JP2016024095A - 硬化モニタリング装置及び硬化モニタリング方法 - Google Patents

硬化モニタリング装置及び硬化モニタリング方法 Download PDF

Info

Publication number
JP2016024095A
JP2016024095A JP2014149126A JP2014149126A JP2016024095A JP 2016024095 A JP2016024095 A JP 2016024095A JP 2014149126 A JP2014149126 A JP 2014149126A JP 2014149126 A JP2014149126 A JP 2014149126A JP 2016024095 A JP2016024095 A JP 2016024095A
Authority
JP
Japan
Prior art keywords
resin
fluorescence
filter
curing
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014149126A
Other languages
English (en)
Other versions
JP6375752B2 (ja
Inventor
酒井 覚
Satoru Sakai
覚 酒井
西山 陽二
Yoji Nishiyama
陽二 西山
穂刈 守
Mamoru Hokari
守 穂刈
貴之 安部
Takayuki Abe
貴之 安部
岡田 英夫
Hideo Okada
英夫 岡田
和範 丸山
Kazunori Maruyama
和範 丸山
宜彦 猪谷
Nobuhiko Inotani
宜彦 猪谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014149126A priority Critical patent/JP6375752B2/ja
Publication of JP2016024095A publication Critical patent/JP2016024095A/ja
Application granted granted Critical
Publication of JP6375752B2 publication Critical patent/JP6375752B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】樹脂の硬化度の算出精度が低下するのを抑制すること。【解決手段】硬化モニタリング装置1は、樹脂20及び樹脂20に当接する基材21を含む観察対象物に励起光を照射する光源12を有する。さらに、硬化モニタリング装置1は、観察対象物を撮像するカメラ15を有する。さらに、硬化モニタリング装置1は、観察対象物及びカメラ15の光路上で、励起光の照射によって樹脂20が発する蛍光の波長域に含まれる光であって互いに異なる波長帯の光を透過させるフィルタa及びフィルタbを有する。さらに、硬化モニタリング装置1は、観察対象物及びカメラ15の光路上で、樹脂20が発する蛍光の波長域から外れ、かつ励起光の照射によって基材21が発する波長域に含まれる波長帯の光を透過させるフィルタcを有する。【選択図】図1

Description

本発明は、硬化モニタリング装置及び硬化モニタリング方法に関する。
広範な分野で光硬化樹脂が利用されている。この光硬化樹脂は、熱エネルギーを利用する熱硬化方法に比較して、有害物質を大気中に放散しない、硬化時間が短い、熱に弱い製品にも適用できるなどの多くの利点を有する一方で、目視によって硬化度を判断するのは困難である。
例えば、樹脂の硬化状態を非接触で確認する技術の一例として、樹脂が光を受けることによって放射する蛍光の画像から樹脂の硬化度を算出する樹脂硬化状態モニタリング装置が提案されている。
特開2003−247942号公報 特開2013−137199号公報
しかしながら、上記の技術では、画像から樹脂が当接する基材によって放射される蛍光成分も観測されるので、樹脂の硬化度の算出精度が低下する場合がある。
1つの側面では、本発明は、樹脂の硬化度の算出精度が低下するのを抑制できる硬化モニタリング装置及び硬化モニタリング方法を提供することを目的とする。
一態様の硬化モニタリング装置は、樹脂及び前記樹脂に当接する基材を含む観察対象物に励起光を照射する光源と、前記観察対象物を撮像するカメラと、前記観察対象物及び前記カメラの光路上で、前記励起光の照射によって前記樹脂が発する蛍光の波長域に含まれる光であって互いに異なる波長帯の光を透過させる第1のフィルタ及び第2のフィルタと、前記観察対象物及び前記カメラの光路上で、前記樹脂が発する蛍光の波長域から外れ、かつ前記励起光の照射によって前記基材が発する波長域に含まれる波長帯の光を透過させる第3のフィルタとを有する。
樹脂の硬化度の算出精度が低下するのを抑制できる。
図1は、実施例1に係る硬化モニタリング装置の機能的構成を示すブロック図である。 図2は、図1で示したA矢視による観測対象物の上面図の一例を示す図である。 図3は、計測領域における蛍光強度の内訳の一例を示す図である。 図4は、計測領域における蛍光強度の内訳の一例を示す図である。 図5は、蛍光の波長特性の一例を示す図である。 図6は、実施例1に係る硬化モニタリング処理の手順を示すフローチャートである。 図7は、実施例1に係る硬化モニタリング処理の手順を示すフローチャートである。
以下に添付図面を参照して本願に係る硬化モニタリング装置及び硬化モニタリング方法について説明する。なお、この実施例は開示の技術を限定するものではない。そして、各実施例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
図1は、実施例1に係る硬化モニタリング装置1の機能的構成を示すブロック図である。図1に示す硬化モニタリング装置1は、樹脂20が光を受けることによって放射する蛍光の画像から樹脂20の硬化度を算出することによって樹脂20の硬化状態を非接触でモニタリングするのを支援するものである。
かかる硬化モニタリング装置1は、一例として、樹脂20とともに、樹脂20が当接する基材21が光の照射を受けて蛍光を放射する場合、ひいては基材21による蛍光成分に照明ムラが発生する場合でも、樹脂の硬化度の算出精度が低下するのを抑制することを目指す。
以下では、一例として、光通信機器などの製品を製造する場面でレンズ等の光学部品22を樹脂20を介して基材21に接着させることによって製品を組み立てたり、樹脂の硬化状態を検査する場合を想定する。図1には、樹脂20が基材21及び光学部品22を接着する様子が模式図として示されており、樹脂20が図示の通りの形状、大きさ、厚みを有さずともかまわない。例えば、樹脂20の厚みは、顕微鏡等によって始めて目視できる程度の大きさでよく、また、樹脂20の厚みは不均一でもよく、樹脂20が光学部品22からはみ出していてもはみ出しておらずともかまわない。なお、以下では、光学部品22が樹脂20によって接着された基材21のことをまとめて「観察対象物」と記載する場合がある。
図1に示すように、硬化モニタリング装置1は、制御部10と、ステージ11と、光源12と、フィルタ交換ステージ13と、結像レンズ14と、カメラ15とを有する。
ステージ11は、光学部品22が接着された基材21を載置する台座である。このステージ11は、制御部10の指示にしたがって水平面、すなわちX方向及びY方向に移動することができる。
光源12は、制御部10の光源制御部10aからの指示にしたがって点灯して光を出射する照明装置である。一実施形態として、光源12には、水銀ランプ又はレーザダイオードなどを採用することができる。かかる光源12から出射される光には、励起光となる紫外線が多く含まれる。
フィルタ交換ステージ13は、光学フィルタが設置される台座であり、ステージ11及びカメラ15の撮像面の間を結ぶ光路上の所定位置へ配置するフィルタを交換する機構を併せ持つ。一実施形態として、フィルタ交換ステージ13には、フィルタa、フィルタb及びフィルタcの各フィルタが載置されたステージをアクチュエータ等で回転させることによって各フィルタを順番に所定位置へ配置する機構を採用できる。なお、上記のフィルタa、フィルタb及びフィルタcが透過させる光の波長特性については後述することとする。
光源12から出射された光は、ステージ11上に載置された観察対象物に向かう。これら光源12及び観察対象物の間には、紫外線に対応する波長以外の余分な波長の光を遮断する光学フィルタ、光を観察対象物へ誘導するダイクロイックミラー等のミラー類、さらには、光を集光する対物レンズなどを設置することができる。このように、観察対象物に含まれる樹脂20に光が照射されることによって樹脂20から蛍光が発生する。
そして、樹脂20で発生する蛍光は、フィルタ交換ステージ13に設置されるフィルタa、フィルタb及びフィルタcのいずれかの光学フィルタによって特定の波長以外の光が除去された後に、結像レンズ14を介してカメラ15の撮像面に到達する。
カメラ15は、画像を撮像する撮像装置である。一実施形態として、カメラ15には、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を搭載する撮像装置を採用できる。このカメラ15からは、撮像素子上に整列された受光素子から画素ごとに得られる蛍光強度、例えば濃淡値や輝度値などの画素値が画像として制御部10へ出力される。なお、ここでは、一例として、カメラ15が基材21及び光学部品を接着させる樹脂20とともに、樹脂20と鉛直方向(Z方向)に重ならずに露出する基材21の一部が撮像範囲に収められることとする。
制御部10は、少なくともデータ処理装置、いわゆるプロセッサを含む。
一実施形態として、制御部10は、ステージ11、光源12、フィルタ交換ステージ13、結像レンズ14及びカメラ15を含む光学系を制御下に置く情報処理装置、例えばパーソナルコンピュータやワークステーションとして実装することができる。他の実施形態として、制御部10は、上記の光学系と一体化されたCPU(Central Processing Unit)またはMPU(Micro Processing Unit)として実装されることとしてもよい。また、制御部10は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などのハードワイヤードロジックによっても実現できる。
なお、制御部10は、図示しない記憶部に接続されている。かかる記憶部には、半導体メモリ素子を採用できる。例えば、半導体メモリ素子の一例としては、VRAM(Video Random Access Memory)、RAM(Random Access Memory)、ROM(Read Only Memory)やフラッシュメモリ(flash memory)などが挙げられる。また、主記憶装置の代わりに、SSD、HDDや光ディスクなどの外部記憶装置を採用することとしてもよい。
制御部10は、各種のプログラム、例えば光学系の制御や硬化度の算出を実現するプログラムを実行することによって下記の処理部を仮想的に実現する。例えば、制御部10は、図1に示すように、光源制御部10aと、ステージ制御部10bと、撮像制御部10cと、画像取得部10dと、硬化度算出部10eとを有する。
光源制御部10aは、光源12を制御する処理部である。
一実施形態として、光源制御部10aは、図示しないユーザインタフェース等を介して硬化度の算出要求を受け付けた場合、光源12をON状態に制御する。また、光源制御部10aは、硬化度が算出された場合または硬化終了と判定された場合、光源12をOFF状態に制御する。
ステージ制御部10bは、ステージ11を制御する処理部である。
一実施形態として、ステージ制御部10bは、画像取得部10dからフィルタの交換指示を受け付けた場合、フィルタa、フィルタb及びフィルタcのうち交換指示に対応するフィルタを、ステージ11及びカメラ15の撮像面の間を結ぶ光路上にある所定位置へ移動させる。
撮像制御部10cは、カメラ15を制御する処理部である。
一実施形態として、撮像制御部10cは、ステージ制御部10bによってステージが移動される度に、フィルタ交換ステージ13に移動されたフィルタを通して、樹脂20とともに、樹脂20と鉛直方向に重ならずに露出する基材21の一部をカメラ15に撮像させる。例えば、フィルタ交換ステージ13がフィルタa、フィルタb、フィルタcの順にフィルタを所定位置へ回転させる場合、フィルタaを通して撮像された蛍光画像I(x,y)、フィルタbを通して撮像された蛍光画像I(x,y)、フィルタcを通して撮像された蛍光画像I(x,y)の順に撮像される。これらの各蛍光画像は、同一の被写体が撮像された画像ではあるが、フィルタa、フィルタbまたはフィルタcが透過させる蛍光の波長成分が異なる点が相違する。なお、上記の「x」及び「y」は、各蛍光画像上の画素の位置を指し、例えば、X座標及びY座標によって表される。
画像取得部10dは、画像を取得する処理部である。
一実施形態として、画像取得部10dは、硬化度の算出要求を受け付けた場合、光学系を制御する光源制御部10a、ステージ制御部10b及び撮像制御部10cを制御して、蛍光画像I(x,y)、蛍光画像I(x,y)及び蛍光画像I(x,y)を取得する。
硬化度算出部10eは、フィルタa、フィルタb及びフィルタcを通して撮像される蛍光画像を用いて、樹脂20の硬化度を算出する処理部である。
ここで、例えば、硬化度Hは、下記の式(1)をよって算出することができる。なお、下記の式(1)では、フィルタiを通して撮像される蛍光画像がI(x,y)と表されることとする。
Figure 2016024095
基材21が蛍光を発生させない材質である場合、上記の式(1)を用いることによって蛍光画像I(x,y)及び蛍光画像I(x,y)から樹脂20の硬化度を精度よく算出することができる。ところが、基材21が蛍光を発生させる材質である場合、必ずしも硬化度を精度よく算出できるとは限らない。なぜなら、蛍光画像I(x,y)及び蛍光画像I(x,y)には、基材21及び光学部品22を接着する樹脂20から発生する蛍光成分だけでなく、基材21から発生する蛍光成分も含まれるからである。
このことから、基材21からの蛍光成分を除去して硬化度を算出する硬化度算出方法も考えられる。例えば、蛍光画像のうち硬化度の算出に用いる蛍光強度が計測される領域が「計測領域」として設定されるとともに、蛍光画像のうち硬化度の算出時に基材21からの蛍光強度として参照される領域が「参照領域」として設定される。
図2は、図1で示したA矢視による観測対象物の上面図の一例を示す図である。図2には、破線で示されたハンド30によって光学部品22が把持された状態が図示されている。図2に示す符号40は、計測領域を指し、また、符号41は、参照領域を指す。なお、図2には、図1に示した樹脂20が斜線による塗りつぶしによって図示されている。
図2に示すように、計測領域40には、基材21及び光学部品22を接着する樹脂20が基材21上に塗布される樹脂領域、すなわち図2に示す斜線部の領域もしくは樹脂領域の一部を設定できる。図2には、一例として、樹脂領域の一部が矩形として切り出された領域が計測領域に設定された場合が示されている。また、参照領域41には、基材21が樹脂20、光学部品22及びハンド30によって隠れずに露出する基材露出領域もしくはその基材露出領域の一部を設定できる。かかる基材露出領域の一部を参照領域41とする場合、図2に示した箇所に限らず、基材露出領域の任意の箇所を参照領域41に設定できる。これら計測領域40及び参照領域41は、一例として、互いに同一の大きさに設定することができる。なお、図2には、計測領域40及び参照領域41が矩形である場合を例示したが、計測領域や参照領域には楕円や多角形などの他の形状が設定されることとしてもかまわない。
図3は、計測領域における蛍光強度の内訳の一例を示す図である。図3に示すように、計測領域40で計測される蛍光Oiは、算出の目標とする樹脂20の蛍光Iiと、基材21の蛍光Riとが合わさったものとみなすことができる。さらに、参照領域41で計測される蛍光強度Riと同じ強度の蛍光が計測領域40で基材21から発生すると仮定したとき、下記の式(2)に示すように、計測領域40で計測される蛍光強度Oiから参照領域41で計測される蛍光強度Riを差し引くことによって樹脂20の蛍光強度Iiを算出することもできる。これに伴って、上記の式(1)に示した硬化度Hの算出式に下記の式(2)を代入することによって硬化度Hの算出式を下記の式(3)へ変形することができる。なお、下記の式(2)のOiは、フィルタiを通して得られる蛍光画像の計測領域で計測される蛍光強度を指し、また、下記の式(2)のRiは、フィルタiを通して得られる蛍光画像の参照領域で計測される蛍光強度を指す。
(x,y)=O(x,y)−R(x,y)・・・(2)
Figure 2016024095
上記の式(3)における硬化度の算出式によれば、一定の割合で基材21からの蛍光強度を加味することができる。その一方で、製造現場では、組み立て中の光学部品21や光学部品21を把持するハンド30等の機構の影響によって照明ムラが発生する。これに伴って、基材21による蛍光成分にもムラが発生するので、計測領域40及び参照領域41の間で基材21による蛍光強度が必ずしも同一であるとは限らない。したがって、この点も硬化度の算出精度を低下させる一因となり得る。
そこで、本実施例に係る硬化モニタリング方法では、フィルタa及びフィルタbに加え、樹脂20の蛍光が観測されにくく、かつ基材21の蛍光が観測される波長に対応する光を透過させるフィルタcを蛍光画像の撮影に用いる。そして、硬化モニタリング方法では、フィルタcを通して撮像された蛍光画像から、基材21の蛍光に関する計測領域及び参照領域の強度比Tを算出する。その上で、硬化モニタリング方法では、上記の強度比Tを用いて、フィルタa及びフィルタbを通して撮像される蛍光画像で計測される参照領域41の蛍光強度をより正しい値に近付けた上で硬化度Hを算出する。
具体的には、下記の式(4)にしたがってフィルタcを通して撮像された蛍光画像上の参照領域41の蛍光Rcと、同蛍光画像上の計測領域40の蛍光Ocとから強度比Tを求める。かかるフィルタcが透過させる光には、樹脂20による蛍光が持つ波長帯とは異なるので、樹脂20由来の蛍光は含まれず、参照領域41の蛍光Rc及び計測領域40の蛍光Ocにも樹脂20由来の蛍光は含まれない。このことから、強度比Tは、基材21の蛍光に関する参照領域41及び計測領域40間の蛍光強度の比を意味すると言える。
Figure 2016024095
ここで、照明ムラに起因する蛍光強度のムラは、波長に依存しないので、他のフィルタaまたはフィルタbであっても、基材21の蛍光に関する参照領域41と計測領域40の強度比は、フィルタcの蛍光画像から算出される強度比Tと同定することができる。このことから、フィルタiを通して撮像された蛍光画像上の計測領域40の樹脂20から発生する蛍光強度Iは、計測領域40で計測される蛍光強度Oi及び参照領域41の蛍光強度Riと、強度比Tとを用いて、下記の式(5)で表すことができる。
(x,y)=O(x,y)−R(x,y)×T・・・(5)
図4は、計測領域における蛍光強度の内訳の一例を示す図である。図4に示すように、計測領域40で計測される蛍光Oiは、図3の説明と同様、算出の目標とする樹脂20の蛍光Iiと、基材21の蛍光Riとが合わさったものとみなすことができる。ここで、照明ムラは、撮影に用いるフィルタの波長特性に関わらず等しいことから、フィルタiの蛍光画像上の計測領域40における基材21の蛍光強度は、同蛍光画像上の参照領域41における蛍光強度と、強度比Tとによって表すことができる。このように計測領域40における基材21の蛍光強度が既知となれば、計測領域40における蛍光強度Oiから、計測領域40における基材21の蛍光強度Ri*Tを差し引くことによって計測領域40における樹脂20のRiを上記の式(5)の通り表すことができる。
かかる上記の式(5)を上記の式(1)に代入することによって、下記の式(6)を硬化度Hの算出式として導出することができる。かかる式(6)における硬化度Hの算出式によれば、照明ムラに起因する基材21の蛍光ムラが起きた場合にも硬化度の算出精度の低下を抑制することができる。
Figure 2016024095
ここで、フィルタa、フィルタb及びフィルタcの透過波長帯の選定例について説明する。
例えば、フィルタa及びフィルタbには、一例として、樹脂20が硬化するにつれて蛍光画像から算出される硬化度Hが単調に増加する波長の組合せを中心波長に選定できる。さらに好ましくは、フィルタa及びフィルタbには、樹脂20が硬化するにつれて蛍光画像から算出される硬化度Hが変化する度合いが大きい波長の組合せを選定するのが好ましい。一方、フィルタcには、一例として、樹脂20が発する蛍光が持つ波長域から外れ、かつ基材21の蛍光ができるだけ大きい波長帯の中から中心波長を選定するのが好ましい。なお、上記の各フィルタには、上記の条件を満たす限り、互いの透過波長帯が重ならない範囲で任意の帯域幅を設定できる。
図5は、蛍光の波長特性の一例を示す図である。図5に示すグラフの縦軸は、蛍光強度を指し、横軸は、波長を指す。図5に示す符号50は、樹脂20が硬化する初期に発生する蛍光の波長分布を指し、符号51は、樹脂20が硬化する後期に発生する蛍光の波長分布を指し、符号52は、基材21から発生する蛍光の波長分布を指す。
例えば、図5の例で言えば、フィルタaが透過させる光の中心波長が450nm付近に設定されるとともに、フィルタbが透過させる光の中心波長が470nm付近に設定されている。このように、フィルタa及びフィルタbの中心波長には、樹脂20による蛍光強度が基材による蛍光強度よりも大きい波長帯の中で、互いのフィルタを通して得られる蛍光画像から算出される硬化度Hが単調増加する波長が中心波長に選定される。
一方、フィルタcが透過させる光の中心波長が700nm付近に設定される。このように、硬化の前後で放射される樹脂20の蛍光が持つ波長分布と重ならない波長帯をフィルタcの透過波長帯に選定することによって樹脂20に由来しない蛍光成分だけが映った画像を得ることができる。このとき、基材21の蛍光強度が可及的に大きい波長がフィルタcの中心波長に選定されることが好ましい。なお、図2には、樹脂20の蛍光強度が観測されない波長帯からフィルタcの中心波長が選定される場合を例示したが、樹脂20の蛍光強度が無視できるほど小さい波長、例えば樹脂20の蛍光強度が所定の閾値以下である波長を選定することとしてもかまわない。
なお、当然のことながら、図4に示した蛍光の波長特性はあくまで一例であり、樹脂20や基材21の蛍光の波長特性は基材の種類、樹脂の種類や励起光の波長によって変化する。このため、光学部品や基材の種類、樹脂の種類及び励起光の波長によって変わる樹脂20や基材21の蛍光の波長特性に合わせて各フィルタの透過波長帯を選定できることは言うまでもない。
[処理の流れ]
続いて、本実施例に係る硬化モニタリング装置1の処理の流れについて説明する。なお、ここでは、硬化モニタリング装置1が実行する(1)硬化モニタリング処理を説明した後に、硬化モニタリング処理に含まれるサブフローの一例として(2)硬化度算出処理を説明することとする。
(1)硬化モニタリング処理
図6は、実施例1に係る硬化モニタリング処理の手順を示すフローチャートである。この処理は、一例として、硬化度の算出要求、もしくはそれに類するリクエスト、例えばモニタリング要求を受け付けた場合に起動することができる。この他、ステージ11上に物体が載置されたことが検出された場合などのように、ユーザによる指示操作以外を契機に処理を起動することもできる。
図6に示すように、光源制御部10aは、光源12をON状態に制御する(ステップS101)。これによって、光源12が発する紫外線等の励起光が観察対象物へ照射される結果、観察対象物から放射された蛍光がカメラ15の撮像素子へ結像することになる。
続いて、ステージ制御部10bは、フィルタ交換ステージ13を回転させることによってフィルタaをステージ11及びカメラ15の撮像面の間を結ぶ光路上にある所定位置へ移動させる(ステップS102)。そして、画像取得部10dは、ステップS102で所定位置へ移動されたフィルタaを通して撮像制御部10cが観察対象物をカメラ15に撮像させた蛍光画像I(x,y)を取得する(ステップS103)。
また、ステージ制御部10bは、フィルタ交換ステージ13を回転させることによってフィルタbをステージ11及びカメラ15の撮像面の間を結ぶ光路上にある所定位置へ移動させる(ステップS104)。そして、画像取得部10dは、ステップS104で所定位置へ移動されたフィルタbを通して撮像制御部10cが観察対象物をカメラ15に撮像させた蛍光画像I(x,y)を取得する(ステップS105)。
さらに、ステージ制御部10bは、フィルタ交換ステージ13を回転させることによってフィルタcをステージ11及びカメラ15の撮像面の間を結ぶ光路上にある所定位置へ移動させる(ステップS106)。そして、画像取得部10dは、ステップS106で所定位置へ移動されたフィルタcを通して撮像制御部10cが観察対象物をカメラ15に撮像させた蛍光画像I(x,y)を取得する(ステップS107)。
そして、硬化度算出部10eは、ステップS103、ステップS105及びステップS107で撮像された蛍光画像を用いて樹脂20の硬化度を算出する硬化度算出処理を実行する(ステップS108)。
その後、ステップS108で実行された硬化算出処理で樹脂20が硬化未了と判定された場合(ステップS109No)、硬化モニタリング装置1は、上記のステップS102の処理に戻り、ステップS102〜ステップS108までの処理を繰返し実行する。
一方、ステップS108で実行された硬化算出処理で樹脂20が硬化終了と判定された場合(ステップS109Yes)、そのまま処理を終了する。
なお、図6に示したフローチャートでは、フィルタaの蛍光画像、フィルタbの蛍光画像、フィルタcの蛍光画像の順に画像が撮像される場合を例示したが、各蛍光画像が並行して撮像されることとしてもかまわない。
(2)硬化度算出処理
図7は、実施例1に係る硬化モニタリング処理の手順を示すフローチャートである。この処理は、図6に示したステップS108に対応する処理であり、フィルタa、フィルタb及びフィルタcを通して撮像された蛍光画像が取得された場合に起動する。
図7に示すように、硬化度算出部10eは、ステップS107で取得されたフィルタcの蛍光画像から当該蛍光画像上の計測領域40の蛍光強度および当該蛍光画像上の参照領域41の蛍光強度を算出する(ステップS301)。
例えば、蛍光画像上の計測領域40に含まれる各画素が持つ蛍光強度に所定の統計処理を実行することによって計測領域40の蛍光強度の代表値を算出できる。かかる統計処理の一例として、各種の平均、例えば相加平均、加重平均を実行することとしてもよいし、中央値や最頻値を算出することとしてもかまわない。なお、参照領域41の蛍光強度についても、計測領域40の蛍光強度と同様にして算出できる。
続いて、硬化度算出部10eは、基材21の蛍光に関する計測領域及び参照領域の強度比を算出する(ステップS302)。例えば、硬化度算出部10eは、上記の式(4)にしたがってステップS301で求めた計測領域40の蛍光強度Ocを参照領域41の蛍光強度Rcで除算することによって強度比Tを算出する。
そして、硬化度算出部10eは、フィルタa及びフィルタbの蛍光画像ごとに計測領域40の画素及び参照領域41の画素を走査する(ステップS303)。すなわち、硬化度算出部10eは、フィルタa及びフィルタbの蛍光画像ごとに計測領域40及び参照領域41の各々で左上の画素のX座標及びY座標を原点(0,0)とし、当該原点から順に走査線にしたがって画素が持つ蛍光強度を取得するラスタースキャン等のスキャニングを実行する。例えば、走査の目標とする計測領域40及び参照領域41の画素が(x,y)であるとしたとき、フィルタaの計測領域40aの画素が持つ蛍光強度O(x,y)及び参照領域41aの画素が持つ蛍光強度R(x,y)と、フィルタbの計測領域40bの画素が持つ蛍光強度O(x,y)及び参照領域41bの画素が持つ蛍光強度R(x,y)とが取得される。
その上で、硬化度算出部10eは、ステップS301で求めた強度比と、ステップS303の走査でフィルタa及びフィルタbの蛍光画像ごとに得た計測領域40の画素が持つ蛍光強度及び参照領域41の画素が持つ蛍光強度とから硬化度を算出する(ステップS304)。すなわち、硬化度算出部10eは、フィルタaの計測領域40aの画素が持つ蛍光強度O(x,y)及び参照領域41aの画素が持つ蛍光強度R(x,y)と、フィルタbの計測領域40bの画素が持つ蛍光強度O(x,y)及び参照領域41bの画素が持つ蛍光強度R(x,y)と共に、強度比Tを上記の式(6)に代入して計算する。これによって、走査中の画素(x,y)に関する硬化度H(x,y)を得ることができる。
続いて、硬化度算出部10eは、ステップS304で算出された硬化度H(x,y)が所定の閾値Th1以上、すなわち硬化度H(x,y)≧閾値Th1であるか否かを判定する(ステップS305)。かかる閾値Th1は、当該画素(x,y)の硬化が終了したか否かを判定するのに用いるパラメータである。例えば、モニタリングの対象とする樹脂20、機材21及び光学部品22の種類ごとに、樹脂20の硬化の前期及び後期でフィルタa及びフィルタbの透過波長帯に対応する蛍光強度がとる値に応じて設定される。なお、上記の閾値Th1は、硬化モニタリングプログラムの開発者が設定するものを用いることもできるし、製造現場の作業者が任意に変更することもできる。
このとき、硬化度H(x,y)≧閾値Th1である場合(ステップS305Yes)、硬化度算出部10eは、硬化度Hが閾値Th1以上であると判定された画素数Sを保存するレジスタ等のカウンタをインクリメントする更新を実行する(ステップS306)。なお、硬化度H(x,y)<閾値Th1である場合(ステップS305No)、上記の更新は実行されず、そのままステップS307へ移行する。
その後、計測領域40及び参照領域41が持つ全ての画素が走査されるまで(ステップS307No)、硬化度算出部10eは、上記のステップS303〜ステップS306までの処理を繰返し実行する。
そして、計測領域40及び参照領域41が持つ全ての画素が走査された場合(ステップS307Yes)、硬化度算出部10eは、次のような処理を実行する。すなわち、硬化度算出部10eは、計測領域40及び参照領域41が持つ画素の総数Sに対する上記の画素数Sの割合Sを算出する(ステップS308)。
その上で、硬化度算出部10eは、ステップS308で算出された割合Sが所定の閾値Th2以上であるか否か、すなわち割合S≧閾値Th2であるか否かを判定する(ステップS309)。かかる閾値Th2は、樹脂20全体の硬化が終了したか否かを判定するのに用いるパラメータである。例えば、樹脂20が接着剤として用いられる場合には、基材21及び光学部品22が剥離する危険性が低いとみなすことができる程度の値が設定される。また、樹脂20がコーディング剤として用いられる場合には、少なくとも表面の硬化が終了しているとみなすことができる程度の値を設定するのが好ましい。
ここで、割合S≧閾値Th2である場合には(ステップS309Yes)、硬化度算出部103は、樹脂20の硬化が終了していると判定する(ステップS310)。一方、割合S<閾値Th2である場合には(ステップS309No)、硬化度算出部103は、樹脂20の硬化が未了であると判定する(ステップS311)。
このように、ステップS310またはステップS311の終了後に、図6に示したステップS109の処理へ移行する。
なお、図7に示したフローチャートでは、各画素の硬化度Hを走査順に算出する場合を例示したが、硬化度Hの算出は並行して実行することもできる。また、図7に示したフローチャートでは、硬化度Hを画素ごとに算出する場合を例示したが、計測領域全体の硬化度Hを算出し、その硬化度Hが閾値以上であるか否かによって樹脂20の硬化終了または未了を判定することもできる。この場合、フィルタa及びフィルタbの蛍光画像ごとに計測領域が持つ各画素の蛍光強度の代表値および参照領域が持つ各画素の蛍光強度の代表値を算出することとすればよい。
[効果の一側面]
上述してきたように、本実施例に係る硬化モニタリング装置1は、樹脂20の蛍光に関する特定波長間の比を求めるフィルタa及びフィルタbに加え、樹脂20の蛍光が観測されにくく、かつ基材21の蛍光が観測される波長に対応する光を透過させるフィルタcを蛍光画像の撮影に用いる。それ故、本実施例に係る硬化モニタリング装置1は、フィルタcを通して撮像された蛍光画像から基材21の蛍光に関する計測領域40及び参照領域41の強度比Tを算出し、かかる強度比を用いて、フィルタa及びフィルタbを通して撮像される蛍光画像で計測される参照領域41の蛍光強度をより正しい値に近付けた上で硬化度Hを算出できる。
したがって、本実施例に係る硬化モニタリング装置1によれば、例えば、樹脂20とともに、樹脂20が当接する基材21が光の照射を受けて蛍光を放射する場合、ひいては基材21による蛍光成分に照明ムラが発生する場合でも、樹脂の硬化度の算出精度が低下するのを抑制できる。
さて、これまで開示の装置に関する実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。そこで、以下では、本発明に含まれる他の実施例を説明する。
[フィルタ交換ステージ13の代替手段]
上記の実施例1では、フィルタa、フィルタb及びフィルタcを交換する機構を設けることによって3つの波長域の蛍光画像を撮像する場合を例示したが、カラーカメラ全面のフィルタを3つの波長域に合わせるように蛍光画像を撮像するようにしてもかまわない。
上記の実施例1では、3つの波長域の蛍光画像を取得するために、光学フィルタを用いる場合を例示したが、必ずしも光学系に光学フィルタを設けずともかまわない。この場合、例えば、3つの蛍光画像を得るために、2次元の空間情報とスペクトル情報とを取得できるハイパースペクトルカメラを用いることもできる。
[カメラ15の設置例]
上記の実施例1では、カメラが1台である場合を例示したが、複数台のカメラを設けることとしてもよい。例えば、カメラを観察波長域の数に合わせてもうけ、光路をその数だけビームスプリッタなどで分岐して、各波長域の蛍光画像をそれぞれのカメラで取得することとしてもかまわない。
[蛍光画像の枚数]
上記の実施例1では、3つの蛍光画像を取得する場合を例示したが、4つ以上の蛍光画像を取得することとしてもかまわない。この場合にも、樹脂20が硬化するにつれて蛍光画像から算出される硬化度Hが単調に増加する3つ以上の波長の組合せを中心波長に選定すればよい。
[分散および統合]
また、図示した各装置の各構成要素は、必ずしも物理的に図示の如く構成されておらずともよい。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。例えば、光源制御部10a、ステージ制御部10b、撮像制御部10c、画像取得部10d及び硬化度算出部10eのうち一部の処理部、例えば画像取得部10d及び硬化度算出部10eを硬化モニタリング装置1の外部装置としてネットワーク経由で接続するようにしてもよい。
1 硬化モニタリング装置
10 制御部
10a 光源制御部
10b ステージ制御部
10c 撮像制御部
10d 画像取得部
10e 硬化度算出部
11 ステージ
12 光源
13 フィルタ交換ステージ
14 結像レンズ
15 カメラ
20 樹脂
21 基材
22 光学部品

Claims (3)

  1. 樹脂及び前記樹脂に当接する基材を含む観察対象物に励起光を照射する光源と、
    前記観察対象物を撮像するカメラと、
    前記観察対象物及び前記カメラの光路上で、前記励起光の照射によって前記樹脂が発する蛍光の波長域に含まれる光であって互いに異なる波長帯の光を透過させる第1のフィルタ及び第2のフィルタと、
    前記観察対象物及び前記カメラの光路上で、前記樹脂が発する蛍光の波長域から外れ、かつ前記励起光の照射によって前記基材が発する波長域に含まれる波長帯の光を透過させる第3のフィルタと
    を有することを特徴とする硬化モニタリング装置。
  2. 前記第3のフィルタを通して前記カメラに撮像された画像のうち前記樹脂または前記樹脂の一部に設定される第1の領域で計測される蛍光強度と、前記画像のうち前記樹脂と当接せずに露出する領域または前記領域の一部に設定される第2の領域で計測される蛍光強度との強度比を用いて、前記第1のフィルタ及び前記第2のフィルタを通して前記カメラに撮像された画像ごとに第1の領域及び第2の領域で計測される蛍光強度から前記樹脂の硬化度を算出する硬化度算出部をさらに有することを特徴とする請求項1に記載の硬化モニタリング装置。
  3. コンピュータが、
    樹脂及び前記樹脂に当接する基材を含む観察対象物に励起光が照射されることによって発せられた蛍光が撮像された画像から、前記樹脂が発する蛍光の波長域に含まれる光であって互いに異なる第1の波長帯及び第2の波長帯の各々に対応する蛍光強度と、前記樹脂が発する蛍光の波長域から外れ、かつ前記基材が発する波長域に含まれる第3波長帯に対応する蛍光強度とを取得し、
    前記画像のうち前記樹脂または前記樹脂の一部に設定される第1の領域が持つ第3の波長帯の蛍光強度と、前記画像のうち前記樹脂と当接せずに露出する領域または前記領域の一部に設定される第2の領域が持つ第3の波長帯の蛍光強度との強度比を用いて、前記第1の領域が持つ第1の波長帯の蛍光強度及び第2の波長帯の蛍光強度と、前記第2の領域が持つ第1の波長帯の蛍光強度及び第2の波長帯の蛍光強度とから、前記樹脂の硬化度を算出する
    処理を実行することを特徴とする硬化モニタリング方法。
JP2014149126A 2014-07-22 2014-07-22 硬化モニタリング装置及び硬化モニタリング方法 Active JP6375752B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014149126A JP6375752B2 (ja) 2014-07-22 2014-07-22 硬化モニタリング装置及び硬化モニタリング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014149126A JP6375752B2 (ja) 2014-07-22 2014-07-22 硬化モニタリング装置及び硬化モニタリング方法

Publications (2)

Publication Number Publication Date
JP2016024095A true JP2016024095A (ja) 2016-02-08
JP6375752B2 JP6375752B2 (ja) 2018-08-22

Family

ID=55270956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014149126A Active JP6375752B2 (ja) 2014-07-22 2014-07-22 硬化モニタリング装置及び硬化モニタリング方法

Country Status (1)

Country Link
JP (1) JP6375752B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117434060A (zh) * 2023-12-20 2024-01-23 深圳市智能派科技有限公司 光固化3d打印用光敏树脂的测试系统、方法及控制设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955002A (en) * 1997-11-12 1999-09-21 Spectra Group Limited, Inc. Method for determining properties of a polymer coating or film cured by cationic polymerization
JP2000178522A (ja) * 1998-12-17 2000-06-27 Hitachi Chem Co Ltd 異方導電性接着剤における硬化度の評価方法及び接続構造体
JP2009075002A (ja) * 2007-09-21 2009-04-09 Sentekku:Kk 硬化状態測定装置
JP2011080974A (ja) * 2009-01-28 2011-04-21 Sumitomo Chemical Co Ltd 紫外線硬化樹脂の状態推定方法
JP2012068142A (ja) * 2010-09-24 2012-04-05 Nippon Sheet Glass Co Ltd 紫外線硬化樹脂の状態推定装置、状態推定方法およびプログラム
JP2013137199A (ja) * 2011-12-28 2013-07-11 Fujitsu Ltd 樹脂硬化状態モニタリング装置及び樹脂硬化状態モニタリング方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955002A (en) * 1997-11-12 1999-09-21 Spectra Group Limited, Inc. Method for determining properties of a polymer coating or film cured by cationic polymerization
JP2000178522A (ja) * 1998-12-17 2000-06-27 Hitachi Chem Co Ltd 異方導電性接着剤における硬化度の評価方法及び接続構造体
JP2009075002A (ja) * 2007-09-21 2009-04-09 Sentekku:Kk 硬化状態測定装置
JP2011080974A (ja) * 2009-01-28 2011-04-21 Sumitomo Chemical Co Ltd 紫外線硬化樹脂の状態推定方法
JP2012068142A (ja) * 2010-09-24 2012-04-05 Nippon Sheet Glass Co Ltd 紫外線硬化樹脂の状態推定装置、状態推定方法およびプログラム
JP2013137199A (ja) * 2011-12-28 2013-07-11 Fujitsu Ltd 樹脂硬化状態モニタリング装置及び樹脂硬化状態モニタリング方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117434060A (zh) * 2023-12-20 2024-01-23 深圳市智能派科技有限公司 光固化3d打印用光敏树脂的测试系统、方法及控制设备
CN117434060B (zh) * 2023-12-20 2024-04-09 深圳市智能派科技有限公司 光固化3d打印用光敏树脂的测试系统、方法及控制设备

Also Published As

Publication number Publication date
JP6375752B2 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6881622B2 (ja) 3次元形状の測定方法
KR102175027B1 (ko) 오버레이 계측의 콘트라스트 증강을 위한 구조화 조명
KR102427381B1 (ko) 부품의 실장 상태를 검사하기 위한 방법, 인쇄 회로 기판 검사 장치 및 컴퓨터 판독 가능한 기록매체
JP6322939B2 (ja) 撮像システム及び色検査システム
JP2010276607A (ja) 3次元形状測定装置および測定方法
WO2016166807A1 (ja) 外観検査装置および外観検査方法
JP5830229B2 (ja) ウエハ欠陥検査装置
JP2018084431A (ja) 検査装置及び検査方法
US10489902B2 (en) Inspection apparatus, semiconductor device manufacturing system including the same, and method of manufacturing a semiconductor device using the same
JP6375752B2 (ja) 硬化モニタリング装置及び硬化モニタリング方法
US9410899B2 (en) Illumination apparatus and pattern inspection apparatus
JP2010286339A (ja) 光源の指向性検査方法およびその装置
JP2011247656A (ja) 蛍光検出装置および蛍光顕微鏡
JP2020161778A (ja) 検査装置及び検査方法
WO2020039575A1 (ja) 三次元計測装置、三次元計測方法
US20180301385A1 (en) Target Location in Semiconductor Manufacturing
JP6961846B1 (ja) Euvマスク検査装置、euvマスク検査方法、euvマスク検査プログラム及びeuvマスク検査システム
JP6524680B2 (ja) 撮像システム、距離情報の取得方法及び距離情報の生産方法
WO2021053852A1 (ja) 外観検査装置、外観検査装置の較正方法及びプログラム
JP6939501B2 (ja) 画像処理システム、画像処理プログラム、および画像処理方法
KR101132792B1 (ko) 기판 검사방법
US20170124683A1 (en) Super-resolution processing method, super-resolution processing apparatus, and super-resolution processing system
JP6459431B2 (ja) 光学式検査方法
JP3803677B2 (ja) 欠陥分類装置及び欠陥分類方法
WO2012073981A1 (ja) 外観検査装置及び印刷半田検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180709

R150 Certificate of patent or registration of utility model

Ref document number: 6375752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150