JP2016036016A - 支持基板、複合基板および半導体ウエハの製造方法 - Google Patents

支持基板、複合基板および半導体ウエハの製造方法 Download PDF

Info

Publication number
JP2016036016A
JP2016036016A JP2015124546A JP2015124546A JP2016036016A JP 2016036016 A JP2016036016 A JP 2016036016A JP 2015124546 A JP2015124546 A JP 2015124546A JP 2015124546 A JP2015124546 A JP 2015124546A JP 2016036016 A JP2016036016 A JP 2016036016A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
mass
support substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015124546A
Other languages
English (en)
Inventor
一成 佐藤
Kazunari Sato
一成 佐藤
喜之 山本
Yoshiyuki Yamamoto
喜之 山本
長谷川 幹人
Mikito Hasegawa
幹人 長谷川
裕 辻
Yutaka Tsuji
裕 辻
明人 藤井
Akito Fujii
明人 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015124546A priority Critical patent/JP2016036016A/ja
Publication of JP2016036016A publication Critical patent/JP2016036016A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】高効率で半導体ウエハを製造するために好適に用いられる支持基板および支持基板と半導体膜とを含む複合基板、ならびに支持基板および複合基板を用いた半導体ウエハの製造方法を提供する。
【解決手段】支持基板11は、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含む。複合基板1は、上記の支持基板11と、支持基板11の主面11m側に配置されている半導体膜13と、を含む。
【選択図】図2

Description

本発明は、半導体ウエハの製造に好適に用いられる支持基板および支持基板と半導体膜とを含む複合基板、ならびに支持基板および複合基板を用いた半導体ウエハの製造方法に関する。
GaNウエハなどのIII族窒化物の半導体ウエハは、発光デバイス、電子デバイスなどの半導体デバイスの基板および/または半導体層として好適に用いられる。かかる半導体ウエハを製造するための下地基板としては、その下地基板と半導体ウエハとの間で、格子定数および熱膨張係数を一致させるまたは一致に近づける観点から、半導体ウエハと化学組成が同じまたは近似しているものが優れている。ところが、半導体ウエハがGaNウエハなどの場合は、下地基板として最も優れるGaN基板は非常に高価であり、また、主面の直径が2インチを超える大口径のGaN基板の入手は困難である。
このため、GaNウエハを形成するための下地基板として、一般に、サファイア基板が用いられている。しかしながら、サファイア結晶とGaN結晶とでは、それらの格子定数および熱膨張係数が大きく異なる。
このため、サファイア結晶とGaN結晶との間の格子定数の不整合を緩和して結晶性が良好なGaNウエハを形成するために、たとえば、特開平04−297023号公報(特許文献1)は、サファイア基板にGaN結晶を成長させる際に、サファイア基板上にGaNバッファ層を形成し、そのGaNバッファ層上にGaN結晶層を成長させることを開示する。
また、GaN結晶の熱膨張係数に近い熱膨張係数の支持基板とGaN単結晶膜との複合基板を用いて結晶性が高く反りの小さいGaN系膜を得るために、たとえば、特開2012−121788号公報(特許文献2)は、主面内の熱膨張係数がGaN結晶の熱膨張係数に比べて0.8倍より大きく1.2倍より小さい酸化物焼結体支持基板と支持基板の主面側に配置されているGaN単結晶膜とを含む複合基板のGaN単結晶膜上にGaN系膜を成長させた後、支持基板をエッチングにより除去することを開示する。
特開平04−297023号公報 特開2012−121788号公報
上記の特開平04−297023号公報(特許文献1)においては、サファイア結晶の熱膨張係数がGaN結晶の熱膨張係数に比べて非常に大きいため、主面の直径が大きくなるほど、反りの小さいGaN膜を得ることは困難である。
一方、上記の特開2012−121788号公報(特許文献2)においては、用いられる複合基板には、支持基板のエッチング除去に長時間を要するため、GaN系膜を製造する効率を高めることが困難という問題点があった。
そこで、高効率で半導体ウエハを製造するために好適に用いられる支持基板および支持基板と半導体膜とを含む複合基板、ならびに支持基板および複合基板を用いた半導体ウエハの製造方法を提供することを目的とする。
本発明のある態様にかかる支持基板は、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含む。
本発明の別の態様にかかる複合基板は、上記の態様にかかる支持基板と、その支持基板の主面側に配置されている半導体膜と、を含む。
本発明のさらに別の態様にかかる半導体ウエハの製造方法は、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含む支持基板と、支持基板の主面側に配置されている半導体膜と、を含む複合基板を準備する工程と、複合基板の半導体膜上に少なくとも1層の半導体層を成長させることにより半導体層付複合基板を形成する工程と、半導体層付複合基板から支持基板を除去することにより半導体ウエハを形成する工程と、を含む。
上記によれば、高効率で半導体ウエハを製造するために好適に用いられる支持基板および支持基板と半導体膜とを含む複合基板、ならびに支持基板および複合基板を用いた半導体ウエハの製造方法を提供できる。
本発明のある態様にかかる支持基板のある例を示す概略断面図である。 本発明の別の態様にかかる複合基板のある例を示す概略断面図である。 本発明の別の態様にかかる複合基板を製造する方法のある例を示す概略断面図である。 本発明の別の態様にかかる複合基板を製造する方法の別の例を示す概略断面図である。 本発明の別の態様にかかる複合基板を製造する方法のさらに別の例を示す概略断面図である。 本発明のさらに別の態様にかかる半導体ウエハの製造方法のある例を示す概略断面図である。 本発明のさらに別の態様にかかる半導体ウエハの製造方法の別の例を示す概略断面図である。
<本発明の実施形態の説明>
本発明のある実施形態にかかる支持基板は、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含み、結晶相として35質量%以上65質量%以下のムライト(3Al23・2SiO2)相および35質量%以上65質量%以下のアルミナ(Al23)相を含む。本実施形態の支持基板は、支持基板に含まれる0.001質量%以上10質量%以下のアルカリ土類金属元素原子により、ムライト相、アルミナ相および任意にそれらの相以外の領域の少なくとも一部に形成されるアルカリ土類金属元素原子含有領域がアルカリ土類金属原子含有領域以外の領域に比べてエッチング、切断、研削および/または研磨がされやすく、特にエッチングされやすいため、エッチング、切断、研削および/または研磨による除去が容易であり、特にエッチングによる除去が容易である。
本実施形態にかかる支持基板は、その線熱膨張係数を5.0×10-6-1以上6.5×10-6-1以下とすることができる。これにより、かかる支持基板とその主面側に配置された半導体膜とを含む複合基板の半導体膜上に少なくとも1層の半導体層を成長させているときの反り量を低減できるため、高品質の半導体層を成長させることができる。
本発明の別の実施形態にかかる複合基板は、上記の実施形態の支持基板と、支持基板の主面側に配置されている半導体膜と、を含む。本実施形態の複合基板は、複合基板の支持基板に含まれる0.001質量%以上10質量%以下のアルカリ土類金属元素原子により、ムライト相、アルミナ相および任意にそれらの相以外の領域の少なくとも一部に形成されるアルカリ土類金属元素原子含有領域がアルカリ土類金属原子含有領域以外の領域に比べてエッチング、切断、研削および/または研磨がされやすく、特にエッチングされやすいため、エッチング、切断、研削および/または研磨による除去が容易であり、特にエッチングによる除去が容易である。
本発明のさらに別の実施形態にかかる半導体ウエハの製造方法は、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含む支持基板と、支持基板の主面側に配置されている半導体膜と、を含む複合基板を準備する工程と、複合基板の半導体膜上に少なくとも1層の半導体層を成長させることにより半導体層付複合基板を形成する工程と、半導体層付複合基板から支持基板を除去することにより半導体ウエハを形成する工程と、を含む。本実施形態の半導体ウエハの製造方法は、複合基板の支持基板に含まれる0.001質量%以上10質量%以下のアルカリ土類金属元素原子により、ムライト相、アルミナ相および任意にそれらの相以外の領域の少なくとも一部に形成されるアルカリ土類金属元素原子含有領域がアルカリ土類金属元素原子含有領域以外の領域に比べてエッチング、切断、研削および/または研磨がされやすく、特にエッチングされやすいことから、エッチング、切断、研削および/または研磨による除去が容易であり、特にエッチングによる除去が容易であるため、効率よく半導体ウエハを製造できる。
本実施形態にかかる半導体ウエハの製造方法において、支持基板の線熱膨張係数を5.0×10-6-1以上6.5×10-6-1以下とすることができる。これにより、かかる支持基板とその主面側に配置された半導体膜とを含む複合基板の半導体膜上に少なくとも1層の半導体層を成長させているときの反り量を低減できるため、高品質の半導体層を成長させることができる。
<本発明の実施形態の詳細>
[実施形態1:支持基板]
(支持基板)
図1を参照して、本実施形態の支持基板11は、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含み、結晶相として35質量%以上65質量%以下のムライト(3Al23・2SiO2)相および35質量%以上65質量%以下のアルミナ(Al23)相を含む。
本実施形態の支持基板11は、支持基板11に含まれる0.001質量%以上10質量%以下のアルカリ土類金属元素原子により、ムライト相、アルミナ相および任意にそれらの相以外の領域の少なくとも一部に形成されるアルカリ土類金属元素原子含有領域がアルカリ土類金属元素原子含有領域以外の領域に比べてエッチング、切断、研削および/または研磨がされやすく、特にエッチングされやすいため、エッチング、切断、研削および/または研磨による除去が容易であり、特にエッチングによる除去が容易である。
本実施形態の支持基板11は、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含む。アルミニウム原子およびケイ素原子は、結晶相として少なくともムライト相およびアルミナ相を形成し、任意にそれらの相(ムライト相およびアルミナ相)以外の領域を形成する。ここで、それらの相以外の領域とは、たとえば、シリカ相、アルカリ土類金属原子の酸化物相、アルカリ土類金属原子およびアルミニウム原子の酸化物相、アルカリ土類金属原子およびケイ素原子の酸化物相、アルカリ土類金属原子、アルミニウム原子およびケイ素原子の酸化物相、不純物原子を含む相などが挙げられる。また、0.001質量%以上10質量%以下のアルカリ土類金属元素原子は、ムライト相、アルミナ相、および任意にそれらの相以外の領域に、アルカリ土類金属元素原子含有領域を形成する。こうして形成されるアルカリ土類金属元素原子含有領域がアルカリ土類金属元素原子含有領域以外の領域に比べてエッチング、切断、研削および/または研磨されやすく、特にエッチングされやすいため、本実施形態の支持基板11は、エッチング、切断、研削および/または研磨により除去されやすく、特にエッチングにより除去されやすい。
支持基板11におけるムライト相、アルミナ相および任意にそれらの相以外の領域の少なくとも一部に形成されるアルカリ土類金属元素原子含有領域は、それぞれのもとの相または領域の構造(結晶構造または非結晶構造をいう。以下同じ。)を維持していてもよく、それぞれのもとの相または領域の構造から変化していてもよい。ここで、支持基板11において、アルカリ土類金属元素原子含有領域がもとの相または領域の構造を維持しやすい観点から、アルカリ土類金属元素原子の含有量は、0.001質量%以上1質量%未満が好ましく、0.001質量%以上0.1質量%以下がより好ましい。また、アルカリ土類金属元素原子含有領域がもとの相または領域の構造から変化しやすい観点から、アルカリ土類金属元素原子の含有量は、1質量%以上10質量%以下が好ましく、5質量%以上10質量%以下がより好ましい。
支持基板11におけるアルカリ土類金属元素原子の含有量は、支持基板11がエッチング、切断、研削および/または研磨により除去されやすい観点から、0.001質量%以上であり、0.01質量%以上が好ましく、0.1質量%以上がより好ましい。また、支持基板11におけるアルカリ土類金属元素原子の含有量は、半導体層を成長させる際の支持基板の反りを低減する観点から、10質量%以下であり、5質量%以下が好ましく、1質量%未満がより好ましい。ここで、アルカリ土類金属元素原子含有領域の同定および含有量の分析は、GDMS(グロー放電質量分析)法により行なう。
本実施形態の支持基板11は、研磨後の主面の平坦化度を高くすることにより高品質の半導体層を成長させる観点から、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含む。さらに、支持基板11におけるムライト相の含有量は、上記の観点から、40質量%以上63質量%以下が好ましく、45質量%以上61質量%以下がより好ましい。また、支持基板11におけるアルミナ相の含有量は、上記の観点から、37質量%以上60質量%以下が好ましく、39質量%以上55質量%以下がより好ましい。ここで、ムライト相およびアルミナ相の同定および含有量の分析は、XRD(X線回折)法により行なう。
なお、アルカリ土類金属元素原子は、ムライト相およびアルミナ相の少なくとも1つの結晶相に含まれる場合ならびにそれらの相(ムライト相およびアルミナ相)以外の領域に含まれる場合のいずれかの場合または両方の場合があるため、アルカリ土類金属元素原子、ムライト相およびアルミナ相の質量百分率の和が必ずしも100質量%になるとは限らない。
本実施形態の支持基板11については、図6に示すように、支持基板11とその主面11m側に配置された半導体膜13とを含む複合基板1の半導体膜13上に少なくとも1層の半導体層20を成長させているときの反り量を低減することにより、高品質の半導体層20を成長させる観点から、支持基板11の線熱膨張係数は、5.0×10-6-1以上6.5×10-6-1以下が好ましく、5.5×10-6-1以上6.2×10-6-1以下がより好ましく、5.6×10-6-1以上6.0×10-6-1以下がさらに好ましい。特に、半導体膜13および半導体層20がGaNを含むIII族窒化物半導体で形成されている場合は、GaNのc軸に垂直な方向の線熱膨張係数(本発明においては、25℃基準の800℃における線熱膨張係数をいう。以下同じ。)が5.9×10-6-1であることから、支持基板11の線熱膨張係数は、5.0×10-6-1以上6.5×10-6-1以下が好ましく、5.5×10-6-1以上6.2×10-6-1以下がより好ましく、5.6×10-6-1以上6.0×10-6-1以下がさらに好ましい。
支持基板11の厚さは、特に制限はないが、その主面11m側に配置する半導体膜および半導体膜上に成長させる半導体層を支持するのに十分な機械的強度を発現する観点から、100μm以上が好ましく、250μm以上がより好ましい。また、支持基板11の厚さは、複合基板1全体の質量を軽減する観点から、1000μm以下が好ましく、500μm以下がより好ましい。
(支持基板の製造方法)
本実施形態の支持基板11の製造方法は、特に制限はなく、たとえば、Al原子を含む酸化物であるアルミナ(Al23)、Si原子を含む酸化物であるシリカ(SiO2)、Al原子およびSi原子を含む複酸化物であるムライト(3Al23・2SiO2)およびアルカリ土類金属元素原子MIIを含む金属単体または化合物(たとえば、酸化物(MIIO)、炭酸化物(MIICO3)、アルカリ土類金属元素原子MII、Al原子およびSi原子を含む複合酸化物(MIIAl2Si28)など)を、所定の化学量論比で均一に混合し、得られた混合物を成形し、得られた成形体を焼結し、得られた焼結体を所定の形状に切断しその主面を平坦化する方法などが挙げられる。ここで、焼結雰囲気は、特に制限はないが、酸素欠損を抑制する観点から、酸素雰囲気、大気雰囲気などが好ましい。また、焼結温度は、特に制限はないが、緻密な焼結体を形成する観点から、1550℃以上1700℃以下が好ましく、1600℃以上1650℃以下がより好ましい。
[実施形態2:複合基板]
図2を参照して、本実施形態の複合基板1は、実施形態1の支持基板11と、支持基板11の主面11m側に配置されている半導体膜13と、を含む。
本実施形態の複合基板1は、複合基板1の支持基板11に含まれる0.001質量%以上10質量%以下のアルカリ土類金属元素原子により、ムライト相、アルミナ相および任意にそれらの相以外の領域の少なくとも一部に形成されるアルカリ土類金属元素原子含有領域がアルカリ土類金属原子含有領域以外の領域に比べてエッチング、切断、研削および/または研磨がされやすく、特にエッチングされやすいため、エッチング、切断、研削および/または研磨による除去が容易であり、特にエッチングによる除去が容易である。
(支持基板)
本実施形態の複合基板1における支持基板11は、実施形態1の支持基板11と同じであるため、ここでは繰り返さない。
(半導体膜)
本実施形態の複合基板1における半導体膜13は、その上に半導体層を成長させることができるものであれば特に制限はなく、GaN膜、AlN膜などのIII族窒化物半導体膜、かかるIII族窒化物半導体膜、GaAs膜、InP膜などのIII−V族化合物半導体膜、ダイヤモンド膜などのC(カーボン)膜、Si膜、Ge膜などのIV族元素半導体膜、SiC膜、SiGe膜などのIV族化合物半導体膜などが挙げられる。また、半導体膜13は、上記の物性を有する半導体膜であれば結晶性の有無および結晶の形態を問わず、単結晶膜であっても、多結晶膜であっても、非晶質(アモルファス)膜であってもよい。
半導体膜13は、品質の高い半導体層を成長させる観点から、半導体層と化学組成、結晶構造および格子定数が、近似していることが好ましく、同一であることがより好ましい。たとえば、半導体層としてIII族窒化物半導体層の一例であるGaN層を成長させる場合は、半導体膜13は、III族窒化物半導体膜であることが好ましく、GaN膜であることがより好ましい。
半導体膜13の厚さは、特に制限はないが、その上に品質の高い半導体層を成長させる観点から、0.01μm以上が好ましく、0.05μm以上がより好ましい。また、半導体膜13の厚さは、安価な複合基板を得る観点から、250μm以下が好ましく、50μm以下がより好ましい。
(接合膜)
本実施形態の複合基板1は、支持基板11と半導体膜13との接合強度を高める観点から、支持基板11と半導体膜13との間に接合膜12が形成されていることが好ましい。接合膜12は、特に制限はないが、支持基板11と半導体膜13との接合強度を高める効果が高い観点から、SiO2膜、SiNx膜、TiO2膜、Ga23膜などが好ましい。さらに、フッ化水素酸などの酸によりエッチング除去できる観点から、SiO2膜、SiNx膜などがより好ましい。
(複合基板の製造方法)
図3〜図5を参照して、本実施形態の複合基板1の製造方法は、特に制限はないが、効率よく複合基板1を製造する観点から、支持基板11と半導体膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程と(図3(A)、図4(A)および図5(A))と、接合基板1Lの半導体膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さまでの部分を半導体膜13として残してそれ以外の半導体膜ドナー基板13Drを除去する工程(図3(B)、図4(B)および図5(B))と、を含むことが好ましい。接合基板1Lの半導体膜ドナー基板13Dから半導体膜13を残してそれ以外の半導体膜ドナー基板13Drを除去する方法には、特に制限はないが、効率よく複合基板1を製造する観点から、図3に示すイオン注入法、図4に示す切断法、および図5に示す減厚法などが好ましい。ここで、厚さが0.01μm以上10μm未満の薄めの半導体膜13を形成する場合はイオン注入法が好ましく、厚さが10μm以上250μm以下の厚めの半導体膜13を形成する場合には切断法または減厚法が好ましい。
(1)イオン注入法
図3に示すイオン注入法について以下に説明する。図3(A)を参照して、支持基板11と半導体膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図3(A1))と、半導体膜ドナー基板13Dの主面13n上に接合膜12bを形成するとともに半導体膜ドナー基板13Dの主面13n側からイオンIを注入することにより主面13nから内部に所定の深さの位置の面にイオン注入領域13iを形成するサブ工程(図3(A2))と、支持基板11の主面11m上に形成された接合膜12aと半導体膜ドナー基板13Dの主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図3(A3))と、を含む。これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、半導体膜ドナー基板13Dとが、接合膜12を介在させて接合されて、接合基板1Lが形成される。接合基板1Lの複合基板1の半導体膜ドナー基板13Dの内部に注入されたイオンIは、後工程においてガス化して急激な体積膨張を起こすことにより、半導体膜ドナー基板13Dをイオン注入領域13iで分離させる。
支持基板11を形成する方法は、実施形態1の支持基板11の製造方法と同じであるため、ここでは繰り返さない。
半導体膜ドナー基板13Dとは、後サブ工程において分離により半導体膜13を提供するドナー基板である。かかる半導体膜ドナー基板13Dを形成する方法は、特に制限はないが、品質の高い半導体膜ドナー基板13Dを得る観点から、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法、MBE(分子線成長)法、スパッタ法、PLD(パルス・レーザ堆積)法、昇華法、フラックス法、高窒素圧溶液法などが好適に挙げられる。
接合膜12a,12bの形成方法は、特に制限はないが、膜形成コストを抑制する観点から、スパッタ法、蒸着法、CVD(化学気相堆積)法などが好適に行なわれる。また、半導体膜ドナー基板13Dに注入されるイオンIは、特に制限はないが、半導体膜の品質の低下を抑制する観点およびイオン注入領域13iに注入されたイオンIのガス化温度を半導体膜13の分解温度より低くする観点から、質量の小さい原子のイオン、たとえば、水素イオン、ヘリウムイオンなどが好ましい。
支持基板11の主面11m上に形成された接合膜12aの主面12amと半導体膜ドナー基板13Dの主面13n上に形成された接合膜12bの主面12bnとを貼り合わせる方法は、特に制限はなく、貼り合わせ面を洗浄しそのまま貼り合わせた後600℃〜1200℃程度に昇温して接合する直接接合法、貼り合わせ面を洗浄しプラズマやイオンなどで活性化処理した後に室温(たとえば25℃)〜400℃程度の低温雰囲気下で接合する表面活性化接合法、貼り合わせ面を薬液と純水で洗浄処理した後、0.1MPa〜10MPa程度の高圧力を掛けて接合する高圧接合法、貼り合わせ面を薬液と純水で洗浄処理した後、10-6Pa〜10-3Pa程度の高真空雰囲気下で接合する高真空接合法、などが好適である。上記のいずれの接合法においてもそれらの接合後に600℃〜1200℃程度に昇温することによりさらに接合強度を高めることができる。特に、表面活性化接合法、高圧接合法、および高真空接合法においては、それらの接合後に600℃〜1200℃程度に昇温することによる接合強度を高める効果が大きい。
図3(B)を参照して、接合基板1Lの半導体膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さまでの部分を半導体膜13として残してそれ以外の半導体膜ドナー基板13Drを除去する工程は、半導体膜ドナー基板13Dに注入されたイオンIをガス化させる方法であれば特に制限はない。たとえば、熱を加えたり、超音波を加えたりする方法などで、接合基板1Lの半導体膜ドナー基板13Dの貼り合わせ面である主面13nから所定の深さの位置に形成されているイオン注入領域13iに注入されているイオンIをガス化させて急激な体積膨張をさせることにより行なう。
このようにして、接合基板1Lの半導体膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さまでの部分を半導体膜13として残してそれ以外の半導体膜ドナー基板13Drを除去することにより、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置された半導体膜13と、を含む複合基板1が得られる。
(2)切断法
次に、図4に示す切断法について以下に説明する。図4(A)を参照して、支持基板11と半導体膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図4(A1))と、半導体膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図4(A2))と、支持基板11の主面11m上に形成された接合膜12aと半導体膜ドナー基板13Dの主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図4(A3))と、を含む。これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、半導体膜ドナー基板13Dとが、接合膜12を介在させて接合されて、接合基板1Lが形成される。
図4(B)を参照して、接合基板1Lの半導体膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さまでの部分を半導体膜13として残してそれ以外の半導体膜ドナー基板13Drを除去する工程は、接合基板1Lの半導体膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さに位置する面で半導体膜ドナー基板13Dを切断することにより行なう。半導体膜ドナー基板13Dを切断する方法は、特に制限なく、ワイヤソー、内周刃、外周刃などが好適に用いられる。
このようにして、接合基板1Lの半導体膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さまでの部分を半導体膜13として残してそれ以外の半導体膜ドナー基板13Drを除去することにより、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面12m上に配置された半導体膜13と、を含む複合基板1が得られる。
(3)減厚法
次に、図5に示す減厚法について以下に説明する。図5(A)を参照して、支持基板11と半導体膜ドナー基板13Dとを貼り合わせて接合基板1Lを形成する工程は、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図5(A1))と、半導体膜ドナー基板13Dの主面13n上に接合膜12bを形成するサブ工程(図5(A2))と、支持基板11の主面11m上に形成された接合膜12aと半導体膜ドナー基板13Dの主面13n上に形成された接合膜12bとを貼り合わせるサブ工程(図5(A3))と、を含む。これらのサブ工程により、互いに貼り合わされた接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11と、半導体膜ドナー基板13Dとが、接合膜12を介在させて接合されて、接合基板1Lが形成される。
図5(B)を参照して、接合基板1Lの半導体膜ドナー基板13Dの貼り合わせ面である主面13nから内部に所定の深さまでの部分を半導体膜13として残してそれ以外の半導体膜ドナー基板13Drを除去する工程は、接合基板1Lの半導体膜ドナー基板13Dの貼り合わせ面である主面13nと反対側の主面13mから研削、研磨およびエッチングの少なくともいずれかにより行なう。これにより、半導体膜ドナー基板13Dの膜厚を減少させて所望の厚さの半導体膜13が形成されるため、支持基板11と、支持基板11の主面11m上に配置された接合膜12と、接合膜12の主面上に配置された半導体膜13と、を含む複合基板1が得られる。
ここで、半導体膜ドナー基板13Dを研削する方法は、特に制限はなく、砥石による研削(平面研削)、ショット・ブラストなどが挙げられる。半導体膜ドナー基板13Dを研磨する方法は、特に制限はなく、機械的研磨、CMP(化学機械的研磨)などが挙げられる。半導体膜ドナー基板13Dをエッチングする方法は、特に制限はなく、薬液によるウェットエッチング、RIE(反応性イオンエッチング)などのドライエッチングなどが挙げられる。
[実施形態3:半導体ウエハの製造方法]
図6および図7を参照して、本実施形態の半導体ウエハ3の製造方法は、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含む支持基板11と、支持基板11の主面11m側に配置されている半導体膜13と、を含む複合基板1を準備する工程(図6(A)および図7(A))と、複合基板1の半導体膜13上に少なくとも1層の半導体層20を成長させることにより半導体層付複合基板2を形成する工程(図6(B)および図7(B))と、半導体層付複合基板2から支持基板11を除去することにより半導体ウエハ3を形成する工程(図6(C)および図7(C))と、を含む。
本実施形態の半導体ウエハ3の製造方法は、複合基板1の支持基板11に含まれる0.001質量%以上10質量%以下のアルカリ土類金属元素原子により、ムライト相、アルミナ相および任意にそれらの相以外の領域の少なくとも一部に形成されるアルカリ土類金属元素原子含有領域がアルカリ土類金属元素原子含有領域以外の領域に比べてエッチング、切断、研削および/または研磨がされやすく、特にエッチングされやすいことから、エッチング、切断、研削および/または研磨による支持基板11の除去が容易であり、特にエッチングによる支持基板11の除去が容易であるため、効率よく半導体ウエハを製造できる。
本実施形態にかかる半導体ウエハ3の製造方法において、支持基板11とその主面11m側に配置された半導体膜13とを含む複合基板1の半導体膜13上に少なくとも1層の半導体層20を成長させているときの反り量を低減することにより、高品質の半導体層20を成長させる観点から、支持基板11の線熱膨張係数は、5.0×10-6-1以上6.5×10-6-1以下が好ましく、5.5×10-6-1以上6.2×10-6-1以下がより好ましく、5.6×10-6-1以上6.0×10-6-1以下がさらに好ましい。特に、半導体膜13および半導体層20がGaNを含むIII族窒化物半導体で形成されている場合は、GaNのc軸に垂直な方向の線熱膨張係数が5.9×10-6-1であることから、支持基板11の線熱膨張係数は、5.0×10-6-1以上6.5×10-6-1以下が好ましく、5.5×10-6-1以上6.2×10-6-1以下がより好ましく、5.6×10-6-1以上6.0×10-6-1以下がさらに好ましい。
(複合基板を準備する工程)
図6(A)および図7(A)を参照して、複合基板1を準備する工程は、実施形態2の複合基板1の製造方法と同じであるため、ここでは繰り返さない。
(半導体層付複合基板を形成する工程)
図6(B)および図7(B)を参照して、半導体層付複合基板2を形成する工程は、複合基板1の半導体膜13上に少なくとも1層の半導体層20を成長させることにより行なう。少なくとも1層の半導体層20を成長させる方法は、特に制限はなく、MOCVD(有機金属化学気相堆積)法、スパッタ法、MBE(分子線エピタキシ)法、PLD(パルス・レーザ堆積)法、HVPE(ハイドライド気相エピタキシ)法、昇華法、フラックス法、高窒素圧溶液法などが好適に挙げられる。
複合基板1の半導体膜13上に成長させる少なくとも1層の半導体層20は、品質のよい半導体層20を成長させる観点から、半導体層20は、半導体膜13に比べて、化学組成、結晶構造および格子定数が近似することが好ましく、同一であることがより好ましい。ここで、化学組成が近似するとは、構成元素の少なくとも一つが同一ではないが、異なる元素が同族の元素であることをいう。化学組成が同一とは、構成元素および構成比が同一であることをいう。また、結晶構造および格子定数が近似とは、半導体膜13上に半導体層20をエピタキシャル成長させることができる程度に近似していることをいう。
また、成長させる半導体層20の結晶品質を向上させる観点から、複合基板1の半導体膜13の主面13m上に少なくとも半導体層20を成長させる工程は、半導体膜13の主面13m上に半導体バッファ層21を成長させるサブ工程と、半導体バッファ層21の主面21m上に半導体結晶層23を成長させるサブ工程と、を含むことが好ましい。ここで、半導体バッファ層21とは、半導体結晶層23に比べて低い温度で成長される結晶性が低いまたは非晶質(アモルファス)の層をいう。
このようにして、複合基板1の半導体膜13上に少なくとも1層の半導体層20が配置された半導体層付複合基板2が得られる。
(半導体ウエハを形成する工程)
図6(C)および図7(C)を参照して、半導体ウエハ3を得る工程は、半導体層付複合基板2から支持基板11を除去することにより行なわれる。支持基板11を除去する方法は、特に制限はないが、支持基板11を効率的に除去する観点から、支持基板11をエッチングにより溶解させて除去する方法、支持基板11を切断、研削および/または研磨により除去する方法が好ましい。ここで、図6(C)は、支持基板11をエッチング、研削、および/または研磨により除去することを示し、図7(C)は、支持基板11を切断により除去することを示す。
支持基板11をエッチングにより溶解させて除去する方法としては、たとえば、フッ化水素酸水溶液中に浸漬させる方法などがある。支持基板11を切断により除去する方法としては、たとえば、ワイヤーソー、ダイシングソー、マルチブレードソー、内周刃(インナーソー)、外周刃(スライサー)、レーザーカッターなどを用いる方法などがある。支持基板11を研削により除去する方法としては、たとえば、グラインダー(研削機)、ショットブラスト、レーザーアブレーションなどを用いる方法などがある。支持基板11を研磨により除去する方法としては、機械研磨、CMP(化学機械的研磨)などの方法などがある。
半導体層付複合基板2の複合基板1の支持基板11は、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含むことにより、ムライト相、アルミナ相および任意にそれらの相以外の領域の少なくとも一部に形成されるアルカリ土類金属元素原子含有領域がアルカリ土類金属元素原子含有領域以外の領域に比べてエッチング、切断、研削および/または研磨がされやすく、特にエッチングされやすい。このため、支持基板11は、エッチング、切断、研削、および/または研磨により容易に除去され、特にエッチングにより容易に除去される。
また、複合基板1が支持基板11と半導体膜13との間に介在する接合膜12を含む場合であっても、かかる接合膜12は、支持基板11のエッチング、切断、研削、および/または研磨による除去に伴い、エッチング、切断、研削、および/または研磨により容易に除去される。ここで、図6(C)および図7(D)は、接合膜12をエッチング、研削、および/または研磨により除去することを示す。なお、必要に応じて、半導体膜13も、さらに、エッチング、切断、研削、および/または研磨により除去できる。このようにして、少なくとも半導体層20を含む半導体ウエハ3が得られる。
また、支持基板11は、支持基板11のエッチング時間を短縮することにより除去効率を高める観点から、支持基板の一部を切断、研削および/または研磨することにより支持基板11の厚さを小さくした後、エッチングすることにより除去してもよい。
(実施例1)
1.支持基板の作製
所定の化学量論比のムライト(3Al23・2SiO2)粉末、アルミナ(Al23)粉末、およびカルシウム(Ca)粉末を出発原料として、酸素雰囲気中1550℃2000気圧でHIP(熱間等方圧プレス)焼結することにより、表1に示すCa、ムライト相およびアルミナ相を含有する8種類の焼結体AR1、A1〜A6、AR2を形成した。ムライト相およびアルミナ相の同定および含有量の分析は、XRD法により行なった。Caの同定および含有量の分析は、GDMS法により行なった。
次に、得られた8種類の焼結体のそれぞれから、直径4インチ(10.16cm)の基板を切り出し、両主面を研磨することにより両主面が鏡面化(本願においては、JIS B0601:2013に規定する算術平均粗さRaが1nm以下の状態にすることをいう、以下同じ。)された厚さが500μmである8種類の支持基板AR1、A1〜A6、AR2を得た。
2.複合基板の作製
図3(A)中の(A1)を参照して、支持基板11である支持基板AR1、A1〜A6、AR2のそれぞれの主面11m上に厚さ500nmのSiO2膜をCVD法により成膜した。次いで、かかる支持基板AR1、A1〜A6、AR2のそれぞれの主面11m上の厚さ500nmのSiO2膜を研磨することにより、厚さ400nmのSiO2膜だけ残存させて、主面12amが鏡面化された接合膜12aを形成した。
また、図3(A)中の(A2)を参照して、半導体膜ドナー基板13Dとして、HVPE法により成長させた直径4インチ(10.16cm)で厚さが1mmのGaN基板を準備した。かかる半導体膜ドナー基板13DのN原子面である(000−1)面側の主面13n上に、厚さ500nmのSiO2膜をCVD法により成膜した。次いで、半導体膜ドナー基板13DのSiO2膜が成膜された側から水素のイオンIを注入して、半導体膜ドナー基板13Dの主面13nから内部に0.3μmの深さの位置の面にイオン注入領域13iを形成した。次いで、上記の厚さ500nmのSiO2膜を研磨することにより、厚さ400nmのSiO2膜だけ残存させて、主面12bnが鏡面化された接合膜12bを形成した。
次に、図3(A)中の(A3)を参照して、支持基板11である支持基板AR1、A1〜A6、AR2のそれぞれに形成された接合膜12aの主面12amおよび半導体膜ドナー基板13DであるGaN基板上に形成された接合膜12bの主面12bnをアルゴンプラズマにより清浄化および活性化させた後、接合膜12aの主面12amと接合膜12bの主面12bnとを貼り合わせて、窒素雰囲気下300℃で2時間熱処理した。このようにして、支持基板11とイオン注入領域13iが形成された半導体膜ドナー基板13Dとが接合膜12を介在させて貼り合わされた接合基板1Lが得られた。
次に、図3(B)を参照して、接合基板1Lをさらに800℃に加熱することにより、半導体膜ドナー基板13Dのイオン注入領域13iの水素のイオンIをガス化させて急激な体積膨張をさせ、半導体膜ドナー基板13Dをイオン注入領域13iで分離した。次いで、分離面を研磨により鏡面化した。
こうして、図6(A)に示すような支持基板11である支持基板AR1、A1〜A6、AR2のそれぞれの主面11m側に半導体膜13である主面13mが鏡面化された厚さ0.2μmのGaN膜が配置された複合基板1である複合基板AR1、A1〜A6、AR2が得られた。
3.半導体層の形成
図6(B)を参照して、複合基板1である複合基板AR1、A1〜A6、AR2の半導体膜13であるGaN膜の主面13m(かかる主面はGa原子面である(0001)面である。)上に、それぞれMOCVD法により半導体層20としてGaN層を成長させた。かかる半導体層20の成長においては、まず、500℃で、半導体バッファ層21として厚さ0.1μmのGaNバッファ層を成長させ、次いで、1050℃で、半導体結晶層23として厚さ5μmのGaN結晶層を成長させた。こうして、半導体層付複合基板2である8種類の半導体層付複合基板AR1、A1〜A6、AR2が得られた。得られた半導体層付複合基板AR1、A1〜A6、AR2の半導体層20側の反り形状および反り量を、フラットネステスタ(CorningTropel社製FlatMaster FM200)を用いて測定して、表1にまとめた。
4.支持基板の除去
図6(C)を参照して、得られた半導体層付複合基板AR1、A1〜A6、AR2を室温(25℃)で50質量%のフッ化水素酸水溶液中に浸漬することにより、支持基板11および接合膜12をエッチングにより除去して8種類の半導体ウエハAR1、A1〜A6、AR2が得られた。半導体層付複合基板AR1、A1〜A6、AR2について、それぞれの支持基板11の除去時間を表1にまとめた。
このようにして、半導体膜13であるGaN膜上に、半導体層20として半導体バッファ層21である厚さ0.1μmのGaNバッファ層および半導体結晶層23である厚さ5μmのGaN結晶層が形成された半導体ウエハ3である8種類の半導体ウエハAR1、A1〜A6、AR2が得られた。ここで、得られた半導体ウエハAR1、A1〜A6、AR2においても、上記の測定方法により、反りが認められ、それらの反り形状および反り量は、半導体層付複合基板AR1、A1〜A6、AR2の反り形状および反り量にそれぞれ対応していた。表1に、支持基板AR1、A1〜A6、AR2中のCa、ムライト相およびアルミナ相の含有量、半導体層付複合基板AR1、A1〜A6、AR2の半導体層側の反り形状および反り量、ならびに支持基板AR1、A1〜A6、AR2の除去時間をまとめた。
Figure 2016036016
(実施例2)
支持基板の作製において、焼結体を形成するための焼結温度を1600℃としたこと以外は、実施例1と同様にして、支持基板BR1、B1〜B6、BR2、複合基板BR1、B1〜B6、BR2、半導体層付複合基板BR1、B1〜B6、BR2、および半導体ウエハBR1、B1〜B6、BR2を順次形成した。表2に、支持基板BR1、B1〜B6、BR2中のCa、ムライト相およびアルミナ相の含有量、半導体層付複合基板BR1、B1〜B6、BR2の半導体層側の反り形状および反り量、ならびに支持基板BR1、B1〜B6、BR2の除去時間をまとめた。
Figure 2016036016
(実施例3)
支持基板の作製において、焼結体を形成するための焼結温度を1650℃としたこと以外は、実施例1と同様にして、支持基板CR1、C1〜C6、CR2、複合基板CR1、C1〜C6、CR2、半導体層付複合基板CR1、C1〜C6、CR2、および半導体ウエハCR1、C1〜C6、CR2を順次形成した。表3に、支持基板CR1、C1〜C6、CR2中のCa、ムライト相およびアルミナ相の含有量、半導体層付複合基板CR1、C1〜C6、CR2の半導体層側の反り形状および反り量、ならびに支持基板CR1、C1〜C6、CR2の除去時間をまとめた。
Figure 2016036016
(実施例4)
支持基板の作製において、アルカリ土類金属元素の原料としてカルシウム(Ca)粉末に替えてストロンチウム(Sr)粉末を用いたこと以外は、実施例1と同様にして、支持基板DR1、D1〜D6、DR2、複合基板DR1、D1〜D6、DR2、半導体層付複合基板DR1、D1〜D6、DR2、および半導体ウエハDR1、D1〜D6、DR2を順次形成した。表4に、支持基板DR1、D1〜D6、DR2中のSr、ムライト相およびアルミナ相の含有量、半導体層付複合基板DR1、D1〜D6、DR2の半導体層側の反り形状および反り量、ならびに支持基板DR1、D1〜D6、DR2の除去時間をまとめた。
Figure 2016036016
(実施例5)
支持基板の作製において、焼結体を形成するための焼結温度を1600℃としたこと以外は、実施例4と同様にして、支持基板ER1、E1〜E6、ER2、複合基板ER1、E1〜E6、ER2、半導体層付複合基板ER1、E1〜E6、ER2、および半導体ウエハER1、E1〜E6、ER2を順次形成した。表5に、支持基板ER1、E1〜E6、ER2中のSr、ムライト相およびアルミナ相の含有量、半導体層付複合基板ER1、E1〜E6、ER2の半導体層側の反り形状および反り量、ならびに支持基板ER1、E1〜E6、ER2の除去時間をまとめた。
Figure 2016036016
(実施例6)
支持基板の作製において、焼結体を形成するための焼結温度を1650℃としたこと以外は、実施例4と同様にして、支持基板FR1、F1〜F6、FR2、複合基板FR1、F1〜F6、FR2、半導体層付複合基板FR1、F1〜F6、FR2、および半導体ウエハFR1、F1〜F6、FR2を順次形成した。表6に、支持基板FR1、F1〜F6、FR2中のSr、ムライト相およびアルミナ相の含有量、半導体層付複合基板FR1、F1〜F6、FR2の半導体層側の反り形状および反り量、ならびに支持基板FR1、F1〜F6、FR2の除去時間をまとめた。
Figure 2016036016
(実施例7)
支持基板の作製において、アルカリ土類金属元素の原料としてカルシウム(Ca)粉末に替えてバリウム(Ba)粉末を用いたこと以外は、実施例1と同様にして、支持基板GR1、G1〜G6、GR2、複合基板GR1、G1〜G6、GR2、半導体層付複合基板GR1、G1〜G6、GR2、および半導体ウエハGR1、G1〜G6、GR2を順次形成した。表7に、支持基板GR1、G1〜G6、GR2中のBa、ムライト相およびアルミナ相の含有量、半導体層付複合基板GR1、G1〜G6、GR2の半導体層側の反り形状および反り量、ならびに支持基板GR1、G1〜G6、GR2の除去時間をまとめた。
Figure 2016036016
(実施例8)
支持基板の作製において、焼結体を形成するための焼結温度を1600℃としたこと以外は、実施例7と同様にして、支持基板HR1、H1〜H6、HR2、複合基板HR1、H1〜H6、HR2、半導体層付複合基板HR1、H1〜H6、HR2、および半導体ウエハHR1、H1〜H6、HR2を順次形成した。表8に、支持基板HR1、H1〜H6、HR2中のBa、ムライト相およびアルミナ相の含有量、半導体層付複合基板HR1、H1〜H6、HR2の半導体層側の反り形状および反り量、ならびに支持基板HR1、H1〜H6、HR2の除去時間をまとめた。
Figure 2016036016
(実施例9)
支持基板の作製において、焼結体を形成するための焼結温度を1650℃としたこと以外は、実施例7と同様にして、支持基板IR1、I1〜I6、IR2、複合基板IR1、I1〜I6、IR2、半導体層付複合基板IR1、I1〜I6、IR2、および半導体ウエハIR1、I1〜I6、IR2を順次形成した。表9に、支持基板IR1、I1〜I6、IR2中のBa、ムライト相およびアルミナ相の含有量、半導体層付複合基板IR1、I1〜I6、IR2の半導体層側の反り形状および反り量、ならびに支持基板IR1、I1〜I6、IR2の除去時間をまとめた。
Figure 2016036016
表1〜表9から明らかなように、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含む支持基板と、かかる支持基板の主面側に配置されている半導体膜と、を含む複合基板を用いることにより、支持基板の除去時間が短くできるため、効率よく反りが少なく品質の高い半導体ウエハを製造できた。
また、表1〜表9を対比すると、支持基板のアルカリ土類金属元素原子の含有量が多いほど、支持基板の焼結温度が高いほど、支持基板の除去時間が短くなることがわかった。
(実施例10)
1.支持基板の作製
所定の化学量論比のムライト(3Al23・2SiO2)粉末、アルミナ(Al23)粉末、およびカルシウム(Ca)粉末を出発原料として、酸素雰囲気中1600℃2000気圧でHIP(熱間等方圧プレス)焼結することにより、表10に示すCa、ムライト相およびアルミナ相を含有する12種類の焼結体J1〜J12を形成した。ムライト相およびアルミナ相の同定および含有量の分析は、XRD法により行なった。Caの同定および含有量の分析は、GDMS法により行なった。次に、得られた12種類の焼結体のそれぞれから、実施例1と同様にして、12種類の支持基板J1〜J12を形成した。
2.複合基板の作製
次に、得られた12種類の支持基板J1〜J12のそれぞれから、実施例1と同様にして、支持基板J1〜J12のそれぞれの主面側に半導体膜である主面が鏡面化された厚さ0.2μmのGaN膜が配置された12種類の複合基板J1〜J12を形成した。
3.半導体層の形成
次に、得られた12種類の複合基板J1〜J12の半導体膜であるGaN膜の主面上に、それぞれMOCVD法により半導体層としてGaN層を成長させた。かかる半導体層の成長においては、まず、500℃で、半導体バッファ層として厚さ0.1μmのGaNバッファ層を成長させ、次いで、1050℃で、半導体結晶層として厚さ5μmのGaN結晶層を成長させた。半導体層(半導体バッファ層および半導体結晶層)を成長させているとき(すなわち成長中)の複合基板J1〜J12の半導体層成長側の反り形状および反り量を、その場観察モニター(大陽日酸社製レーザ反射式その場観察モニター装置に装着されたLayTec社製EpiCurve)により測定した。こうして、12種類の半導体層付複合基板J1〜J12が得られた。
4.支持基板の除去
得られた半導体層付複合基板J1〜J12の支持基板を研削によりその厚さを500μmから100μmに薄くした後、室温(25℃)で50質量%のフッ化水素酸水溶液中に30分間浸漬することにより、支持基板および接合膜をエッチングにより除去して、半導体膜であるGaN膜上に半導体層として半導体バッファ層である厚さ0.1μmのGaNバッファ層および半導体結晶層である厚さ5μmのGaN結晶層が形成された12種類の半導体ウエハJ1〜J12が得られた。ここで、得られた半導体ウエハJ1〜J12においても、実施例1に記載の測定方法により、反りが認められ、それらの反り形状および反り量は、半導体層成長中の複合基板J1〜J12の反り形状および反り量にそれぞれ対応していた。
表10に、支持基板J1〜J12中のCa、ムライト相およびアルミナ相の含有量、線熱膨張係数、ならびに半導体層(半導体バッファ層および半導体結晶層)成長中の複合基板J1〜J12の半導体層成長側の反り形状および反り量をまとめた。
Figure 2016036016
(実施例11)
支持基板の作製において、アルカリ土類金属元素の原料としてカルシウム(Ca)粉末に替えてストロンチウム(Sr)粉末を用いたこと以外は、実施例10と同様にして、支持基板K1〜K12、複合基板K1〜K12、半導体層付複合基板K1〜K12、および半導体ウエハK1〜K12を順次形成した。表11に、支持基板K1〜K12中のSr、ムライト相およびアルミナ相の含有量、線熱膨張係数、ならびに半導体層(半導体バッファ層および半導体結晶層)成長中の複合基板K1〜K12の半導体層成長側の反り形状および反り量をまとめた。
Figure 2016036016
(実施例12)
支持基板の作製において、アルカリ土類金属元素の原料としてカルシウム(Ca)粉末に替えてバリウム(Ba)粉末を用いたこと以外は、実施例10と同様にして、支持基板L1〜L12、複合基板L1〜L12、半導体層付複合基板L1〜L12、および半導体ウエハL1〜L12を順次形成した。表12に、支持基板L1〜L12中のBa、ムライト相およびアルミナ相の含有量、線熱膨張係数、ならびに半導体層(半導体バッファ層および半導体結晶層)成長中の複合基板L1〜L12の半導体層成長側の反り形状および反り量をまとめた。
Figure 2016036016
表10〜表12から明らかなように、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含み、線熱膨張係数が5.0×10-6-1以上6.5×10-6-1以下である支持基板と、かかる支持基板の主面側に配置されている半導体膜と、を含む複合基板を用いることにより、半導体層の成長中の複合基板の反りを低減できるため、効率よく反りが少なく品質の高い半導体ウエハを製造できた。
(実施例13)
1.支持基板の作製
所定の化学量論比のムライト(3Al23・2SiO2)粉末、アルミナ(Al23)粉末、およびカルシウム(Ca)粉末を出発原料として、酸素雰囲気中1600℃2000気圧でHIP(熱間等方圧プレス)焼結することにより、表13に示すCa、ムライト相およびアルミナ相を含有する12種類の焼結体M1〜M12を形成した。ムライト相およびアルミナ相の同定および含有量の分析は、XRD法により行なった。Caの同定および含有量の分析は、GDMS法により行なった。次に、得られた12種類の焼結体のそれぞれから、実施例1と同様にして、12種類の支持基板M1〜M12を形成した。
2.複合基板の作製
図4(A)中の(A1)を参照して、支持基板11である支持基板M1〜M12のそれぞれの主面11m上に厚さ500nmのSiO2膜をCVD法により成膜した。次いで、かかる支持基板M1〜M12のそれぞれの主面11m上の厚さ500nmのSiO2膜を研磨することにより、厚さ400nmのSiO2膜だけ残存させて、主面12amが鏡面化された接合膜12aを形成した。
また、図4(A)中の(A2)を参照して、半導体膜ドナー基板13Dとして、HVPE法により成長させた直径4インチ(10.16cm)で厚さが10mmのGaN基板を準備した。かかる半導体膜ドナー基板13DのN原子面である(000−1)面側の主面13n上に、厚さ500nmのSiO2膜をCVD法により成膜した。次いで、上記の厚さ500nmのSiO2膜を研磨することにより、厚さ400nmのSiO2膜だけ残存させて、主面12bnが鏡面化された接合膜12bを形成した。
次に、図4(A)中の(A3)を参照して、支持基板11である支持基板M1〜M12のそれぞれに形成された接合膜12aの主面12amおよび半導体膜ドナー基板13DであるGaN基板上に形成された接合膜12bの主面12bnをアルゴンプラズマにより清浄化および活性化させた後、接合膜12aの主面12amと接合膜12bの主面12bnとを貼り合わせて、窒素雰囲気下300℃で2時間熱処理した。このようにして、支持基板11と半導体膜ドナー基板13Dとが接合膜12を介在させて貼り合わされた接合基板1Lが得られた。
次に、図4(B)を参照して、接合基板1Lの半導体膜ドナー基板13Dを接合膜12との貼り合わせ面から内部に150μmの距離の深さに位置する面でワイヤーソーにより切断することにより、支持基板11である支持基板M1〜M12のそれぞれの主面11m側に半導体膜13であるGaN膜が配置された複合基板1である複合基板M1〜M12が得られた。さらに、複合基板1の半導体膜13を機械研磨およびCMP(化学機械的研磨)により主面をその算術平均粗さRaが5nm以下に鏡面化して半導体膜13の厚さを100μmとした。
こうして、図6(A)に示すような支持基板11である支持基板M1〜M12のそれぞれの主面11m側に半導体膜13である主面13mが鏡面化された厚さ100μmのGaN膜が配置された複合基板1である複合基板M1〜M12が得られた。
3.半導体層の形成
次に、図6(B)を参照して、得られた12種類の複合基板M1〜M12の半導体膜13であるGaN膜の主面上に、それぞれMOCVD法により半導体層20としてGaN層を成長させた。かかる半導体層の成長においては、まず、500℃で、半導体バッファ層21として厚さ0.1μmのGaNバッファ層を成長させ、次いで、1050℃で、半導体結晶層23として厚さ5μmのGaN結晶層を成長させた。半導体層(半導体バッファ層および半導体結晶層)を成長させているとき(すなわち成長中)の複合基板M1〜M12の半導体層成長側の反り形状および反り量を、その場観察モニター(大陽日酸社製レーザ反射式その場観察モニター装置に装着されたLayTec社製EpiCurve)により測定した。こうして、半導体層付複合基板2である12種類の半導体層付複合基板M1〜M12が得られた。
4.支持基板の除去
次に、図6(C)を参照して、得られた半導体層付複合基板M1〜M12の支持基板11をグラインダーによる研削により除去した後、接合膜12をCMP(化学機械的研磨)により除去して、半導体膜13であるGaN膜上に半導体層20として半導体バッファ層21である厚さ0.1μmのGaNバッファ層および半導体結晶層23である厚さ5μmのGaN結晶層が形成された半導体ウエハ3である12種類の半導体ウエハM1〜M12が得られた。ここで、得られた半導体ウエハM1〜M12においても、実施例1に記載の測定方法により、反りが認められ、それらの反り形状および反り量は、半導体層成長中の複合基板M1〜M12の反り形状および反り量にそれぞれ対応していた。
表13に、支持基板M1〜M12中のCa、ムライト相およびアルミナ相の含有量、線熱膨張係数、ならびに半導体層(半導体バッファ層および半導体結晶層)成長中の複合基板M1〜M12の半導体層成長側の反り形状および反り量をまとめた。
Figure 2016036016
(実施例14)
支持基板の作製において、アルカリ土類金属元素の原料としてカルシウム(Ca)粉末に替えてストロンチウム(Sr)粉末を用いたこと以外は、実施例13と同様にして、支持基板N1〜N12、複合基板N1〜N12、半導体層付複合基板N1〜N12、および半導体ウエハN1〜N12を順次形成した。表14に、支持基板N1〜N12中のSr、ムライト相およびアルミナ相の含有量、線熱膨張係数、ならびに半導体層(半導体バッファ層および半導体結晶層)成長中の複合基板N1〜N12の半導体層成長側の反り形状および反り量をまとめた。
Figure 2016036016
(実施例15)
支持基板の作製において、アルカリ土類金属元素の原料としてカルシウム(Ca)粉末に替えてバリウム(Ba)粉末を用いたこと以外は、実施例13と同様にして、支持基板O1〜O12、複合基板O1〜O12、半導体層付複合基板O1〜O12、および半導体ウエハO1〜O12を順次形成した。表15に、支持基板O1〜O12中のBa、ムライト相およびアルミナ相の含有量、線熱膨張係数、ならびに半導体層(半導体バッファ層および半導体結晶層)成長中の複合基板O1〜O12の半導体層成長側の反り形状および反り量をまとめた。
Figure 2016036016
表13〜表15から明らかなように、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含み、線熱膨張係数が5.0×10-6-1以上6.5×10-6-1以下である支持基板と、かかる支持基板の主面側に配置されている半導体膜と、を含む複合基板を用いることにより、半導体層の成長中の複合基板の反りを低減できるため、効率よく反りが少なく品質の高い半導体ウエハを製造できた。
(実施例16)
1.支持基板の作製
所定の化学量論比のムライト(3Al23・2SiO2)粉末、アルミナ(Al23)粉末、およびカルシウム(Ca)粉末を出発原料として、酸素雰囲気中1600℃2000気圧でHIP(熱間等方圧プレス)焼結することにより、表16に示すCa、ムライト相およびアルミナ相を含有する12種類の焼結体P1〜P12を形成した。ムライト相およびアルミナ相の同定および含有量の分析は、XRD法により行なった。Caの同定および含有量の分析は、GDMS法により行なった。次に、得られた12種類の焼結体のそれぞれから、実施例1と同様にして、12種類の支持基板P1〜P12を形成した。
2.複合基板の作製
次に、得られた12種類の支持基板P1〜P12のそれぞれから、実施例13と同様にして、図7(A)に示すような支持基板11である支持基板P1〜P12のそれぞれの主面11m側に半導体膜13である主面13mが鏡面化された厚さ100μmのGaN膜が配置された複合基板1である複合基板P1〜P12を形成した。
3.半導体層の形成
次に、図7(B)を参照して、得られた12種類の複合基板P1〜P12の半導体膜13であるGaN膜の主面上に、それぞれMOCVD法により半導体層20としてGaN層を成長させた。かかる半導体層の成長においては、まず、500℃で、半導体バッファ層21として厚さ0.1μmのGaNバッファ層を成長させ、次いで、1050℃で、半導体結晶層23として厚さ5μmのGaN結晶層を成長させた。半導体層(半導体バッファ層および半導体結晶層)を成長させているとき(すなわち成長中)の複合基板P1〜P12の半導体層成長側の反り形状および反り量を、その場観察モニター(大陽日酸社製レーザ反射式その場観察モニター装置に装着されたLayTec社製EpiCurve)により測定した。こうして、半導体層付複合基板2である12種類の半導体層付複合基板P1〜P12が得られた。
4.支持基板の除去
次に、図7(C)を参照して、得られた半導体層付複合基板P1〜P12の支持基板11をワイヤーソーによる切断により除去した後、接合膜12をCMP(化学機械的研磨)により除去して、半導体膜13であるGaN膜上に半導体層20として半導体バッファ層21である厚さ0.1μmのGaNバッファ層および半導体結晶層23である厚さ5μmのGaN結晶層が形成された半導体ウエハ3である12種類の半導体ウエハP1〜P12が得られた。ここで、得られた半導体ウエハP1〜P12においても、実施例1に記載の測定方法により、反りが認められ、それらの反り形状および反り量は、半導体層成長中の複合基板P1〜P12の反り形状および反り量にそれぞれ対応していた。
表16に、支持基板P1〜P12中のCa、ムライト相およびアルミナ相の含有量、線熱膨張係数、ならびに半導体層(半導体バッファ層および半導体結晶層)成長中の複合基板P1〜P12の半導体層成長側の反り形状および反り量をまとめた。
Figure 2016036016
(実施例17)
支持基板の作製において、アルカリ土類金属元素の原料としてカルシウム(Ca)粉末に替えてストロンチウム(Sr)粉末を用いたこと以外は、実施例16と同様にして、支持基板Q1〜Q12、複合基板Q1〜Q12、半導体層付複合基板Q1〜Q12、および半導体ウエハQ1〜Q12を順次形成した。表17に、支持基板Q1〜Q12中のSr、ムライト相およびアルミナ相の含有量、線熱膨張係数、ならびに半導体層(半導体バッファ層および半導体結晶層)成長中の複合基板Q1〜Q12の半導体層成長側の反り形状および反り量をまとめた。
Figure 2016036016
(実施例18)
支持基板の作製において、アルカリ土類金属元素の原料としてカルシウム(Ca)粉末に替えてバリウム(Ba)粉末を用いたこと以外は、実施例16と同様にして、支持基板R1〜R12、複合基板R1〜R12、半導体層付複合基板R1〜R12、および半導体ウエハR1〜R12を順次形成した。表18に、支持基板R1〜R12中のBa、ムライト相およびアルミナ相の含有量、線熱膨張係数、ならびに半導体層(半導体バッファ層および半導体結晶層)成長中の複合基板R1〜R12の半導体層成長側の反り形状および反り量をまとめた。
Figure 2016036016
表16〜表18から明らかなように、アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含み、線熱膨張係数が5.0×10-6-1以上6.5×10-6-1以下である支持基板と、かかる支持基板の主面側に配置されている半導体膜と、を含む複合基板を用いることにより、半導体層の成長中の複合基板の反りを低減できるため、効率よく反りが少なく品質の高い半導体ウエハを製造できた。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 複合基板
2 半導体膜付複合基板
3 半導体ウエハ
11m,12am,12bn,13m,13n 主面
1L 接合基板
11 支持基板
12,12a,12b 接合膜
13 半導体膜
13i イオン注入領域
13D,13Dr 半導体膜ドナー基板
20 半導体層
21 半導体バッファ層
23 半導体結晶層。

Claims (5)

  1. アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属元素原子を含み、
    結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含む支持基板。
  2. 線熱膨張係数が5.0×10-6-1以上6.5×10-6-1以下である請求項1に記載の支持基板。
  3. 請求項1または請求項2に記載の支持基板と、前記支持基板の主面側に配置されている半導体膜と、を含む複合基板。
  4. アルミニウム原子、ケイ素原子、および0.001質量%以上10質量%以下のアルカリ土類金属原子を含み、結晶相として35質量%以上65質量%以下のムライト相および35質量%以上65質量%以下のアルミナ相を含む支持基板と、前記支持基板の主面側に配置されている半導体膜と、を含む複合基板を準備する工程と、
    前記複合基板の前記半導体膜上に少なくとも1層の半導体層を成長させることにより半導体層付複合基板を形成する工程と、
    前記半導体層付複合基板から前記支持基板を除去することにより半導体ウエハを形成する工程と、を含む半導体ウエハの製造方法。
  5. 前記支持基板の線熱膨張係数が5.0×10-6-1以上6.5×10-6-1以下である請求項4に記載の半導体ウエハの製造方法。
JP2015124546A 2014-06-23 2015-06-22 支持基板、複合基板および半導体ウエハの製造方法 Pending JP2016036016A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015124546A JP2016036016A (ja) 2014-06-23 2015-06-22 支持基板、複合基板および半導体ウエハの製造方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014128154 2014-06-23
JP2014128154 2014-06-23
JP2014160292 2014-08-06
JP2014160292 2014-08-06
JP2015124546A JP2016036016A (ja) 2014-06-23 2015-06-22 支持基板、複合基板および半導体ウエハの製造方法

Publications (1)

Publication Number Publication Date
JP2016036016A true JP2016036016A (ja) 2016-03-17

Family

ID=55523691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015124546A Pending JP2016036016A (ja) 2014-06-23 2015-06-22 支持基板、複合基板および半導体ウエハの製造方法

Country Status (1)

Country Link
JP (1) JP2016036016A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175125A (ja) * 2016-03-18 2017-09-28 株式会社リコー 電界効果型トランジスタの製造方法、揮発性半導体メモリ素子の製造方法、不揮発性半導体メモリ素子の製造方法、表示素子の製造方法、画像表示装置の製造方法、システムの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017175125A (ja) * 2016-03-18 2017-09-28 株式会社リコー 電界効果型トランジスタの製造方法、揮発性半導体メモリ素子の製造方法、不揮発性半導体メモリ素子の製造方法、表示素子の製造方法、画像表示装置の製造方法、システムの製造方法

Similar Documents

Publication Publication Date Title
KR101797428B1 (ko) 단결정 다이아몬드 성장용 기재 및 단결정 다이아몬드 기판의 제조 방법
US10204838B2 (en) Handle substrate of composite substrate for semiconductor, and composite substrate for semiconductor
JP2008303137A (ja) エピタキシー用の複合構造の製造方法及び複合構造を含む多層構造
TWI600178B (zh) III -nitride composite substrate, a method of manufacturing the same, a laminated III-nitride compound substrate, a group III nitride semiconductor device, and a method of fabricating the same
KR20160041840A (ko) 단결정 재료 사용의 개선된 효율을 갖는 유사 기판
JP2019216180A (ja) GaN積層基板の製造方法
JP6232853B2 (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
KR20230149845A (ko) 화합물 반도체 층상 구조물 및 이의 제조 방법
JP5585570B2 (ja) ムライトを主成分とする焼結体
JP6146042B2 (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2009119159A1 (ja) 光デバイス用基板及びその製造方法
JP2016036016A (ja) 支持基板、複合基板および半導体ウエハの製造方法
JP2013258373A (ja) 複合基板およびその製造方法
JP6331553B2 (ja) 複合基板およびそれを用いた半導体ウエハの製造方法
JP6149428B2 (ja) 複合基板、複合基板を用いた半導体ウエハの製造方法、および複合基板用の支持基板
JP2014157983A (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2020031829A1 (ja) GaN積層基板の製造方法
JP2016098136A (ja) 支持基板、複合基板および半導体ウエハの製造方法
JP2014157979A (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP6094243B2 (ja) 複合基板およびそれを用いた半導体ウエハの製造方法
JP2016149444A (ja) 窒化ガリウム複合基板およびその製造方法
JP6146041B2 (ja) Iii族窒化物複合基板および積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
JP2014237565A (ja) 複合基板、および半導体ウエハの製造方法
JP2019052056A (ja) 複合基板、iii族窒化物結晶付複合基板、およびiii族窒化物結晶の製造方法
JP2011222778A (ja) 積層体の製造方法、iii族窒化物単結晶自立基板の製造方法、および、積層体