JP2016018110A - 光源装置、およびプロジェクター - Google Patents

光源装置、およびプロジェクター Download PDF

Info

Publication number
JP2016018110A
JP2016018110A JP2014141478A JP2014141478A JP2016018110A JP 2016018110 A JP2016018110 A JP 2016018110A JP 2014141478 A JP2014141478 A JP 2014141478A JP 2014141478 A JP2014141478 A JP 2014141478A JP 2016018110 A JP2016018110 A JP 2016018110A
Authority
JP
Japan
Prior art keywords
phosphor layer
light
recess
light source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014141478A
Other languages
English (en)
Inventor
江川 明
Akira Egawa
明 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014141478A priority Critical patent/JP2016018110A/ja
Publication of JP2016018110A publication Critical patent/JP2016018110A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】蛍光体層の温度上昇を抑制できる光源装置を提供する。
【解決手段】本発明の光源装置の一つの態様は、励起光を射出する発光素子と、第1の面を有する基板と、基板の第1の面に設けられた蛍光体層と、を備え、蛍光体層は、励起光が入射する領域に第1の凹部を有し、励起光の光強度の中心は、第1の凹部と重なっていることを特徴とする。
【選択図】図3

Description

本発明は、光源装置、およびプロジェクターに関する。
例えば、特許文献1に記載されているように、蛍光体の温度上昇を抑制することを目的として、回転するホイールに蛍光体を含有する蛍光体層が設けられた光源装置が提案されている。
特開2010−86815号公報
ところで、近年、表示画像の高輝度化の要求の高まりにより、光源装置のさらなる高出力化が望まれている。蛍光体は温度が上昇すると変換効率が低下するため、高出力の蛍光を射出するためには、蛍光体の温度上昇を十分に抑制する必要がある。しかし、上記のような光源装置では、蛍光体の温度上昇の抑制が十分でないという問題があった。
本発明の一つの態様は、上記問題点に鑑みて成されたものであって、蛍光体層の温度上昇を抑制できる光源装置、および、そのような光源装置を備えるプロジェクターを提供することを目的の一つとする。
本発明の光源装置の一つの態様は、励起光を射出する発光素子と、第1の面を有する基板と、前記基板の前記第1の面に設けられた蛍光体層と、を備え、前記蛍光体層は、前記励起光が入射する領域に第1の凹部を有し、前記励起光の光強度の中心は、前記第1の凹部と重なっていることを特徴とする。
本発明の光源装置の一つの態様によれば、蛍光体層に第1の凹部が設けられ、励起光の光強度の中心が第1の凹部と重なる。そのため、励起光の光強度の中心部が照射される位置、すなわち、最も温度が上昇しやすい位置において、蛍光体層の厚さが小さくなり、蛍光体層の熱抵抗が小さくなる。したがって、本発明の光源装置の一つの態様によれば、蛍光体層の熱が放熱されやすくなり、蛍光体層の温度上昇を抑制できる。
前記基板には、前記第1の凹部を画定する凸部が設けられている構成としてもよい。
この構成によれば、蛍光体層の基板側の面に凹部を形成できる。
前記凸部は、前記第1の面に対して傾斜する傾斜面を有する構成としてもよい。
この構成によれば、凸部の傾斜面に入射した励起光が反射、あるいは、屈折され、偏向される。これにより、蛍光体層中における励起光の進む距離を大きくでき、蛍光体層における励起光の変換効率を向上できる。
前記凸部は、前記励起光を透過し、前記凸部の屈折率は、前記蛍光体層の屈折率とは異なる構成としてもよい。
この構成によれば、凸部と蛍光体層との界面において、励起光が屈折されるため、蛍光体層中における励起光の進む距離を大きくでき、蛍光体層における励起光の変換効率を向上できる。
前記凸部の熱伝導率は、前記蛍光体層の熱伝導率より大きい構成としてもよい。
この構成によれば、蛍光体層の温度上昇をより抑制できる。
前記第1の凹部は、前記蛍光体層の表面に設けられている構成としてもよい。
この構成によれば、蛍光体層の温度上昇を抑制できる。
前記基板の熱伝導率は、前記蛍光体層の熱伝導率よりも大きい構成としてもよい。
この構成によれば、蛍光体層の温度上昇をより抑制できる。
前記蛍光体層は、前記励起光が入射する領域において、前記第1の凹部と異なる位置に第2の凹部を有する構成としてもよい。
この構成によれば、第2の凹部において、蛍光体層の厚さが小さくなり、蛍光体層の熱抵抗が小さくなる。したがって、この構成によれば、蛍光体層の温度上昇をより抑制できる。
前記蛍光体層は、複数の第2の凹部をさらに有し、前記複数の第2の凹部は、前記第1の凹部を囲んで設けられている構成としてもよい。
この構成によれば、蛍光体層の温度上昇をより抑制できる。
前記第2の凹部の形状は、前記第1の凹部を囲む帯状である構成としてもよい。
この構成によれば、蛍光体層の温度上昇をより抑制できる。
前記基板は、所定の回転軸の周りに回転可能であり、前記第1の凹部の形状は、前記回転軸を囲む帯状である構成としてもよい。
この構成によれば、基板が回転することにより、蛍光体層における励起光の照射位置が移動し、発熱する箇所を分散できる。したがって、この構成によれば、蛍光体層の温度上昇をより抑制できる。
前記蛍光体層は、第2の凹部をさらに有し、前記第2の凹部の形状は、前記回転軸を囲む帯状である構成としてもよい。
この構成によれば、蛍光体層の温度上昇をより抑制できる。
前記凹部における前記蛍光体層の厚さの最小値は、前記蛍光体層の平均厚さよりも小さい構成としてもよい。
この構成によれば、蛍光体層の温度上昇をより抑制できる。
本発明のプロジェクターの一つの態様は、照明光を射出する光源装置と、前記照明光を画像情報に応じて変調して画像光を形成する光変調装置と、前記画像光を投写する投写光学系と、を備え、前記光源装置として、上記の光源装置を用いることを特徴とする。
本発明のプロジェクターの一つの態様によれば、上記の光源装置を備えるため、蛍光体層の温度上昇を抑制できるプロジェクターが得られる。
第1実施形態のプロジェクターを示す概略構成図である。 第1実施形態の波長変換素子を示す平面図である。 第1実施形態の波長変換素子の部分を示す図であって、図2におけるIII−III断面図である。 第1実施形態の波長変換素子に励起光が入射した場合を示す断面図である。 第1実施形態の励起光の光強度を示すグラフである。 第1実施形態の波長変換素子の他の一例を示す平面図である。 第1実施形態の波長変換素子の他の一例の部分を示す図であって、図6におけるVII−VII断面図である。 第1実施形態の波長変換素子の他の一例の部分を示す断面図である。 第2実施形態の波長変換素子の部分を示す断面図である。 第3実施形態の波長変換素子を示す図であって、(A)は平面図であり、(B)は(A)におけるXB−XB断面図である。 第3実施形態の波長変換素子の他の一例を示す図であって、(A)は平面図であり、(B)は(A)におけるXIB−XIB断面図である。 第3実施形態の波長変換素子の他の一例を示す斜視図である。 第4実施形態の波長変換素子を示す図であって、(A)は平面図であり、(B)は(A)におけるXIIIB−XIIIB断面図である。 第4実施形態の波長変換素子の他の一例を示す図であって、(A)は平面図であり、(B)は(A)におけるXIVB−XIVB断面図である。 第5実施形態のプロジェクターを示す概略構成図である。 第5実施形態の波長変換素子の部分を示す断面図である。 実施例における励起光の熱量割合を示すグラフである。 実施例の結果を示すグラフである。
以下、図面を参照しながら、本発明の実施形態に係るプロジェクターについて説明する。
なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。
(第1実施形態)
図1は、本実施形態のプロジェクター1000を示す概略構成図である。
本実施形態のプロジェクター1000は、図1に示すように、光源装置10と、第2光源装置50と、色分離導光光学系60と、液晶パネル70Rと、液晶パネル70Gと、液晶パネル70Bと、フィールドレンズ71Rと、フィールドレンズ71Gと、フィールドレンズ71Bと、クロスダイクロイックプリズム72と、投写光学系73と、を備える。液晶パネル70R、液晶パネル70Gおよび液晶パネル70Bは、特許請求の範囲における光変調装置に相当する。
光源装置10は、励起光源10aと、コリメート光学系20と、ダイクロイックミラー11と、集光光学系23と、波長変換素子30と、第1レンズアレイ12と、第2レンズアレイ13と、偏光変換素子14と、重畳レンズ15と、を備える。励起光源10aは、特許請求の範囲における発光素子に相当する。
励起光源10aは、波長変換素子30に入射される励起光Leを射出する。励起光源10aは、本実施形態では、青色光(波長が約445nm)を射出するレーザー光源を用いている。なお、励起光源10aは、1つのレーザー光源で構成されていても、多数のレーザー光源で構成されていてもよい。また、レーザー光源は、青色光として、445nm以外の波長の青色光(例えば、460nm等)を射出するものを用いてもよい。本実施形態において、励起光源10aから射出される励起光Leの光強度の分布は、ガウス分布となる。
コリメート光学系20は、第1レンズ21と、第2レンズ22と、を備える。
第1レンズ21は、励起光源10aからの光の拡がりを抑える。
第2レンズ22は、第1レンズ21から射出された光を略平行化する。
第1レンズ21および第2レンズ22は、本実施形態においては、それぞれ凸レンズからなる。
コリメート光学系20は、全体として、励起光源10aからの光を略平行化する機能を有する。
ダイクロイックミラー11は、基板上に、所定の波長領域の光を反射して、他の波長領域の光を透過させる波長選択透過膜が設けられている。本実施形態においては、ダイクロイックミラー11は、青色光成分を反射させ、赤色光成分および緑色光成分を透過する。ダイクロイックミラー11は、励起光源10aが射出した励起光Le(青色光)を、略90度曲折して反射する。ダイクロイックミラー11で反射された励起光Leは、集光光学系23に入射される。
集光光学系23は、ダイクロイックミラー11からの青色光を略集光した状態で波長変換素子30に入射させる機能と、波長変換素子30から射出される蛍光を略平行化するコリメーターとしての機能とを有する。集光光学系23は、第1レンズ24と、第2レンズ25と、を備える。第1レンズ24および第2レンズ25は、本実施形態においては、凸レンズからなる。
波長変換素子30は、入射された励起光Leを蛍光に変換して射出する光学素子である。本実施形態においては、波長変換素子30は、反射型の波長変換素子であり、励起光Leが入射された側と同じ側に蛍光を射出する。本実施形態において波長変換素子30は、青色光である励起光Leを、赤色光Rおよび緑色光Gを含む蛍光に変換する。波長変換素子30の構成については、後段において詳述する。
波長変換素子30から射出された蛍光、すなわち、赤色光Rおよび緑色光Gは、集光光学系23(コリメーター)およびダイクロイックミラー11を介して、第1レンズアレイ12に入射する。
第1レンズアレイ12は、入射された光を複数の部分光束に分割するための複数の第1小レンズ12aを有する。複数の第1小レンズ12aは、第1レンズアレイ12に入射する光の光軸と直交する面内にマトリクス状に配列されている。
第2レンズアレイ13は、第1レンズアレイ12の複数の第1小レンズ12aに対応する複数の第2小レンズ13aを有する。第2レンズアレイ13は、重畳レンズ15と共に、第1レンズアレイ12の各第1小レンズ12aの像を液晶パネル70R、液晶パネル70Gおよび液晶パネル70Bの画像形成領域近傍に重畳させる機能を有する。
第1レンズアレイ12で分割された光は、第2レンズアレイ13を介して、偏光変換素子14に入射する。
偏光変換素子14は、第1レンズアレイ12により分割された各部分光束を、所定の方向に偏光した直線偏光光に変換して射出する。
重畳レンズ15は、偏光変換素子14からの各部分光束を集光して液晶パネル70R、液晶パネル70Gおよび液晶パネル70Bの画像形成領域近傍に重畳する。なお、重畳レンズ15は、複数のレンズを組み合わせた複合レンズで構成されていてもよい。
第1レンズアレイ12、第2レンズアレイ13および重畳レンズ15は、被照明領域における照度分布を均一にするレンズインテグレーター光学系を構成する。
なお、レンズインテグレーター光学系の代わりにインテグレーターロッドを備えるロッドインテグレーター光学系を用いることもできる。
重畳レンズ15から射出された光、すなわち、光源装置10から射出された光は、色分離導光光学系60に入射される。
第2光源装置50は、光源50aと、集光光学系51と、散乱板54と、偏光変換インテグレーターロッド55と、集光レンズ56と、を備える。
光源50aは、本実施形態では、青色光B(波長が約445nm)を射出するレーザー光源を用いている。なお、光源50aは、1つのレーザー光源で構成されていても、多数のレーザー光源で構成されていてもよい。また、レーザー光源は、青色光Bとして、445nm以外の波長の青色光(例えば、460nm等)を射出するものを用いてもよい。
光源50aから射出された光は、集光光学系51に入射される。
集光光学系51は、第1レンズ52と、第2レンズ53と、を備える。集光光学系51は、全体として、青色光Bを略集光した状態で散乱板54に入射させる。第1レンズ52および第2レンズ53は、凸レンズからなる。
散乱板54は、光源50aから照射される青色光Bを所定の散乱度で散乱させ、波長変換素子30から射出される蛍光に似た配光分布を有する青色光Bに変換する。散乱板54としては、例えば、光学ガラスからなる磨りガラスを用いることができる。
偏光変換インテグレーターロッド55は、光源50aから射出された青色光Bの面内光強度分布を均一にし、かつ、当該青色光Bを所定の方向に偏光した直線偏光光に変換して射出する。偏光変換インテグレーターロッドは、インテグレーターロッドと、当該インテグレーターロッドの入射面側に配置され、青色光Bが入射する小孔を有する反射板と、射出面側に配置される反射型偏光板と、を有する。
なお、偏光変換インテグレーターロッドの代わりに、レンズインテグレーター光学系および偏光変換素子を用いることもできる。
集光レンズ56は、偏光変換インテグレーターロッド55からの光を集光して色分離導光光学系60に入射させる。
色分離導光光学系60は、ダイクロイックミラー61と、反射ミラー62と、反射ミラー63と、反射ミラー64と、を備える。色分離導光光学系60は、光源装置10から射出された光を赤色光Rおよび緑色光Gに分離してそれぞれの色光を照明対象となる液晶パネル70Rおよび70Gに導光するとともに、第2光源装置50から射出された青色光Bを液晶パネル70Bに導光する。
色分離導光光学系60と、液晶パネル70R、70Gおよび70Bとの間には、それぞれフィールドレンズ71R、フィールドレンズ71Gおよびフィールドレンズ71Bが配置されている。
ダイクロイックミラー61は、基板上に、所定の波長領域の光を反射して、他の波長領域の光を透過させる波長選択透過膜が設けられている。本実施形態においては、ダイクロイックミラー61は、赤色光成分を透過させ、緑色光成分を反射する。反射ミラー63は、赤色光成分を反射する。反射ミラー62は、緑色成分を反射する。反射ミラー64は、青色光成分を反射する。
光源装置10から入射された光のうちダイクロイックミラー61を透過した赤色光Rは、反射ミラー63で反射され、フィールドレンズ71Rを透過して赤色光用の液晶パネル70Rの画像形成領域に入射する。光源装置10から入射された光のうちダイクロイックミラー61で反射された緑色光Gは、反射ミラー62でさらに反射され、フィールドレンズ71Gを透過して緑色光用の液晶パネル70Gの画像形成領域に入射する。
第2光源装置50から入射された青色光Bは、反射ミラー64で反射され、フィールドレンズ71Bを透過して青色光用の液晶パネル70Bの画像形成領域に入射する。
液晶パネル70R、液晶パネル70Gおよび液晶パネル70Bは、一対の透明なガラス基板に電気光学物質である液晶を密閉封入した透過型のパネルである。液晶パネル70R、液晶パネル70Gおよび液晶パネル70Bの光が入射する側と光が射出される側には、それぞれ図示しない入射側偏光板と射出側偏光板とが設けられている。
液晶パネル70R、液晶パネル70Gおよび液晶パネル70Bは、例えば、ポリシリコンTFTをスイッチング素子として備え、与えられた画像信号に応じて、入射側偏光板から入射された直線偏光の偏光方向を変調する。
クロスダイクロイックプリズム72は、各液晶パネルによって変調されて射出側偏光板から射出された光学像を合成し、カラーの画像光を形成する光学素子である。クロスダイクロイックプリズム72は、4つの直角プリズムを貼り合わせた平面視略正方形状をなし、直角プリズム同士を貼り合わせた略X字状の界面には、光学多層膜が設けられている。略X字状の一方の界面に設けられた光学多層膜は、赤色光Rを反射するものであり、他方の界面に設けられた光学多層膜は、青色光Bを反射するものである。これらの光学多層膜によって赤色光Rおよび青色光Bは曲折され、緑色光Gの進行方向と揃えられることにより、3つの色光が合成される。
クロスダイクロイックプリズム72から射出されたカラーの画像光は、投写光学系73によって拡大投写され、スクリーンSCR上に投写画像(カラー画像)を形成する。
次に、波長変換素子30について詳しく説明する。
図2および図3は、波長変換素子30を示す図である。図2は、平面図である。図3は、図2におけるIII−III断面図である。図4は、波長変換素子30に励起光が入射された状態を示す断面図である。図5は、本実施形態において波長変換素子30に入射される励起光の光強度分布を示すグラフである。図5においては、縦軸は励起光Leの光強度を示しており、横軸は照射領域の径方向位置を示している。図5において縦軸に示す励起光Leの光強度は、励起光Leの最大光強度を1としたときの規格化強度である。
本実施形態の波長変換素子30は、図2および図3に示すように、円板31と、凸部32と、蛍光体層33と、回転機構40と、を備える。円板31は、特許請求の範囲における基板に相当する。
円板31は上面31aを有する。円板31の上面31a側に蛍光体層33が設けられている。円板31は、本実施形態においては、例えば、アルミニウム(Al)等の、光反射性を有し、かつ、熱伝導率が高い金属で構成されている。円板31の熱伝導率は、蛍光体層33の熱伝導率よりも大きい。円板31の上面31aは、特許請求の範囲における第1の面に相当する。
凸部32は、後述する蛍光体層33の凹部34を画定する。凸部32は、円板31の上面31aから蛍光体層33側に突出して設けられている。凸部32の平面視形状は、本実施形態においては、図2に示すように、円板31と同心の円環状である。
III−III断面における凸部32の断面形状は、特に限定されず、矩形状であっても、三角形状であっても、多角形状であっても、半円形状であっても、楕円形状であってもよい。本実施形態においては、凸部32の断面形状は、図3に示すように、例えば、半円形状である。
凸部32の表面32aは、円板31の上面31aに対して傾斜している。言い換えると、凸部32は、円板31の上面31aに対して傾斜する傾斜面を有している。本実施形態においては、凸部32の表面32aは、特許請求の範囲の傾斜面に相当する。
凸部32の材質は、例えば、円板31と同様に、アルミニウム(Al)等の、光反射性を有し、かつ、熱伝導率が高い金属である。凸部32の熱伝導率は、蛍光体層33の熱伝導率より大きい。凸部32の材質は、円板31と同じ材質であってもよいし、異なる材質であってもよい。また、凸部32は、円板31と一体構造であってもよいし、別部材であってもよい。
蛍光体層33は、図4に示すように、励起光源10aから励起光Leが照射されることにより蛍光Lfを生成する。蛍光体層33は、円板31の上面31aに設けられている。蛍光体層33の平面視形状は、図2に示すように、円板31と同心の円環状である。すなわち、蛍光体層33は、後述する回転機構40の回転軸41の周りに帯状に設けられている。
蛍光体層33の断面形状は、例えば、図3に示すように、略楕円形状を長軸に沿って分割した略半楕円形状と近似できる。円板31の上面31aから蛍光体層33の表面33aまでの距離は、円板31の径方向の中心から径方向の両端部に向かうにしたがって徐々に小さくなり、両端部近傍で急激に小さくなる。言い換えると、蛍光体層33の断面形状は、径方向の中心部が盛り上がり、径方向の両端部がダレた形状である。
なお、以下の説明においては、特に断りのない限り、径方向とは、円板31の径方向を意味する。
蛍光体層33の円板31の上面31aと接する裏面33bには、凹部34が設けられている。凹部34は、凸部32によって画定されている。すなわち、凹部34の形状は、凸部32の形状と同様である。凹部34は、本実施形態においては、蛍光体層33の径方向の中心に設けられている。凹部34は、蛍光体層33における励起光Leが照射される照射領域IA1に設けられている。すなわち、蛍光体層33は、励起光Leが入射する照射領域IA1に凹部34を有する。凹部34は、特許請求の範囲における第1の凹部に相当する。
凹部34は、図2に示すように、平面視において、後述する回転機構40の回転軸41の周りに帯状に設けられている。平面視において、蛍光体層33のうち凹部34が設けられている領域を領域AR11とする。すなわち、領域AR11は、平面視において、蛍光体層33のうち凹部34と重なる領域である。
領域AR11における蛍光体層33の厚さHは、凹部34が設けられているため、円板31の上面31aと蛍光体層33の表面33aとの距離よりも小さくなる。領域AR11における蛍光体層33の厚さHの最小値は、蛍光体層33の平均厚さよりも小さい。すなわち、本実施形態においては、凹部34の径方向の中心における蛍光体層33の厚さH11は、蛍光体層33の平均厚さよりも小さい。
本実施形態において、励起光Leの光強度の分布は、図5に示すようにガウス分布となっている。励起光Leのうち光強度が最大光強度の1/eとなる部分が照射されている領域を、励起光Leの照射領域IA1とする。
本実施形態において照射領域IA1の中心では光強度が最大である。本実施形態においては、図2に示すように、励起光Leの光強度の中心Cは、凹部34と平面視において重なっている。
本実施形態において蛍光体層33は、紫外線の領域から青色の領域の光により励起されて発光する光学部材である。蛍光体層33は、図示は省略するが、例えば、母材と、母材に分散された複数の蛍光体粒子と、を含んで構成される。蛍光体層33の母材としては、例えば、シリコーンである。
蛍光体粒子としては、希土類蛍光体やサイアロイ蛍光体等を用いることができる。詳細には、希土類蛍光体としてYAl12:Ce(YAG:Ce)、サイアロイ蛍光体としてαサイアロイ等を用いることができる。また、蛍光体層33は、蛍光体粒子と、母材としてのアルミナ等を混合した焼結体、母材としてのガラスや樹脂に、蛍光体粒子を内包したもの等を用いることができる。また、蛍光体粒子のみからなる焼結体等も用いることができる。
蛍光体層33は、例えば、円板31の上面31aに蛍光体層33の形成材料を塗布して形成される。蛍光体層33の形成材料を塗布する方法は、特に限定されず、例えば、スクリーン印刷法、ダイコート法、インクジェット法、ディスペンサー法、スピンコート法、スリットコート法等を選択できる。
回転機構40は、図1および図2に示すように、回転軸41を備える。回転軸41は、円板31の中心に挿通されて固定されている。回転機構40は、円板31を回転軸41回りに回転させる。すなわち、円板31は、回転軸41の周りに回転可能である。
本実施形態によれば、蛍光体層33は凹部34を有するため、凹部34が設けられた領域AR11において、厚さHが小さくなる。これにより、蛍光体層33の領域AR11における、蛍光体層33の厚さ方向の熱抵抗を小さくできる。なお、本明細書において、蛍光体層33の厚さ方向の熱抵抗のことを、蛍光体層33の熱抵抗と呼ぶことがある。
そして、励起光Leの光強度の中心Cは、凹部34、すなわち、領域AR11と重なっている。励起光Leの光強度の中心Cが照射される位置は、蛍光体層33において最も発熱しやすく、温度が上昇しやすい。したがって、本実施形態によれば、蛍光体層33の最も温度が上昇しやすい箇所の熱抵抗を小さくできるため、蛍光体層33の温度上昇を抑制できる。
励起光Leの光強度の中心Cが、領域AR11における蛍光体層33の厚さHが最小となる位置と重なっていることが好ましい。この構成によれば、蛍光体層33の最も温度が上昇しやすい箇所の熱抵抗をより小さくすることができるため、蛍光体層33の温度上昇をより抑制できる。
また、例えば、蛍光体層の形成方法として、蛍光体層の形成材料を円板の上面にスクリーン印刷によって塗布する方法を採用した場合においては、蛍光体層の厚さは径方向の中心において最も大きくなりやすい。その場合、径方向の中心において蛍光体層の熱抵抗が最大となるため、最も温度が高くなりやすい。
これに対して、本実施形態によれば、従来の構成においては蛍光体層33が最も厚くなる領域に、凹部34が設けられていることで、蛍光体層33の最大厚さを小さくできるため、蛍光体層33の熱抵抗の最大値を小さくできる。これにより、本実施形態によれば、蛍光体層33の温度上昇を抑制できる。
また、本実施形態によれば、凸部32の表面32aが傾斜面であるため、図4に示すように、凸部32に入射した励起光Leは、入射した方向と異なる方向に反射されやすい。これにより、励起光Leが蛍光体層33中を進む距離を長くできる。したがって、本実施形態によれば、蛍光体層33に入射した励起光Leが蛍光体層33中の蛍光体粒子に入射しやすくなり、波長変換素子30の励起光変換効率を向上できる。
また、蛍光体層33中を進む距離を長くできるため、蛍光体層33の厚さHを全体として小さくしやすく、蛍光体層33の熱抵抗を低減しやすい。
また、本実施形態によれば、凸部32の熱伝導率および円板31の熱伝導率が蛍光体層33の熱伝導率よりも大きいため、蛍光体層33の熱を放熱しやすい。したがって、本実施形態によれば、蛍光体層33の温度上昇をより抑制できる。
また、本実施形態によれば、回転機構40によって回転させられる円板31上に蛍光体層33が設けられているため、円板31が回転することで蛍光体層33における励起光Leが照射される位置が移動し、蛍光体層33における発熱箇所が分散する。これにより、蛍光体層33の温度が大きく上昇することを抑制できる。
また、本実施形態のプロジェクター1000によれば、蛍光体層33の温度上昇を抑制できる光源装置10を備えるため、信頼性に優れたプロジェクターが得られる。
なお、本実施形態においては、以下の構成を採用することもできる。
上記説明においては、凸部32の表面32aは、円板31の上面31aに対して傾斜する構成としたが、これに限られない。本実施形態においては、凸部32は、円板31の上面31aに対して傾斜する傾斜面を有していなくてもよい。
また、本実施形態においては、蛍光体層33の断面形状は、特に限定されない。本実施形態においては、蛍光体層33の断面形状は、例えば、矩形状であってもよいし、半円形状であってもよい。
また、本実施形態においては、図6および図7に示すように、凹部が複数設けられていてもよい。
図6および図7は、本実施形態の他の一例である波長変換素子130を示す図である。図6は、平面図である。図7は、図6におけるVII−VII断面図である。
なお、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
波長変換素子130は、図6および図7に示すように、円板31と、凸部32と、外側凸部136と、内側凸部137と、蛍光体層133と、回転機構40と、を備える。
外側凸部136は、図6に示すように、上面31aにおける凸部32の径方向外側に設けられている。外側凸部136の平面視形状は、円板31と同心の円環状である。外側凸部136の断面形状は、例えば、凸部32と同様である。外側凸部136の表面136aは、傾斜している。
内側凸部137は、上面31aにおける凸部32の径方向内側に設けられている。内側凸部137の平面視形状は、円板31と同心の円環状である。内側凸部137の断面形状は、例えば、凸部32と同様である。内側凸部137の表面137aは、傾斜している。
外側凸部136および内側凸部137の材質は、例えば、凸部32と同様に選択できる。
蛍光体層133の裏面133bには、凹部34と、外側凹部134aと、内側凹部134bと、が設けられている。外側凹部134aは、外側凸部136によって画定されている。内側凹部134bは、内側凸部137によって画定されている。外側凹部134aおよび内側凹部134bは、蛍光体層133の照射領域IA1に設けられている。すなわち、蛍光体層133は、蛍光体層133の照射領域IA1において、凹部34と異なる位置に外側凹部134aおよび内側凹部134bを有する。外側凹部134aおよび内側凹部134bは、回転軸41の周りに帯状に設けられている。外側凹部134aおよび内側凹部134bは、特許請求の範囲における第2の凹部に相当する。
外側凹部134aが設けられている領域AR21および内側凹部134bが設けられている領域AR22のいずれにおいても、蛍光体層133の厚さHは、円板31の上面31aから蛍光体層133の表面133aまでの距離より小さい。
領域AR21における蛍光体層133の厚さHの最小値、すなわち、本実施形態においては、外側凹部134aの径方向の中心における蛍光体層133の厚さH21は、蛍光体層133の平均厚さより小さい。領域AR22における蛍光体層133の厚さHの最小値、すなわち、本実施形態においては、内側凹部134bの径方向の中心における蛍光体層133の厚さH22は、蛍光体層133の平均厚さより小さい。
この構成によれば、領域AR21および領域AR22において、蛍光体層133の厚さHが比較的小さい。そのため、領域AR21および領域AR22における蛍光体層133の熱抵抗が小さくなり、蛍光体層133の温度上昇をより抑制できる。
なお、この構成において、凹部の数は、3つに限られるものではなく、2つであってもよいし、4つ以上であってもよい。
また、この構成において、複数の凹部は、互いに異なる形状であってもよい。
また、本実施形態においては、図8に示すように、円板231上に溝部231bが設けられ、溝部231b内に蛍光体層233が設けられる構成でもあってもよい。
図8は、本実施形態の他の一例である波長変換素子230の部分を示す断面図である。
なお、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
波長変換素子230は、図8に示すように、円板231と、凸部232と、蛍光体層233と、を備える。円板231は、特許請求の範囲における基板に相当する。
円板231は、上面231aに溝部231bが設けられている点を除いて、上記説明した円板31と同様である。
凸部232は、溝部231bの底面231cに設けられている。本実施形態においては、凸部232の断面形状は、三角形である。凸部232は、溝部231bの底面231cに対して傾斜する傾斜面232aを有する。凸部232は、断面形状が異なる点を除いて、上記説明した凸部32と同様である。溝部231bの底面231cは、特許請求の範囲における第1の面に相当する。
蛍光体層233は、溝部231bの底面231cに設けられている。蛍光体層233の裏面233bには、凹部234が設けられている。凹部234は、凸部232によって画定されている。凹部234は、凸部232によって画定される断面形状が異なる点を除いて、上記説明した凹部34と同様である。凹部234は、特許請求の範囲における第1の凹部に相当する。
凹部234が設けられている領域AR31における蛍光体層233の厚さHの最小値、すなわち、凹部234の径方向の中心における蛍光体層233の厚さH31は、蛍光体層233の平均厚さよりも小さい。蛍光体層233の形状および材質は、凹部234の形状が異なる点を除いて、上記説明した蛍光体層33と同様である。
この構成によれば、例えば、円板231をプレスして溝部231bを形成すると同時に、凸部232を形成する製造方法を採用できるため、波長変換素子の製造が容易である。この製造方法を用いる場合には、凸部232は、円板231と一体構造となる。
波長変換素子230では溝部231bが設けられていたが、溝部231bは必ずしも必要ではない。
(第2実施形態)
第2実施形態は、第1実施形態に対して、波長変換素子に凸部が設けられていない点において異なる。
なお、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
図9は、本実施形態の波長変換素子330の部分を示す断面図である。
本実施形態の波長変換素子330は、図9に示すように、円板31と、蛍光体層333と、を備える。
蛍光体層333は、円板31の上面31aに設けられている。蛍光体層333の径方向の中央において、表面333aには凹部334が設けられている。凹部334は、特許請求の範囲における第1の凹部に相当する。
凹部334は、蛍光体層333の照射領域IA1に設けられている。凹部334の平面視形状は、図示は省略するが、第1実施形態の凹部34と同様に円環状である。凹部334の断面形状は、特に限定されない。
蛍光体層333の断面形状は、第1実施形態の蛍光体層33の断面形状の中央部が、凹部334によって凹まされたような形状である。凹部334が設けられている領域AR41における蛍光体層333の厚さの最小値H41は、蛍光体層333の厚さHの平均より小さい。
本実施形態によれば、第1実施形態と同様に、蛍光体層333の温度上昇を抑制できる。
また、本実施形態によれば、凹部を画定する凸部を設ける必要がなく、蛍光体層333の表面333aに、直接凹部334を形成する構成である。そのため、本実施形態によれば、波長変換素子330の製造が簡便である。
(第3実施形態)
第3実施形態は、第1実施形態に対して、固定式の波長変換素子を有する点において異なる。
なお、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
図10(A)および図10(B)は、本実施形態の波長変換素子430を示す図である。図10(A)は、平面図である。図10(B)は、図10(A)におけるXB−XB断面図である。
本実施形態の波長変換素子430は、図10(A)および図10(B)に示すように、基板431と、中央凸部432と、蛍光体層433と、を備える。中央凸部432は、特許請求の範囲における凸部に相当する。
基板431は、概平板状の部材である。基板431は、上面431aを有する。上面431aは、特許請求の範囲における第1の面に相当する。
中央凸部432は、基板431の上面431aから蛍光体層433側に突出して設けられている。中央凸部432は、後述する蛍光体層433の中央凹部434を画定する。
中央凸部432の平面視形状は、特に限定されず、円形状であっても、矩形状であっても、多角形状であってもよい。XB−XB断面における中央凸部432の断面形状は、特に限定されず、矩形状であっても、三角形状であっても、多角形状であっても、半円形状であっても、半楕円形状であってもよい。
本実施形態においては、中央凸部432の形状は半球状である。
中央凸部432の表面432aは、基板431の上面431aに対して傾斜している。言い換えると、中央凸部432は、基板431の上面431aに対して傾斜する傾斜面を有している。本実施形態においては、中央凸部432の表面432aは、特許請求の範囲の傾斜面に相当する。
蛍光体層433は、基板431の上面431aに設けられている。本実施形態においては、蛍光体層433は、例えば、正四角柱形状である。蛍光体層433の基板431と接する裏面433bには、中央凹部434が設けられている。中央凹部434は、特許請求の範囲における第1の凹部に相当する。
中央凹部434は、中央凸部432によって画定されている。中央凹部434が設けられている位置は、平面視における蛍光体層433の中央である。中央凹部434が設けられる領域AR51における蛍光体層433の厚さHの最小値は、蛍光体層433の平均厚さよりも小さい。
本実施形態において蛍光体層433に照射される励起光Leの光強度の中心は、中央凹部434と重なる。
本実施形態によれば、第1実施形態と同様に、蛍光体層433の温度上昇を抑制できる。
なお、本実施形態においては、以下の構成を採用することもできる。
本実施形態においては、蛍光体層433の断面形状を、上記説明した第1実施形態および第2実施形態における蛍光体層の断面と同様の形状としてもよい。
また、本実施形態においては、凸部が複数設けられていてもよい。
図11(A)および図11(B)は、本実施形態の他の一例である波長変換素子530を示す図である。図11(A)は、平面図である。図11(B)は、図11(A)におけるXIB−XIB断面図である。
なお、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
波長変換素子530は、図11(A)および図11(B)に示すように、基板431と、中央凸部432と、複数の凸部536と、蛍光体層533と、を備える。
複数の凸部536は、基板431の上面431aに設けられている。複数の凸部536は、平面視において、中央凸部432の周りを囲んで設けられている。複数の凸部536は、基板431の上面431aに対して傾斜する表面536aを備える。複数の凸部536の形状は、中央凸部432と同様に、例えば、半球状である。
凸部536の数は、特に限定されず、1つであっても、2つ以上であってもよい。凸部536の数は、例えば、図11(A)および図11(B)に示す例では、24個である。複数の凸部536および中央凸部432は、基板431の上面431a上に、例えば、5行5列のマトリクス状に配置されている。
蛍光体層533は、蛍光体層533の裏面533bに、複数の凸部536によって画定される複数の凹部534が設けられている点を除いて、上記説明した蛍光体層433と同様である。凹部534は、特許請求の範囲における第2の凹部に相当する。
凹部534は、平面視において、中央凹部434の周りを囲んで設けられている。中央凹部434および凹部534は、5行5列のマトリクス状に設けられている。凹部534の個数は、凸部536と同様に、1つであっても、2つ以上であってもよく、図11(A)および図11(B)に示す例では、24個である。
凹部534が設けられた領域AR61における蛍光体層533の厚さHの最小値は、蛍光体層533の平均厚さよりも小さい。
この構成によれば、凹部534が設けられた領域AR61において蛍光体層533の厚さHを小さくできるため、より蛍光体層533の温度上昇を抑制できる。
また、この構成によれば、複数の凹部534が中央凹部434を囲んで設けられているため、蛍光体層533の中央凹部434の周囲において、蛍光体層533の温度分布が偏ることを抑制できる。これにより、蛍光体層533全体の温度上昇を抑制しやすい。
また、本実施形態においては、凸部の形状は、例えば図12に示すような正四角錐形状であってもよい。言い換えれば凸部により画定される凹部の形状が、例えば図12に示すような正四角錐形状であってもよい。
図12は、本実施形態の他の一例である波長変換素子630を示す斜視図である。
波長変換素子630は、図12に示すように、基板431と、中央凸部632と、複数の凸部636と、蛍光体層633と、を備える。中央凸部632および複数の凸部636は、正四角錐形状である点を除いて、図11(A)および図11(B)に示した中央凸部432および複数の凸部536と同様である。中央凸部632は、傾斜面632aを有する。複数の凸部636各々は、傾斜面636aを有する。
蛍光体層633は、凹部の形状が異なる点を除いて、図11(A)および図11(B)に示した蛍光体層533と同様である。
この構成によれば、蛍光体層633に入射した励起光Leが、中央凸部632の傾斜面632aおよび凸部636の傾斜面636aによって反射されて、偏向されやすい。そのため、励起光Leが蛍光体層633内を進む距離を大きくしやすく、波長変換素子630の変換効率を向上できる。
なお、上記の図11(A)、図11(B)、および図12において示した波長変換素子においては、各凸部はランダムに配置されていてもよい。言い換えれば各凹部はランダムに配置されていてもよい。
(第4実施形態)
第4実施形態は、第3実施形態に対して、凸部が設けられていない点において異なる。
なお、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
図13(A)および図13(B)は、本実施形態の波長変換素子730を示す図である。図13(A)は、平面図である。図13(B)は、図13(A)におけるXIIIB−XIIIB断面図である。
波長変換素子730は、図13(A)および図13(B)に示すように、基板431と、蛍光体層733と、を備える。
蛍光体層733は、上面733aに中央凹部734が設けられている点を除いて、図10(A)および図10(B)に示した第3実施形態の蛍光体層433と同様である。上面733aは、特許請求の範囲における蛍光体層の表面に相当する。中央凹部734は、特許請求の範囲における第1の凹部に相当する。
中央凹部734の形状は、特に限定されず、半球状であっても、半楕円体状であっても、立方体形状であっても、直方体形状であってもよい。本実施形態において中央凹部734の形状は、例えば、半球状である。中央凹部734は、平面視において蛍光体層733の中央に設けられている。本実施形態においては、励起光Leの光強度の中心は、中央凹部734と重なる。中央凹部734が設けられる領域AR71における蛍光体層733の厚さHの最小値は、蛍光体層733の平均厚さよりも小さい。
本実施形態の波長変換素子730は、例えば、既存の固定式の波長変換素子に対して、蛍光体層の上面に凹部を設ける加工を施すことによって製造できる。そのため、本実施形態によれば、波長変換素子730の製造が簡便である。
なお、本実施形態においては、以下の構成を採用してもよい。
本実施形態においては、図14(A)および図14(B)に示すような構成を採用してもよい。
図14(A)および図14(B)は、本実施形態の他の一例である波長変換素子830を示す図である。図14(A)は、平面図である。図14(B)は、図14(A)におけるXIVB−XIVB断面図である。
なお、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
波長変換素子830は、図14(A)および図14(B)に示すように、基板431と、蛍光体層833と、を備える。
蛍光体層833は、中央凹部734に加えて、上面833aに凹部834が設けられている点を除いて、図13(A)および図13(B)に示した波長変換素子730と同様である。上面833aは、特許請求の範囲における蛍光体層の表面に相当する。凹部834は、特許請求の範囲における第2の凹部に相当する。
凹部834の平面視形状は、図14(A)に示すように、中央凹部734と同心の円環状である。すなわち、凹部834は、平面視において、中央凹部734を囲む帯状である。凹部834の断面形状は、図14(B)に示すように、例えば、中央凹部734と同様の半円形状である。凹部834が設けられる領域AR81における蛍光体層833の厚さHの最小値は、蛍光体層833の平均厚さより小さい。
この構成によれば、凹部834が中央凹部734を囲んで設けられているため、より蛍光体層833の温度上昇を抑制できる。
なお、この構成においては、円環状の凹部が複数設けられてもよい。例えば、中央凹部734および凹部834を囲む円環状の凹部がさらに設けられていてもよい。
また、この構成においては、凹部834の平面視形状は、矩形環状であってもよいし、多角形環状であってもよい。
また、本実施形態においては、蛍光体層733の上面733aに、例えば、マトリクス状に複数の凹部が設けられていてもよい。その場合においては、各凹部は、互いに同じ形状であってもよいし、異なる形状であってもよい。各凹部は、ランダムに配置されていてもよい。
(第5実施形態)
第5実施形態は、第1実施形態に対して、波長変換素子が透過型である点において異なる。
なお、上記実施形態と同様の構成については、適宜同一の符号を付す等により説明を省略する場合がある。
図15は、本実施形態のプロジェクター2000を示す概略構成図である。
プロジェクター2000は、図15に示すように、第1実施形態のプロジェクター1000に対して、光源装置10の代わりに光源装置910を備える点において異なる。
光源装置910は、励起光源10aと、集光光学系920と、波長変換素子930と、コリメート光学系923と、第1レンズアレイ12と、第2レンズアレイ13と、偏光変換素子14と、重畳レンズ15と、を備える。
集光光学系920は、第1レンズ921および第2レンズ922を備える。集光光学系920は、励起光源10aから射出された青色光である励起光Leを集光して波長変換素子930に入射させる。
なお、本実施形態における励起光Leの光強度の分布は、第1実施形態と同様に、図5に示すようなガウス分布である。
図16は、波長変換素子930の部分を示す断面図である。
波長変換素子930は、図15および図16に示すように、円板931と、凸部932と、蛍光体層33と、回転機構40と、を備える。円板931は、特許請求の範囲における基板に相当する。
円板931は、透光性を有する点を除いて、第1実施形態の円板31と同様である。円板931の上面931aには蛍光体層33が設けられている。上面931aは、特許請求の範囲における第1の面に相当する。
凸部932は、透光性を有する点を除いて、第1実施形態の凸部32と同様である。凸部932は、本実施形態において励起光Leが照射される照射領域IA2に設けられている。凸部932は、円板931の上面931aに対して傾斜する表面932aを有している。凸部932の屈折率は、蛍光体層33の屈折率と異なる。
波長変換素子930には、円板931の蛍光体層33とは逆側の裏面931bから励起光Leが入射される。本実施形態において、入射する励起光Leの光強度の中心は、凸部932によって画定される蛍光体層33の凹部34と重なる。入射された励起光Leは、蛍光体層33によって蛍光Lfに変換され、蛍光体層33の表面33aから射出される。波長変換素子930から射出された蛍光Lfは、コリメート光学系923に入射される。
コリメート光学系923は、第1レンズ924と、第2レンズ925と、を備える。
第1レンズ924は、蛍光Lfの拡がりを抑える。
第2レンズ925は、第1レンズ924から射出された蛍光Lfを略平行化する。
第1レンズ924および第2レンズ925は、本実施形態においては、それぞれ凸レンズからなる。
コリメート光学系923は、全体として、蛍光Lfを略平行化する機能を有する。
コリメート光学系923から射出された蛍光Lfは、第1レンズアレイ12と、第2レンズアレイ13と、偏光変換素子14と、重畳レンズ15と、を介して、光源装置910から射出される。
本実施形態によれば、凸部932の屈折率と蛍光体層33の屈折率とが異なるため、図16に示すように、円板931から凸部932に入射した励起光Leは、凸部932と蛍光体層33との界面で屈折される。これにより、蛍光体層33内部における励起光Leの進行距離が大きくなり、波長変換素子930の変換効率を向上できる。
また、本実施形態によれば、凸部932の表面932aと蛍光体層33とが接することで、凸部932と蛍光体層33とが接する面積が増加するため、蛍光体層33の熱が凸部932を介して円板931へ伝わりやすい。したがって、本実施形態によれば、波長変換素子930の冷却効率を向上できる。
なお、上記説明した第1実施形態から第5実施形態までにおいては、蛍光体層の片面にのみ凹部が設けられている例について示したが、これに限られず、蛍光体層の両面に凹部が設けられていてもよい。具体的には、例えば、第1実施形態であれば、凹部34に加えて、蛍光体層33の表面33aに凹部が設けられていてもよい。
また、上記の実施形態においては、光変調装置として3つの液晶パネル(液晶パネル70R、液晶パネル70G、および液晶パネル70B)を採用したが、これに限られず、例えば、光変調装置として1つの液晶パネルでカラー画像を表示する液晶パネルを採用してもよい。
また、上記の実施形態においては、赤色光と緑色光とを生成する蛍光体層を用いていたが、これに限られない。例えば、赤色光と緑色光とのうちいずれかを生成する蛍光体層を用いてもよい。また、白色光を生成する蛍光体層を用いてもよい。
また、上記の実施形態においては、光変調装置として透過型の光変調装置である液晶パネル70R、液晶パネル70G、および液晶パネル70Bを採用したが、これに限られず、光変調装置として、例えば、反射型の光変調装置や、マイクロミラー型の光変調装置等、他の方式の光変調装置を採用できる。なお、マイクロミラー型の光変調装置としては、例えば、DMD(Digital Micromirror Device)を採用できる。
また、上記の実施形態においては、本発明の光源装置をプロジェクターに適用した例について説明したが、これに限られない。本発明の光源装置は、照明器具や、自動車の前照灯、光ディスク装置などにも適用できる。
本実施例においては、第1実施形態の実施例である実施例1および実施例2の光源装置と、比較例の光源装置とにおいて、蛍光体層に励起光が照射された際の蛍光体層の温度をそれぞれシミュレーションにより求めた。
実施例1は、図2および図3に示した波長変換素子30と同様の波長変換素子を備える光源装置とした。実施例2は、図6および図7に示した波長変換素子130と同様の波長変換素子を備える光源装置とした。ただし、実施例1および実施例2の波長変換素子においては、蛍光体層の断面形状は矩形状とした。また、凹部が設けられている領域を除いて蛍光体層の厚さは一様に200μmである。円板は直径が65mmのアルミニウム製とした。凸部の断面形状は、半径100μmの半円形状とした。
比較例の波長変換素子は、円板の上面に凸部が設けられておらず、蛍光体層は凹部を備えていない。比較例の波長変換素子は、それ以外の点においては実施例1の波長変換素子および実施例2の波長変換素子と同様である。
励起光の照射領域IA1の直径は1mmである。照射領域の径方向の一方側の端部からの距離に応じて、図17のグラフに示すような熱量が蛍光体層に与えられるものとした。図17において横軸は、照射領域の径方向の一方側の端部を起点としたときの照射領域における径方向位置(mm)を示している。図17において縦軸は熱量割合を示している。熱量割合とは、各径方向位置に照射される励起光のパワー(ワット)の、照射領域の全体に照射される励起光の総パワーに対する割合を意味する。以下、照射領域の径方向位置を、位置Crと呼ぶ。本実施例においては、照射される励起光の総パワーを10Wとした。
図17に示すように、熱量割合の分布は、位置Crが0.1mm、0.3mm、0.5mm、0.7mm、0.9mmとなる5箇所に離散的に分布するように設定した。各位置における熱量割合は、励起光の光強度がガウス分布を持つとして決定した。各位置Crにおける熱量割合の合計は1である。
実施例1においては、蛍光体層における凹部は、位置Crが0.5mmの箇所に設けられている。
実施例2においては、蛍光体層における凹部は、位置Crが、0.25mm、0.5mm、0.75mmの箇所にそれぞれ設けられている。
励起光を10秒間照射した後の蛍光体層の温度を求めた。結果を図18に示す。図18においては、縦軸に蛍光体層の温度(℃)を示しており、横軸に位置Cr(mm)を示している。
図18より、比較例の蛍光体層の温度に対して、照射領域の全体に亘って、実施例1および実施例2の蛍光体層の温度が低いことが確かめられた。ここで、比較例の蛍光体層の最高温度は、96.5℃であり、実施例1の蛍光体層の最高温度は、79.7℃であり、実施例2の蛍光体層の最高温度は、76.9℃であった。
また、実施例1よりも実施例2の方が、蛍光体層の温度が低いことが確かめられた。
これにより、蛍光体層に凹部を設けることによって、蛍光体層の温度上昇を抑制できることが確かめられた。
また、蛍光体層の凹部の数を増加することにより、蛍光体層の温度上昇をより抑制できることが確かめられた。
以上のことから、本発明の有用性を確認できた。
10,910…光源装置、10a…励起光源(発光素子)、31,231,931…円板(基板)、31a,431a,931a…上面(第1の面)、32,232,932…凸部、33a,133a,333a…蛍光体層の表面、32a,432a…凸部の表面(傾斜面)、33,133,233,333,433,533,633,733,833…蛍光体層、34,234,334…凹部(第1の凹部)、41…回転軸、50a…光源、70B,70G,70R…液晶パネル(光変調装置)、73…投写光学系、Le…励起光、Lf…蛍光、134a…外側凹部(第2の凹部)、134b…内側凹部(第2の凹部)、231c…底面(第1の面)、232a,632a…傾斜面、431…基板、432…中央凸部(凸部)、434,734…中央凹部(第1の凹部)、534,834…凹部(第2の凹部)、733a,833a…蛍光体層の上面(表面)、1000,2000…プロジェクター、C…中心、H,H11,H21,H22,H31,H41…厚さ

Claims (14)

  1. 励起光を射出する発光素子と、
    第1の面を有する基板と、
    前記基板の前記第1の面に設けられた蛍光体層と、を備え、
    前記蛍光体層は、前記励起光が入射する領域に第1の凹部を有し、
    前記励起光の光強度の中心は、前記第1の凹部と重なっていることを特徴とする光源装置。
  2. 前記基板には、前記第1の凹部を画定する凸部が設けられている、請求項1に記載の光源装置。
  3. 前記凸部は、前記第1の面に対して傾斜する傾斜面を有する、請求項2に記載の光源装置。
  4. 前記凸部は、前記励起光を透過し、
    前記凸部の屈折率は、前記蛍光体層の屈折率とは異なる、請求項2または3に記載の光源装置。
  5. 前記凸部の熱伝導率は、前記蛍光体層の熱伝導率より大きい、請求項2から4のいずれか一項に記載の光源装置。
  6. 前記第1の凹部は、前記蛍光体層の表面に設けられている、請求項1に記載の光源装置。
  7. 前記基板の熱伝導率は、前記蛍光体層の熱伝導率よりも大きい、請求項1から6のいずれか一項に記載の光源装置。
  8. 前記蛍光体層は、前記励起光が入射する領域において、前記第1の凹部と異なる位置に第2の凹部を有する、請求項1から7のいずれか一項に記載の光源装置。
  9. 前記蛍光体層は、複数の第2の凹部をさらに有し、
    前記複数の第2の凹部は、前記第1の凹部を囲んで設けられている、請求項1から7のいずれか一項に記載の光源装置。
  10. 前記第2の凹部の形状は、前記第1の凹部を囲む帯状である、請求項8に記載の光源装置。
  11. 前記基板は、所定の回転軸の周りに回転可能であり、
    前記第1の凹部の形状は、前記回転軸を囲む帯状である、請求項1から7のいずれか一項に記載の光源装置。
  12. 前記蛍光体層は、第2の凹部をさらに有し、
    前記第2の凹部の形状は、前記回転軸を囲む帯状である、請求項11に記載の光源装置。
  13. 前記凹部における前記蛍光体層の厚さの最小値は、前記蛍光体層の平均厚さよりも小さい、請求項1から12のいずれか一項に記載の光源装置。
  14. 照明光を射出する光源装置と、
    前記照明光を画像情報に応じて変調して画像光を形成する光変調装置と、
    前記画像光を投写する投写光学系と、を備え、
    前記光源装置として、請求項1から13のいずれか一項に記載の光源装置を用いることを特徴とするプロジェクター。
JP2014141478A 2014-07-09 2014-07-09 光源装置、およびプロジェクター Pending JP2016018110A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014141478A JP2016018110A (ja) 2014-07-09 2014-07-09 光源装置、およびプロジェクター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014141478A JP2016018110A (ja) 2014-07-09 2014-07-09 光源装置、およびプロジェクター

Publications (1)

Publication Number Publication Date
JP2016018110A true JP2016018110A (ja) 2016-02-01

Family

ID=55233364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014141478A Pending JP2016018110A (ja) 2014-07-09 2014-07-09 光源装置、およびプロジェクター

Country Status (1)

Country Link
JP (1) JP2016018110A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664906A (zh) * 2016-07-28 2018-02-06 松下知识产权经营株式会社 荧光体基板、荧光体轮、光源装置、投射型影像显示装置
JP2018025750A (ja) * 2016-07-28 2018-02-15 パナソニックIpマネジメント株式会社 蛍光体基板、蛍光体ホイール、光源装置、投写型映像表示装置、及び蛍光体基板の製造方法
JP2018084682A (ja) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 蛍光体基板、蛍光体ホイール、光源装置、及び投写型映像表示装置
WO2019004064A1 (ja) * 2017-06-30 2019-01-03 シャープ株式会社 蛍光体層組成物、蛍光部材、光源装置および投影装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107664906A (zh) * 2016-07-28 2018-02-06 松下知识产权经营株式会社 荧光体基板、荧光体轮、光源装置、投射型影像显示装置
JP2018025750A (ja) * 2016-07-28 2018-02-15 パナソニックIpマネジメント株式会社 蛍光体基板、蛍光体ホイール、光源装置、投写型映像表示装置、及び蛍光体基板の製造方法
JP2018084682A (ja) * 2016-11-24 2018-05-31 パナソニックIpマネジメント株式会社 蛍光体基板、蛍光体ホイール、光源装置、及び投写型映像表示装置
WO2019004064A1 (ja) * 2017-06-30 2019-01-03 シャープ株式会社 蛍光体層組成物、蛍光部材、光源装置および投影装置
CN110799862A (zh) * 2017-06-30 2020-02-14 夏普株式会社 荧光体层组成物、荧光构件、光源装置以及投影装置
JPWO2019004064A1 (ja) * 2017-06-30 2020-07-27 シャープ株式会社 蛍光体層組成物、蛍光部材、光源装置および投影装置
US10920139B2 (en) 2017-06-30 2021-02-16 Sharp Kabushiki Kaisha Phosphor layer composition, phosphor member, light source device, and projection device
CN110799862B (zh) * 2017-06-30 2021-11-09 夏普株式会社 荧光体层组成物、荧光构件、光源装置以及投影装置

Similar Documents

Publication Publication Date Title
JP6090875B2 (ja) 照明光学系及びプロジェクタ
JP5601092B2 (ja) 照明装置及びプロジェクター
JP5445379B2 (ja) プロジェクター
JP5605047B2 (ja) 光源装置およびそれを用いた投写型表示装置
JP2022001939A (ja) 投写型映像表示装置
JP6323020B2 (ja) 光源装置およびプロジェクター
JP6427962B2 (ja) 光源装置、およびプロジェクター
JP2016099558A (ja) 波長変換素子、光源装置、プロジェクターおよび波長変換素子の製造方法
JP2016070947A (ja) 波長変換素子、光源装置、プロジェクター
JP2014075221A (ja) 光源装置
US20190072243A1 (en) Wavelength conversion device, illumination device, and projector
JP2012103615A (ja) 照明装置、プロジェクター
JP2015138168A (ja) 蛍光発光素子およびプロジェクター
JP2015230760A (ja) 光源装置、プロジェクター、および光源装置の製造方法
JP2013162021A (ja) 波長変換素子、光源装置、及びプロジェクター
US10877362B2 (en) Wavelength conversion element, light source device, and projector
JP2016099566A (ja) 波長変換素子、光源装置、およびプロジェクター
JP2017151250A (ja) 波長変換素子、光源装置及びプロジェクター
JP2019175570A (ja) 波長変換素子、波長変換素子の製造方法、照明装置およびプロジェクター
JP2016018110A (ja) 光源装置、およびプロジェクター
JP2012128121A (ja) 照明装置、プロジェクター
JP2019045778A (ja) 波長変換素子、光源装置およびプロジェクター
JP2013080578A (ja) 光源装置及びプロジェクター
JP6394076B2 (ja) 光源装置、およびプロジェクター
JP2017083907A (ja) プロジェクタおよび画像形成素子への照明光の照射方法