JP2016024069A - アンカーボルトの非破壊検査方法および非破壊検査装置 - Google Patents

アンカーボルトの非破壊検査方法および非破壊検査装置 Download PDF

Info

Publication number
JP2016024069A
JP2016024069A JP2014148607A JP2014148607A JP2016024069A JP 2016024069 A JP2016024069 A JP 2016024069A JP 2014148607 A JP2014148607 A JP 2014148607A JP 2014148607 A JP2014148607 A JP 2014148607A JP 2016024069 A JP2016024069 A JP 2016024069A
Authority
JP
Japan
Prior art keywords
anchor bolt
signal waveform
frequency information
foundation
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014148607A
Other languages
English (en)
Other versions
JP6308902B2 (ja
Inventor
淳二 江藤
Junji Eto
淳二 江藤
嵩 松永
Takashi Matsunaga
嵩 松永
小川 良太
Ryota Ogawa
良太 小川
仁博 礒部
Hitohiro Isobe
仁博 礒部
充行 匂坂
Mitsuyuki Kosaka
充行 匂坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2014148607A priority Critical patent/JP6308902B2/ja
Priority to EP15824976.3A priority patent/EP3173780A4/en
Priority to US15/327,238 priority patent/US10215733B2/en
Priority to PCT/JP2015/052913 priority patent/WO2016013236A1/ja
Publication of JP2016024069A publication Critical patent/JP2016024069A/ja
Application granted granted Critical
Publication of JP6308902B2 publication Critical patent/JP6308902B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/101Number of transducers one transducer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2691Bolts, screws, heads

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】金属系アンカーによって基礎に固定されたアンカーボルトの健全性を定量的に検査することができるアンカーボルトの非破壊検査方法および非破壊検査装置を提供する。【解決手段】金属系アンカーによって基礎に固定されたアンカーボルトの健全性を検査するアンカーボルトの非破壊検査方法であって、アンカーボルトの基礎の表面から露出した部分を打撃することにより打音を発生させ、打音の信号波形を受信して周波数解析することにより信号波形の周波数情報を得て、信号波形の周波数情報に基づいてアンカーボルトの健全性を非破壊で定量的に検査するアンカーボルトの非破壊検査方法および非破壊検査装置。【選択図】図1

Description

本発明は、金属系アンカーによって基礎に固定されたアンカーボルトの健全性を検査するアンカーボルトの非破壊検査方法および非破壊検査装置に関する。
従来より、コンクリート構造物などの基礎に装置機器類を据え付け、固定するに際して、打ち込み方式や締付け方式など拡張部を有する金属系アンカーを使用することが行われている。具体的には、拡張部を有するアンカーボルトを基礎に設けられた穴に挿入した後、拡張部を拡張させることにより、アンカーボルトを基礎に機械的に固定させる。
このような施工方法で固定されたアンカーボルトには、施工不良や経年劣化が発生することがあり、これを放置すると構造物の安全性に問題が生じる恐れがある。
なお、施工不良としては、ボルトの緩み、ボルトの変形(曲がり等)、締付不足(打込み不足)、コンクリートの強度不足、コンクリートのひび割れなどがあり、また経年劣化としては、ボルトの変形(曲がり等)、ボルトのき裂、ボルトの破断、ボルトの腐食減肉、ナットの緩み、コンクリート強度の劣化、コンクリートのひび割れなどがある。
そこで、構造物の安全性を確保する観点より、コンクリート構造物に埋設されて目視観測することができない部分における金属系アンカーの健全性、即ち施工不良や経年劣化の有無について、非破壊で把握することが求められ、例えば、下記の方法が採用されている。
打音検査法は、コンクリートの表面から露出しているアンカーボルトの頭部をハンマーで打撃し、その時にハンマーが発する打音とハンマーを通した打感との二つから、検査者が異常の有無を判定する手法である。
超音波検査法は、露出しているアンカーボルトの頭部に超音波センサを設置し、アンカーボルトに加えられた超音波に基づくアンカーボルトからの反射信号に基づいて、アンカーボルトの腐食や傷などの欠陥を判定する手法であり、非破壊検査方法として一般的に広く採用されている(例えば特許文献1)。
また、露出しているアンカーボルトの頭部に加速度計を設置し、ハンマーの打撃によって発生した弾性波の反射波を加速度計で受信し、反射波の強さや時間遅れに基づいてアンカーボルトの破損や周囲のコンクリートの破断などを検査する手法も提案されている(例えば特許文献2)。
特開2004−77234号公報 特開2010−203810号公報
近年、アンカーボルトの健全性について、非破壊で定量的に精度高く把握することが求められている。しかしながら、これらの方法は定量的に把握する点において、未だ十分とは言えなかった。
即ち、打音検査法の定量性は検査者の熟練度に大きく依存しているため、検査結果に対する信頼性が充分とは言えず、アンカーボルトの健全性の定量的な検査を精密に行うことが困難であった。また、検査環境(騒音環境やアンカーボルトの設置状況など)によっては検査自体が困難となる恐れもあった。
また、超音波検査法は、検査者の熟練度に依存することなく、アンカーボルト自体の健全性を検査することはできるものの、施工不良や経年劣化などを定量的に把握することは困難であった。
また、特許文献2に記載の非破壊検査法は、アンカーボルトの頭部から超音波などの弾性波を発振させ、この弾性波の反射波の強さと時間遅れに基づいてアンカーボルトあるいはコンクリートの健全性を検査する方法であり、アンカーボルトの表面粗さやねじ切りなどの複雑な構造を有している場合には、弾性波の反射波の強さや時間遅れなどを精度良く測定することが困難であるため、同様の問題を有していた。
そこで、本発明は、金属系アンカーによって基礎に固定されたアンカーボルトの健全性を非破壊で定量的に検査することができるアンカーボルトの非破壊検査方法および非破壊検査装置を提供することを課題とする。
請求項1に記載の発明は、
金属系アンカーによって基礎に固定されたアンカーボルトの健全性を検査するアンカーボルトの非破壊検査方法であって、
前記アンカーボルトの前記基礎の表面から露出した部分を打撃することにより打音を発生させ、前記打音の信号波形を受信して周波数解析することにより前記信号波形の周波数情報を得て、前記信号波形の周波数情報に基づいて前記アンカーボルトの健全性を非破壊で定量的に検査することを特徴とするアンカーボルトの非破壊検査方法である。
請求項2に記載の発明は、
前記アンカーボルトの前記基礎の表面から露出した部分を打撃することにより打音を発生させ、前記打音の信号波形を周波数解析する前に前記打音の信号波形を増幅し、増幅した打音の信号波形を高速フーリエ変換することにより周波数解析して、前記信号波形の周波数情報を得ることを特徴とする請求項1に記載のアンカーボルトの非破壊検査方法である。
請求項3に記載の発明は、
前記信号波形の周波数情報と、健全性が予め確認されているアンカーボルトにおける信号波形の周波数情報が備えられたデータベースとを照合することにより、前記アンカーボルトの健全性を定量的に検査することを特徴とする請求項1または請求項2に記載のアンカーボルトの非破壊検査方法である。
請求項4に記載の発明は、
前記データベースが、前記信号波形の周波数情報と前記アンカーボルトの引抜き強度との関係として構築されていることを特徴とする請求項3に記載のアンカーボルトの非破壊検査方法である。
請求項5に記載の発明は、
金属系アンカーによって基礎に固定されたアンカーボルトの健全性を検査するアンカーボルトの非破壊検査装置であって、
前記アンカーボルトの前記基礎の表面から露出した部分を打撃することにより打音を発生させる打音発生手段と、
発生した打音を受信するセンサと、
前記センサによって受信された打音から信号波形を取得し、前記信号波形を周波数解析することにより前記信号波形の周波数情報を得る信号処理装置と、
得られた前記信号波形の周波数情報に基づいて前記アンカーボルトの健全性を非破壊で定量的に検査する検査処理装置と
を備えていることを特徴とするアンカーボルトの非破壊検査装置である。
請求項6に記載の発明は、
前記検査処理装置が、前記信号波形の周波数情報と前記アンカーボルトの引抜き強度との関係をデータベースとして予め備えており、前記データベースと前記信号処理装置で得られた前記信号波形の周波数情報とを照合することにより前記アンカーボルトの健全性を評価するように構成されていることを特徴とする請求項5に記載のアンカーボルトの非破壊検査装置である。
本発明によれば、金属系アンカーによって基礎に固定されたアンカーボルトの健全性を非破壊で定量的に検査することができるアンカーボルトの非破壊検査方法および非破壊検査装置を提供することができる。
本発明の一実施の形態に係るアンカーボルトの非破壊検査装置を示す概略構成図である。 センサによって受信される打音の信号波形の一例を示すグラフである。 信号処理装置の周波数解析によって得られる信号波形の周波数情報の一例を示すグラフである。 検査対象のアンカーボルトについての締付トルクと周波数情報との関係を示すグラフである。 検査対象のアンカーボルトについての信号波形の周波数情報と引抜き強度との関係を示すグラフである。
以下、図面を参照しつつ本発明の一実施の形態に係るアンカーボルトの非破壊検査方法および非破壊検査装置について説明する。
1.非破壊検査装置
図1は、本実施の形態に係るアンカーボルトの非破壊検査装置を示す概略構成図であり、打撃用ハンマー2と、センサ3と、信号処理装置4とを備えている。なお、アンカーボルト5は、図1に示すように、コンクリート構造物の基礎10に設けられた穴11に挿入されて、その拡張部が拡張されることにより基礎10に固定されている。
具体的には、アンカーボルト5は、スタッド51と、スリーブ(拡張部)52とを備えている。スタッド51は、雄ねじ部53と、スリーブ52を放射状に拡張するためのウェッジ54とを有する。そして、アンカーボルト5は基礎10の穴11に挿入され、ナット55を基礎10から突き出るスタッド51の雄ねじ部53にねじ込んで、ナット55を回転させることにより、スタッド51およびウェッジ54を引き上げる。このとき、ウェッジ54によりスリーブ(拡張部)52が放射状に拡張されて、スリーブ52が穴11の壁面に食い込んで基礎10に固定される。すなわち、ウェッジ54の移動に伴ってスリーブ52が拡張して基礎10に固定される。なお、符号「56」はワッシャである。
(1)打撃用ハンマー
打撃用ハンマー2は、基礎10の表面から露出したアンカーボルト5の頭部5aの例えばナット55を打撃することによって、アンカーボルト5の内部に打音を発生させる打音発生手段である。打撃用ハンマー2としては、特に限定されず、一般に市販されているものを使用することができる。
(2)センサ
センサ3は、アンカーボルト5の頭部5aの上面に、アンカーボルト5と接して設置されており、打撃用ハンマー2の打撃によって発生した打音の信号波形を受信する。そして、センサ3に受信された打音は、その後、信号処理装置4に送信される。センサ3としては、主として超音波領域(数10kHz〜数MHz)の高い周波数成分を受信する圧電素子センサであるAEセンサが用いられるが、これに限定されず、一般の音波センサを用いてもよい。
(3)信号処理装置
信号処理装置4は、センサ3によって受信された打音の信号波形を取得し、信号波形を周波数解析して、信号波形の周波数情報を得るために設置されており、センサ3から送信された打音の信号波形を増幅する信号増幅器(アンプ)と、増幅された打音の信号波形の周波数解析を行う解析用パーソナルコンピュータとを備えている。
解析用パーソナルコンピュータは、打音の信号波形を解析するための信号処理ソフトウェアを備えており、センサ3によって受信された打音の信号波形に、FFT(高速フーリエ変換)などの周波数解析を実施することにより、信号波形の周波数情報を得ることができる。
また、解析用パーソナルコンピュータの記憶部(図示省略)には、健全性が予め確認されているアンカーボルトにおける信号波形の周波数情報がモックアップ試験などを用いて予め取得されて、データベースとして格納されている。
なお、上記においては、締付け方式の金属系アンカーの内からウェッジ式アンカーを例に挙げて説明を行ったが、打ち込み方式の金属系アンカーも拡張部により固定される点では締付け方式の金属系アンカーと同様であるため、上記を同様に適用することができる。
2.非破壊検査方法
次に、上記の非破壊検査装置1を用いて、金属系アンカーによって基礎に固定されたアンカーボルトの健全性を非破壊で定量的に把握する非破壊検査方法を説明する。
最初に、基礎10の表面から頭部5aが露出した状態で埋設されたアンカーボルト5の頭部5aを打撃用ハンマー2で打撃することにより、アンカーボルト5の内部に打音を発生させる。
発生した打音はセンサ3により受信された後、信号処理装置4に送られて、打音の信号波形が取得される。取得された打音の信号波形の一例を図2に示す。図2に示すように、打音の信号波形は打撃用ハンマー2の打撃によって発生し、時間の経過に伴って徐々に減衰していく。
前記打音の信号波形は、その後、信号処理装置4の信号増幅器において増幅される。増幅された打音の信号波形は、その後、信号処理装置4の解析用パーソナルコンピュータに備えられた信号処理ソフトウェアを用いてFFT変換されて周波数解析されることにより、信号波形の周波数情報が得られる。得られた信号波形の周波数情報の一例を図3に示す。
図3に示すように、特定の周波数でピークが生じているため、ピークが出現する周波数やそのピーク高さを知ることにより、アンカーボルトの施工不良や経年劣化の有無、即ち、アンカーボルトの健全性を定量的に把握して検査することができることが分かる。
このとき、本実施の形態のように、予め格納されたデータベースと得られた周波数情報とを照合することができれば、より短時間で、かつ精度高くアンカーボルトの健全性を定量的に検査することができるため好ましい。
即ち、信号波形の周波数情報とアンカーボルトの健全性を示す指標となる物性との関係をデータベースとして予め格納しておけば、信号処理装置4で今回得られた信号波形の周波数情報をそのデータベースと照合することにより、アンカーボルトの健全性を評価できる。このような指標となる物性としては引抜き強度が特に好ましく、信号波形の周波数情報とアンカーボルトの引抜き強度との関係をデータベース化しておけば、アンカーボルトの引抜き強度に基づいてアンカーボルトの健全性を容易に評価できる。
3.実施の形態の効果
本実施の形態によれば、打音の信号波形を周波数解析することにより取得した信号波形の周波数情報に基づいて、金属系アンカーによって基礎に固定されたアンカーボルトの直接に目視観測できない部分の健全性を非破壊で定量的に検査することができる。
即ち、本実施の形態に係る非破壊検査装置は、金属系アンカーの健全性を非破壊で定量的に検査することを目的としている。金属系アンカーは、アンカーボルトの拡張部が基礎のコンクリートと密接しており、適切に周波数解析ができる打音の信号波形が得られると共に、アンカーボルトの施工不良や経年劣化により、打音の信号波形から得られた周波数情報が変化するため、本実施の形態に係る非破壊検査装置を用いることによって、その健全性を非破壊で定量的に検査することができる。
また、本実施の形態に係る非破壊検査装置で指標としている周波数情報は、アンカーボルトやコンクリートなどの構造物の固有振動数に由来する打音によって取得されるものであり、データベースと比較することにより複雑な構造であっても健全性を容易に検査できる。
そして、周波数情報のピーク周波数の強さは、アンカーボルトの表面粗さなどに依存するが、ピーク周波数及びピーク周波数の強度比は表面粗さなどに依存し難いため、弾性波の反射波などと異なり、測定対象の表面粗さなどに依存しないため、健全性を精度良く検査することができる。
また、一般的に、コンクリート構造物などの基礎に装置機器類を固定する場合、ナットやベースプレートなどを介してアンカーボルトと接続させることが多いが、本実施の形態によれば、これらのナットやベースプレートなどを取り外すことなく、非破壊でアンカーボルトの健全性を検査することができる。
(実施例1)
1.実施例1のサンプル作製
最初に、ひび割れがないコンクリートに所定の大きさの穴を設けて、M16鉄製アンカーボルトを挿入して固定した正常サンプルと、ひび割れがある(ひび割れ幅:約3mm)コンクリートに所定の大きさの穴を設けて、M16鉄製のアンカーボルトを挿入して固定した不良サンプルとを作製した。
2.評価方法
そして、正常サンプルおよび不良サンプル別に、アンカーボルトのナットの締付トルク量を、表1に示すように「0」N・mから「100」N・mまで5段階で調節し、前記非破壊検査方法を用いて、締付トルクに対応する周波数情報を取得した。結果を図4に示す。
なお、図4において、横軸は実測された締付トルクであり、縦軸はその締付けトルクに対応する周波数である。但し、締付トルクが50N・m以上の不良サンプルではコンクリートの破壊を招いたため、図4には締付トルクが50N・m以上の不良サンプルについての結果は記載していない。
Figure 2016024069
3.検査結果
図4より、コンクリートにひび割れがない正常サンプルでは、締付トルクが増加するに従って、周波数情報が高周波数側へシフトする傾向が認められる。
一方、コンクリートにひび割れがある不良サンプルでは、ひび割れがない場合と同様に、締付トルクが増加するに従って、周波数情報が高周波数側へシフトする傾向が認められるが、ひび割れがない場合と比較して、周波数情報が低周波数となる。
(実施例2)
次に、施工不良や経年劣化によりアンカーボルトの引抜き強度が低下する点に着目し、周波数情報と引抜き強度との相関関係を求めて、この相関関係に基づくアンカーボルトの健全性の検査の可能性について実験を行った。
1.実施例2のサンプル作製
コンクリートに所定の大きさの穴を設けて、M16鉄製アンカーボルトを挿入して固定することにより、複数のサンプルを作製した。
2.評価方法
それぞれのサンプルについて、引抜強度を測定すると共に、上記の非破壊検査方法を用いて、周波数情報を取得した。結果を図5に示す。
3.検査結果
図5より、アンカーボルトの引抜き強度が増加するに従って、周波数情報がほぼ直線的に高周波数側へシフトする傾向が認められることが分かる。従って、この関係を予めデータベース化しておけば、信号処理装置で今回得られた信号波形の周波数情報を予め得られたデータベースと照合することにより、アンカーボルトの引抜き強度を容易に知って、健全性を評価できることが分かる。
実施例1および実施例2の結果より、上記の非破壊検査装置および非破壊検査方法を用いて周波数情報を取得することにより、金属系アンカーによって基礎に固定されたアンカーボルトの健全性が、非破壊で定量的に検査できることが分かる。
以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることができる。
1 非破壊検査装置
2 打撃用ハンマー
3 センサ
4 信号処理装置
5 アンカーボルト
5a 頭部
10 基礎
11 穴
51 スタッド
52 スリーブ
53 雄ねじ部
54 ウェッジ
55 ナット
56 ワッシャ

Claims (6)

  1. 金属系アンカーによって基礎に固定されたアンカーボルトの健全性を検査するアンカーボルトの非破壊検査方法であって、
    前記アンカーボルトの前記基礎の表面から露出した部分を打撃することにより打音を発生させ、前記打音の信号波形を受信して周波数解析することにより前記信号波形の周波数情報を得て、前記信号波形の周波数情報に基づいて前記アンカーボルトの健全性を非破壊で定量的に検査することを特徴とするアンカーボルトの非破壊検査方法。
  2. 前記アンカーボルトの前記基礎の表面から露出した部分を打撃することにより打音を発生させ、前記打音の信号波形を周波数解析する前に前記打音の信号波形を増幅し、増幅した打音の信号波形を高速フーリエ変換することにより周波数解析して、前記信号波形の周波数情報を得ることを特徴とする請求項1に記載のアンカーボルトの非破壊検査方法。
  3. 前記信号波形の周波数情報と、健全性が予め確認されているアンカーボルトにおける信号波形の周波数情報が備えられたデータベースとを照合することにより、前記アンカーボルトの健全性を定量的に検査することを特徴とする請求項1または請求項2に記載のアンカーボルトの非破壊検査方法。
  4. 前記データベースが、前記信号波形の周波数情報と前記アンカーボルトの引抜き強度との関係として構築されていることを特徴とする請求項3に記載のアンカーボルトの非破壊検査方法。
  5. 金属系アンカーによって基礎に固定されたアンカーボルトの健全性を検査するアンカーボルトの非破壊検査装置であって、
    前記アンカーボルトの前記基礎の表面から露出した部分を打撃することにより打音を発生させる打音発生手段と、
    発生した打音を受信するセンサと、
    前記センサによって受信された打音から信号波形を取得し、前記信号波形を周波数解析することにより前記信号波形の周波数情報を得る信号処理装置と、
    得られた前記信号波形の周波数情報に基づいて前記アンカーボルトの健全性を非破壊で定量的に検査する検査処理装置と
    を備えていることを特徴とするアンカーボルトの非破壊検査装置。
  6. 前記検査処理装置が、前記信号波形の周波数情報と前記アンカーボルトの引抜き強度との関係をデータベースとして予め備えており、前記データベースと前記信号処理装置で得られた前記信号波形の周波数情報とを照合することにより前記アンカーボルトの健全性を評価するように構成されていることを特徴とする請求項5に記載のアンカーボルトの非破壊検査装置。
JP2014148607A 2014-07-22 2014-07-22 アンカーボルトの非破壊検査方法および非破壊検査装置 Active JP6308902B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014148607A JP6308902B2 (ja) 2014-07-22 2014-07-22 アンカーボルトの非破壊検査方法および非破壊検査装置
EP15824976.3A EP3173780A4 (en) 2014-07-22 2015-02-03 Nondestructive inspection method and nondestructive inspection device for anchor bolt
US15/327,238 US10215733B2 (en) 2014-07-22 2015-02-03 Non-destructive testing method and a non-destructive testing device for an anchor bolt
PCT/JP2015/052913 WO2016013236A1 (ja) 2014-07-22 2015-02-03 アンカーボルトの非破壊検査方法および非破壊検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014148607A JP6308902B2 (ja) 2014-07-22 2014-07-22 アンカーボルトの非破壊検査方法および非破壊検査装置

Publications (2)

Publication Number Publication Date
JP2016024069A true JP2016024069A (ja) 2016-02-08
JP6308902B2 JP6308902B2 (ja) 2018-04-11

Family

ID=55162775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014148607A Active JP6308902B2 (ja) 2014-07-22 2014-07-22 アンカーボルトの非破壊検査方法および非破壊検査装置

Country Status (4)

Country Link
US (1) US10215733B2 (ja)
EP (1) EP3173780A4 (ja)
JP (1) JP6308902B2 (ja)
WO (1) WO2016013236A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036131A (ja) * 2016-08-31 2018-03-08 株式会社日産アーク 構造複合体の状態推定方法及びシステム
JP2019056683A (ja) * 2017-03-27 2019-04-11 株式会社アミック コンクリート構造物の診断方法及びその診断装置
JP7370841B2 (ja) 2019-12-12 2023-10-30 三菱重工業株式会社 劣化判定装置、劣化判定装置が行う劣化判定方法及びプログラム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10186253B2 (en) * 2015-10-05 2019-01-22 Olympus Corporation Control device for recording system, and recording system
EP3290721A1 (de) * 2016-08-30 2018-03-07 HILTI Aktiengesellschaft Abstandssensor an ankerspitze
DE102017106485A1 (de) * 2017-03-27 2018-09-27 Fischerwerke Gmbh & Co. Kg Anordnung eines Ankers in einem Ankerloch und Befestigungssystem
CN107843652A (zh) * 2017-11-10 2018-03-27 武汉市工程科学技术研究院 便携式锚杆锚固质量检测仪及检测方法
EP3762714A2 (en) * 2018-03-06 2021-01-13 Metis Design Corporation Damage detection system and method for detecting damage in fastened structures
WO2019212822A1 (en) * 2018-04-30 2019-11-07 University Of Houston System Monitoring bolt tightness using percussion and machine learning
DE102018212558A1 (de) * 2018-07-27 2020-01-30 Robert Bosch Gmbh Ankervorrichtung
US11940418B2 (en) * 2018-10-18 2024-03-26 University Of Houston System Portable system for PZT-based inspection of bolted connections
CN111965254A (zh) * 2019-11-05 2020-11-20 中国葛洲坝集团第二工程有限公司 长外露锚杆无损检测方法
JP7466991B2 (ja) 2020-04-17 2024-04-15 株式会社ケー・エフ・シー 打撃検査対応アンカー及びその検査方法
CN113504162A (zh) * 2021-07-22 2021-10-15 西安热工研究院有限公司 一种通过音频快速筛选粗晶粒螺栓的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062229A (en) * 1977-02-22 1977-12-13 General Electric Company Method of testing the integrity of installed rock bolts
US4198865A (en) * 1978-07-24 1980-04-22 Energy & Minerals Research Co. Apparatus and method of monitoring anchored bolts
JP2000088817A (ja) * 1998-09-17 2000-03-31 Mitsubishi Electric Corp 打撃判定装置
JP2000131293A (ja) * 1998-10-23 2000-05-12 Mitsubishi Electric Corp トンネルスタッドの固定状態判定装置
JP2004325224A (ja) * 2003-04-24 2004-11-18 Japan Industrial Testing Corp アンカーボルトの腐食減肉の診断方法およびそれに用いる装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897199A (ja) * 1981-12-07 1983-06-09 Toshiba Corp メモリ制御装置
US5798881A (en) * 1995-11-14 1998-08-25 Mazurek; Niel Dual state mirror assembly
JP3770668B2 (ja) * 1996-09-17 2006-04-26 佐藤工業株式会社 構造物の内部欠陥の検知方法
JP3560830B2 (ja) * 1998-10-23 2004-09-02 東芝三菱電機産業システム株式会社 ボルトの緩み判定装置
JP2004037287A (ja) * 2002-07-04 2004-02-05 Mitsubishi Heavy Ind Ltd 打撃検査装置
CN100403002C (zh) * 2002-07-25 2008-07-16 中村敬德 螺钉轴力测定器
JP3616620B2 (ja) 2002-08-14 2005-02-02 株式会社ニチゾウテック アンカーボルト腐食診断方法及びその装置
US8807877B1 (en) * 2008-09-19 2014-08-19 Rhino Technologies Llc Tensionable spiral bolt with resin nut and related methods
JP2010203810A (ja) * 2009-02-27 2010-09-16 Shimizu Corp コンクリート構造物の非破壊検査方法および装置ならびにアンカーボルト
US8671761B2 (en) * 2009-12-14 2014-03-18 New Mexico Technical Research Foundation Method of assessing bolted joint integrity
JP6128432B2 (ja) * 2013-04-09 2017-05-17 三井造船株式会社 アンカーの健全性検査装置およびアンカーの健全性検査方法
JP6190781B2 (ja) * 2013-08-30 2017-08-30 原子燃料工業株式会社 アンカーボルトの状態評価方法
JP5897199B1 (ja) * 2015-11-02 2016-03-30 中日本ハイウェイ・エンジニアリング東京株式会社 アンカーボルト健全度評価判定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062229A (en) * 1977-02-22 1977-12-13 General Electric Company Method of testing the integrity of installed rock bolts
US4198865A (en) * 1978-07-24 1980-04-22 Energy & Minerals Research Co. Apparatus and method of monitoring anchored bolts
JP2000088817A (ja) * 1998-09-17 2000-03-31 Mitsubishi Electric Corp 打撃判定装置
JP2000131293A (ja) * 1998-10-23 2000-05-12 Mitsubishi Electric Corp トンネルスタッドの固定状態判定装置
JP2004325224A (ja) * 2003-04-24 2004-11-18 Japan Industrial Testing Corp アンカーボルトの腐食減肉の診断方法およびそれに用いる装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
江藤淳二 他: "打音法によるケミカルアンカの健全性評価手法の開発(1)実験的検討", 日本原子力学会春の年会予稿集(CD-ROM), vol. 2014, JPN6015014952, 10 March 2014 (2014-03-10), JP, pages 43, ISSN: 0003742631 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036131A (ja) * 2016-08-31 2018-03-08 株式会社日産アーク 構造複合体の状態推定方法及びシステム
JP2019056683A (ja) * 2017-03-27 2019-04-11 株式会社アミック コンクリート構造物の診断方法及びその診断装置
JP7037776B2 (ja) 2017-03-27 2022-03-17 株式会社アミック コンクリート構造物の診断方法及びその診断装置
JP2022060449A (ja) * 2017-03-27 2022-04-14 株式会社アミック コンクリート構造物の診断方法及びその診断装置
JP7235265B2 (ja) 2017-03-27 2023-03-08 株式会社アミック コンクリート構造物の診断方法及びその診断装置
JP7370841B2 (ja) 2019-12-12 2023-10-30 三菱重工業株式会社 劣化判定装置、劣化判定装置が行う劣化判定方法及びプログラム

Also Published As

Publication number Publication date
EP3173780A1 (en) 2017-05-31
EP3173780A4 (en) 2018-04-11
WO2016013236A1 (ja) 2016-01-28
JP6308902B2 (ja) 2018-04-11
US20170160238A1 (en) 2017-06-08
US10215733B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
JP6308902B2 (ja) アンカーボルトの非破壊検査方法および非破壊検査装置
JP6084952B2 (ja) アンカーボルトの非破壊検査方法および非破壊検査装置
JP6190781B2 (ja) アンカーボルトの状態評価方法
US11187681B2 (en) Method for evaluating state of member
JP6433700B2 (ja) あと施工アンカーの固定度評価方法
JP2005148064A (ja) 圧力テスト中またはテスト後の圧力容器の変化または損傷の検出装置と検出方法
JP5897199B1 (ja) アンカーボルト健全度評価判定方法
JP6128432B2 (ja) アンカーの健全性検査装置およびアンカーの健全性検査方法
JP5414559B2 (ja) 超音波検査方法
JP7348830B2 (ja) アンカーの検査方法
JP2013253947A (ja) コンクリート構造物の検査方法及びコンクリート構造物の検査装置
JP7236945B2 (ja) グラウンドアンカーの緊張力評価方法および緊張力評価システム
JP2007051991A (ja) 金属パイプの肉厚を計測する方法およびシステム
Cobb et al. Ultrasonic structural health monitoring: a probability of detection case study
JP6813369B2 (ja) 部材の健全性診断方法
JP6893161B2 (ja) トンネル内重量物の取付治具の非破壊診断方法
JP2021152284A (ja) アンカーボルトの点検方法
Mohd Acoustic emission for fatigue crack monitoring in nuclear piping system
JP2010261922A (ja) 木材の強度推定方法
Duffour et al. Comparative Sensitivity Study of Vibro‐Acoustic Modulation and Damping as NDT Techniques
US20050145014A1 (en) Method and device for detecting changes or damages to pressure vessels while or after undergoing a hydraulic pressure test
Bayer et al. Ultrasonic evaluation of fatigue damage
BĘHAL INSPECTION RELIABILITY IN THE MEAN OF SIGNAL AMPLITUDE INTERPRETATION
JP2016053544A (ja) 弾性波入力装置及び該弾性波入力装置を使用したコンクリート構造物の欠陥探査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180313

R150 Certificate of patent or registration of utility model

Ref document number: 6308902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250