JP2016009131A - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
JP2016009131A
JP2016009131A JP2014130615A JP2014130615A JP2016009131A JP 2016009131 A JP2016009131 A JP 2016009131A JP 2014130615 A JP2014130615 A JP 2014130615A JP 2014130615 A JP2014130615 A JP 2014130615A JP 2016009131 A JP2016009131 A JP 2016009131A
Authority
JP
Japan
Prior art keywords
light
pulse width
control unit
unit
time width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014130615A
Other languages
English (en)
Inventor
吉井 実
Minoru Yoshii
実 吉井
岩瀬 秀夫
Hideo Iwase
秀夫 岩瀬
晋宏 井上
Akihiro Inoue
晋宏 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014130615A priority Critical patent/JP2016009131A/ja
Publication of JP2016009131A publication Critical patent/JP2016009131A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Microscoopes, Condenser (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】実質的に同一箇所かつ同一時間で複数の検出方法(マルチモダリティ)による検出が可能な顕微鏡及び内視鏡を提供する。【解決手段】本発明の一実施形態に係る顕微鏡100は、単一のレーザ発振部101と、レーザ発振部から出力された光の時間幅を変更するパルス幅制御部9と、光を被測定物12に集光して照射する光学系10と、パルス幅制御部を用いて光の時間幅を変更することによって、被測定物上の集光箇所からのフレネル反射光の強度と、非線形発光の情報とを検出する信号処理部15と、を備える。【選択図】図1

Description

本発明は、組織境界と組成分子情報などの複数の情報を同一画像に重ね合わせて検出、表示する検査装置に関する。
従来、生体等の標本にその表面から超短パルスレーザ光を照射して、標本の表面下の比較的深い位置から発せられる多光子励起発光(多光子蛍光)を検出することにより、細胞等の機能を観察する装置として、多光子励起型の測定装置が知られている。
高調波発生(HG)が生じる状態では、複数の入射光子が同時に消滅して、入射光子の合計エネルギーと等しいエネルギーを持つ新しい光子が1つ生成される。第2高調波発生(SHG)の場合、構成物質の規則性が高く、非反転対称であるときに信号が発生する。
2光子励起(多光子励起)とSHGは非線形過程であり、信号は入射光強度の2乗に依存して発生する。多光子励起顕微鏡において、非線形性の信号発生を観測する為に高い光子密度が必要である。多光子励起顕微鏡は、深さ方向の解像度を数μmとし、且つ数mmの深さまで断層像を得ることができ、眼科撮影、皮膚科撮影、歯科撮影等への適用が検討されてきている。
特許文献1には、光ファイバーの非線形効果を利用して、入射光源を多波長(広域)化し、複数波長の超短パルスレーザ光を標本に照射して、多光子励起発光を観察することができる多光子励起走査型レーザ顕微鏡を提供する方法が開示されている。
また、特許文献2には、異なったモダリティ(検出方法)で微細構造の画像をそれぞれ得ることで、生体の初期形態及び動態を二次元、三次元及び四次元的な特徴に結び付ける方法を開示されている。特許文献2では、これを一体的な顕微鏡検査用装置として構成する。特許文献2の構成によれば、例えば(a)異なるフォーマット、異なる分解能および視野による画像を比較でき、(b)構造的並びに機能的情報を取得できる。さらに、(c)これらの作業を一台の装置を用いて検体を移動、変更することなく達成することができる。
特開2006−330685号公報 特表2009−510531号公報
しかしながら、特許文献1に記載の発明では、多光子励起発光画像を用いているため、生体の分子情報は得られるが、多光子励起発光の検出結果から組織境界と分子が存在しない領域とを峻別することは難しい。このため、組織境界の検出は困難である。
一方、特許文献2に記載の発明では、1つの装置で異なる検出方法(例えば、SD−OCT、OCM、SECM、蛍光OCM等)を実現している。ところが、機械的な機構(スライダ)によって光学系ないし光学機能の切り替えを行うことを要するので、組織境界と生体の分子情報とを同一箇所、同一時間で得るのは困難である。
本発明は、上述の問題に鑑みて行われたものであって、実質的に同一箇所かつ同一時間で複数の検出方法(マルチモダリティ)による検出が可能な検査装置を提供することを目的とする。
本発明の一態様は、検査装置であって、単一のレーザ発振部と、前記レーザ発振部から出力された光の時間幅を変更するパルス幅制御部と、前記光を被測定物に集光して照射する光学系と、前記パルス幅制御部を用いて前記時間幅を変更することによって、前記被測定物上の集光箇所からのフレネル反射光の強度と非線形発光の情報とを取得する信号処理部と、を備えることを特徴とする。
本発明によれば、光の時間幅を変更することによってフレネル反射光及び非線形発光の両方を検出するため、機械的な光学系の切り替えがなく、被測定物の分子情報と組織境界の情報を実質的に同一箇所でかつ同時にマルチモダリティ検出を行い、それらを同一画像上に表示することができる。また被測定物に対して垂直方向からだけではなく斜めからも検出できる。
本発明の一実施形態に係るマルチモダリティ顕微鏡の概略構成図である。 本発明の一実施形態に係るパルス幅制御部の概略構成図である。 マルチモダリティ顕微鏡を通過するパルス光のパルス幅の変化を説明する模式図である。 パルス光の集光光束位置と検出光の種類との関係を説明する模式図である。 従来のOCT方式と本発明の一実施形態に係る境界面の検出方式とを比較する模式図である。 本発明の一実施形態に係るパルス幅圧縮部の概略構成図である。 パルス幅圧縮部によるパルス幅制御の原理を説明する模式図である。 本発明の一実施形態に係るパルス幅圧縮部の概略構成図である。 CFBGの機能を説明する模式図である。 CFBGの斜視図である。 伸縮前後のCFBGの特性変化を示す模式図である。 本発明の一実施形態に係るパルス幅圧縮部の概略構成図である。 本発明の一実施形態に係るパルス幅圧縮部の概略構成図である。 本発明の一実施形態に係るビーム走査制御部の概略構成図である。 本発明の一実施形態に係るマルチモダリティ内視鏡の概略構成図である。 本発明の一実施形態に係る集光光学系及びフォーカス制御部の概略構成図である。
以下、図面を参照して、本発明の実施の形態を説明するが、本発明は本実施形態に限定されるものではない。なお、以下で説明する図面で、同機能を有するものは同一符号を付け、その繰り返しの説明は省略することもある。
(第1の実施形態)
図1は、本実施形態に係る検査装置としてのマルチモダリティ顕微鏡100の概略構成図である。マルチモダリティ顕微鏡100は、検出に用いるための種光としてのフェムト秒パルスレーザ光を発生させる単一の種光部101(レーザ発振部)を備える。種光部101としては、周知のレーザ発振器を用いることができ、本実施形態では、励起LD3(励起レーザダイオード)と、カプラ1と、利得部2と、モードロック生成部6と、波長可変フィルタ4とがリング状に接続された構成を用いる。種光部101の出力部には、パルス光を時間的に伸長するファイバーを含むパルス幅伸長部5が接続される。パルス幅伸長部5は、後にパルス光を増幅する際に、パルス光のピークエネルギーがファイバーの破壊閾値を超えないように下げるためのものである。パルス幅伸長部5の出力部には、伸長されたレーザ光を光増幅する利得媒体部8が接続されている。利得媒体部8は利得媒体をファイバーにドープしたものからなり、励起LD7からのレーザを用いてパルス光を増幅する。
利得媒体部8の出力部には、伸長及び増幅されたパルス光の時間幅を圧縮し短パルスにする機能と、逆にパルス光の時間幅を伸長する機能とを有するパルス幅制御部9が接続される。
パルス幅制御部9の出力部からパルス光が出射される方向には、光路を変更するための複数のミラーと、パルス幅制御部9からのパルス光及び試料12から戻ってきた検出光を透過及び反射させる半透ミラー19とが設けられる。さらに、半透ミラー19をパルス光透過する方向には、パルス光を2次元(XY方向)に走査するビーム走査制御部11と、ビーム走査制御部11からのパルス光を試料12上に集光する集光光学系10とが設けられる。集光光学系10によるパルス光の集光箇所には、ステージ12aが設けられ、ステージ12a上に観察しようとする被測定物としての生体試料12が載置される。ステージ12aは、フォーカス制御部18が駆動することによってパルス光の光軸方向(Z方向)に移動可能である。フォーカス制御部18は、信号処理部15により制御される。
試料12の反射側において半透ミラー19により試料12から戻ってきた検出光が反射される方向には、バンドパスフィルタ17bと、試料12の組織境界からの(線形な)反射光の強度を検出する光電変換部13とが設けられる。バンドパスフィルタ17bは、フレネル反射の波長帯域を通過させて該波長帯域以外をフィルタリングする。光電変換部13は、微弱な検出光を電気的に増幅するロックインアンプ14を介して信号処理部15に接続される。ロックインアンプ14は省略されてもよい。
また、試料12の透過側には、多光子励起の波長帯域を通過させて該波長帯域以外をフィルタリングするバンドパスフィルタ17aと、試料12を透過した多光子励起発光(非線形発光)の強度を検出するスペクトル/光電変換部16とが設けられる。スペクトル/光電変換部16は信号処理部15に接続される。スペクトル/光電変換部16と信号処理部15との間には、微弱な検出光を電気的に増幅するロックインアンプが接続されてもよい。
マルチモダリティ顕微鏡100において、パルス光がパルス幅制御部9から出射されて試料12に到達するまでの光路は空間伝搬により構成されているが、該光路の少なくとも一部の光路はファイバー等の光導波路により構成されてもよい。
図2は、本実施形態に係るパルス幅制御部9の概略構成図である。パルス幅制御部9は、パルス幅伸長部9aと、パルス幅圧縮部9bとを備える。パルス幅伸長部9aは、パルス光を時間的に伸長するファイバーを含み、通過するパルス光の時間幅を伸ばす。パルス幅圧縮部9bは、通過するパルス光の時間幅を圧縮する。パルス幅圧縮部9bは信号処理部15に接続されており、パルス光の圧縮の度合いを制御可能に構成されている。本実施形態ではパルス光の時間幅を変えているが、パルス光の波長幅を変えてもよい。パルス幅圧縮部9bの詳細な構成については、図6〜13を用いて後述する。
信号処理部15が、パルス幅圧縮部9bによる圧縮の度合いを、パルス幅伸長部9aによる伸長の度合いよりも大きく調整することによって、パルス幅制御部9は全体として入力されたパルス光を圧縮する。逆に、信号処理部15が、パルス幅圧縮部9bによる圧縮の度合いを、パルス幅伸長部9aによる伸長の度合いよりも小さく調整することによって、パルス幅制御部9は全体として入力されたパルス光を伸長する。このような構成によって、パルス幅制御部9は、パルス光の時間幅を圧縮する機能と、パルス光の時間幅を伸長する機能とを実行することができる。信号処理部15は、多光子励起光を検出する場合にはパルス光の時間幅を約10ps以下に圧縮し、フレネル反射光を検出する場合にはそれよりも大きく伸長する。
図3は、マルチモダリティ顕微鏡100を通過するパルス光のパルス幅の変化を説明する模式図である。図3(a)は、パルス幅制御部9がパルス光の時間幅を圧縮するように制御されている場合のパルス幅の変化を示す。図3(b)は、パルス幅制御部9がパルス光の時間幅を伸長するように制御されている場合のパルス幅の変化を示す。図3(a)、(b)に示すパルス幅(パルスの時間幅)の値は一例であり、これらの具体的な値に限定されない。
図3(a)、(b)において、まず、マルチモダリティ顕微鏡100の種光部101は、種光(短パルス光)を生成する。一般に、分散(光周波数帯域)幅Δνとパルス時間幅Δtとは式(1)の関係を有することが知られている
Figure 2016009131
多光子励起光源においては、分散(光周波数帯域)幅Δνとパルス時間幅Δtとのバランスが実際上重要である。
多光子励起を起こさせるパルス時間幅Δtとしては、Δt=100フェムト秒が実用上よく用いられている。このパルス幅による決まる分散幅Δνは、それに対応する波長分散をΔλとすると、波長をλ0=1.0umとして、式(2)により表される。
Figure 2016009131
多光子励起光源としては、試料に照射する光子密度を上げるために、そもそもの光パルスエネルギーを1nJ以上に上げる必要がある。本実施形態に係るマルチモダリティ顕微鏡100では、ファイバーにドープすることによって得られた利得媒体部8により、パルス光を増幅する。ここで問題なのは、利得媒体がドープされたファイバーである利得媒体部8の光学破壊閾値により、パルスのピーク出力に制限があることである。
石英ファイバーの光学破壊閾値Dthは、パルス光の時間幅をδt(単位はナノ秒)とすると、式(3)により表される。
Figure 2016009131
この利得媒体部8の出力部で、パルス光の強度がこの光学破壊閾値Dthを超えないようにすることが重要である。また経年変化に耐えるようにするには、パルス光のピーク出力がこの値の1桁以上低いことが望ましい。
本実施形態では、利得媒体部8に入力されるパルス光の強度が光学破壊閾値Dthを十分に超えないようにするために、この利得媒体部8の入力部側、すなわち種光部101と利得媒体部8との間でパルス幅を伸長させて、ピーク出力を下げる。
通常の石英ファイバーの伝搬時間の波長依存性δtは、式(4)により表されることが知られている。
Figure 2016009131
例えば、利得媒体部8に入力される前のパルス光のピーク出力を1/100にするためには、光パルス幅を100倍に伸長させることになる。本実施形態では、図3(a)、(b)に示すように、種光部からの光パルス幅が100フェムト秒である光パルスを、ファイバー導波路を含むパルス幅伸長部5により、100倍の10ピコ秒に伸長する。
100フェムト秒のパルスにおいては、式(2)により、波長分散ΔλがΔλ=15nmである。このとき、式(4)を用いると、必要なパルス幅伸長部5のファイバーの長さは6.7mであることがわかる。
上述のように、時間幅を100倍に伸長されたパルス光は、ピーク出力が1/100になっているので、100倍の余裕度を持って、利得媒体部8により増幅できることになる。
パルス光が増幅された後の作用は、図3(a)に示すようにパルス幅制御部9がパルス光の時間幅を圧縮するように制御されている場合と、図3(b)に示すようにパルス幅制御部9がパルス光の時間幅を伸長するように制御されている場合とで、異なる。
図3(a)では、パルス幅制御部9は、パルス幅伸長部5により10psのパルス幅に伸長されたパルス光を、1/100の100フェムト秒のパルス幅に圧縮する。
このように圧縮されたパルス光を、集光光学系10により集光させながら、試料12に照射する。照射されたパルス光は、試料12の中に侵入して、光子密度が所定の閾値レベル以上になると非線形現象による発光を起こさせる。
ビーム走査制御部11は、パルス光の光束を光束照射方向(Z方向、パルス光の光軸方向ともいう)に対し垂直方向である垂直面内(XY方向)に移動させることによって、試料12中を走査する。パルス光が試料12内に例えば5mm侵入したところで、光子密度が閾値レベル以上になったとすると、そこで自家蛍光、ラマン散乱、SHG光、THG光などが発生する。それらの検出光の波長や光強度から、パルス光を照射した試料12内の物質の分布や構造を測定することができる。さらにフォーカス制御部18により試料12の載置されたステージ12aを光束照射方向(Z方向)に移動させることによって、試料12の3次元的な組成を測定することができる。
図3(b)では、パルス幅制御部9は、パルス幅伸長部5により10psのパルス幅に伸長されたパルス光を、100倍の1ナノ秒のパルス幅に伸長する。
このように伸長されたパルス光を、集光光学系10により集光させながら、試料12に照射する。照射されたパルス光は、試料12の中に侵入する。この場合には、光子密度が所定の閾値レベルに達しないため、非線形現象は起こらず、単に屈折率界面があれば反射(フレネル反射)が起こる。
ビーム走査制御部11は、パルス光の光束を光束照射方向(Z方向)に対し垂直面内(XY方向)に移動させることによって、試料12中を走査する。パルス光が試料12内に例えば3mm侵入したところで、生体の組織境界(屈折率境界)があるとすると、そこで共焦点顕微鏡と同様なフレネル反射による反射光が発生する。その検出光の光強度を検出することにより、パルス光を照射した試料12内の組織構造を測定することができる。さらにフォーカス制御部18により試料12の載置されたステージ12aを光束照射方向(Z方向)移動させることによって、試料12の3次元的な構造を測定することができる。
本発明におけるもっとも重要な解決すべき課題は、試料内の組織境界と組成分子を実質的に同一箇所で同時に検出することである。種光を例えば40MHz程度の繰り返し周波数で発振すると、種光中のパルス間の間隔は25ナノ秒となる。本実施形態では、まず、集光光学系10による集光点で、圧縮された短パルス光を生成するようにパルス幅制御部9を制御して、試料12内で多光子励起による非線形現象の発光を検出する。次に試料12内で非線形現象を起こさないように、伸長された非短パルス光を生成するようにパルス幅制御部9を制御して、試料12内で屈折率境界からのフレネル反射の反射光を検出する。検出された多光子励起発光からは試料12中の分子情報を取得することができ、フレネル反射光からは組織境界の情報を取得することができる。多光子励起発光の検出とフレネル反射光の検出との順序は逆でもよい。
本実施形態に係るマルチモダリティ顕微鏡100では、検出方法の切り替えを、機械的な光学系の切り替えではなく、パルス幅を変えることによって行っている。このため、非常に短い時間で多光子励起による非線形現象の発光とフレネル反射の反射光との両方を検出することができる。従って、本実施形態に係るマルチモダリティ顕微鏡100は、実質的に同時に複数の検出方法(マルチモダリティ)による検出を実現することが可能である。また、パルス幅制御部9から出射されるパルス光が試料12に到達するまでの光学系は多光子励起発光の検出とフレネル反射光の検出との間で同一であるため、機械的な光学系の切り替えに伴う位置ずれが生じ難い。このため、実質的に同一箇所で複数の検出方法(マルチモダリティ)による検出を実現することが可能である。
図4は、パルス光の集光光束位置と検出光の種類との関係を説明する模式図である。図4において、列(1)は試料12の断面中の組織構造と集光光束位置との相対位置関係を示す。列(2)は、各相対位置関係について、パルス幅制御部9により圧縮されたパルス光(短パルス光)を試料12に照射した場合の、スペクトル/光電変換部16の出力を示す。列(3)は、各相対位置関係について、パルス幅制御部9により伸長されたパルス光(非短パルス光)を試料12に照射した場合の、光電変換部13又はロックインアンプ14の出力を示す。
試料12は上層と下層とを含み、上層と下層との間には組織境界が形成されている。欄(a)−(1)は集光光束位置が上層中の場合、欄(b)−(1)は集光光束位置が組織境界上の場合、欄(c)−(1)は集光光束位置が下層中の場合をそれぞれ表す。
欄(a)−(1)の場合について説明する。まず、パルス幅制御部9により発生された短パルス光を試料12に照射する。そうすると、エネルギー密度が高いため多光子励起による非線形発光を起こすので、スペクトル/光電変換部16では欄(a)−(2)のように上層の組織構造に特有なスペクトルが検出される。次に、パルス幅制御部9により発生された非短パルス光を試料12に照射する。そうすると、エネルギー密度が低いため非線形発光は起こらず、さらに屈折率境界も近くにないため線形のフレネル反射による反射光は弱く、光電変換部13又はロックインアンプ14では欄(a)−(3)のように弱い信号が検出される。
欄(b)−(1)の場合について説明する。まず、パルス幅制御部9により発生された短パルス光を試料12に照射する。そうすると、組織境界上には多光子励起による非線形発光を起こす物質がないので、スペクトル/光電変換部16では欄(b)−(2)のように弱い蛍光スペクトルが検出される。次に、パルス幅制御部9により発生された非短パルス光を試料12に照射する。そうすると、エネルギー密度が低いため非線形発光は起こらないが、屈折率境界(組織境界)での線形のフレネル反射による反射光が発生し、光電変換部13又はロックインアンプ14では欄(b)−(3)のように強い信号が検出される。
欄(c)−(1)の場合について説明する。まず、パルス幅制御部9により発生された短パルス光を試料12に照射する。そうすると、欄(a)−(2)の場合と同様に、エネルギー密度が高いため多光子励起による非線形発光を起こすので、スペクトル/光電変換部16では欄(c)−(2)のように下層の組織構造に特有なスペクトルが検出される。次に、パルス幅制御部9により発生された非短パルス光を試料12に照射する。この場合に、欄(a)−(3)の場合と同様に、エネルギー密度が低いため非線形発光は起こらず、さらに屈折率境界ではないため線形のフレネル反射による反射光は弱い。そのため、光電変換部13又はロックインアンプ14では欄(c)−(3)のように弱い信号が検出される。
図5は、従来のOCT方式と本実施形態に係る境界面の検出方式とを比較する模式図である。図5に示すように、本実施形態に係る境界面の検出方式は、従来のOCT方式に比べ、検出できる被検面の傾き範囲が大きい。
OCT方式は、干渉を利用して境界面を検出するものであり、検出できる深さは光源のコヒーレント長に依存する。一方で、照射する被検箇所におけるスポットサイズは20μm程度にして焦点深度を深くする。このためNAが0.032と小さくなり、検出可能な境界面の角度範囲が小さい。それに対して、本実施形態は、屈折率界面からのフレネル反射による反射強度を直接検出する方式を利用しているため、集光スポットサイズを1μm程度とし、NAを0.59と大きくして照射した方が境界面の検出感度がよい。
従って、境界面からの反射光を検出するための被検面の傾きθの範囲は、OCT方式が0.9°までなのに対し、本実施形態に係る検出方式では18.2°までと約20倍大きい。このように、本実施形態に係る検出方式の方がOCT方式に比べて実用性が高いという効果がある。
次に、図6〜13を用いて、パルス幅制御部9に含まれるパルス幅圧縮部9bの構成を詳細に説明する。図6は、一例としてのパルス幅圧縮部9bの概略構成図である。
図6に示すように、パルス幅圧縮部9bは、筐体26に搭載され、互いに対向する2つの回折格子22、23を備えており、この2つの回折格子22、23は同一の格子定数(単位長さあたりの溝本数)を有する。また、パルス幅圧縮部9bは、入力されるパルス光及び出力されるパルス光を透過及び反射させる半透ミラー21と、2つの回折格子22、23を経たパルス光を同一光路に戻す光路折り返しミラー24とを備える。一方の回折格子23には、2つの回折格子22、23の間隔dを変えるためのアクチュエータ25が接続されている。アクチュエータ25は、他方の回折格子22に設けられてもよく、又は回折格子22、23の両方に設けられてもよい。図6においては、一例として、左側(入力側)からパルス幅10psのパルス光が入力されており、下側(出力側)にパルス幅100fsのパルス光が出力される。つまり、図6のパルス幅圧縮部9bは、パルス幅を100倍に圧縮できる。
図7は、図6のパルス幅圧縮部9bによるパルス幅制御の原理を説明する模式図である。図7においては、波長λ1、λ2(λ1<λ2)を有する2つのパルス光が時間δt離れて入力されている。そして、パルス光が入射角θ0で回折格子22に入射すると、回折格子22から1次回折光が波長λ1、λ2のそれぞれに応じた角度で回折し、回折格子23に入射する。回折格子22と回折格子23とは平行に配置されているので、回折格子23で回折した波長λ1、λ2の光は、それぞれ回折格子22への入射光線と平行になる。
この場合に、長波長λ2のパルス光は、短波長λ1のパルス光より長い距離を進むため、格子の間隔dを調整すると、波長λ1と波長λ2のパルス光の時間間隔δtが0となり、1つの短パルス光として出射することができる。
この2つの回折格子22、23によって制御される時間間隔δtは、式(5)により表される
Figure 2016009131
ここで、cは光速度、Nは格子定数、θ0は回折格子22へのパルス光の入射角である。また、2つの回折格子22、23で回折後の波長分離幅φは、式(6)により表される。
Figure 2016009131
具体例として、式(5)において、λ1=0.820μm、λ2=0.835μm(δλ=15nm)、回折格子の格子定数N=900本/mm、θ0=0とすると、間隔d=7.5mmでδt=10psに圧縮できることがわかる。また、式(6)により、この時のミラー24上の波長分離幅はφ=1.63mmとなることがわかる。
図8は、別の例としてのパルス幅圧縮部9bの概略構成図である。図8のパルス幅圧縮部9bは、図6のパルス幅圧縮部9bよりも高速に変調可能である。図8に示すように、パルス幅圧縮部9bは、チャープド・ファイバー・ブラッグ・グレーティング31(CFBG)と、円柱状のピエゾ圧電素子32とを備え、CFBG31及びピエゾ圧電素子32のそれぞれの両端は共通の筐体33に固定されている。CFBG31は、伸縮することによってパルス幅を変調することができる。ピエゾ圧電素子32は、信号処理部15及び電圧発生器34に接続されており、信号処理部15からの指示に基づいて電圧発生器34によりピエゾ圧電素子32を長手方向に伸縮させる。ピエゾ圧電素子32の伸縮は筐体33を介してCFBG31に伝わり、パルス幅を変調する。
図9は、CFBG31の機能を説明する模式図である。CFBG31は、ファイバーの導波方向に屈折率を周期的に変化させた回折格子で構成されている。CFBG31の回折格子のピッチは、チャープ状に、すなわち一方端から他方端へゆるやかに変化している。CFBG31の回折格子においては、長波長側の光波が、短波長側の光波より、長い光路を往復するように回折格子のピッチが刻んである。パルス幅が広がった(パルス光の先頭は長波長、末尾は短波長)光波がCFBG31に入力され、このCFBG31を往復して出力されると、該光波のパルス幅は狭まり、パルス圧縮されることになる。
図10は、CFBG31の斜視図である。CFBG31は、コア部31aと、クラッド部31bとを備え、コア部31a中には上述のように周期的に変化した回折格子31cが形成されている。図10に示すように、CFBG31を長手方向に機械的に伸縮させることによりパルス圧縮を行うことができる。
図11は、伸縮前後のCFBG31の特性変化を示す模式図である。試料深さを5mmとすると、補正すべきパルス幅はδt=0.15psである。ここで波長幅はδλ=15nmであり、補正前後で変わらないことが肝要である。波長幅δλのパルス光を反射する間隔をd、ファイバーコアの平均屈折率(=1.5)をn、光速度をcとすると、ベースとなる遅延時間δtとdとの関係は、式(7)で表される。
Figure 2016009131
ここで、ベース遅延時間δt=15psとすると、間隔dは式(8)で表される。
Figure 2016009131
このときのピッチPλは、波長λを用いて、式(9)で表される。
Figure 2016009131
ここで、Mは干渉次数であり、実際には製作可能な次数となる。M=100とすると、波長λ=0.82μmのときのピッチPλ=0.82、及び波長λ=0.835μmのときのピッチPλ=0.835は、それぞれ式(10)、(11)で表される。
Figure 2016009131
Figure 2016009131
式(8)で示したように、間隔d=1500μmであるので、これを1%伸ばせば、パルス幅を1%変化させることができる。すなわち、CFBG31を1%伸ばすことによって、ベース遅延時間δt=15psの1%、つまりパルス幅δt=0.15psの分、高速に補正可能である。
以上のように、CFBG31を用いるパルス幅圧縮部9bは、ピエゾ圧電素子32により高速にCFBG31を伸縮させるという簡単な作用で、パルス幅を高速に変えることができる。そのため、実質的に同一の場所及び時間で、多光子励起蛍光を検出して分子組成に関連するスペクトル情報を検出するとともに、屈折率界面での反射光強度変化から生体の構造境界形状に結びつく情報を得ることができる。
図12は、別の例としてのパルス幅圧縮部9bの概略構成図である。図12に示すように、パルス幅圧縮部9bは、円柱状のピエゾ圧電素子35と、ピエゾ圧電素子35の側面に沿って巻き付けられたCFBG31とを備える。ピエゾ圧電素子35に信号処理部15及び電圧発生器34から電圧を印加することにより、ピエゾ圧電素子35は半径方向に膨張し、それに伴ってCFBG31が長手方向に伸縮し、パルス幅を変調する。
図13は、別の例としてのパルス幅圧縮部9bの概略構成図である。図13に示すように、パルス幅圧縮部9bは、CFBG31と、CFBG31の側面を囲むように設けられた円筒状のピエゾ圧電素子55とを備え、CFBG31及びピエゾ圧電素子55のそれぞれの両端は共通の筐体56に固定されている。ピエゾ圧電素子55に不図示の信号処理部及び電圧発生器から電圧を印加することにより、ピエゾ圧電素子55は長手方向に伸縮し、ピエゾ圧電素子55の伸縮は筐体56を介してCFBG31に伝わり、パルス幅を変調する。
図14は、ビーム走査制御部11の概略構成図である。図14を用いて、観察試料面とパルス走査方向を説明するとともに、光電変換部13とその信号強度に基づいて第2パルス幅制御部90を制御する方法について説明する。
ビーム走査制御部11は、パルス光の光束を光束照射方向(Z方向)に対し垂直面内(XY方向)に移動させる。ここではXY方向を試料12中の観察面に一致させ、その観察面に対し図14に示すように座標軸X、Yを定義する。
ビーム走査制御部11は、X方向スキャンミラー42と、Y方向スキャンミラー41とを備える。ビーム走査制御部11の入射側(種光部101側)には、第2パルス幅制御部90と、入射側からのパルス光及び試料12からの検出光を透過及び反射させる半透ミラー19とが設けられている。第2パルス幅制御部90は図1には図示されていないが、パルス幅制御部9とビーム走査制御部11との間の任意の場所に設けられる。第2パルス幅制御部90は、パルス幅制御部9と同様の構成を有しており、信号処理部15からの信号に従って、通過するパルス光の時間幅を伸長及び圧縮することができる。Y方向スキャンミラー41及びX方向スキャンミラー42は、不図示の駆動部によって信号処理部15からの信号に従ってそれぞれ駆動可能であり、第2パルス幅制御部90からのパルス光を試料12中の観察面上でXY方向に二次元に走査する。ここではパルス光を不図示の集光光学系10により試料12中に集光し、多光子励起光の光密度が所定の閾値以上になると非線形現象による発光が発生する。
その発光は、検出光としてX方向スキャンミラー42及びY方向スキャンミラー41を通って入射方向に戻り、半透ミラー19により反射され、光電変換部13に入力される。検出光の光強度信号は、光電変換部13に導かれ電気信号に変換され、信号処理部15に入力される。信号処理部15は、この電気信号に基づいて、第2パルス幅制御部90に接続された電圧発生器34を通して、非線形現象による発光の強度が大きくなるように、第2パルス幅制御部90をリアルタイムにフィードバック制御する。
このように第2パルス幅制御部90を設けることによって、試料12からリアルタイムに得られる情報に基づいて、非線形現象による発光の強度を最適化するように、パルス幅の圧縮を調整することができる。本実施形態ではパルス幅制御部9と第2パルス幅制御部90とは別に設けられているが、パルス幅制御部9が第2パルス幅制御部90の機能を有してもよい。
(第2の実施形態)
図15は、本実施形態に係る検査装置としてのマルチモダリティ内視鏡200の概略構成図である。マルチモダリティ内視鏡200は、短パルス光の照射によって試料12から発生する多光子励起発光と、非短パルス光の照射による反射光とを、照射に用いたものと同じ集光光学系10で取り込む。これらの光を、略コリメートビームとし、2つの半透ミラー19a、19bを介して光電変換部13及びスペクトル/光電変換部16で電気信号として検出する構成を有する。
マルチモダリティ内視鏡200の種光部101からパルス幅制御部9までの構成は、マルチモダリティ顕微鏡100のものと同様である。
パルス幅制御部9の出力部からパルス光が出射される方向には、パルス幅制御部9からのパルス光及び試料12から戻ってきた検出光を透過及び反射させる2つの半透ミラー19a、19bとが設けられる。パルス光が半透ミラー19a、19bを透過する方向には、パルス光を2次元(XY方向)に走査するビーム走査制御部11と、ビーム走査制御部11からのパルス光を試料12上に集光する集光光学系10とが設けられる。集光光学系10を通るパルス光の光軸方向(Z方向)に沿った集光位置は、フォーカス制御部18によって移動可能である。フォーカス制御部18は、信号処理部15により制御される。
試料12に近い方の半透ミラー19aは多光子励起発光の波長帯域を主に反射するように構成されており、試料12から遠い方の半透ミラー19bは反射光の波長帯域を主に反射するように構成されている。例えば、波長1μm程度のパルス光を用いる場合には、半透ミラー19aの反射波長帯域を500nm近傍とし、半透ミラー19bの反射波長帯域を1μm近傍とすればよい。
試料12に近い方の半透ミラー19aにより試料12から戻ってきた検出光が反射される方向には、バンドパスフィルタ17aと、試料12を透過した多光子励起発光(非線形発光)の強度を検出するスペクトル/光電変換部16とが設けられる。バンドパスフィルタ17aは、多光子励起の波長帯域を通過させて該波長帯域以外をフィルタリングする。スペクトル/光電変換部16は、信号処理部15に接続される。スペクトル/光電変換部16と信号処理部15との間には、微弱な検出光を電気的に増幅するロックインアンプが接続されてもよい。
試料12から遠い方の半透ミラー19bにより試料12から戻ってきた検出光が反射される方向には、バンドパスフィルタ17bと、試料12の組織境界においてフレネル反射により反射された(線形な)反射光の強度を検出する光電変換部13が設けられる。バンドパスフィルタ17bは、フレネル反射の波長帯域を通過させて該波長帯域以外をフィルタリングする。光電変換部13は、微弱な検出光を電気的に増幅するロックインアンプ14を介して信号処理部15に接続される。ロックインアンプ14は省略されてもよい。
図1で示したマルチモダリティ顕微鏡100では、試料12の裏面側(照射面と反対の面)に多光子励起発光を測定するためのバンドパスフィルタ17a及びスペクトル/光電変換部16が配置されていた。それに対して、本実施形態に係るマルチモダリティ内視鏡200の構成では、集光光学系10によって多光子励起発光と反射光との両方を取り込み、半透ミラー19a、19bによりそれらを分離して検出する。そのため、測定に係る光学部材および機器を試料12(例えば、生体)の裏面側に配置する必要がない。このような構成ではパルス光の照射のための集光光学系と検出光を取り込むための光学系とが共通化されているため、体内で測定を行うマルチモダリティ内視鏡の構成として有利である。また、これと同様の構成をマルチモダリティ顕微鏡として用いることも可能である。
図16は、マルチモダリティ内視鏡200における集光光学系10及びフォーカス制御部18の概略構成図である。マルチモダリティ内視鏡200は、ファイバー51を用いて照射及び検出のための光学系が構成されており、ファイバー51を体内に入れることによって、体内での短パルス光および非短パルス光の照射、および多光子励起発光と反射光の測定が可能となる。マルチモダリティ内視鏡200の少なくとも一部の光路を、ファイバーではなくファイバー以外の光導波路又は空間伝搬により構成してもよい。
ファイバー51の先端にはパルス光及び試料12から戻ってきた光を反射するためのミラー52と、パルス光及び試料12から戻ってきた光を集光するための集光光学系10と、フォーカス制御部18とが設けられる。フォーカス制御部18は、集光光学系10で集光される短パルス光および非短パルス光の焦点位置を制御する。フォーカス制御部18は、互いに対向する2枚のウェッジ18b、18cと、ウェッジ18b、18cの少なくとも一方を駆動させるウェッジ駆動部18aとを備える。2枚のウェッジ18b、18cはそれぞれ光束照射方向(Z方向)に対して傾斜した斜面Pを有しており、ウェッジ18bの斜面Pとウェッジ18cの斜面Pとは平行になるように配置されている。2枚のウェッジ18b、18cは、ウェッジ駆動部18aによって、光束照射方向(Z方向)に対し垂直面内に沿ってスライドされる。ウェッジ18b、18cをスライドさせることにより、ウェッジ18b、18cの光束照射方向(Z方向)に沿った厚みの合計が変化する。そのため、パルス光および非パルス光がウェッジ18b、18cの内部を通過する距離が変化し、それらの光束照射方向(Z方向)の焦点位置を変化させることができる。このような、ウェッジ18b、18cを用いた焦点位置の制御は構成が簡単であることから、ファイバーを用いるマルチモダリティ内視鏡での使用に適している。また、これと同様の構成をマルチモダリティ顕微鏡に用いることも可能である。
本発明は、上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。本発明に係る検査装置の構成は、マルチモダリティ顕微鏡及びマルチモダリティ内視鏡だけでなく、任意の検査装置、測定装置又は撮像装置に用いることができる。
100 マルチモダリティ顕微鏡
101 種光部(レーザ発振部)
200 マルチモダリティ内視鏡
5 パルス幅伸長部
8 利得媒体部
9 パルス幅制御部
10 集光光学系
11 ビーム走査制御部
12 試料
12a ステージ
13 光電変換部
15 信号処理部
16 スペクトル/光電変換部18 フォーカス制御部
90 第2パルス幅制御部

Claims (7)

  1. 単一のレーザ発振部と、
    前記レーザ発振部から出力された光の時間幅を変更するパルス幅制御部と、
    前記光を被測定物に集光して照射する光学系と、
    前記パルス幅制御部を用いて前記時間幅を変更することによって、前記被測定物の上の集光箇所からのフレネル反射光の強度と非線形発光の情報とを取得する信号処理部と、
    を備えることを特徴とする検査装置。
  2. 前記パルス幅制御部は、前記時間幅を第1の時間幅及び第2の時間幅のいずれか一方に変更するように構成され、
    前記信号処理部は、前記時間幅が前記第1の時間幅の場合に前記非線形発光の情報を検出し、前記時間幅が前記第2の時間幅の場合に前記フレネル反射光の強度を検出するように構成されている
    ことを特徴とする請求項1に記載の検査装置。
  3. 前記第1の時間幅は10ps以下であり、前記第2の時間幅は前記第1の時間幅より大きいことを特徴とする請求項2に記載の検査装置。
  4. 請求項1に記載の検査装置を備えることを特徴とする顕微鏡。
  5. 前記集光箇所を前記光の光軸方向及び前記光軸方向に対する垂直方向に移動させる制御部をさらに備えることを特徴とする請求項4に記載の顕微鏡。
  6. 請求項1に記載の検査装置を備えることを特徴とする内視鏡。
  7. 前記集光箇所を前記光の光軸方向に移動させる制御部をさらに備えることを特徴とする請求項6に記載の内視鏡。
JP2014130615A 2014-06-25 2014-06-25 検査装置 Pending JP2016009131A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130615A JP2016009131A (ja) 2014-06-25 2014-06-25 検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130615A JP2016009131A (ja) 2014-06-25 2014-06-25 検査装置

Publications (1)

Publication Number Publication Date
JP2016009131A true JP2016009131A (ja) 2016-01-18

Family

ID=55226700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130615A Pending JP2016009131A (ja) 2014-06-25 2014-06-25 検査装置

Country Status (1)

Country Link
JP (1) JP2016009131A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156694A (ja) * 2016-03-04 2017-09-07 株式会社フォブ 光学顕微鏡、及び観察方法
CN112880816A (zh) * 2021-01-21 2021-06-01 内蒙古工业大学 一种线性菲涅尔能流密度测试系统
JP2022508829A (ja) * 2018-10-19 2022-01-19 インクビット, エルエルシー 高速計測

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156694A (ja) * 2016-03-04 2017-09-07 株式会社フォブ 光学顕微鏡、及び観察方法
JP2022508829A (ja) * 2018-10-19 2022-01-19 インクビット, エルエルシー 高速計測
CN112880816A (zh) * 2021-01-21 2021-06-01 内蒙古工业大学 一种线性菲涅尔能流密度测试系统

Similar Documents

Publication Publication Date Title
US9835840B2 (en) Methods for optical amplified imaging using a two-dimensional spectral brush
KR100962522B1 (ko) 3색 광원을 이용하는 멀티플렉스 cars 분광장치
JP2007101250A (ja) 光断層画像化方法
JP2009511175A (ja) 反ストークスラマン散乱内視鏡検査のシステムおよび方法
JP5203063B2 (ja) 多光子励起測定装置
JP3999437B2 (ja) 光断層画像化装置
JP2011187947A (ja) 波長掃引光源装置及びこれを用いた撮像装置
JP2013113623A (ja) 誘導ラマン散乱計測装置
JP5697699B2 (ja) ラマン散乱計測装置およびラマン散乱計測方法
JP2016009131A (ja) 検査装置
JP5139170B2 (ja) 多光子励起測定装置
WO2015136939A1 (en) Raman scattering measurement apparatus and raman scattering measurement method
CN114324271B (zh) 自相位调制光谱选择驱动的显微镜系统、其方法及显微镜
JP2012112863A (ja) 多光子励起測定装置
JP4845279B2 (ja) 生体機能測定方法
JP2018045229A (ja) 光源装置、およびそれを用いた情報取得装置
JP6501451B2 (ja) 光源装置およびそれを用いた情報取得装置
JP2015158482A (ja) 誘導ラマン散乱計測装置
JP2017003311A (ja) ファイバレーザ、光学装置、および計測装置
JP2017108017A (ja) レーザ装置、及びこれを用いた計測装置
JP2015175846A (ja) ラマン散乱計測装置
JP2007298365A (ja) 弾性・粘性測定装置
US20150357786A1 (en) Light source apparatus and information acquisition apparatus using the same
US20110199676A1 (en) Confocal microscope
CN114001645B (zh) 三波长光纤点差分共焦显微探测方法与装置