JP2015509644A - シールプレート及びこれを用いた燃料電池スタック - Google Patents

シールプレート及びこれを用いた燃料電池スタック Download PDF

Info

Publication number
JP2015509644A
JP2015509644A JP2014542637A JP2014542637A JP2015509644A JP 2015509644 A JP2015509644 A JP 2015509644A JP 2014542637 A JP2014542637 A JP 2014542637A JP 2014542637 A JP2014542637 A JP 2014542637A JP 2015509644 A JP2015509644 A JP 2015509644A
Authority
JP
Japan
Prior art keywords
seal
seal plate
fuel cell
seal member
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014542637A
Other languages
English (en)
Other versions
JP5846315B2 (ja
Inventor
沼尾 康弘
康弘 沼尾
和弘 影山
和弘 影山
上原 茂高
茂高 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014542637A priority Critical patent/JP5846315B2/ja
Publication of JP2015509644A publication Critical patent/JP2015509644A/ja
Application granted granted Critical
Publication of JP5846315B2 publication Critical patent/JP5846315B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

少なくとも2つの隣接するセルモジュール(M)間に画成された冷却流体を流通させるための冷却用流通路(F3)に介装して用いられるシールプレート(P1〜P9)である。シールプレート(P1〜P9)は、マニホールド部(ML,MR)と、シール部材(51〜54)と、圧力損失調整部(B1〜B9)とを有している。圧力損失調整部(B1〜B9)は、冷却用流通路(F3)を流通する冷却流体の圧力損失を低減または調整する。

Description

本発明は、燃料電池スタックに適用されるシールプレート、及びこのシールプレートを用いた燃料電池スタックに関するものである。
特開2005−190706号公報は、セルを複数重ねて多セルモジュールを構成し、その多セルモジュールをセル積層方向に複数かつ直列に配列し、多セルモジュール間をビードガスケットにてシールした燃料電池スタック構造を開示している。上記多セルモジュールのビードガスケットに接触する端部セルのセパレータの面剛性を多セルモジュールの中央セルのセパレータの面剛性よりも大きくし、具体的には、多セルモジュールの端部セルのセパレータに平板を重ねて、端部セルのセパレータの面剛性を中央セルのセパレータの面剛性よりも大きくしている。
上記燃料電池スタック構造では、多セルモジュール間の冷媒通路に平板を配設するため、平板によって冷却水の圧力損失が増大してしまうという問題点があり、このような問題点を解決することが課題であった。
本発明は、冷却用流通路における圧力損失を低減または調整できるシールプレートと、これを用いた燃料電池スタックの提供を目的としている。
本発明の一態様は、複数の燃料電池セルを互いに積層一体化した少なくとも二つ以上のセルモジュール間に区画形成された、冷却流体を流通させるための冷却用流通路に介装して用いられるシールプレートである。このシールプレートは、マニホールド部と、シール部材と、圧力損失調整部とを有している。マニホールド部には、燃料電池セルを流通する二種類の発電用ガスを互いに分離して流入出させるための複数のマニホールド孔が形成されている。シール部材は、各マニホールド孔の周縁部に設けられ、当該マニホールド孔を流通する発電用ガスをシールする。圧力損失調整部は、冷却流体が冷却用流通路に流通する際の圧力損失を低減または調整する。
本発明の他の態様は、上記シールプレートを互いに隣接するセルモジュール間に介装した燃料電池スタックである。
図1は、本発明の第1の実施形態に係る燃料電池スタックの概略外観斜視図である。 図2は、セルモジュールを構成するセパレータ、膜電極接合体及びシールプレートの配置を説明する図であり、図2(A)は、一方側の面の平面図、図2(B)は、他方側の面の平面図である。 図3は、カソード側セパレータおよび膜電極接合体を示す図であり、図3(A)は、図2(A)に示す膜電極接合体の拡大平面図、図3(B)は、図2(A)に示すカソード側セパレータの拡大平面図である。 図4は、図2に示すシールプレートの拡大平面図である。 図5は、図1の燃料電池スタックの部分拡大図であって、図4に示すC‐C線に沿う断面図である。 図6は、水素含有ガス供給用のマニホールド孔の辺縁部に設けたシール部材の詳細を示す図であり、図6(A)は、当該シール部材を中心とした詳細を示す部分拡大図、図6(B)は、図6(A)に包囲線IIで示す部分の部分拡大図である。 図7は、燃料電池スタックの部分拡大断面図であり、図7(A)は、図4に示すD‐D線に沿う断面図、図7(B)は、図7(A)に包囲線IIIで示す部分の部分拡大図である。 図8は、マニホールド孔の辺縁部に設けた他例に係るシール部材の詳細を示す図であり、図8(A)は、当該シール部材を中心とした詳細を示す部分拡大図であって、図4に示すE‐E線に沿う断面図、図8(B)は、図8(A)に包囲線IVで示す部分の部分拡大図である。 図9は、他例に係る内周シール部材の詳細を示す図であり、図9(A)は、当該内周シール部材を中心とした詳細を示す部分拡大図であって、図4に示すC‐C線に沿う断面図、図9(B)は、図9(A)に包囲線IVで示す部分の部分拡大図である。 図10は、本発明の第2の実施形態に係るシールプレートの平面図である。 図11は、本発明の第3の実施形態に係るシールプレートの平面図である。 図12は、本発明の第4の実施形態に係るシールプレートの平面図である。 図13は、本発明の第5の実施形態に係るシールプレートの平面図である。 図14は、図4に示すV−V線に沿う断面を拡大して示す部分拡大図であり、セパレータとシールプレートとの相対的な位置関係を示している。 図15は、図14においてプレート基板の厚みを大きくした例において、図4に示すV−V線に沿う断面と同等の位置における断面を拡大して示す部分拡大図である。 図16は、図4に示すV−V線に沿う断面と同等の位置における断面を拡大して示す部分拡大図である。 図17は、図4に示すV−V線に沿う断面と同等の位置における断面を拡大して示す部分拡大図である。 図18は、本発明の第6の実施形態に係るシールプレートの平面図である。 図19は、本発明の第7の実施形態に係るシールプレートの平面図である。 図20は、本発明の第8の実施形態に係るシールプレートの平面図である。 図21は、図20に示すシールプレートの端部の拡大平面図である。 図22は、本発明の第9の実施形態に係るシールプレートを示す図であり、図22(A)は、当該シールプレートの平面図、図22(B)は、図22(A)に示すVII‐VII線に沿う断面を部分的に拡大して示す部分拡大図である。 図23は、本発明の第10の実施形態に係る燃料電池スタックを説明する要部の断面図である。 図24は、図23の燃料電池スタックを説明する図であり、図24(A)は、図23のセルモジュールの平面図、図24(B)は、図23の燃料電池スタックの斜視図である。
以下に、本発明を実施するための形態について、図面を参照して説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
〈第1実施形態〉
図1に示す一例に係る燃料電池スタックAは、互いに隣接するセルモジュールM,M同士の間にシールプレートP1を介装すると共に、これらのセルモジュールMをエンドプレート10,11により図示上下両側から挟圧した構成である。
セルモジュールMは、所要の枚数からなる燃料電池セル20を積層方向Zに積層し一体化たものである。セルモジュールMの外壁面(積層方向Zの両端面以外の側面)は、後述するセルフレーム30の鍔部32同士を接着剤9により互いに接着して構成されている。これにより、セルモジュールMの内部への浸水を防止するとともに電気的な絶縁を図っている。なお、図1には、5枚の燃料電池セル20を積層接着したセルモジュールMを例示しているが、その枚数に限るものではない。また、図1では、接着剤層を省略して示している。
燃料電池セル20は、セルフレーム30(図2,3参照)の両側に、一対のセパレータ40,41を配設したものである。燃料電池セル20は、積層方向Zから見た正面視において横長方形を有する。本明細書においては、積層方向Zに直交する方向で、燃料電池セル20の長手方向に平行な方向をX方向、このX方向および積層方向Zに直交する方向で、燃料電池セル20の短手方向に平行な方向をY方向とする。一対のセパレータ40,41は、セルフレーム30との間に、それぞれ異なる二種類の発電用ガスを流通させるためのガス流通路F1,F2を区画形成する。二種類の発電用ガスは、水素含有ガスと酸素含有ガスであり、一対のセパレータは、アノード側セパレータ40及びカソード側セパレータ41である。
セルフレーム30は、絶縁部材であって、具体的には樹脂製である。セルフレーム30は、燃料電池セル20の積層方向Zから見た正面視において横長方形を有する。また、セルフレーム30は、一定の板厚を有する基板31と、基板31の表裏両面の全周囲にわたって積層方向Zに突出するように形成された鍔部32とを有する。セルフレーム30の中央部分には、膜電極接合体(MEA)33が配設される。セルフレーム30のX方向両端部(膜電極接合体33のX方向両外側)には、マニホールド部ML,MRが配設されている。
膜電極接合体33は、例えば、固体高分子から成る電解質膜を、一対の電極により挟持した構造を有している。
マニホールド部ML,MRは、燃料電池セル20に対して水素含有ガス、酸素含有ガス及び冷却流体の流入出を夫々行う。マニホールド部ML,MRと膜電極接合体33との間には、水素含有ガス又は酸素含有ガスの流通領域であるディフューザ領域D,Dが形成してある。なお、本実施形態における冷却流体は、例えば水である。
X方向一側のマニホールド部MLは、マニホールド孔M1〜M3を有する。各マニホールド孔M1〜M3は、それぞれ酸素含有ガス供給用(M1)、冷却流体供給用(M2)及び水素含有ガス供給用(M3)である。マニホールド孔M1〜M3は、燃料電池スタックAにおいて、それぞれ積層方向Zに連続する3つの流通路を形成している。
X方向他側のマニホールド部MRは、マニホールド孔M4〜M6を有する。各マニホールド孔M4〜M6は、それぞれ水素含有ガス排出用(M4)、冷却流体排出用(M5)及び酸素含有ガス排出用(M6)である。マニホールド孔M4〜M6は、燃料電池スタックAにおいて、それぞれ積層方向Zに連続する3つの流通路を形成している。なお、供給用と排出用は一部又は全部が逆の位置関係でもよい。
ディフューザ領域Dは、セルフレーム30とセパレータ40,41との各間、すなわち、セルフレーム30の両面側に夫々形成されている。各ディフューザ領域Dには、図示しない円錐台形にした複数の突起が所要の間隔で配設されている。複数の突起は、セルフレーム30とセパレータ40,41との間に介在してこれらを互いに離間させる。
ここで、図2(A)は、カソード及びアノードのセパレータ40,41、セルフレーム30及び膜電極接合体33、並びにシールプレートP1の一方側の面を示す図であり、図2(B)は、図2(A)に示す各部材を図2上下方向の軸回りに裏返して、各部材の他方側の面を示す図である。よって、図2(A)に示す各部材は、最下段に示すシールプレートP1の面が上側となるように順次積層する。また、図2(B)に示す各部材は、最上段に示すアノード側セパレータ40の面が上側となるように順次積層する。
セルフレーム30には、図2及び図3(A)に示すように、外縁部の全周にわたる部分、及びマニホールド孔M1〜M6の周囲の部分に、接着シール80が連続的に設けてある。このとき、接着シール80は、図2(A)に示すセルフレーム30のカソード面においては、酸素含有ガスを流通させるために、酸素含有ガスの供給用及び排出用のマニホールド孔M1,M6の部分で開放してあり、それ以外のマニホールド孔M2〜M5を囲繞している。
また、接着シール80は、図2(B)に示すセルフレーム30のアノード面では、水素含有ガスを流通させるために、水素含有ガスの供給用及び排出用のマニホールド孔M3,M4の部分で開放してあり、それ以外のマニホールド孔M1,M2,M5及びM6を囲繞している。
セパレータ40,41は、図2及び図3(B)に示すように、それぞれステンレス等の金属板をプレス成形したものであり、上記セルフレーム30の鍔部32の内側領域に配設できる大きさの横長方形に形成してある。
セパレータ40(41)は、図3(B)に示すように、膜電極接合体33に対向する中央部分には、凹凸部が形成してある。凹凸部では、各々X方向に連続して延在する複数の凹部(凹条)41a(40a)と凸部(凸条)41b(40b)とが設けられている。複数の凹部(凹条)41a(40a)と凸部(凸条)41b(40b)とは、Y方向に交互に並設されている。また、セパレータ40(41)のX方向両端部には、セルフレーム30の各マニホールド孔M1〜M6に対応するマニホールド孔M1〜M6が形成してある。水素含有ガス供給用マニホールド孔M3からガス流通路F1に流入した水素含有ガスは、X方向一側のディフューザ領域Dで分岐し、アノード側セパレータ40のセルフレーム30側の面に形成された複数の凹部40aの内部を流れ、X方向他側のディフューザ領域Dで合流したのち、水素含有ガス排出用マニホールド孔M4から排出される。また、酸素含有ガス供給用マニホールド孔M1からガス流通路F2に流入した酸素含有ガスは、X方向一側のディフューザ領域Dで分岐し、カソード側セパレータ41のセルフレーム30側の面に形成された複数の凹部41aの内部を流れ、X方向他側のディフューザ領域Dで合流したのち、酸素含有ガス排出用マニホールド孔M6から排出される。
また、セパレータ40,41には、セルフレーム30と同様に、外縁部の全周にわたる部分、及びマニホールド孔M1〜M6の周囲の部分に、接着シール80が連続的に設けてある。このとき、接着シール80は、酸素含有ガス、水素含有ガス及び冷却流体を夫々の層間に流通させるために、図2(A)及び2(B)に示すように、夫々の層間に該当するマニホールド孔M1〜M6の部分で開放してあり、それ以外のマニホールド孔M1〜M6を囲繞している。
燃料電池スタックAは、セルモジュールMにおいて、互いに隣接する燃料電池セル20,20同士の相対向するセパレータ40,41の間に、冷却流体の流通路(以下、「冷却用流通路」という。)F3を区画形成している。セパレータ40,41の冷却用流通路F3側の面に形成された凹部40a,41aが、冷却用流通路F3の一部を画成しており、凹部40a,41aの内部を冷却流体が流通する。また、隣接する二つのセルモジュールM,M同士の間の空間、より具体的には、最外側に配置した燃料電池セル20,20同士の対向当接する鍔部32により囲繞形成される空間も冷却用流通路F3になっている。そして、燃料電池スタックAは、セルモジュールM,M同士の間の冷却用流通路F3に、本発明の第1の実施形態に係るシールプレートP1を介装している。セパレータ40,41の冷却用流通路F3側の面に形成された凸部40b,41bは、その上面又は頂部においてシールプレートP1に当接している。
本実施形態に係るシールプレートP1は、燃料電池セル20とは別体にして形成されている。図2及び図4に示すように、プレート基板50は、そのX方向両端部にマニホールド部ML,MRを有する。プレート基板50の中央部分には、第1の例に係る圧力損失調整部B1が形成されている。マニホールド部ML,MRと圧力損失調整部B1の間(セルフレーム30のX方向一側および他側のディフューザ領域Dに対向する位置)には、シールプレートP1のディフューザ領域D1,D1がある。
プレート基板50は、導電性の一枚の金属板を成形したものであり、平面視において燃料電池セル20とほぼ同じ形状で同じ大きさに形成してある。このプレート基板50を導電性の金属板で形成することにより、長期間安定した通電性を保つことができる。プレート基板50のマニホールド部ML,MRには、セルフレーム30およびセパレータ40,41の各マニホールド孔M1〜M6に対応するマニホールド孔M1〜M6が形成されている。
このシールプレートP1は、セルモジュールMのマニホールド孔M1〜M6に対応するマニホールド孔M1〜M6を有し、セルモジュールM,M間に介装したときに、互いのマニホールド孔M1〜M6を連続させて一連の流通路を形成する。
シールプレートP1は、酸素含有ガス及び水素含有ガスの流通に用いるマニホールド孔M1,M3,M4,M6を区画形成するプレート基板50の各辺縁部に、第1シール部材としてのシール部材51〜54が設けてある。マニホールド孔M1,M3,M4,M6の辺縁部に設けた各シール部材51〜54は、互いに独立して形成してある。なお、当然のことながら、冷却流体の流通に用いるマニホールド孔M2,M5は、シール部材を設けずに、開放状態である。本実施形態では、冷却流体は、冷却用流通路F3内をマニホールド孔M2からマニホールド孔M5に向かう方向に流れる。このマニホールド孔M2からマニホールド孔M5に向かう方向は、上記X方向とほぼ平行であるため、本明細書においては、マニホールド孔M2からマニホールド孔M5に向かって流れる冷却流体の流通方向をX方向とも称する。
また、シールプレートP1は、図5にも示すように、プレート基板50の最外周縁部に沿って第2シール部材としての外周シール部材55が設けてあり、さらに、第1シール部材と第2シール部材との間には、第3のシール部材が設けてある。この実施形態の第3のシール部材は、外周シール部材55の内側に所要の間隔をおいて平行配置した内周シール部材56である。これらのシール部材51〜56には、より好ましい実施形態として、電気的絶縁性を有する材料から成るものを採用することができる。なお、図5において符号9で示すものは接着剤である。
また、各シール部材51〜54を独立させた構造としているので、それら各シール部材51〜54の設計(高さ、幅、形状)を独立して設定することができる。これにより、シールする部位により流体が異なり、これに応じてシール部材の劣化環境が異なるので、それに応じてシール部材51〜54の設計を個別に行なうことができ、燃料電池スタックAの信頼性を向上させられる。
ここで、燃料電池スタックAでは、図5に示すように、燃料電池セル20同士を接合する接着剤9と第3のシール部材である内周シール部材56とが、セルモジュールMの積層方向Zに延びる直線をなすように、直線的に配列されている。図5の例では、セルフレーム30と各セパレータ40,41とを接合する接着剤9と内周シール部材56とが、積層方向Zに延びる直線をなすように、直線的に配列されている。
圧力損失調整部B1は、冷却用流通路F3において、これを流通する冷却流体の圧力損失を低減または調整する機能を有する。圧力損失調整部B1は、シールプレートP1のアクティブエリア、又はアクティブエリア近傍、若しくはそれら双方の領域において、冷却用流通路F3の断面(冷却用流通路F3の流路壁の一部を構成する部分の断面)を低減または変化させることによって(すなわち、冷却用流通路F3の流路断面積を増加または変化させることによって)、圧力損失を低減または調整する。
上記冷却用流通路F3の断面の低減は、冷却流体の流通方向(本実施形態では、X方向)及び当該流通方向と直交する方向(本実施形態では、Y方向)の双方を含むものである。本明細書において「アクティブエリア」は、燃料電池セル20の発電領域、すなわち、膜電極接合体33に対向する領域を指す。
本実施形態において示す圧力損失調整部B1は、シールプレートP1のアクティブエリアに設けられている。この圧力損失調整部B1は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60、下流側スリット列61及びその長軸中心線O1と直交する短軸中心線O2に平行な二つのスリット62,62からなる。長軸中心線O1は、プレート基板50の短辺(Y方向に平行な辺)を二分する位置に想定し、短軸中心線O2は、プレート基板50の長辺(X方向に平行な辺)を二分する位置に想定したものである。
上流側スリット列60は、冷却流体の流通方向の上流側に配列した8本のスリット60aからなり、それらのスリット60aは、X方向と平行にしかつ互いに同じ長さ及び幅にして配列形成されている。下流側スリット列61は、冷却流体の流通方向の下流側に配列した8本のスリット61aからなり、それらのスリット61aは、上記スリット60aと同じくX方向と平行にしかつ互いに同じ長さ及び幅にして配列形成されている。
シールプレートP1は、燃料電池セル20を流通する二種類の発電用ガスを互いに分離して流入出させるための複数のマニホールド孔M1,M3,M4,M6を有し、それら各マニホールド孔M1,M3,M4,M6の周縁部に、これらを流通する発電用ガスをシールするためのシール部材51〜54が設けてあり、且つ、冷却用流通路F3に流通する冷却流体の圧力損失を低減または調整する圧力損失調整部B1を備えている。
これにより、シールプレートP1及びこれを用いた燃料電池スタックAは、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減または調整することができ、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流通路における冷却流体の流量のばらつきを抑制することができる。
また、シールプレートP1は、圧力損失調整部B1が、冷却流体の流通方向(本実施形態では、X方向)に平行な複数のスリット60a,61aを有するものとしたことから、冷却用流通路F3の圧力損失をより効果的に低減または調整することができる。
さらに、上記のシールプレートP1及びこれを用いた燃料電池スタックAは、シール部材51〜54を備えたシールプレートP1がセルモジュールMに対して容易に取外し可能である。これにより、燃料電池スタックAは、シール部材51〜54が劣化してもシールプレートP1のみ交換すればよく、燃料電池セル20並びにセルモジュールMを継続的に使用することができる。
また、燃料電池スタックAは、シールプレートP1が、外周部に沿って、燃料電池セル20との間をシールする第2のシール部材としての外周シール部材55を備えているので、外部からの雨水等の浸入を確実に阻止することができる。
さらに、燃料電池スタックAは、シールプレートP1が、第1のシール部材51〜54と第2のシール部材としての外周シール部材55との間に、第3のシール部材としての内周シール部材56を備えていることから、外部からの雨水等の浸入を阻止するのに加えて、冷却用流通路F3を流通する冷却流体の漏出を確実に防止することができる。
さらに、燃料電池スタックAは、第1〜第3のシール部材51〜56として電気絶縁性を有する部材を採用することで、上記の防水や漏出防止の効果に加えて、燃料電池セル20とシールプレートP1との間において、発電領域(アクティブエリア)以外の領域の絶縁性を確保して、発電領域での導電性を高めている。
さらに、燃料電池スタックAでは、燃料電池セル20同士を接合する接着剤9と第3のシール部材である内周シール部材56とが、セルモジュールMの積層方向Zに延びる直線をなすように直線的に配列されたので、接着剤9及び内周シール部材56の弾性作用により、膜電極接合体33の膨潤等によって生じる燃料電池スタックAの積層方向Zの変位を吸収することができ、各燃料電池セル20に作用する面圧を一定にすることができる。また、図5に示したように、セルフレーム30と各セパレータ40,41とを接合する接着剤9と内周シール部材56とを、積層方向Zに延びる直線をなすように直線的に配列することで、上記の変位吸収機能をより高めることができる。
以下、図6〜図9に基づいて、上記燃料電池スタックAの細部の他例を説明する。
図6(A)は、酸素含有ガス供給用のマニホールド孔M1の辺縁部に連成されたシール部材を中心とした詳細を示す部分拡大図であって、図5で示すシール部材51の周囲を拡大したものであり、図5(B)は、図5(A)に包囲線Iで示す部分の部分拡大図である。シール部材51は、断面横長方形のシール基台51a上に断面三角形にしたシールリップ51bが突出して形成してある。
このシール部材51は、シールに関与するものであり、弾性変形可能な公知のゴム材である。本実施形態のシール部材51は、シール基台51aの外下半部を段差状にして、マニホールド孔M1の近傍におけるプレート基板50の一主面(図示上面)50aと側壁面50bを被覆するように成形してあり、シールリップ51bをプレート基板50の側壁面50bよりも当該マニホールド孔M1の内方(図6において右方)に偏移させている。すなわち、シールリップ51bは、マニホールド孔M1を形成したプレート基板50の側方に偏移させて形成してある。
上記構成を備えたシール部材51は、シールリップ51bが、上側に隣接する燃料電池セル20のカソード側のセパレータ41に接触しており、セパレータ40,41及びプレート基板50の3つの部材のうち、図6に包囲線IIで示す部位のように、アノード側のセパレータ40とプレート基板50が互いに間隙の生じないゼロタッチで当接(直接当接)していても、シール部材51は、同図中に符号52aで示す如くプレート基板50との接着厚さを確保することができる。
また、シール部材51は、カソード側のセパレータ41とプレート基板50の間だけでなく、アノード側のセパレータ40とプレート基板50の間をもシールすることができる。つまり、一つのシール部材51で、セパレータ40,41及びプレート基板50の3つの部材間をシールすることができ、部材間の簡略化及び小型化を実現する。
また、シール部材51は、プレート基板50の両面に連続させると、セパレータ40,41やプレート基板50の変位などに伴って割れや断裂が生じ易くなる。これに対し、上記シール部材51は、プレート基板50の主面50aから側壁面50bを被覆するようにして、プレート基板50の片面に設けてあるので、セパレータ40,41やプレート基板50が変位しても、割れや断裂を防止することができる。なお、本実施形態においては、シール部材51を例として説明しているが、他のシール部材52〜54についても同様である。
図7(A)は、燃料電池スタックAの部分拡大断面図で、図4に示すD‐D線に沿う断面であり、図7(B)は、図7(A)に包囲線IIIで示す部分の部分拡大図である。すなわち、図7には、上記した水素含有ガス供給用のマニホールド孔M3を区画するプレート基板50の各辺縁部と、これの辺縁部に形成したシール部材52を示している。
シール部材52は、断面横長方形にしたシール基台52aの下面に、断面三角形にしたシールリップ52bが突出させて形成してある。このシール部材52は、上記したものと同様にシールに関与するものであり、弾性変形可能な公知の例えばゴム材である。
本実施形態においては、シール基台52aの外上半部を段差状にして、マニホールド孔M3を区画するプレート基板50の一主面(図示下面)50cと側壁面50bを被覆するように成形し、シールリップ52bをプレート基板50の側壁面50bよりも当該マニホールド孔M3の内方(図7において左方)に偏移させている。すなわち、シールリップ52bは、マニホールド孔M3を形成したプレート基板50の側方に偏移させて形成してあり、プレート基板50の主面から外れた位置に形成してある。
上記構成を備えたシール部材52は、シールリップ52bが、下側に隣接する燃料電池セル20のアノード側のセパレータ40に接触しており、セパレータ40,41及びプレート基板50の3つの部材のうち、図7に包囲線IIIで示す部位のように、カソード側のセパレータ41とプレート基板50が互いに間隙の生じないゼロタッチで当接(直接当接)していても、シール部材51は、アノード側のセパレータ40とプレート基板50の間だけでなく、カソード側のセパレータ41とプレート基板50の間をもシールすることができる。
つまり、一つのシール部材52で、セパレータ40,41及びプレート基板50の3つの部材間をシールすることができ、部材間の簡略化及び小型化を実現する。さらに、シール部材52は、図6に示すシール部材51と同様に、セパレータ40,41やプレート基板50が変位しても、割れや断裂を防止することができる。
図6に示すシール部材51と、図7に示すシール部材52は、プレート基板50の上下面に相対的に配設される。すなわち、冷却媒体の流通方向(本実施形態では、X方向)に平行な長軸中心線O1を間にして、酸素含有ガス供給用のマニホールド孔M1の辺縁部に形成したシール部材51の上向きのシールリップ51bと、水素含有ガス供給用のマニホールド孔M3の辺縁部に形成したシール部材52の下向きのシールリップ52bとを、プレート基板50の上下面に相対的に配設する。これにより、シールを安定して行なうことができる。
これは、一つのシール部材で3枚のプレート(2つの空間)のシールをするとき、マニホールド孔部分において直接当接する2枚の部材の組み合わせが異なるので、上記のシール部材51,52を上下に相対的に配置することで、夫々の組合せの相違に対応することができ、プレート基板50の両面において安定したシールを実現する。また、ガス流路とシール部材の高さを両立させられるので小型化を図ることができると共に、シール部材の高さ(厚み)を充分に確保でき、シールの信頼性を向上させられる。
図8(A)は、マニホールド孔の辺縁部に連成された他例に係るシール部材を中心とした詳細を示す部分拡大図で、図4に示すE‐E線に沿う断面であり、図8(B)は、図8(A)に包囲線IVで示す部分の部分拡大図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
同図に示すマニホールド孔M4を区画形成するプレート基板50の辺縁部50dは、そのプレート基板50の表面から上側に離れるように折曲形成されている。これに対して、シール部材53は、マニホールド孔M4を区画形成するプレート基板50の辺縁部50dの全周にわたって無端状に形成してある。
シール部材53は、弾性変形可能な公知の例えばゴム材であり、断面横長方形にしたシール基台53aの上面にシールリップ53bが突出させて形成してある。このシールリップ53bは断面三角形に形成されており、上記したものと同様にシールに関与するものである。
シール部材53は、シール基台53aの外半部を、マニホールド孔M4を区画するプレート基板50の二つの主面(図示上下面)50a,50c及び側壁面50bを被覆するように成形固定することにより、シールリップ53bをプレート基板50側壁面50bよりも当該マニホールド孔M4の内方(図8において右方)に偏移させている。すなわち、シールリップ53bは、マニホールド孔M4を形成したプレート基板50の側方に偏移させて形成してある。
上記のシール部材53は、先の実施形態と同様に、セパレータ40,41及びプレート基板50の3つの部材間をシールすることができるほか、マニホールド孔の内周面を全体的に被覆することで、絶縁性をより高めることができる。
図9(A)は、他例に係る内周シール部材を中心とした詳細を示す部分拡大図で、図4に示すC‐C線に沿う断面であり、図9(B)は、図9(A)中の包囲線Vで示す部分の部分拡大図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
内周シール部材56(A)を配設するプレート基板50には、その内周シール部材56(A)の高さを勘案して、シール配設凹部50e,50eが上下両面に延在形成してある。内周シール部材56(A)は、弾性変形可能な公知の例えばゴム材であり、断面横長方形のシール基台56a上に断面三角形にしたシールリップ56bが突出させて形成してある。
プレート基板50にシール配設凹部50e,50eを形成することにより、プレート基板50を部分的に薄肉化すると同時に、内周シール部材56(A)を厚肉化し得る。これにより、許容圧縮量の大きい(シメシロの大きい)シール部材を採用することができる。さらに、シール部材をなすゴムの圧縮率を低減させることができ、シール部材の設計のロバスト性の向上やへたり寿命の向上を実現する。
上記の各シール部材51〜56を備えたシールプレートP1は、先述した燃料電池スタックAに適用され、セルモジュールMに対して容易に取外し可能なため、シール部材51〜56が劣化してもシールプレートP1のみ交換すればよいので、燃料電池セル20並びにセルモジュールMの継続使用に貢献することができる。
図10〜図14は、本発明の第2〜第5の実施形態に係るシールプレートのそれぞれ平面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
〈第2実施形態〉
図10に示す本発明の第2の実施形態に係るシールプレートP2は、第2の例に係る圧力損失調整部B2を設けたものである。図示の圧力損失調整部B2は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60A、下流側スリット列61A及びその長軸中心線O1と直交する短軸中心線O2に平行な二つのスリット62,62からなる。
上流側スリット列60Aは、冷却流体の流通方向の上流側に配列した10本のスリット60bからなる。本実施形態においては、長軸中心線O1を挟む両側に、互いに所要の間隔W1をおいて5本のスリット60bずつ振り分けて配列している。各スリット60bは、上記したスリット60aよりも幅狭にしかつ互いに同じ長さ及び幅に形成しているとともに、互いに平行にして配列されている。
下流側スリット列61Aは、冷却流体の流通方向の下流側に配列した10本のスリット61bからなる。各スリット61bは、上記したスリット60bと同じ形状で同じ大きさを有し、且つ同じ配列にしたものであり、本実施形態においては、長軸中心線O1を挟む両側に、互いに所要の間隔W1をおいて5本のスリット61bずつ振り分けて配列している。
上記構成を備えたシールプレートP2は、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減または調整することができ、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流通路における冷却流体の流量のばらつきを抑制することができる。
〈第3実施形態〉
図11に示す本発明の第3の実施形態に係るシールプレートP3は、第3の例に係る圧力損失調整部B3を設けたものである。図示の圧力損失調整部B3は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60B、下流側スリット列61B及びその長軸中心線O1と直交する短軸中心線O2に平行な二つのスリット62,62からなる。
上流側スリット列60Bは、冷却流体の流通方向の上流側に配列した15本のスリット60cを、Y方向に等間隔にしかつ互いに平行にして配列されている。下流側スリット列61Bは、冷却流体の流通方向の下流側に配列した8本のスリット61cからなる。各スリット61cは、スリット60cと同形同大のものであり、それらスリット60cの二倍の間隔にして配列したものである。
上記構成を備えたシールプレートP3は、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減または調整することができるほか、冷却用流通路F3の上流側と下流側の圧力損失を調整することもできる。さらに、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流通路における冷却流体の流量のばらつきを抑制することができる。
〈第4実施形態〉
図12に示す本発明の第4の実施形態に係るシールプレートP4は、第4の例に係る圧力損失調整部B4を設けたものである。図示の圧力損失調整部B4は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60C、下流側スリット列61C及びその長軸中心線O1と直交する短軸中心線O2に平行な二つのスリット62,62からなる。
上流側スリット列60Cは、冷却流体の流通方向の上流側に配列した8本のスリット60dを、Y方向に等間隔にしかつ互いに平行にして配列されている。スリット60dは、上記したスリット60aと同形同大のものである。下流側スリット列61Cは、冷却流体の流通方向の下流側に配列した7本のスリット61dからなる。スリット61dは、スリット60dと同じ形状で同じ大きさのものであり、上記X方向から見て(Y方向位置において)、それぞれスリット60dの間に位置するようにして、Y方向に等間隔且つ互いに平行に配列されている。
上記構成を備えたシールプレートP4は、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減または調整することができるほか、冷却用流通路F3の上流側と下流側の圧力損失を調整することもできる。さらに、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流通路における冷却流体の流量のばらつきを抑制することができる。
〈第5実施形態〉
図13に示す本発明の第5の実施形態に係るシールプレートP5は、第5の例に係る圧力損失調整部B5を設けたものである。図示の圧力損失調整部B5は、プレート基板50の長軸中心線O1に平行に形成された上流側スリット列60D、下流側スリット列61D及びその長軸中心線O1と直交する短軸中心線O2に平行な二つのスリット62,62からなる。
上流側スリット列60Dは、冷却流体の流通方向の上流側に配列した8本のスリット60e〜60h、60e〜60hを、Y方向に等間隔且つ互いに平行に配列されている。スリット60e〜60hは、Y方向両外側からY方向中心側(長軸中心線O1)にかけて順次配列されており、スリット60eからスリット60hにかけて次第に全長が短くなるようにしたものである。下流側スリット列61Dは、冷却流体の流通方向の下流側に配列した8本のスリット60e〜60h、60e〜60hを、Y方向に等間隔且つ互いに平行に配列されている。
上記構成を備えたシールプレートP5にあっても、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減または調整することができ、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流通路における冷却流体の流量のばらつきを抑制することができる。
ここで、図14は、上記した図4に示すV−V線に沿う断面を拡大して示す部分拡大図であり、セパレータとともにその相対的な位置関係を示している。また、図15は、図14においてプレート基板の厚みを大きくした例において、図4に示すV−V線に沿う断面と同等の位置における断面を拡大して示す部分拡大図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
図14に示すシールプレートP1とセパレータ40,41とは、プレート基板50のスリット60aが、セパレータ40,41の凸部40b,41bに当接挟持されておらず、スリット60aを凹部40a,41aに臨む位置関係にしたものである。このとき、スリット60aが凹部40a,41aの開口部の寸法(幅)W2よりも小さい幅に形成されている場合には、凹部40a,41aを面内方向(図14左右方向)に偏らせて、凹部40a、41a内におけるスリット60aの位置を調整し、プレート基板の凹部40a,41a内(冷却用流通F3内)への突出寸法W3,W4を調整することができる。
このように、プレート基板50の凹部40a,41a内への突出寸法W3,W4を調整することによって、冷却用流通路の圧力損失を低減または調整することができる。また、シールプレートP1とセパレータ40,41を上記の位置関係にした場合には、図15にプレート基板50´を示すように、その厚みTを大きくしても調整することができる。
図16,17は、図4に示すV‐V線に沿う断面と同等の位置における断面を拡大して示す部分拡大図である。図16に示すシールプレートP1とセパレータ40,41とは、セパレータ40,41の凹凸部40a,41a、40b,41bの配列ピッチが、プレート基板50に形成されたスリットの配列ピッチの2倍になっているものであり、また、スリット60aを凹部40a,41aの開口部の寸法W2とほぼ同じ幅に形成したものである。
図17に示すシールプレートP1とセパレータ40,41とは、セパレータ40,41の凹凸部40a,41a、40b,41bの配列ピッチと、プレート基板50に形成したスリット60aとが同じピッチであり、また、スリット60aを凹部40a,41aの開口部の寸法W2と同じ幅に形成したものである。
図16,17に示す構成では、スリット60aを形成していない基板部分を一対のセパレータ40,41の凸部40b,41bで挟持しているので、導電性を阻害することなく、面圧の抜け(部分的な減少)を防止できるとともに、セパレータ等に変形を生じさせることがない。
図18,19は、本発明の第6,第7の実施形態に係るシールプレートのそれぞれ平面図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
〈第6実施形態〉
本発明に係る第6の実施形態に係るシールプレートP6は、第6の例に係る圧力損失調整部B6を設けたものである。図示の圧力損失調整部B6,B6は、冷却用流通路F3において、これを流通する冷却流体の圧力損失を低減または調整する機能を有する。圧力損失調整部B6,B6は、そのアクティブエリア近傍の領域において、冷却用流通路F3の断面(冷却用流通路F3の流路壁の一部を構成する部分の断面)を低減または変化させることによって(すなわち、冷却用流通路F3の流路断面積を増加または変化させることによって)、圧力損失を低減または調整する。
本実施形態の圧力損失調整部B6,B6は、シールプレートP6の両ディフューザ領域(セルフレーム30のX方向一側および他側のディフューザ領域Dに対向する領域)D1に配設されている。各圧力損失調整部B6は、長軸中心線O1からシールプレートP6の短辺の両側部に向けて平面視における開口面積が増大する形状にした開口(以下、「開口B6」と記す)である。すなわち、開口B6は、Y軸方向中心側からY方向外側に向かうに従って、X方向の開口幅が増大する。開口B6は、短軸中心線O2に平行な長辺70a、長軸中心線O1に平行な短辺70b,70b及び長辺70cにより区画形成されている。長辺70cは、Y方向両外側からY方向中心側(長軸中心線O1側)にかけて開口内方に突出するように曲成されている(Y方向中心側がよりX方向外側に位置するように湾曲している)。
上記構成を備えたシールプレートP6は、開口B6(スリット)がディフューザ領域D1に配設されている。開口B6は、冷却流体の流通領域の中心から冷却流体の流通方向と直交する方向において、その中心から離間する方向に向けて開口面積が次第に増大する形状に形成されている。
これにより、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減または調整することができ、とくに、スリットの冷却流体の流通方向(本実施形態では、X方向)に沿った長さを、プレート基板50の幅方向(本実施形態では、Y方向)の中心側で小さくし、端部(Y方向外側)で大きくできるので、冷却用流通路F3に形成された複数のチャネル間で圧力損失の調整を行う(例えば、圧力損失のばらつきを抑える)ことができる。また、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流通路における冷却流体の流量のばらつきを抑制することができる。
〈第7実施形態〉
本発明に係る第7の実施形態に係るシールプレートP7は、第7の例に係る圧力損失調整部B7,B7を設けたものである。図示の圧力損失調整部B7は、シールプレートP7のアクティブエリア近傍の領域、本実施形態においては、両ディフューザ領域D1に配設されている。この圧力損失調整部B7は、長軸中心線O1からシールプレートP7の短辺の両側部に向けて平面視における開口面積が増大する形状にした開口(以下、「開口B7」と記す)である。すなわち、開口B7は、Y軸方向中心側からY方向外側に向かうに従って、X方向の開口幅が増大する。開口B7は、短軸中心線O2に平行な長辺70a、長軸中心線O1に平行な短辺70b,70b及び長辺70cにより区画形成されている。長辺70cは、Y方向両外側からY方向中心側(長軸中心線O1側)にかけて開口内方に突出するように曲成されている(Y方向中心側がよりX方向外側に位置するように湾曲している)。また、長辺70aおよび長辺70cのY方向中央部には、長軸中心線O1に一致させて(長軸中心線O1の位置に)長辺70aおよび長辺70cを連結する連結片70dが配設されている。
上記構成を備えたシールプレートP7にあっても、開口B7(スリット)がディフューザ領域D1に配設されており、冷却流体の流通領域の中心から当該流通方向と直交する方向において、その中心から離間する方向に向けて開口面積が次第に増大する形状に形成されている。
これにより、シールプレートP7は、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減または調整することができ、とくに、スリットの冷却流体の流通方向(本実施形態では、X方向)に沿った長さを、プレート基板50の幅方向の中心で小さくし、端部で大きくできるので、チャネル間の圧力損失の調整を行なうことができる。また、長軸中心線O1に一致させて連結片70dを配設したことにより、圧力損失の低減または調整機能を有しつつ、連結片70dが補強部となってシールプレートP7の変形を防止する。さらに、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流通路における冷却流体の流量のばらつきを抑制することができる。
〈第8実施形態〉
図20は、本発明の第8の実施形態に係るシールプレートの説明図、図21は、図20に示すシールプレートの端部の拡大平面図であり、セパレータの接着シール80を重ねて示している。なお、上述した各実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
圧力損失調整部B8は、冷却用流通路F3において、これを流通する冷却流体の圧力損失を低減または調整する機能を有する。圧力損失調整部B8は、膜電極接合体33に対向する領域であるアクティブエリア、又はアクティブエリア近傍、若しくはそれら双方の領域において、冷却用流通路F3の断面(冷却用流通路F3の流路壁の一部を構成する部分の断面)を低減または変化させることによって(すなわち、冷却用流通路F3の流路断面積を増加または変化させることによって)、圧力損失を低減または調整する。冷却用流通路F3の断面の低減は、冷却流体の流通方向(本実施形態では、X方向)及び当該流通方向と直交する方向(本実施形態では、Y方向)の双方を含むものである。
圧力損失調整部B8は、アクティブエリア近傍の両ディフューザ領域D1に配設してある。この圧力損失調整部B8は、図21にも示すように、セルモジュールM間に形成した冷却用流通路F3に流通する冷却流体の圧力損失を低減または調整するための開口部71を有しており、前記開口部71が、冷却流体の流通方向(本実施形態では、X方向)に交差する方向(本実施形態では、Y方向)に架設した補強用の長連結片71c及び短連結片71dを有している。
具体的には、開口部71は、略T字状の形状を有しており、短軸中心線O2に平行な細長い長方形の大開口部71aと、長軸中心線O1上に配設された小開口部71bとを有する。また、開口部71は、大開口部71aの短軸中心線O2寄りに、長連結片71cが大開口部71aの短辺間に架設されている。長連結片71cにより大開口部71aの一部が区分けされ、これを短軸中心線O2に沿ったスリット62にしている。さらに、開口部71では、小開口部71bのX方向中間部分に、短連結片71dが架設されている。
このとき、短連結片71dは、セルフレーム30に配設した接着シール80のシール部分80aに対向する位置に配設してあり、これにより、シール部分80aを押さえるようにしている。長連結片71cは、セルフレーム30のディフューザ領域Dに対向する位置に配設されている。これらの長短の連結片71c、71dは、セルフレーム30のディフューザ領域Dの変形を抑える働きをする。
上記のシールプレートP8は、燃料電池セル20の一部をなすセパレータ(図21に接着シールのみを示す)にシール部材(80)が配設されており、上記シール部材(80)が配設されていない部位にスリット62を形成している。
これにより、シールプレートP8は、先の実施形態と同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減または調整することができ、また、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流通路における冷却流体の流量のばらつきを抑制することができる。
さらに、上記のシールプレートP8は、Y方向にシール部分80aが配置される部分に短連結片71dを配設すると共に、シール部材(80)が配設されていない部位にスリット62を有しているので、例えばガス圧が冷却水圧よりも大きくなって、その差圧が作用しても、接着シールであれば剥がす方向への力、圧縮シールであればシメシロ(許容圧縮量)を減らす方向への力を作用させないようにすることができる。これにより、接着シールの信頼性や耐久性を向上させることができる。
さらに、燃料電池スタックAにおいて、上記シールプレートP8は、セルモジュールM間に形成した冷却用流通路F3に流通する冷却流体の圧力損失を低減または調整するための開口部71を有すると共に、開口部71が、冷却流体の流通方向(本実施形態では、X方向)に交差する方向(本実施形態では、Y方向)に架設した長短の補強用連結片71c、71dを有する構成としたことにより、開口部71による圧力損失の調整機能を確保しつつセルフレーム30のディフューザ領域Dの変形を抑えることができる。
すなわち、燃料電池スタックAは、シールプレートP8に開口部71を設けることで上述の如く圧力損失を調整し得るのであるが、起動時などに発電用ガスの圧力を意図的に増減させて運転する場合があり、このような運転を行うと、シールプレートP8やセルフレーム30が厚さ方向に変形すると共に、発電用ガスや冷却流体の流量が不安定になって脈動が生じることがある。そこで、シールプレートP8の開口部71に補強用連結片71c、71dを設けることで、運転状態に左右されることなく、シールプレートP8やセルフレーム30の変形を防止して、冷却用流通路F3の容量を安定させる。これにより、冷却流体の流量も安定し、良好な冷却機能と発電機能を維持し得るものとなる。
〈第9実施形態〉
図22(A)は、本発明の第9の実施形態に係るシールプレートの平面図、図22(B)は、図22(A)に示すVII‐VII線に沿う断面を部分的に拡大して示す部分拡大図である。なお、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
図22に示す本発明の第9の実施形態に係るシールプレートP9は、第9の例に係る圧力損失調整部B9を設けたものである。図示の圧力損失調整部B9は、プレート基板50の長軸中心線O1に平行に形成された複数の溝からなる上流側溝列60E、下流側溝列61E及びその長軸中心線O1と直交する短軸中心線O2に平行な二つのスリット62,62からなる。
上流側溝列60Eは、冷却流体の流通方向の上流側に配列した8本の溝60iからなる。本実施形態においては、長軸中心線O1を挟む両側に、互いに所要の間隔W1をおいて4本の溝60iずつ振り分けて配列してある。それらの溝60iは、プレート基板50の両面の対向する部位を、エッチングや絞り加工により減肉させることにより、所要の厚みだけ薄く形成したものであり、上記したスリット60aとほぼ同じ幅に且つ互いに同じ長さ及び間隔に形成してあると共に、互いに平行にして配列してある。
下流側溝列61Eは、冷却流体の流通方向の下流側に配列した6本の溝61jからなる。溝61jは、溝60iと同じ形状で同じ大きさのものであり、それら溝60iと同じ配列にしたものである。
上記のシールプレートP9は、圧力損失調整部B9が、冷却流体の流通方向と平行な複数の溝60i,61iを有するものであることから、貫通したスリットを有するものと同様に、隣接するセルモジュールM,M同士の間の冷却用流通路F3における圧力損失を低減または調整することができ、とくに、溝60i,61iの深さを調整することによっても、圧力損失の低減または調整を図ることができる。また、例えば、隣接する燃料電池セル20,20同士の間にも冷却用流通路を有する燃料電池スタックにおいては、全ての冷却用流通路における冷却流体の流量のばらつきを抑制することができる。
上述したシールプレートP1〜P9は、燃料電池スタックAに適用して、以下の効果を得ることができる。すなわち、シールプレートP1〜P9はセルモジュールMに対して容易に取外しできるため、一のシールプレートP1〜P9のシール部材51〜56が劣化しても当該シールプレートP1〜P9のみ交換すればよく、セルモジュールMを継続使用できる。また、一つのセルモジュールMが故障した場合には、そのセルモジュールMのみ交換すればよく、シールプレートP1〜P9を継続使用することができる。
さらに、シールプレートP1〜P9を燃料電池スタックAの一の冷却用流通路F3に介装したときに、他の冷却用流通路F3との圧力損失(又は冷却水流量)を合わせることができる。さらに、セルモジュールMの端部に配設した燃料電池セル20と、そのセルモジュールM内に配設した燃料電池セル20における冷却流体のセル間流量のばらつきを低減することができる。なお、圧力損失調整部の構成は、燃料電池スタック及びシールプレートの各種条件などに応じて、上記各実施形態に例示したものを適宜組み合わせることが可能である。
上述した各実施形態においては、隣接するセルモジュールM間に区画形成される空間を冷却媒体の流通路として例について説明したが、その空間を流通路としない場合でもシールプレートを介装した構成にすることが可能である。
〈第10実施形態〉
図23は、本発明に係わる燃料電池スタックの第10実施形態を説明する図である。図24(A)は、図23に示すセルモジュールの平面図であり、図24(B)は燃料電池スタックの斜視図である。ここで、図23(A)は、シール部材を説明する都合上、セルモジュールに、図示しないシールプレートのシール部材のみを重ねて示したものである。なお、先の各実施形態と同一の構成部位は、同一符号を付して詳細な説明を省略する。
図示の燃料電池スタックAは、個々の燃料電池セル20の電圧測定を行うために、各燃料電池セル20の一方のセパレータ(図示例ではカソード側セパレータ)41の外周部の一部に延長部41Eを設け、この延長部41Eから連続してスタック外側へ突出する電圧測定用タブ41Tを有している。
延長部41Eは、図23に示すように、燃料電池セル20のセルフレーム30との間、及び隣接する燃料電池セル20のセルフレーム30との間に、絶縁性を有する接着シール部90を設けてその間を密封し、セパレータ41間の短絡や、外部からの雨水等の侵入を防止している。また、電圧測定用タブ41Tは、各燃料電池セル20の同じ位置に設けることで、図24(B)に示す如く積層方向Zに延びる直線をなすように直線的に配列される。この一列に並んだ電圧測定用タブ41Tからなるタブ列に、図示しないコネクタが装着される。
また、燃料電池スタックAは、少なくとも電圧測定用タブ41Tの配列(タブ列)の両側に、コネクタシール部材57が設けてある。このコネクタシール部材57は、少なくともセルモジュールMのセル積層方向Zにわたって連続した膜状部材であり、図示例では、セル積層方向Zの一端側(図23では下端側、図24Bでは上端側)において、シールプレートP1の外周シール部材55に接触して連続状態になる。このコネクタシール部材57は、外周シール部材55とは別体である。
さらに、上記のコネクタシール部材57は、セルモジュールMとシールプレートP1とを交互に積層して燃料電池スタックAを構成した際に、セル積層方向Zの他端側(図23では上端側、図24Bでは下端側)において、隣接するセルモジュールMのコネクタシール部材57と接触して連続状態になる。これにより、各セルモジュールMのコネクタシール部材57は、積層方向Zに連続状態になる。
上記構成を備えた燃料電池スタックAは、各燃料電池セル20の一対のセパレータ40,41のいずれか一方のセパレータ41が、セルモジュールMの外側に突出する電圧測定用タブ41Tを有すると共に、各電圧測定用タブ41Tが、セル積層方向Zに延びる直線をなすように直線的に配列されており、少なくとも各電圧測定用タブ41Tの配列の両側に、コネクタシール部材57を備えていることから、先の各実施形態と同様に、シール部材51〜57が劣化してもシールプレートP1のみ交換すればよく、セルモジュールMを継続使用できる効果を有するほかに、スタック外側に突出した電圧測定用タブ41Tの周囲の防水性を高めることができる。
また、燃料電池スタックAは、コネクタシール部材57が、セル積層方向Zにわたって連続した膜状の部材であるため、電圧測定用タブ41Tに接続したコネクタに密着し易く、双方の接続部分の防水性をより高めることができる。
さらに、燃料電池スタックAは、コネクタシール部材57が、シールプレートP1の外周シール部材55と別体であり且つ連続状態になっているので、上記した防水性の向上のほか、シールプレートP1だけを取り外すことが可能であり、あるいはコネクタシール部材57だけを取り外すことも可能である。
なお、コネクタシール部材57は、複数のセルモジュールM又は燃料電池スタックAの全体にわたる一体構造にしたり、外周シール部材55と一体構造にしたり、燃料電池スタックAの組み立て後に互いに接合して一体化したりすることが可能である。
以上、本発明の実施形態について説明したが、これらの実施形態は本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。例えば、上述した各実施形態においては、各セルモジュールMをなす燃料電池セル20を互いに同一の積層枚数にしているが、各セルモジュールMをなす燃料電池セル20を互いに異なる枚数としてもよい。
上述した各実施形態においては、シールプレート全体を導電性の金属材で形成したものを例示したが、シールプレートは、少なくともアクティブエリアを導電性材で形成すればよい。通常、シールプレートは、経時的に安定した導電性を確保するために表面処理を行うが、この表面処理もアクティブエリアのみに行えばよい。これにより、処理の効率化を図ることができる。また、アクティブエリアの材料としてカーボン材を用いてもよい。この場合、表面処理は不要となる。
各実施形態に示す圧力損失調整部が複数のスリット又は溝を有するものとして説明したが、スリットと溝とを混在させた構成にしてもよい。
本出願は、2012年3月9日に出願された日本国特許願第2012−053314号、および2012年12月18日に出願された日本国特許願第2012−275474号に基づく優先権を主張しており、これらの出願の全内容が参照により本明細書に組み込まれる。
本発明によれば、燃料電池スタックにおいて、セルモジュール間に形成した冷却用流通路における圧力損失を低減または調整することができる。
20 燃料電池セル
40,41 セパレータ
40a,41a 凹部
40b,41b 凸部
41T 電圧測定用タブ
51〜54 シール部材
55 外周シール部材
57 コネクタシール部材
62 スリット
60i,61i 溝
80 接着シール(シール部材)
A 燃料電池スタック
B1〜B9 圧力損失調整部
D ディフューザ領域
F3 冷却用流通路
M セルモジュール
M1〜M6 マニホールド孔
P1〜P9 シールプレート
特開2005−190706号公報は、セルを複数重ねて多セルモジュールを構成し、その多セルモジュールをセル積層方向に複数かつ直列に配列し、多セルモジュール間をビードガスケットにてシールした燃料電池スタック構造を開示している。上記多セルモジュールのビードガスケットに接触する端部セルのセパレータの面剛性を多セルモジュールの中央セルのセパレータの面剛性よりも大きくし、具体的には、多セルモジュールの端部セルのセパレータに平板を重ねて、端部セルのセパレータの面剛性を中央セルのセパレータの面剛性よりも大きくしている。請求項1のプリアンブル部分に係る燃料電池スタックは、米国特許出願公開US2009/0042086号明細書により知られている。
特開2005−190706号公報は、セルを複数重ねて多セルモジュールを構成し、その多セルモジュールをセル積層方向に複数かつ直列に配列し、多セルモジュール間をビードガスケットにてシールした燃料電池スタック構造を開示している。上記多セルモジュールのビードガスケットに接触する端部セルのセパレータの面剛性を多セルモジュールの中央セルのセパレータの面剛性よりも大きくし、具体的には、多セルモジュールの端部セルのセパレータに平板を重ねて、端部セルのセパレータの面剛性を中央セルのセパレータの面剛性よりも大きくしている
内周シール部材56Aを配設するプレート基板50には、その内周シール部材56Aの高さを勘案して、シール配設凹部50e,50eが上下両面に延在形成してある。内周シール部材56Aは、弾性変形可能な公知の例えばゴム材であり、断面横長方形のシール基台56a上に断面三角形にしたシールリップ56bが突出させて形成してある。
プレート基板50にシール配設凹部50e,50eを形成することにより、プレート基板50を部分的に薄肉化すると同時に、内周シール部材56Aを厚肉化し得る。これにより、許容圧縮量の大きい(シメシロの大きい)シール部材を採用することができる。さらに、シール部材をなすゴムの圧縮率を低減させることができ、シール部材の設計のロバスト性の向上やへたり寿命の向上を実現する。
図16,17は、図4に示すV‐V線に沿う断面と同等の位置における断面を拡大して示す部分拡大図である。図16に示すシールプレートP1とセパレータ40,41とは、プレート基板50に形成されたスリットの配列ピッチが、セパレータ40,41の凹部40a,41a及び凸部40b,41bの配列ピッチの2倍になっているものであり、また、スリット60aを凹部40a,41aの開口部の寸法W2とほぼ同じ幅に形成したものである。

Claims (10)

  1. 各々複数の燃料電池セルを積層して一体化した少なくとも2つの隣接セルモジュールの間に画成された冷却流体を流通させるための冷却用流通路に介装されるシールプレートであって、
    二種類の発電用ガスを分離して流入出させて前記複数の燃料電池セルに流通させるための複数のマニホールド孔が形成されたマニホールド部と、
    各マニホールド孔の周縁部に設けられた、当該マニホールド孔を流通する発電用ガスをシールするためのシール部材と、
    前記冷却用流通路を流通する前記冷却流体の圧力損失を低減または調整する圧力損失調整部と、
    を備えたことを特徴とするシールプレート。
  2. 前記圧力損失調整部が、前記冷却流体の流通方向と平行な複数のスリットを有することを特徴とする請求項1に記載のシールプレート。
  3. 前記燃料電池セルの一部をなすセパレータには、前記冷却流体が流通する凹部と、前記シールプレートに当接する凸部とが交互に形成されており、
    前記圧力損失調整部が、前記凹部に臨む位置に配設されたスリットを有することを特徴とする請求項1又は2に記載のシールプレート。
  4. ディフューザ領域にスリットが配設されており、該スリットは、前記冷却流体の流通領域の中心から前記冷却流体の流通方向と直交する方向において、前記流通領域の中心から離間する方向に向けて開口面積が次第に増大する形状に形成されていることを特徴とする請求項1〜3のいずれか1項に記載のシールプレート。
  5. 前記圧力損失調整部が、前記冷却流体の流通方向と平行な複数の溝を有することを特徴とする請求項1〜4のいずれか1項に記載のシールプレート。
  6. 互いに隣接する少なくとも2つのセルモジュールと、
    前記少なくとも2つのセルモジュールの間に介挿された請求項1〜5のいずれか1項に記載のシールプレートと、
    を備えていることを特徴とする燃料電池スタック。
  7. 前記燃料電池セルの一部をなすセパレータにシール部材が配設されており、
    前記シールプレートにおける前記シール部材が配設されていない部位に、スリットを形成していることを特徴とする請求項6に記載の燃料電池スタック。
  8. 各燃料電池セルの一対のセパレータのいずれか一方のセパレータが、前記セルモジュールの外側に突出する電圧測定用タブを有すると共に、
    各電圧測定用タブが、セル積層方向に延びる直線をなすように配列されており、
    少なくとも各電圧測定用タブの配列の両側に、コネクタシール部材を備えたことを特徴とする請求項6又は7に記載の燃料電池スタック。
  9. 前記コネクタシール部材が、セル積層方向に連続した膜状部材であることを特徴とする請求項8に記載の燃料電池スタック。
  10. 前記シールプレートが、外周部に沿って形成された、当該シールプレートとこれに隣接する燃料電池セルとの間をシールする外周シール部材を備えており、
    前記コネクタシール部材が、前記外周シール部材に連続する別体のシール部材であることを特徴とする請求項9に記載の燃料電池スタック。
JP2014542637A 2012-03-09 2013-03-06 シールプレート及びこれを用いた燃料電池スタック Active JP5846315B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014542637A JP5846315B2 (ja) 2012-03-09 2013-03-06 シールプレート及びこれを用いた燃料電池スタック

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012053314 2012-03-09
JP2012053314 2012-03-09
JP2012275474 2012-12-18
JP2012275474 2012-12-18
JP2014542637A JP5846315B2 (ja) 2012-03-09 2013-03-06 シールプレート及びこれを用いた燃料電池スタック
PCT/JP2013/001389 WO2013132843A1 (en) 2012-03-09 2013-03-06 Seal plate and fuel cell stack using the same

Publications (2)

Publication Number Publication Date
JP2015509644A true JP2015509644A (ja) 2015-03-30
JP5846315B2 JP5846315B2 (ja) 2016-01-20

Family

ID=48142039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014542637A Active JP5846315B2 (ja) 2012-03-09 2013-03-06 シールプレート及びこれを用いた燃料電池スタック

Country Status (6)

Country Link
US (1) US10090537B2 (ja)
EP (1) EP2823525B1 (ja)
JP (1) JP5846315B2 (ja)
CN (1) CN104170131B (ja)
CA (1) CA2866798C (ja)
WO (1) WO2013132843A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004739A (ja) * 2014-06-19 2016-01-12 トヨタ自動車株式会社 燃料電池
JPWO2017104212A1 (ja) * 2015-12-18 2018-09-27 日産自動車株式会社 燃料電池スタックのシール構造及びその製造方法
WO2024106305A1 (ja) * 2022-11-15 2024-05-23 Nok株式会社 ガスケットおよびガスケット装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2823526B1 (en) * 2012-03-09 2015-11-18 Nissan Motor Co., Ltd. Fuel cell stack and seal plate used for the same
JP6123730B2 (ja) * 2014-04-23 2017-05-10 トヨタ自動車株式会社 燃料電池
JP6570587B2 (ja) * 2017-09-07 2019-09-04 本田技研工業株式会社 燃料電池用セパレータ及び発電セル
KR102274518B1 (ko) * 2017-09-29 2021-07-06 주식회사 엘지에너지솔루션 전지 셀 표면 냉각을 위한 불균일 유로를 구비한 쿨링 자켓 및 이를 포함하는 배터리 모듈
FR3074970B1 (fr) 2017-12-13 2019-12-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Reacteur electrochimique a membrane echangeuse de protons a haute temperature adapte pour stockage basse temperature
CN108134124B (zh) * 2018-01-11 2019-03-29 中国矿业大学 一种平板型固体氧化物燃料电池连接件及电池堆
US10964956B2 (en) * 2018-06-06 2021-03-30 GM Global Technology Operations LLC Fuel cell stack assembly
DE102020203044A1 (de) * 2020-03-10 2021-09-16 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzelleneinheit
DE102022113249A1 (de) 2022-05-25 2023-11-30 Ekpo Fuel Cell Technologies Gmbh Elektrochemische Vorrichtung
CN114864961A (zh) * 2022-05-31 2022-08-05 上海电气集团股份有限公司 燃料电池的双极板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142126A (ja) * 2001-11-05 2003-05-16 Honda Motor Co Ltd 燃料電池
JP2005158435A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 燃料電池
JP2005183141A (ja) * 2003-12-18 2005-07-07 Honda Motor Co Ltd 燃料電池
WO2007043636A1 (ja) * 2005-10-11 2007-04-19 Toyota Jidosha Kabushiki Kaisha 燃料電池用ガスセパレータおよび燃料電池
JP2009043578A (ja) * 2007-08-09 2009-02-26 Honda Motor Co Ltd 燃料電池
JP2010533936A (ja) * 2007-07-18 2010-10-28 セレネルギー アクティーゼルスカブ 燃料電池用バイポーラ板及び冷却板、該板を具備する燃料電池及びその使用方法
JP2010277812A (ja) * 2009-05-28 2010-12-09 Toyota Motor Corp 燃料電池用セパレータ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924052B2 (en) 2002-04-24 2005-08-02 General Motors Corporation Coolant flow field design for fuel cell stacks
JP4862243B2 (ja) 2003-12-24 2012-01-25 トヨタ自動車株式会社 燃料電池スタック
GB2453127A (en) * 2007-09-26 2009-04-01 Intelligent Energy Ltd Fuel Cell System
US8835070B2 (en) * 2010-05-11 2014-09-16 Ford Motor Company Fuel cell header wedge
CN102306813B (zh) 2011-08-12 2013-12-11 上海交通大学 一种金属薄板冲压成型的燃料电池双极板及其应用
EP2823526B1 (en) * 2012-03-09 2015-11-18 Nissan Motor Co., Ltd. Fuel cell stack and seal plate used for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142126A (ja) * 2001-11-05 2003-05-16 Honda Motor Co Ltd 燃料電池
JP2005158435A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 燃料電池
JP2005183141A (ja) * 2003-12-18 2005-07-07 Honda Motor Co Ltd 燃料電池
WO2007043636A1 (ja) * 2005-10-11 2007-04-19 Toyota Jidosha Kabushiki Kaisha 燃料電池用ガスセパレータおよび燃料電池
JP2010533936A (ja) * 2007-07-18 2010-10-28 セレネルギー アクティーゼルスカブ 燃料電池用バイポーラ板及び冷却板、該板を具備する燃料電池及びその使用方法
JP2009043578A (ja) * 2007-08-09 2009-02-26 Honda Motor Co Ltd 燃料電池
JP2010277812A (ja) * 2009-05-28 2010-12-09 Toyota Motor Corp 燃料電池用セパレータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016004739A (ja) * 2014-06-19 2016-01-12 トヨタ自動車株式会社 燃料電池
JPWO2017104212A1 (ja) * 2015-12-18 2018-09-27 日産自動車株式会社 燃料電池スタックのシール構造及びその製造方法
WO2024106305A1 (ja) * 2022-11-15 2024-05-23 Nok株式会社 ガスケットおよびガスケット装置

Also Published As

Publication number Publication date
US20150064590A1 (en) 2015-03-05
WO2013132843A1 (en) 2013-09-12
JP5846315B2 (ja) 2016-01-20
EP2823525B1 (en) 2015-11-18
US10090537B2 (en) 2018-10-02
CA2866798A1 (en) 2013-09-12
CA2866798C (en) 2017-07-04
EP2823525A1 (en) 2015-01-14
CN104170131B (zh) 2016-11-02
CN104170131A (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5846315B2 (ja) シールプレート及びこれを用いた燃料電池スタック
JP5907277B2 (ja) 燃料電池スタック、及び燃料電池スタックに用いるシールプレート
US7951481B2 (en) Separator and cell using the same for use in solid polymer electrolyte fuel cell
CN109560302B (zh) 燃料电池用金属隔板以及发电单电池
US8551671B2 (en) Fuel cell fluid sealing structure
EP2579376B1 (en) Fuel cell
CN109585874B (zh) 燃料电池用隔离部件和燃料电池堆
US20060024560A1 (en) Separator and cell using the same for use in solid polymer electrolyte fuel cell
US7534518B2 (en) Cell for solid polymer electrolyte fuel cell with improved gas flow sealing
US20150136589A1 (en) Electrochemical system
CN110021762B (zh) 发电单电池
JP5482991B2 (ja) 燃料電池の密封構造
JP5365162B2 (ja) 燃料電池
JP5885006B2 (ja) 燃料電池スタック
JP2021086649A (ja) 燃料電池用セパレータ及び発電セル
JP2006344434A (ja) 燃料電池
JP5332399B2 (ja) 燃料電池用セパレータ及びそれを用いた燃料電池
CN113937316A (zh) 燃料电池用金属隔板以及发电单电池
JP6132819B2 (ja) 燃料電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R151 Written notification of patent or utility model registration

Ref document number: 5846315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151