JP2015515124A - ディスクレーザを冷却するシステム及び方法 - Google Patents

ディスクレーザを冷却するシステム及び方法 Download PDF

Info

Publication number
JP2015515124A
JP2015515124A JP2014560132A JP2014560132A JP2015515124A JP 2015515124 A JP2015515124 A JP 2015515124A JP 2014560132 A JP2014560132 A JP 2014560132A JP 2014560132 A JP2014560132 A JP 2014560132A JP 2015515124 A JP2015515124 A JP 2015515124A
Authority
JP
Japan
Prior art keywords
coolant
cooling
nozzle
chamber
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014560132A
Other languages
English (en)
Inventor
ツウェイバック,ジェイソン
フィリポーネ,クラウディオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Logos Technologies LLC
Original Assignee
Logos Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Logos Technologies LLC filed Critical Logos Technologies LLC
Publication of JP2015515124A publication Critical patent/JP2015515124A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • H01L23/4735Jet impingement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Lasers (AREA)

Abstract

所望のエッジ効果及び光学特性を生成する為に、所望の熱プロファイルに従って、ディスクレーザなどの発熱装置用を冷却する為の冷却装置。例示的な冷却装置は、発熱装置を支持するバックプレートを含む。バックプレートは、ノズル部を含む筐体を提供する壁を備える冷却装置ハウジングの部分である。ノズル部は、バックプレートとは反対側で冷却装置ハウジングを囲む。ノズル部の端部にはノズル冷却面が形成される。ノズル冷却面は、その中心から縁部まで外向きに延在して、バックプレートと共に冷却剤室を形成する。冷却流体は、ノズル部に形成された入口経路を通って冷却剤室に入り、且つノズル冷却面の縁部とハウジング壁の内側との間の室の間隙から出てもよい。

Description

本出願は、ジェイソン・ツヴァイバック(Jason Zweiback)及びクラウディオ・フィリッポーネ(Claudio Filippone)による、2012年3月2日出願の米国仮特許出願第61/605,796号明細書(「ディスクレーザの光学的歪みを最少にする方法(Method for Minimizing Optical Distortions in Disk Laser)」)の優先権を主張し、且つこれを本願明細書に援用する。
本発明は、概して、発熱する装置即ち発熱装置の冷却に関し、より詳細には、選択した熱プロファイルに従って、発熱装置を冷却する為の装置及び方法に関する。
ディスクレーザは、平坦で実質的に薄い層として形成されたレーザ材料を有するレーザであり、ヒートシンクに載置されている。ディスクレーザの利得媒質が、実質的に、反射係数が1よりも大きい光学ミラーである為、ディスクレーザはまた、「アクティブミラー」としても公知である。光はディスクレーザに向けられ、且つディスクレーザで、ディスクレーザに向けられた光の強度を上回る強度で反射する。ディスク層は、ディスクレーザによって発生した相当な熱を除去する為に、ヒートシンクに載置される。
ヒートシンクは、ディスクレーザの表面近くを流れて熱を除去する冷却液を有し得る。ヒートシンクの構造は、冷却剤が流れ得る冷却マイクロチャネルを含み、ディスクの表面全体に実質的に均一な冷却効果をもたらし得る。冷却剤は、マイクロチャネルにポンプで通されるが、ポンプが一様でないこと及びエッジ効果の為に、ディスクの表面上に温度勾配を形成し得る。この勾配はディスクを歪ませ、光学収差を生じる。幾つかの実装例では、変形可能なミラー及びパッシブオプティクスを使用して光学収差を制御し得る。しかしながら、光学部品の追加は、レーザシステムのコスト及び複雑性を著しく増大し得る。
上記を考慮して、温度勾配に起因する光学収差を少なくするようにディスクレーザを冷却するシステム及び方法が継続的に必要とされている。
上記を考慮して、発熱装置の冷却の為に冷却装置が提供される。一例では、冷却装置がバックプレートを含み、このバックプレートは、発熱装置を支持する受熱面、対向するバックプレート内面、及び受熱面とバックプレート内面との間にバックプレートの厚さを含む。バックプレートからハウジングが延在し、且つハウジングは冷却剤出口を含む。ノズル部が、ハウジング内に配置され、且つバックプレート内面から離間してその間に冷却剤室を形成する。ノズル部は冷却剤入口を含み、且つ冷却剤入口から冷却剤出口まで、冷却剤室を通る冷却流体の流れを確立するように構成される。バックプレート、冷却剤室、及びノズル部の少なくとも1つの形状は、発熱装置から冷却剤室まで非均一的な熱伝達プロファイルを確立するように変化して、発熱装置に所望の温度プロファイルを与える。
他の例では、冷却装置は、バックプレートのないハウジングを含む。
他の例では、冷却剤室は、バックプレート内面と、冷却剤室の中心から縁部まで収束するように輪郭が形成されたノズル冷却面とを備えて形成される。収束は、所望の熱プロファイルに従って冷却を調整するように、設計され得る。
他の例では、冷却剤室は、バックプレート内面と、冷却剤室の中心から縁部まで広がるように輪郭が形成されたノズル冷却面とを備えて形成される。広がりは、所望の熱プロファイルに従って冷却を調整するように、設計され得る。
他の例では、冷却装置は、ノズル部を取り囲む周辺チャンネルを含み、冷却流体が室の間隙から周辺チャンネルに流れ出るようにする。
幾つかの例では、冷却剤出口室は、冷却装置ハウジングを取り囲むように形成され得る。冷却剤出口室は、冷却装置ハウジングの周りに展開するにつれて変化する断面を有し得る。
他の例では、ノズル部には複数の流体入口流路が形成され得る。複数の流体入口流路は、個別に制御されたインジェクターを使用して流体が注入され、所望の冷却プロファイルを生成するように調整される各インジェクター内に冷却剤の流れをもたらし得る。
他の例では、流体入口流路は、例えば、旋回羽根を使用して乱流を生成するように設計され得る。
本発明の他の装置、器具、システム、方法、特徴及び利点は、以下の図面及び詳細な説明を検討すれば、当業者には明らかである、又は明らかとなる。そのような追加的な全てのシステム、方法、特徴及び利点は、この説明に含まれている、本発明の範囲内にある、及び添付の特許請求の範囲によって保護されているものとする。
本発明は、以下の図面を参照することにより、より理解され得る。図面の構成要素は、必ずしも縮尺通りではなく、本発明の原理を説明する為に強調している。図面では、参照符号は、異なる図面を通して、対応する部分を示す。
冷却装置の実装例の斜視的な上部断面図である。 図1に示す実装例の斜視的な上面図である。 図1に示す実装例の斜視的な底面図である。 図1に示す冷却装置の修正実装例の斜視的な上部断面図である。 図1の冷却装置の別の修正実装例の斜視的な底部断面図である。 図4に示す冷却装置の修正実装例の断面図である。 2つの冷却剤室を有する冷却装置の例の概略的な断面図である。 図6に示す冷却装置の実装例の断面図である。 個別に制御されたインジェクターを使用して冷却剤を送達する冷却装置の別の例の概略的な断面図である。 図8に示す冷却装置の実装例の断面図である。 冷却装置の別の実装例の上面図である。
ディスクレーザなどの発熱装置は、その体積部から、熱プロファイルに一致するように熱を発生し、その熱プロファイルは、装置の体積部内で発生した熱の分布を特徴付けている。概して、ディスクレーザの熱プロファイルは、ディスク内のいずれの箇所からも同じ量の熱が発生されるようには、一様でない。ディスクレーザは、一般に、発熱装置の中心からほとんどの熱を発生し、及びディスクの縁部に向かう点からはあまり熱を発生しない。しかし、熱プロファイルは、例えば、最も熱い部分がどれほど熱くなるか、ディスクの表面に沿って温度がどの程度変化するか、及びディスクの最も熱い部分と最も冷たい部分との間の差などによって、変化し得る。更に、ディスクレーザは、均一な温度プロファイルを達成するにもかかわらずディスクレーザの光学特性を歪ませ得る光学特性を示し得る。本明細書で説明する冷却装置は、好ましくは、所望の熱プロファイルに従って冷却するように構成して、ディスクレーザに、より均一な熱プロファイルをもたらすことに加え、レーザの性能において所望の光学特性を生じるように取り組む。
下記で説明する冷却装置は、ディスク形状の発熱装置、より詳細には、ディスクレーザの冷却を提供することに照らして説明される。当業者は、冷却装置は、厚さ部分で分けられる平面を有する任意の発熱装置を冷却するように構成し得ることを理解する。装置はまた、丸、矩形又は多角形などの任意の形状とし得る。
図1は、ディスクレーザなどの熱生成装置即ち発熱装置101を冷却するように構成された冷却装置100の実装例の斜視的な上部断面図である。図2Aは、図1に示す実装例の斜視的な上面図である。図2Bは、図1の実装例の斜視的な底面図である。図1、図2A、及び図2Bを参照すると、冷却装置100は、発熱装置101が載置される受熱面104を含むバックプレート102を含む。発熱装置101は、実質的に平坦であり、平面間には厚さがある。概して、平面間の厚さは均一である為、発熱装置101は実質的に平面的である。発熱装置101はまた、少なくとも一方の面を平面にし、厚さ部分が線形的であっても、又は厚さ部分が湾曲していてもよい。上述の通り、発熱装置101は、説明の為にディスクレーザであると考えられるが、冷却が必要となるような十分な熱を発生する、任意の形状の平面的な面を備える任意の装置を発熱装置101とし得る。
バックプレート102の受熱面104は、発熱装置101の平面的な面と接触するのに十分な領域を有する。バックプレート102は、受熱面104に対向して配置されたバックプレート内面106を形成するように付形された、熱伝導性の固体で作製され得る。バックプレート内面106は、受熱面104とバックプレート内面106との間のバックプレート厚さTbを変化させるように、輪郭が形成され得る。図1のバックプレート102のバックプレート厚さTbは変化し、バックプレート102の中心部分の厚さは薄く、バックプレート102の外縁に向かってより厚さが増している。バックプレート102は、熱伝導性固形物における伝導性によって発熱装置101の冷却に寄与する。下記で説明するように、冷却媒質は、バックプレート内面106と接触するように注入される為、対流による冷却をもたらす。バックプレート102の幾何学的形状は、熱伝導と対流との複合効果をもたらして、発熱装置101の表面に対する所望の熱プロファイルに従って発熱装置101を冷却するように設計し得る。
冷却装置100は、一方の側面がバックプレート102と、バックプレート102から延在して冷却装置ハウジング108を取り囲むハウジング壁110とによって形成された冷却装置ハウジング108を含む。ハウジング壁110は、バックプレート内面106から延在する内壁面112を含む。ハウジング壁110は、冷却剤アクセス側114とバックプレート102との間で冷却装置ハウジング108を取り囲むように形成される。
冷却装置100は、冷却装置ハウジング108内に配置されたノズル部120を含む。ノズル部120は、冷却装置ハウジング108の冷却剤アクセス側114を覆うノズル部ベース122を含む。ノズル部ベース122は、冷却装置ハウジング108を実質的に囲む。冷却装置ハウジング108のノズル冷却面124は、ノズル部ベース122に対向するノズル部120の一方の端部に形成される。ノズル冷却面124は、ノズル冷却面の中心126からノズル冷却面の縁部128の方へ外向きに延在する。ノズル冷却面124は、一方では冷却剤室130を生み出ように形成され、及び他方ではバックプレート内面106と共に、冷却流体を入れる為に使用され得る体積部を形成する。ノズル部120はノズル本体壁132を含み、このノズル本体壁は、ノズル冷却面124とノズル部ベース122との間のノズル部120を取り囲む壁である。
冷却装置100は、ノズル部120に形成された冷却剤入口136を含み、ノズル部ベース120とノズル冷却面124との間に流体入口流路138を提供する。冷却剤入口136は、冷却流体を受け入れ、且つ冷却流体を流体入口流路138に注入するように構成される。流体入口流路138は、冷却流体を、ノズル冷却面の中心126において冷却剤室130に排出させる。冷却剤室130から冷却剤を排出させる為に、冷却剤室130には、ノズル本体壁132とハウジング壁の内壁面112との間に室の間隙140が形成される。室の間隙140は、図1、図2A、及び図2Bの冷却装置100に関するノズル部120を取り囲む環状の間隙として形成される。代替的な実装例では、室の間隙140は、矩形の外周、又は多角形の外周となってもよく、及び室の間隙140によって形成される形状は、発熱装置101の形状に対応しても、又は対応しなくてもよい。
冷却装置100は、冷却液が冷却剤室130に入り、冷却剤室130を満たして、冷却液がバックプレート内面106に接触して、対流による冷却効果をもたらすことができるように、構成する。冷却液は、室の間隙140を経由して冷却剤室130から流れ出る。ノズル部ベース122には、室の間隙140に流入する冷却流体の為の出口を提供するのに好適な個所に、冷却剤出口144が形成される。
図1、図2A、及び図2Bに示す冷却装置100では、冷却剤室130の幾何学的形状は、所望の熱プロファイルに一致するように、バックプレート内面106及びノズル冷却面124の輪郭の設計に応じて、選択的に形成され得る。図1の冷却装置100の実装例では、ノズル部120はノズル棚部150を含んでもよく、このノズル棚部は、ノズル本体壁132を越えて延在するノズル冷却面の縁部128によって形成され得る。
ノズル部120はまた、ノズル部ベース122に対向して、ノズル本体壁132から延在するノズル部内面152を含んでもよく、それにより、周辺チャンネル160用の床を形成する。図1に示すように、周辺チャンネル160は、ノズル棚部150、ノズル本体壁132、ノズル部内面152、ハウジング壁110の内壁面112、及び室の間隙140によって形成され得る。冷却剤出口144はまた、周辺チャンネル160の、冷却装置100から冷却液を十分に排出させるのに好適な個所に形成され得る。使用時、冷却装置100は、流体入口流路138を通して冷却流体を受け入れ、冷却流体は冷却剤室130を満たす。冷却流体が冷却剤室130を満たす為、冷却流体は、バックプレート内面106での対流により冷却することによって、バックプレート102を経由して発熱装置101を冷却する。冷却流体が冷却剤室130を満たす為、冷却流体は室の間隙140に流入し、周辺チャンネル160を満たす。周辺チャンネル160が冷却流体で満たされる為、冷却流体は、周辺チャンネル160に形成され得る冷却剤出口144を通り流出される。
以下のパラメータに取り組むように、上述の通りに冷却剤室130の幾何学的形状を構成することによって、発熱装置101の冷却は、所望の熱プロファイルに従って冷却するように構成され得る:
1.流体入口流路138の体積部、
2.流体入口流路138に流入する冷却液の流速、
3.バックプレート内面106と接触するのに十分な、冷却剤室130に流入する冷却液の流速、
4.冷却剤室130の断面の直径、
5.バックプレート内面106の任意の点での対流による冷却を決定する為の、バックプレート内面106とノズル冷却面124との間の隔離距離の変化、
6.バックプレート102の厚さTb、
7.冷却剤室130において冷却流体の制御流を可能にする室の間隙140の距離の決定、
8.冷却剤出口144を通して冷却流体が流れ出るときに、所望の体積の冷却流体を保持する周辺チャンネル160の体積部の決定。
これらのパラメータは相互に関係し得る為、流速の変化は、例えば、冷却剤室130、流体入口流路138、及び冷却装置の他の要素の形状及び寸法の変化によって達成され得る。これらのパラメータへの取り組み、選択された値、選択された形状、及び図1、図2A、及び図2Bの冷却装置101に使用される材料は、所望の熱プロファイルの達成に寄与する。
図3は、所望の熱プロファイルに寄与する冷却応答に影響を及ぼすようにする為には、構成をどのように調整し得るかを示す。図3は、図1に示す冷却装置300の修正実装例の斜視的な上部断面図を示す。図3の冷却装置300は、冷却剤室130の体積部及びノズル部120の幾何学的形状が異なることを除いて、図1の冷却装置100と同様である。冷却装置100は、熱伝導性固体によって発熱装置101から熱を奪う効果と、冷却流体を熱伝導性固体に注入することによって、対流により冷却する効果とを組み合わせることによって、発熱装置101の冷却を生じることに留意されたい。修正は、それぞれの冷却効果に影響を及ぼすように、なされ得る。
図3に示すように、冷却装置300は、図1の冷却装置100にある対応する構成要素と同様のバックプレート102、受熱面104、冷却装置ハウジング108、及びノズル部120などの構成要素を含む。しかしながら、冷却剤室130の幾何学的形状及び体積部は、図1の熱プロファイルとは異なる熱プロファイルにより冷却する図3の冷却剤室330を提供する為に、修正された。ノズル冷却面124とバックプレート内面106とによって形成された図1の冷却剤室130では、バックプレート内面106とノズル冷却面124との間が比較的一定の間隔であるゆえ、冷却は、中心から周辺までより均一である。図3の冷却剤室330は、ノズル冷却面の中心126におけるバックプレート内面106とノズル冷却面124との間の分離が比較的に大きい。バックプレート内面106及びノズル冷却面124の輪郭も、矢印370で示すように狭まっている。図3の収束する冷却剤室330を使用して流速を制御し、熱伝達を調節し、発熱装置101に所望の熱プロファイルを得るようにする。図5を参照して下記で説明するように、輪郭が広がる冷却剤室を使用して同様の効果を示す。
図3の冷却剤室330の収束する輪郭は、冷却装置300が対流によって冷却する方法を変化させる。修正は、伝導によって達成される冷却の方法に影響を及ぼすようになされ得る。例えば、図3のノズル部120は、図1に示すノズル棚部150よりも厚みのあるノズル棚部350を含み、冷却剤室350内の冷却流体と、冷却装置100から排出されるのを待っている周辺チャンネル160に流入する冷却流体との間の温度差をより大きくし得る。
所望の熱プロファイルによる冷却は、上記でリストしたパラメータから選択した変数を使用する流体力学及び熱力学の原理を適用することによって、達成され得ることに留意されたい。上述のパラメータのリストは、排他的なリストであることを意図するものではないことにも留意されたい。冷却装置の特定の実装例の設計において、他のパラメータに取り組んでもよい。追加的なパラメータは、例えば、特定の冷却装置100を実現する為に選択され得る冷却流体及び熱伝導性固形物に関し得る。冷却装置において使用され得る冷却流体の例は、空気、水、ナトリウム、リチウム、ガリウム、ガリウム合金、液体窒素、アンモニア、アセトン、炭化水素、炭化フッ素、及びプロピレングリコールを含む。この冷却流体のリストは、冷却装置の任意の実装例と共に使用し得る冷却流体の例としてリストされていることを理解されたい。このリストは、限定を意図するものではない。適切な熱−物理的特性を備える任意の冷却剤を、任意の実装例において用いることができる。使用され得る冷却剤の例はまた、相転移による冷却を伴う冷媒流体又は材料を含む。
特定の冷却装置100において使用し得る熱伝導性固形物の例は、タングステン、銅、銅−タングステン合金、金、銀、アルミニウム、ベリリウム、及びベリリウム−銅を含む。これらの固形物は、冷却装置の実装例において使用し得る物質の例としてリストされる。所与の実装例の条件に従って任意の好適な熱伝導性固形物が使用され得る為、リストは限定を意図しない。
図4及び図5は、所望の熱プロファイルに従って冷却を調整し得る別の方法を示す。図4は、図1の冷却装置400の別の修正実装例の斜視的な底部断面図である。図5は、図4に示す冷却装置の修正実装例の断面図である。
図4を参照すると、冷却装置400は、図1に示す冷却装置100の要素と同様の、多くの要素を含む。冷却装置400はバックプレート402を含み、このバックプレートは、受熱面404と対向する側に形成されたバックプレート内面406を有する。図4のバックプレート内面406はまた、バックプレート402の厚さをバックプレート402の中心から縁部まで変化させるような輪郭に形成され得る。図4の冷却装置100は、一方の側面においてバックプレート402と、修正ハウジング壁410とによって形成された冷却装置ハウジング108を含む。修正ハウジング壁410は、バックプレート402から延在して、バックプレート内面406から延在する内壁面412によって冷却装置ハウジング408を取り囲む壁である。冷却装置ハウジング408はノズル部420を収容し、このノズル部は、ノズル部ベース422、ノズル冷却面424、流体入口流路438、及びノズル部ベース422とノズル冷却面424との間のノズル本体壁432を含む。
図4の修正ハウジング壁410は、部分的にノズル部ベース422の方へのみ延在する。ノズルベース外周472がノズル部ベース122を取り囲んで、ノズル部ベース122の縁部を画成する。修正壁ハウジング410の室壁縁部474とノズルベース外周472との間に室壁開口部470が形成される。図4の冷却装置400は、ノズル部ベース外周472から周囲を回って室壁縁部474まで延在する出口室面478を含む冷却剤出口室476を含む。出口室面478は、管状の構造を形成し、室の間隙140を経由し且つ室壁開口部470を通って冷却剤出口室476に流入する冷却流体を収集するように構成されている。管状の構造は、冷却装置ハウジング408の周りで最小断面積Α1から最大断面積A2まで大きくなるように変化する断面積を含み得る。
使用時、冷却剤室430は、選択した速度で冷却流体によって満たされる。冷却剤室430が冷却流体によって満たされると、冷却流体は、ノズル冷却面の縁部428と壁ハウジング410の内壁面412との間の室の間隙440を経由して、冷却剤出口室476に流れ出る。冷却剤は、冷却剤出口室476が最大断面積を有する箇所の近くに位置決めされた冷却剤出口444を通って、冷却装置400から出る。
図5は、図4の冷却装置400と同様の冷却装置500を示す。冷却装置500は、バックプレート内面508を備えるバックプレート502、ノズル冷却面506を備えるノズル部504、流体入口流路510、及び冷却剤出口室520を有する。図5の冷却装置500は、バックプレート内面508及びノズル冷却面506が、冷却剤室の中心から縁部まで広がる輪郭を形成するように、構成される。バックプレート内面508及びノズル冷却面506の広がる輪郭により、冷却剤室の流速を高め、対流による冷却効果を高める。
図1、図3、図4、及び図5の冷却装置100、300、400、及び500は、それぞれ、対流と伝導の複合冷却効果が所望の熱プロファイルに従うような形状にされた冷却剤室へ冷却流体の流れを送達することにより、熱伝導性冷却装置ハウジングに対流冷却を加えることによって、所望の熱プロファイルに従う冷却をもたらす。他の実装例では、対流による冷却は、冷却流体を発熱装置に、又はバックプレート102(図1)などの熱伝導性の構成要素に、直接注入することによって、修正され得る。冷却装置は、更に、2種類以上の冷却流体の使用を提供することによって、所望の熱プロファイルに従って冷却するように構成され得る。図6は、デュアル冷却剤室システムを有する冷却装置600の例の概略的な断面図である。図6の冷却装置600は、第1の冷却剤室606及び第2の冷却剤室610を含む。第1の冷却剤室606は、第1の冷却剤608が、発熱装置101との第1の熱界面611において流れるようにする。第2の冷却剤室610は、第2の冷却剤612が、第1の冷却剤室606との第2の熱界面614において流れるようにする。第1の冷却剤室606は、第1の冷却剤608に入る及び/又はそこから出る為のポート604を含み得る。あるいは、第1の冷却剤室606は閉鎖され得る。
第1の熱界面610、第2の熱界面614、及び第3の熱界面615を、図6に概略的に示す。冷却装置600の実装例は、第1の冷却剤室606と第2の冷却剤室610との間に物理的障壁を含み得る。第1の熱界面611は、物理的障壁を含んでもよいし、又は含まなくてもよい。第1の冷却剤室806と第2の冷却剤室610との間の冷却装置600の中心に第3の熱界面615が形成され得る。第3の熱界面615の特性は、例えば第1の冷却剤室606と第2の冷却剤室610との間の熱伝導性固体の厚さを適切に設定することによって、調整され得る。冷却装置600の中心の周りの領域における厚さ、及び第1の冷却剤室606と第2の冷却剤室610との間の障壁に選択された材料(選択された材料の熱伝導率Kに基づいて)は、第1の冷却剤608と第2の冷却剤612との間の熱伝達特性に変化をもたらし、それにより、第3の熱界面615を形成し得る。
図6に示す例は、2種類以上の冷却液を使用する冷却装置の概略図であることに留意されたい。図7は、図6に示すタイプの冷却装置700の実装例の断面図である。
図7の冷却装置700はバックプレート702を含み、このバックプレートは、第1の冷却剤室705がバックプレート702に含まれていることを除いて、図1の冷却装置100に示すバックプレート102と同様のバックプレート内面706を備える。冷却装置700はまた、ノズル冷却面724を備えるノズル部720、及び冷却装置700を取り囲む冷却剤出口室780を含み、この冷却剤出口室の断面積は最小断面積A2から最大断面積A1まで大きくなる。第2の冷却剤室750は、冷却装置700において、バックプレート内面706とノズル冷却面724との間に形成される。
図7の冷却装置700の第1の冷却剤は、第1の冷却剤室705内に入れられている。図7の第1の冷却剤室705は密閉室であり、所望の熱伝導特性を備える冷却剤を含み得る。第1の冷却剤室705中の第1の冷却剤はまた、熱負荷の高い領域から温度の低い領域まで室内を受動的に循環する冷却剤を含み、それにより、発熱装置101にわたって温度を均一にするメカニズムを提供し得る。
第1の冷却剤室705はまた、入口ポート792及び出口ポート794を含み(入口は任意選択的であることを強調する為に破線で示す)、第1の冷却剤室705を通る冷却剤の流れを提供し得る。第1及び第2の冷却剤は、図1に示す冷却装置100を参照して上記で説明したように、任意の好適な冷却剤とし得る。2つの異なる冷却剤を選択する場合、任意の好適な冷却流体の組み合わせを実現し得る。
図8は、発熱装置101に、又は発熱装置101から熱を奪う材料に冷却流体を噴霧するか又はかける為に冷却剤注入を追加する冷却装置900の別の例の概略的な断面図である。図8に概略的に示す冷却装置900は、複数のインジェクター804からの冷却剤を受け入れるように構成された冷却剤室808を含む。複数のインジェクター804は、冷却剤容器802から冷却剤を受け入れ、且つ806において示すように、冷却流体を冷却剤室808に注入して、熱界面812において装置101を冷却する。第2の冷却流体810は、第1の冷却流体の蒸気を除去し、且つ更に冷却するように提供され得る。インジェクター804は、選択した熱プロファイルに従って冷却するように個別に制御され得る。実装例では、インジェクター804は、リアルタイムで個別に制御され得る。使用中、例えばディスクレーザの熱プロファイルは、例えば、室温の変化、空気流、ポンプのパワーの変動、及び他の考えられる影響ゆえに、変化し得る。変化を検出すると、複数のインジェクター804を制御して、変化を積極的にリアルタイムで補償し得る。
図9は、図8に概略的に示す冷却装置900の実装例の断面図である。図9の冷却装置900は、発熱装置101が載置される装置支持面902を含む。装置支持面902は、発熱装置101の外周に実質的に沿った周辺領域に沿う、発熱装置101の面と接触するのに十分な環状の領域である。装置支持面902は、ディスクを支持する為の環状の領域であることに留意されたい。この面の領域の実際の形状は、支持される発熱装置101の特定の形状に依存する。
冷却装置900は、発熱装置が装置支持面902に載置されたときに1つの側面が発熱装置101と、冷却装置ハウジング904を取り囲むハウジング壁906とによって形成された冷却装置ハウジング904を含む。ハウジング壁906は、装置支持面902から延在する内壁面908を含む。ハウジング壁906は、冷却剤アクセス側910と装置支持面902との間で冷却装置ハウジング904を取り囲む。
冷却装置900は、冷却装置ハウジング904に配置されたノズル部912を含む。ノズル部912はノズル部ベース914を含み、このノズル部ベースは、冷却装置ハウジング904の冷却剤アクセス側910を実質的に覆い、且つ冷却装置ハウジング904に筐体を提供する。ノズル部ベース914に対向するノズル部912の端部には、ノズル冷却面916が形成される。ノズル冷却面916は、ノズル冷却面の中心918からノズル冷却面の縁部920まで外向きに延在する。ノズル冷却面916は、発熱装置が装置支持面902に載置されると、発熱装置101と共に冷却剤室930を形成する。ノズル部912は、ノズル冷却面916とノズル部ベース914との間でノズル部912を取り囲むノズル本体壁932を含む。ノズル部ベース914から複数の流体管950が延在して、インジェクター804(図9A)の入力部を設け、冷却流体を注入する。複数の対応する流体入口流路952がノズル部912全体に分布し、且つノズル部ベース914からノズル冷却面916まで延在するように形成されている。
ハウジング壁906のノズル本体壁932と内壁面908との間に室の間隙946が形成されて、冷却剤を冷却剤室930から排出できるようにする。図9Bのノズル部912は、ノズル本体壁932を越えて延在するノズル冷却面の縁部920によって形成されたノズル棚部970を含む。ノズル部内面972は、ノズル部ベース914に対向してノズル本体壁932から延在する。ノズル棚部970、ノズル本体壁932、ノズル部内面972、ハウジング壁904の内壁面908、及び室の間隙946によって周辺チャンネル980が形成される。周辺チャンネル980には冷却剤出口948が形成されて、室の間隙946に流入する冷却流体の為の出口を提供する。
使用時、図9の冷却装置900は、対応する流体管950に接続された複数のインジェクターを使用して冷却剤室930に冷却流体を注入することによって、冷却をもたらす。複数のインジェクターは個別に制御されて、ノズル部912の個々の流体入口流路952の位置に基づいて選択した流速で冷却剤を送達し、個々の流体入口流路952の位置に対応する発熱装置101上の箇所において、発熱装置101の冷却を調整し得る。このようにして、発熱装置101の熱プロファイル全体を制御し得る。
本明細書で説明した冷却装置の例の様々な特徴又は要素は、異なる構成に組み合わせて、冷却装置の冷却効果を所望の熱プロファイルに調整し得ることに留意されたい。例えば、図9に示す冷却装置900は、冷却剤を発熱装置101に直接噴霧する複数の流体入口流路952を使用する。冷却装置900はまた、発熱装置101を対流によって直接冷却するように冷却流体の流れをもたらす単一の流体入口流路を備えてもよい。そのような冷却装置は、バックプレート102(図1)のない図1に示すタイプの冷却装置として実現され得る。
流体入口流路138(図1)はまた、乱流を生成して乱流のある対流により冷却する為に、バックプレートのない単一の流体入口流路を使用して冷却装置を修正し得る。図10は、乱流により冷却をもたらすように構成された冷却装置1000の実装例の断面図である。図10の冷却装置1000は、発熱装置が装置支持面1002に載置されたときに1つの側面が発熱装置101と、冷却装置ハウジング1004を取り囲むハウジング壁1006とによって形成された冷却装置ハウジング1004を含む。ハウジング壁1006は、装置支持面1002から延在する内壁面1008を含む。ハウジング壁1006は、冷却剤アクセス側1010と装置支持面1002との間で冷却装置ハウジング1004を取り囲む。
冷却装置1000は、冷却装置ハウジング1004に配置されたノズル部1012を含む。ノズル部1012はノズル部ベース1014を含み、ノズル部ベースは、冷却装置ハウジング1004の冷却剤アクセス側1010を実質的に覆い、且つ冷却装置ハウジング1004に筐体を提供する。ノズル部ベース1014に対向するノズル部1012の端部にノズル冷却面1016が形成される。ノズル冷却面1016は、ノズル冷却面の中心1018からノズル冷却面の縁部1020まで外向きに延在する。ノズル冷却面1016は、発熱装置が装置支持面1002に載置されたときに、発熱装置101と共に冷却剤室1030を形成する。ノズル部1012は、ノズル冷却面1016とノズル部ベース1014との間でノズル部1012を取り囲むノズル本体壁1032を含む。
ノズル本体壁1032とハウジング壁1006の内壁面1008との間に室の間隙1046が形成されて、冷却剤が冷却剤室1030から排出できるようにする。ノズル部1012は、ノズル本体壁1032を越えて延在するノズル冷却面の縁部1020によって形成されたノズル棚部1070を含む。ノズル部内面1072は、ノズル部ベース1014に対向してノズル本体壁1032から延在する。ノズル棚部1070、ノズル本体壁1032、ノズル部内面1072、ハウジング壁1004の内壁面1008、及び室の間隙1046によって周辺チャンネル1080が形成されている。
図10の冷却装置1000は、ノズル部1012に、乱流を生成する流体入口流路1042を含む。乱流を生成する流体入口流路1042は、流体入口流路1042に形成された複数の旋回羽根1050を使用して実現される。旋回羽根1050は、選択した熱プロファイルに従って所望通りに発熱装置101の冷却を高めるように、選択した流速で所望量の乱流をもたらすように設計され得る。
図11は、冷却装置1100の別の実装例の上面図である。図11の冷却装置1100は、バックプレート1102に形成されたらせん状の冷却チャンネル1110を含む。冷却装置1100のバックプレート1102は、図1〜7を参照して上述したバックプレートのいずれかと同様とし得る。冷却装置1100はまた、図1〜10を参照して上述したノズル部のいずれかと同様のノズル部を含み得る。らせん状の冷却チャンネル1110は、冷却装置1100の中心から始まる流体経路を提供し、この中心では、流体入口流路1104により、冷却剤がらせん状の冷却チャンネル1110に入ることができる。らせん状の冷却チャンネル1110は、ほとんどの熱を発生する発熱装置101の部分において最大熱伝達をもたらし、且つ比較的熱を発生しない発熱装置の部分において比較的熱伝達が低い体積部及び形状を有するように形成され得る。更に、らせん状の冷却チャンネル1110は、流体経路に沿って幅及び深さが変化するように形成され得る。変化する幅及び深さは、バックプレート1102から冷却剤への熱伝達を調節するように構成し得る。らせん状の冷却チャンネル1110の幾何学的形状は、選択された熱プロファイルに冷却を調整するように構成し得る。
本明細書で説明した冷却装置を使用して冷却機能が調整される、選択された熱プロファイルは、発熱装置101の動作中に全体的に均一な熱プロファイルが生じるようなものではない可能性があることに留意されたい。発熱装置101の複数の部分は、多かれ少なかれ冷却されて、所望のエッジ効果及び光学特性を生じる。
選択された熱プロファイルに従って発熱装置を冷却するように構成された冷却装置の様々な実装例を上記で説明した。実装例に示した様々な特徴を組み合わせて、具体的に図示しても図示しなくてもよい冷却装置の他の実装例をもたらしてもよいことに留意されたい。そのような組み合わせの一例は、図10を参照して上記で説明しており、ここでは、乱流を生成する流体入口流路が複数の流体管及び個別に制御されたインジェクターに置き換わり、乱流のある対流によって発熱装置101が直接冷却される。図面に具体的に示されていない、特徴の組み合わせの例は、発熱装置が載置される(少なくとも図1に示すように)バックプレートを直接冷却する為に個別に制御された複数の流体管及び流体入口流路(図9に示す)を含む冷却装置である。図12のらせん状の冷却チャンネルは、本明細書で説明する例のいずれかに従って、ノズル部を備えるバックプレート(例えば図1に示すような)又はバックプレート702(図7に示すような)に追加され得る。同様に具体的に図示されていないそのような特徴の組み合わせの別の例は、例えば図9に示すようにバックプレートのない冷却剤室を備える、図1を参照して上記で説明するタイプのノズル部を組み込む冷却装置である。当業者は、図面に具体的に示さない実装例を達成する為に、上述の特徴の組み合わせがどのように形成され得るかを理解する。
本発明の様々な態様又は詳細は、本発明の範囲から逸脱せずに、変更され得ることを理解されたい。更に、上述の説明は、説明の為のものにすぎず、限定を意図するものではなく、本発明は特許請求の範囲によって定義される。

Claims (41)

  1. 発熱装置を支持する受熱面、対向するバックプレート内面、及び前記受熱面と前記バックプレート内面との間にバックプレートの厚さを含むバックプレート;
    前記バックプレートから延在し、且つ冷却剤出口を含むハウジング;及び
    前記ハウジング内に配置され、且つ前記バックプレート内面から離間してその間に冷却剤室を形成するノズル部であって、冷却剤入口を含み、且つ前記冷却剤室を通って前記冷却剤入口から前記冷却剤出口への冷却流体の流れを確立するように構成されたノズル部
    を含み、
    前記バックプレート、前記冷却剤室、及び前記ノズル部の少なくとも1つの形状が、前記発熱装置から前記冷却剤室まで非均一な熱伝達プロファイルを確立するように変化して、前記発熱装置において所望の温度プロファイルを与える、冷却装置。
  2. 前記ハウジングが、前記バックプレートと、前記ハウジングを取り囲むように形成されたハウジング壁とによって形成され、前記ハウジング壁が、前記バックプレート内面から延在する内壁面を含み、前記ハウジング壁が、冷却剤アクセス側と前記バックプレートとの間で前記ハウジングを取り囲み;及び
    前記ノズル部が、前記冷却剤室に、前記冷却剤室の中心から前記冷却剤室の外側領域までの冷却流体の流れを生成し、前記冷却剤室の前記外側領域に室の間隙を設けて前記冷却流体が出ることができるように、構成されており、前記冷却流体の流れは、前記冷却剤室の形状、及び前記冷却流体が前記冷却剤室に加えられる流速によって、前記所望の熱プロファイルに従って前記発熱装置を冷却するように制御される、請求項1に記載の冷却装置。
  3. 前記ノズル部が:
    前記ハウジングの前記冷却剤アクセス側を実質的に覆って、前記ハウジングを実質的に囲むノズル部ベース;
    前記ハウジング中の、前記ノズル部ベースに対向する前記ノズル部の端部上のノズル冷却面であって、ノズル冷却面の中心からノズル冷却面の縁部まで外向きに延在し、及び前記バックプレート内面と共に前記冷却剤室を形成するノズル冷却面;
    前記ノズル冷却面と前記ノズル部ベースとの間で前記ノズル部を取り囲むノズル本体壁であって、前記室の間隙が、前記ノズル本体壁と前記ハウジング壁の前記内壁面との間に形成されている、ノズル本体壁
    を更に含み、
    前記冷却装置が:
    前記ノズル部ベースと前記ノズル冷却面との間に流体入口流路を設けるように前記ノズル部に形成された冷却剤入口であって、冷却流体を受け入れ、且つ前記流体入口流路に前記冷却流体を注入して前記冷却剤室を冷却流体で満たすように構成された冷却剤入口;及び
    前記室の間隙を流れる冷却流体の為の出口を提供する冷却剤出口
    を更に含む、請求項2に記載の冷却装置。
  4. 前記ノズル部が:
    前記ノズル本体壁を越えて延在する前記ノズル冷却面の縁部によって形成されたノズル棚部;及び
    前記ノズル部ベースに対向して前記ノズル本体壁から延在するノズル部内面
    を更に含み、
    前記冷却装置が:
    前記ノズル棚部、前記ノズル本体壁、前記ノズル部内面、前記ハウジング壁の前記内壁面、及び前記室の間隙によって形成された周辺チャンネルであって、内部に前記冷却剤出口が形成されている、周辺チャンネル
    を更に含む、請求項3に記載の冷却装置。
  5. 前記ノズル部ベース外周と室壁縁部との間の室壁開口部;
    断面積が変化する管状の構造を形成する、前記ノズル部ベース外周から周囲を回って前記室壁縁部まで延在する出口室面を含む冷却剤出口室であって、前記断面積は、前記ハウジングの周りで最小断面積から最大断面積まで大きくなり、前記冷却剤出口は、前記最大断面積を有する前記冷却剤出口室から前記冷却剤を排出するように形成される、冷却剤出口室
    を更に含む、請求項3に記載の冷却装置。
  6. 前記ノズル冷却面が:
    前記ハウジングに、前記ノズル冷却面の中心から前記ノズル冷却面の縁部まで実質的に収束する体積部を形成するように構成されたノズル冷却面輪郭
    を含む、請求項3に記載の冷却装置。
  7. 前記ノズル冷却面が:
    前記ハウジングに、前記ノズル冷却面の中心から前記ノズル冷却面の縁部まで実質的に広がる体積部を形成するように構成されたノズル冷却面輪郭
    を含む、請求項3に記載の冷却装置。
  8. 前記流体入口流路が、前記流体入口流路を通る渦巻き状の流体経路を提供するように構成された旋回羽根を含む、請求項3に記載の冷却装置。
  9. 前記ノズル部全体に分布し、及び前記ノズル部ベースから前記ノズル冷却面まで延在する複数の流体入口流路;及び
    対応する流体入口流路から延在する複数の流体管であって、前記バックプレート内面に接触するように冷却流体を注入するように個別に制御された冷却流体ジェットに繋がるように構成された複数の流体管
    を更に含む、請求項3に記載の冷却装置。
  10. 前記冷却剤室が第1の冷却剤室であり、前記バックプレートが:
    少なくとも発熱面領域の前記発熱装置と平行する断面積を備えて形成された第2の冷却剤室であって、冷却流体を入れるように配置された第2の冷却剤室
    を含む、請求項3に記載の冷却装置。
  11. 前記第2の冷却剤室に形成されて、冷却流体用の入口を提供する冷却剤入口;及び
    前記第2の冷却剤室に形成されて、冷却流体用の出口を提供する冷却剤出口
    を更に含む、請求項10に記載の冷却装置。
  12. 発熱装置が載置される装置支持面であって、前記発熱装置の外周に実質的に沿った周辺領域に沿う前記発熱装置の面に接触するのに十分な領域を有する装置支持面;
    前記発熱装置が前記装置支持面に載置されるときに前記発熱装置から延在するハウジングであって、冷却剤出口を含むハウジング;及び
    前記ハウジング内に配置され、且つ前記発熱装置が前記装置支持面に載置されるときに前記発熱装置から離間してその間に冷却剤室を形成するノズル部であって、冷却剤入口を含み、且つ前記冷却剤入口から前記冷却剤出口まで前記冷却剤室を通る冷却流体の流れを確立するように構成された、ノズル部
    を含み、
    前記冷却剤室及び前記ノズル部の少なくとも一方の形状は、前記発熱装置から前記冷却剤室まで、非均一的な熱伝達プロファイルを確立するように変化し、前記発熱装置に所望の温度プロファイルを与える、冷却装置。
  13. 前記ハウジング壁が、前記装置支持面から延在する内壁面、冷却剤アクセス側と前記装置支持面との間で前記ハウジングを取り囲む前記ハウジング壁を含み;
    前記ノズル部が、前記冷却剤室の中心から前記冷却剤室の外側領域まで前記冷却剤室に冷却流体の流れを生成し、前記冷却剤室の前記外側領域に室の間隙を設けて前記冷却流体が出ることができるように、構成されており、前記冷却流体の流れが、前記冷却剤室の前記形状、及び前記冷却流体が前記冷却剤室に加えられる流速によって、前記所望の熱プロファイルに従って前記発熱装置を冷却するように制御されている、請求項12に記載の冷却装置。
  14. 前記ノズル部が:
    前記ハウジングの前記冷却剤アクセス側を実質的に覆って、前記ハウジングを実質的に囲むノズル部ベース;
    前記ハウジングの、前記ノズル部ベースに対向する前記ノズル部の端部上のノズル冷却面であって、ノズル冷却面の中心からノズル冷却面の縁部まで外向きに延在し、及び前記発熱装置が前記装置支持面に載置されると、前記発熱装置と共に前記冷却剤室を形成する、ノズル冷却面;
    前記ノズル冷却面と前記ノズル部ベースとの間で前記ノズル部を取り囲むノズル本体壁であって、前記ノズル本体壁と前記ハウジング壁の前記内壁面との間に前記室の間隙が形成されている、ノズル本体壁;及び
    前記ノズル部に形成されて、前記ノズル部ベースと前記ノズル冷却面との間に流体入口流路を提供する冷却剤入口であって、前記冷却流体を受け入れ、且つ前記流体入口流路に前記冷却流体を注入して、前記冷却剤室を冷却流体で満たすように構成された、冷却剤入口;及び
    前記室の間隙を流れる冷却流体用の出口を提供する冷却剤出口
    を更に含む、請求項13に記載の冷却装置。
  15. 前記ノズル部が:
    前記ノズル本体壁を越えて延在する前記ノズル冷却面の縁部によって形成されたノズル棚部;及び
    前記ノズル部ベースに対向して前記ノズル本体壁から延在するノズル部内面
    を更に含み、
    前記冷却装置が:
    前記ノズル棚部、前記ノズル本体壁、前記ノズル部内面、前記ハウジング壁の前記内壁面、及び前記室の間隙によって形成された周辺チャンネルであって、内部に前記冷却剤出口が形成されている、周辺チャンネル
    を更に含む、請求項13に記載の冷却装置。
  16. 前記ノズル部ベース外周と室壁縁部との間の室壁開口部;
    断面積が変化する管状の構造を形成する、前記ノズル部ベース外周から周囲を回って前記室壁縁部まで延在する出口室面を含む冷却剤出口室であって、前記断面積は、前記ハウジングの周りで最小断面積から最大断面積まで大きくなり、前記冷却剤出口が、前記最大断面積を有する前記冷却剤出口室から前記冷却剤を排出するように形成される、冷却剤出口室
    を更に含む、請求項13に記載の冷却装置。
  17. 前記ノズル冷却面が:
    前記発熱装置の前記所望の熱プロファイルに従って、前記発熱装置とノズル冷却面との間の距離を変化させるように構成されたノズル冷却面輪郭
    を含む、請求項13に記載の冷却装置。
  18. 前記流体入口流路が、前記流体入口流路を通る渦巻き状の流体経路を提供するように構成された旋回羽根を含む、請求項13に記載の冷却装置。
  19. 前記ノズル部全体に分布し、且つ前記ノズル部ベースから前記ノズル冷却面まで延在する複数の流体入口流路;及び
    対応する流体入口流路から延在する複数の流体管であって、前記発熱装置の前記熱プロファイルに従って前記発熱装置に接触するように冷却流体を注入する為に個別に制御された冷却流体ジェットに繋がるように構成された複数の流体管
    を更に含む、請求項13に記載の冷却装置。
  20. ハウジング内に配置されたノズル部の中心を通って形成された流体入口流路に冷却液を注入するステップであって、前記流体入口流路は、前記ノズル部の冷却剤アクセス側に対向するノズル部冷却面に開口し、前記ノズル部冷却面は、前記発熱装置の前記所望の熱プロファイルに従って厚さが変化する熱伝導性固体上に装置支持面を含むバックプレートのバックプレート内面と共に冷却剤室を形成し、前記厚さの変化は、前記発熱装置が発生する熱が減少する箇所で厚さが増しているステップ;
    前記ノズル部を取り囲み且つノズル部縁部と前記室壁との間に形成された室の間隙を通して、前記冷却剤室から前記冷却液を排出させるステップであって、前記冷却液を冷却剤出口に排出させるステップ;
    前記流体入口流路の入口流速を制御することによって選択した流速で前記冷却剤室に冷却流体の流れを提供するステップであって、前記冷却流体の流れが、最小厚さを有する前記バックプレートの部分において初めに前記バックプレート内面に接触することによって前記発熱装置の対流冷却をもたらし、且つ前記バックプレート内面に沿って、最大厚さを有する前記バックプレートの部分の方に流れるステップ
    を含み、
    前記冷却流体の流れを提供する前記ステップが、冷却剤室の体積部及び冷却剤室体積部の形状に関して前記冷却剤室に対する冷却液の均衡のとれた流入及び流出に基づいて、前記流体入口流路における前記選択した流速を決定することを含む、発熱装置の冷却方法。
  21. 前記冷却液を排出させる前記ステップが:
    前記室の間隙を経由して、前記ノズル部を取り囲む周辺チャンネルに前記冷却液を受け入れること;及び
    前記冷却液が、前記周辺チャンネルに形成された前記冷却剤出口を流れることができるようにすること
    を含む、請求項20に記載の方法。
  22. 前記冷却液を排出させる前記ステップが:
    断面積が変化する前記室壁を取り囲む管状の構造を形成する、ノズル部ベース外周から周囲を回って室壁縁部まで延在する出口室面を含む冷却剤出口室に、前記室の間隙を介して前記冷却液を受け入れるステップであって、前記断面積が、前記ハウジングの周りで最小断面積から最大断面積まで大きくなり、前記最大断面積を有する箇所において前記冷却剤出口室から前記冷却剤を排出するように前記冷却剤出口が形成される、ステップ
    を含む、請求項20に記載の方法。
  23. 前記選択した速度で前記冷却剤室に前記冷却流体の流れを提供する前記ステップが:
    前記バックプレート内面と、前記ノズル部縁部の方に広がる前記ノズル冷却面とによって形成された、広がる冷却剤室の為の前記流体入口流路における前記選択した流速を決定すること
    を含む、請求項20に記載の方法。
  24. 前記選択した速度で前記冷却剤室に前記冷却流体の流れを提供する前記ステップが:
    前記バックプレート内面と、前記ノズル部縁部の方に収束する前記ノズル冷却面とによって形成された、収束する冷却剤室の為の前記流体入口流路における前記選択した流速を決定すること
    を含む、請求項20に記載の方法。
  25. 前記流体入口流路に前記冷却液を注入する前記ステップが:
    最高温度領域に方向付けられた前記冷却剤室の前記冷却剤の流れに乱流をもたらすステップであって、前記流体入口流路が、前記流体入口流路の長さの少なくとも一部分に沿って旋回羽根を備えて形成される、ステップ
    を含む、請求項20に記載の方法。
  26. ハウジング内に配置されたノズル部の中心を通って形成された流体入口流路に冷却液を注入するステップであって、前記流体入口流路が、前記ノズル部の冷却剤アクセス側に対向するノズル部冷却面に開口し、前記発熱装置が、前記ハウジングを囲むように形成された室壁の装置支持面に載置されると、前記ノズル部冷却面が、前記発熱装置の第1の側面と共に冷却剤室を形成するステップ;
    前記ノズル部を取り囲み且つノズル部縁部と前記室壁との間に形成された室の間隙を通って前記冷却剤室から前記冷却液を排出させるステップであって、前記冷却液を冷却剤出口に排出させるステップ;
    前記流体入口流路の入口流速を制御することによって、選択した流速で前記冷却剤室に冷却流体の流れを提供するステップであって、前記冷却流体の流れが、ほとんどの熱を発生する前記発熱装置の部分において初めに前記発熱装置に接触し、前記発熱装置に沿って前記ノズル部縁部の方に流れることによって、前記発熱装置の対流冷却をもたらすステップ;
    を含み、
    前記冷却流体の流れをもたらす前記ステップが、冷却剤室の体積部及び冷却剤室体積部の形状に関して前記冷却剤室に対する冷却液の均衡のとれた流入及び流出に基づいて、前記流体入口流路における前記選択した流速を決定することを含む、発熱装置の冷却方法。
  27. 前記冷却液を排出させる前記ステップが:
    前記室の間隙を経由して、前記ノズル部を取り囲む周辺チャンネルに前記冷却液を受け入れること;及び
    前記冷却液が、前記周辺チャンネルに形成された前記冷却剤出口を流れることができるようにすること
    を含む、請求項26に記載の方法。
  28. 前記冷却液を排出させる前記ステップが:
    断面積が変化する前記室壁を取り囲む管状の構造を形成する、ノズル部ベース外周から周囲を回って室壁縁部まで延在する出口室面を含む冷却剤出口室に、前記室の間隙を経由して、前記冷却液を受け入れるステップであって、前記断面積が、前記ハウジングの周りで最小断面積から最大断面積まで大きくなり、前記最大断面積を有する前記冷却剤出口室から前記冷却剤を排出させるように前記冷却剤出口が形成される、ステップ
    を含む、請求項26に記載の方法。
  29. 前記流体入口流路に前記冷却液を注入する前記ステップが:
    最高温度領域に方向付けられた前記冷却剤室の前記冷却剤の流れに乱流をもたらすステップであって、前記流体入口流路が、前記流体入口流路の長さの少なくとも一部分に沿って旋回羽根を備えて形成される、ステップ
    を含む、請求項26に記載の方法。
  30. ハウジング内に配置されたノズル部を通って形成された複数の流体入口流路に冷却液を注入するステップであって、前記複数の流体入口流路が、前記ノズル部の冷却剤アクセス側に対向するノズル部冷却面に開口し、前記発熱装置が、前記ハウジングを囲むように形成された室壁の装置支持面に載置されると、前記ノズル部冷却面が、前記発熱装置の第1の側面と共に冷却剤室を形成するステップ;
    前記ノズル部を取り囲み且つノズル部縁部と前記室壁との間に形成された室の間隙を通して前記冷却剤室から前記冷却液を排出させるステップであって、前記冷却液を冷却剤出口に排出させるステップ;
    前記複数の前記流体入口流路の各々における入口流速を個別に制御することによって、前記複数の流体入口流路の各々において選択した流速で、前記冷却剤室に冷却流体の流れをもたらすステップであって、前記冷却流体の流れが、各流体入口流路の前記入口流速を制御することによって、前記発熱装置の対流冷却をもたらし、前記発熱装置の大部分の熱を発生する部分に最大熱伝達をもたらすステップ
    を含む、発熱装置の冷却方法。
  31. 前記冷却液を排出させる前記ステップが:
    前記室の間隙を経由して、前記ノズル部を取り囲む周辺チャンネルに前記冷却液を受け入れること;及び
    前記冷却液が、前記周辺チャンネルに形成された前記冷却剤出口を流れることができるようにすること を含む、請求項30に記載の方法。
  32. 前記冷却液を排出させる前記ステップが:
    断面積が変化する前記室壁を取り囲む管状の構造を形成する、ノズル部ベース外周から周囲を回って室壁縁部まで延在する出口室面を含む冷却剤出口室に、前記室の間隙を経由して前記冷却液を受け入れるステップであって、前記断面積が、前記ハウジングの周りで最小断面積から最大断面積まで大きくなり、前記最大断面積を有する前記冷却剤出口室から前記冷却剤を排出させるように前記冷却剤出口が形成される、ステップ
    を含む、請求項30に記載の方法。
  33. 前記冷却剤室に前記冷却流体の流れをもたらす前記ステップが、前記複数の流体入口流路の各々における前記発熱装置への前記ノズル部輪郭面の近接性に基づいて、前記複数の流体入口流路の各々に対して前記選択した流速を決定することを含む、請求項30に記載の方法。
  34. 発熱装置が載置される受熱面を含むバックプレート;
    バックプレート中心からバックプレート外周まで外向きに渦巻き状である、前記バックプレートの前記受熱面上にあるらせん状の冷却チャンネル;
    バックプレート中心を通る流体入口流路であって、冷却流体が前記バックプレート中心において前記らせん状の冷却チャンネルに入ることができるように形成された流体入口流路;
    冷却流体が前記流体入口流路に入ることができるように構成された、前記受熱面に対向する前記バックプレートの冷却剤アクセス側にある冷却剤入口;及び
    前記バックプレート外周に近い前記らせん状の冷却チャンネルの端点に形成された冷却剤出口
    を含み、
    前記らせん状の冷却チャンネルが、前記発熱装置の大部分の熱を発生する部分において最大熱伝達をもたらし且つ前記発熱装置の比較的少ない熱を発生する部分において比較的熱伝達が低い体積部及び形状で形成されている、冷却装置。
  35. 前記バックプレートから前記冷却剤までの前記熱伝達を調整し、それにより、前記発熱ディスクの前記熱プロファイルを合わせるように、前記らせん状の冷却チャンネルの幅が変化するように形成されている、請求項34に記載の冷却装置。
  36. 前記バックプレートから前記冷却剤までの前記熱伝達を調整し、それにより、前記発熱ディスクの前記熱プロファイルを合わせるように、前記らせん状の冷却チャンネルの深さが変化するように形成されている、請求項34に記載の冷却装置。
  37. ノズルから、前記ノズルと冷却装置のバックプレートとの間に画成された室に冷却剤を注入するステップであって、前記発熱装置は、前記室の反対側で前記バックプレートと接触しているステップ;
    前記冷却剤が前記室を通って冷却剤出口まで流れることによって、注入点から前記冷却剤出口に向かう方向に沿って変化する非均一的な熱伝達プロファイルに従って前記発熱装置を冷却するステップであって、冷却により、前記発熱装置に所望の温度プロファイルを与えるステップ
    を含む、発熱装置の冷却方法。
  38. 冷却するステップが、前記冷却剤を、前記室を通って、速度を変化させて流すことを含む、請求項37に記載の方法。
  39. 前記バックプレートの厚さが前記発熱装置と前記室との間で変化する、請求項37に記載の方法。
  40. 前記室の流れ断面積が、前記注入点から前記冷却剤出口に向かう前記方向において変化する、請求項37に記載の方法。
  41. 前記ノズルが、前記室に面するノズル輪郭面を有する、請求項37に記載の方法。
JP2014560132A 2012-03-02 2013-03-04 ディスクレーザを冷却するシステム及び方法 Pending JP2015515124A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261605796P 2012-03-02 2012-03-02
US61/605,796 2012-03-02
PCT/US2013/028918 WO2013131097A1 (en) 2012-03-02 2013-03-04 Systems and methods for cooling disk lasers

Publications (1)

Publication Number Publication Date
JP2015515124A true JP2015515124A (ja) 2015-05-21

Family

ID=49083382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014560132A Pending JP2015515124A (ja) 2012-03-02 2013-03-04 ディスクレーザを冷却するシステム及び方法

Country Status (4)

Country Link
US (1) US20150096722A1 (ja)
EP (1) EP2820725A4 (ja)
JP (1) JP2015515124A (ja)
WO (1) WO2013131097A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019511130A (ja) * 2016-04-05 2019-04-18 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Laser GmbH レーザディスク用のインピンジメント冷却装置および対応するレーザディスクモジュール
WO2020174779A1 (ja) 2019-02-27 2020-09-03 三菱重工業株式会社 レーザ装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105305206B (zh) * 2015-11-03 2021-04-20 华中科技大学 一种适用于碟片激光器射流冲击冷却系统的热沉
US9742142B1 (en) * 2016-05-04 2017-08-22 Raytheon Company Heat exchangers with tapered light scrapers for high-power laser systems and other systems
CN108616028A (zh) * 2016-12-10 2018-10-02 中国科学院大连化学物理研究所 一种高热流密度的冷却装置和冷却方法
CN107516808A (zh) * 2017-09-30 2017-12-26 中国工程物理研究院应用电子学研究所 一种激光器低畸变冷却器
EP3977832A4 (en) 2019-04-14 2023-07-26 Jetcool Technologies, Inc. LIQUID-BASED DIRECT CONTACT COOLING MODULE
US11963341B2 (en) 2020-09-15 2024-04-16 Jetcool Technologies Inc. High temperature electronic device thermal management system
CN112490828A (zh) * 2020-11-30 2021-03-12 北京超快光子科技有限公司 激光晶体集成模组
CN113613416B (zh) * 2021-07-29 2023-07-21 浩泰智能(成都)科技有限公司 一种防干扰微波放大器
US20240110278A1 (en) * 2022-09-29 2024-04-04 Applied Materials, Inc. Dog bone exhaust slit tunnel for processing chambers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868582A (ja) * 1994-08-29 1996-03-12 Toshiba Corp 冷却板およびその製造方法
KR100655073B1 (ko) * 2001-02-07 2006-12-08 삼성전자주식회사 정전 척
US8757246B2 (en) * 2006-06-06 2014-06-24 Raytheon Company Heat sink and method of making same
US7812289B2 (en) * 2006-12-15 2010-10-12 Ngk Insulators, Ltd. Ceramic heater
JP4876975B2 (ja) * 2007-03-02 2012-02-15 株式会社日立製作所 電子機器用の冷却装置および受熱部材
US8240988B2 (en) * 2008-03-26 2012-08-14 Siemens Energy, Inc. Fastener assembly with cyclone cooling
JP2011159663A (ja) * 2010-01-29 2011-08-18 Toyota Central R&D Labs Inc 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019511130A (ja) * 2016-04-05 2019-04-18 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Laser GmbH レーザディスク用のインピンジメント冷却装置および対応するレーザディスクモジュール
US11362475B2 (en) 2016-04-05 2022-06-14 Trumpf Laser Gmbh Impingement cooling device for a laser disk and associated laser disk module
WO2020174779A1 (ja) 2019-02-27 2020-09-03 三菱重工業株式会社 レーザ装置
US11569630B2 (en) 2019-02-27 2023-01-31 Mitsubishi Heavy Industries, Ltd. Laser apparatus

Also Published As

Publication number Publication date
EP2820725A1 (en) 2015-01-07
US20150096722A1 (en) 2015-04-09
WO2013131097A1 (en) 2013-09-06
EP2820725A4 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP2015515124A (ja) ディスクレーザを冷却するシステム及び方法
Lu et al. Convective boiling in a parallel microchannel heat sink with a diverging cross section and artificial nucleation sites
Lu et al. A highly stable microchannel heat sink for convective boiling
Cho et al. Experimental study on microchannel heat sinks considering mass flow distribution with non-uniform heat flux conditions
US7104312B2 (en) Method and apparatus for achieving temperature uniformity and hot spot cooling in a heat producing device
Molana et al. Investigation of heat transfer processes involved liquid impingement jets: a review
Yang et al. Enhanced flow boiling in microchannels by self-sustained high frequency two-phase oscillations
US20060162365A1 (en) Cooling electronics via two-phase tangential jet impingement in a semi-toroidal channel
JP5851505B2 (ja) Euvリソグラフィ用のeuvコレクタのeuvコレクタミラーシェル
JP2763281B2 (ja) レーザーロッドの衝突冷却のための方法と装置
JP5709251B2 (ja) 高パワー動作のためのホイールカバーを有するガス放電光源のための回転ホイール電極
JP6918218B2 (ja) 半導体装置
JP6258236B2 (ja) 流体温度およびフローの制御のための方法および装置
US11976671B2 (en) Vacuum modulated two phase cooling loop performance enhancement
Li et al. Thermal characteristics of a flat plate pulsating heat pipe module for onsite cooling of high power server CPUs
Husain et al. Comparative performance analysis of microjet impingement cooling models with different spent-flow schemes
JP6772273B2 (ja) 熱音響エネルギー変換システム
US20230260870A1 (en) Directly impinging pressure modulated spray cooling and methods of target temperature control
Hong et al. Improved two-phase flow boiling in a minichannel heat sink for thermal management of information and communication technology (ICT) equipment
Asrar et al. Flow visualization of two phase flow of R245fa in a microgap with integrated staggered pin fins
CN106816804B (zh) 一种微通道金属泡沫碟状激光器晶体冷却装置
Haustein et al. Influence of micro-scale aspects and jet-to-jet interaction on free-surface liquid jet impingement for micro-jet array cooling
Li et al. Evaporative heat transfer of R410A flow in an annular duct under oscillatory wall heat flux
US20060042785A1 (en) Pumped fluid cooling system and method
Ariz et al. Thermal performance analysis of jet impingement with effusion scheme