供給し、回転数17,000rpm、熱風温度150℃、粒子回収出口の温度を90℃の条件で噴霧乾燥造粒を行った。得られた複合粒子の体積平均粒子径は55μmであった。
(複合粒子の除去工程)
上記で得られた複合粒子を、有効網面積0.3m2の面内運動式篩分け装置を使用し、全振幅70mm、回転数250r/min、篩網目開き150μmの条件にて篩分けを行い、粗大粒子を除去した。続けて全振幅70mm、回転数250r/min、篩網目開き45μmの条件にて篩分けを行い、微小粒子を除去して正極用複合粒子を得た。
(リチウムイオン二次電池正極の作製)
まず、図1に示すロール加圧成形装置2において50℃に加熱されたロール径50mmφの一対のプレ成形ロール10(ロール10A,10B)上に導電性接着剤層付集電箔8を設置した。ここで、導電性接着剤層付集電箔8は、導電性接着剤をアルミニウム集電体上にダイコーターで塗布、乾燥することで得た導電性接着剤層付アルミニウム集電箔である。次に、定量フィーダー16を介して、前記プレ成形ロール10の上部に設けられたホッパー4に複合粒子6として上記にて得られた複合粒子を供給した。プレ成形ロール10の上部に設けられたホッパー4内の前記複合粒子6の堆積量がある一定高さになったところで、10m/分の速度でロール加圧成形装置2を稼働させ、前記プレ成形ロール10で複合粒子6を加圧成形し、前記導電性接着剤層付アルミニウム集電箔上に正極活物質層のプレ成形体を形成した。その後、前記ロール加圧成形装置2のプレ成形ロール10の下流に設けられ、100℃に加熱された二対の300mmφ成形ロール12、14で前記正極活物質層がプレ成形された電極をプレスし、前記電極の表面を均すとともに電極密度を高めた。このままロール加圧成形装置2を連続して10分間稼働し、リチウムイオン二次電池正極を約100m作製した。
(実施例3)
複合粒子の除去工程において、微小粒子の除去を行わなかった以外は、実施例1と同様に負極用複合粒子を得た。また、この負極用複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例4)
複合粒子の除去工程において、粗大粒子の除去を行わなかった以外は、実施例1と同様に負極用複合粒子を得た。また、この負極用複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例5)
複合粒子の除去工程において、粗大粒子及び微小粒子の除去を行う際の面内運動式篩分け装置の全振幅をそれぞれ120mmとした以外は、実施例1と同様に負極用複合粒子を得た。また、この負極用複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例6)
複合粒子の除去工程において、粗大粒子及び微小粒子の除去を行う際の面内運動式篩分け装置の全振幅をそれぞれ50mmとした以外は、実施例1と同様に負極用複合粒子を得た。また、この負極用複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例7)
複合粒子の除去工程において、粗大粒子及び微小粒子の除去を行う際の面内運動式篩分け装置の回転数をそれぞれ350r/minとした以外は、実施例1と同様に負極用複合粒子を得た。また、この負極用複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(実施例8)
複合粒子の除去工程において、粗大粒子及び微小粒子の除去を行う際の面内運動式篩分け装置の回転数をそれぞれ150r/minとした以外は、実施例1と同様に負極用複合粒子を得た。また、この負極用複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(比較例1)
複合粒子の除去工程において、粗大粒子及び微小粒子の除去を行う際に用いる篩分け装置を振動式篩分け装置とした以外は、実施例1と同様に負極用複合粒子を得た。また、この負極用複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
(比較例2)
複合粒子の除去工程において、粗大粒子及び微小粒子の除去を行う際に用いる篩分け装置を風力篩分け装置とした以外は、実施例1と同様に負極用複合粒子を得た。また、この負極用複合粒子を用いた以外は、実施例1と同様にリチウムイオン二次電池負極の作製を行った。
Figure 2016046026
表1に示すように、電極活物質及びバインダーを含むスラリーを作製するスラリー作製工程と、前記スラリーを造粒して複合粒子を得る造粒工程と、面内運動式篩分け装置を用いて前記複合粒子から粗大粒子及び/または微小粒子を除去する除去工程とを含む工程により得られる電気化学素子電極用複合粒子の目付精度、この電気化学素子用複合粒子を用いて作製される電極の外観及び厚み精度は良好であった。
2…ロール加圧成形装置、6…複合粒子、8…導電性接着剤層付集電箔、10…プレ成形ロール、12,14…成形ロール、16…定量フィーダー

Claims (2)

  1. 電極活物質及びバインダーを含むスラリーを作製するスラリー作製工程と、
    前記スラリーを造粒して複合粒子を得る造粒工程と、
    面内運動式篩分け装置を用いて前記複合粒子から粗大粒子及び/または微小粒子を除去する除去工程と
    を含む電気化学素子電極用複合粒子の製造方法。
  2. 前記面内運動式篩分け装置における全振幅が30〜150mmであって、回転数が100〜400r/minである請求項1記載の電気化学素子電極用複合粒子の製造方法。
JP2014168176A 2014-08-21 2014-08-21 電気化学素子電極用複合粒子の製造方法 Active JP6398461B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014168176A JP6398461B2 (ja) 2014-08-21 2014-08-21 電気化学素子電極用複合粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014168176A JP6398461B2 (ja) 2014-08-21 2014-08-21 電気化学素子電極用複合粒子の製造方法

Publications (2)

Publication Number Publication Date
JP2016046026A true JP2016046026A (ja) 2016-04-04
JP6398461B2 JP6398461B2 (ja) 2018-10-03

Family

ID=55636418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014168176A Active JP6398461B2 (ja) 2014-08-21 2014-08-21 電気化学素子電極用複合粒子の製造方法

Country Status (1)

Country Link
JP (1) JP6398461B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265983A (ja) * 1996-03-29 1997-10-07 Petoca:Kk リチウムイオン二次電池負極材用黒鉛繊維ミルドの製造方法
JP2002108017A (ja) * 2000-10-03 2002-04-10 Canon Inc トナーの製造方法
JP2006339184A (ja) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子の製造方法
JP2014058712A (ja) * 2012-09-14 2014-04-03 Global Advanced Metals Japan Kk タンタル粒子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265983A (ja) * 1996-03-29 1997-10-07 Petoca:Kk リチウムイオン二次電池負極材用黒鉛繊維ミルドの製造方法
JP2002108017A (ja) * 2000-10-03 2002-04-10 Canon Inc トナーの製造方法
JP2006339184A (ja) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子の製造方法
JP2014058712A (ja) * 2012-09-14 2014-04-03 Global Advanced Metals Japan Kk タンタル粒子の製造方法

Also Published As

Publication number Publication date
JP6398461B2 (ja) 2018-10-03

Similar Documents

Publication Publication Date Title
JP6954424B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極及び電気化学素子
JP6217741B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
JP6344384B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
US11239490B2 (en) Method for producing composite particles for electrochemical device electrode
JPWO2015178241A1 (ja) 電気化学素子電極用複合粒子および電気化学素子電極用複合粒子の製造方法
JP6485359B2 (ja) 電気化学素子電極用複合粒子
JP6344143B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6344111B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6344110B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6372273B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極、電気化学素子、電気化学素子電極用複合粒子の製造方法及び電気化学素子電極の製造方法
JP6365160B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6467808B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極材料の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法
JP6398461B2 (ja) 電気化学素子電極用複合粒子の製造方法
JP6347165B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法、および電気化学素子の製造方法
JP6375751B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極用複合粒子、電気化学素子電極、および電気化学素子
JP6344132B2 (ja) 電気化学素子電極用複合粒子の製造方法、電気化学素子電極の製造方法及び電気化学素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6398461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250