JP2015506817A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2015506817A5 JP2015506817A5 JP2014543916A JP2014543916A JP2015506817A5 JP 2015506817 A5 JP2015506817 A5 JP 2015506817A5 JP 2014543916 A JP2014543916 A JP 2014543916A JP 2014543916 A JP2014543916 A JP 2014543916A JP 2015506817 A5 JP2015506817 A5 JP 2015506817A5
- Authority
- JP
- Japan
- Prior art keywords
- metal
- metal nanoparticles
- nanoparticles
- zero
- transition metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP11382375 | 2011-12-02 | ||
| EP11382375.1 | 2011-12-02 | ||
| PCT/EP2012/074111 WO2013079669A1 (en) | 2011-12-02 | 2012-11-30 | Photoconversion of light using metal supported atomic quantum clusters |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2015506817A JP2015506817A (ja) | 2015-03-05 |
| JP2015506817A5 true JP2015506817A5 (enExample) | 2016-02-04 |
| JP6154395B2 JP6154395B2 (ja) | 2017-06-28 |
Family
ID=47257852
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2014543916A Active JP6154395B2 (ja) | 2011-12-02 | 2012-11-30 | 半導体原子量子クラスターを含む金属ナノ粒子の光触媒としての使用 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US10464047B2 (enExample) |
| EP (1) | EP2785456B1 (enExample) |
| JP (1) | JP6154395B2 (enExample) |
| KR (1) | KR102100318B1 (enExample) |
| ES (1) | ES2647879T3 (enExample) |
| WO (1) | WO2013079669A1 (enExample) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2931833B1 (en) * | 2012-12-12 | 2019-03-27 | Nanogap Sub NM Powder, S.A. | Luminescent nanocompounds |
| JP2015002144A (ja) * | 2013-06-18 | 2015-01-05 | 株式会社東芝 | 光触媒電極、水の光分解装置及び水の光分解方法 |
| FR3039081B1 (fr) * | 2015-07-23 | 2017-08-25 | Ecole Normale Superieure Lyon | Nouveaux materiaux photocatalytiques |
| CN108025285A (zh) * | 2015-08-28 | 2018-05-11 | 沙特基础工业全球技术公司 | 使用混杂光电子材料制备氢气 |
| CN106841355B (zh) * | 2017-03-29 | 2023-09-01 | 贵州大学 | 一种用于检测多巴胺的PtNi纳米合金电化学传感器 |
| US20210086170A1 (en) * | 2017-05-03 | 2021-03-25 | Sabic Global Technologies B.V. | Indium gallium nitride nanostructure systems and uses thereof |
| WO2019145409A1 (en) * | 2018-01-24 | 2019-08-01 | Nanogap Sub Nm Powder, S.A. | Process for producing atomic quantum clusters |
| US10753247B2 (en) * | 2018-02-22 | 2020-08-25 | GM Global Technology Operations LLC | Bi-metallic oxidation catalyst materials and appurtenant devices and systems |
| US11446637B2 (en) * | 2020-06-18 | 2022-09-20 | GM Global Technology Operations LLC | Bi-metallic three-way catalyst materials and appurtenant devices and systems |
| EP4169875A1 (en) * | 2021-10-22 | 2023-04-26 | Tewer Engineering, S.L. | Photocatalytic unit for the production of hydrogen from water, and solar plant comprising said photocatalytic unit |
| EP4514744A1 (en) * | 2022-07-12 | 2025-03-05 | Nanogap Sub NM Powder, S.A. | Metal oxide supported atomic quantum clusters (aqcs) catalysts as oxygen carriers for chemical looping processes |
| WO2024056884A1 (en) * | 2022-09-15 | 2024-03-21 | Nanogap Sub-Nm-Powder, S.A. | Process for producing atomic quantum clusters derivatives |
| WO2024125453A1 (en) * | 2022-12-12 | 2024-06-20 | EPRO Advance Technology Limited | Method for degradation of organic compounds over a supported photocatalyst in the presence of iodate |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IT1318415B1 (it) | 2000-03-21 | 2003-08-25 | Htm Sport Spa | Struttura di leva, particolarmente per calzature sportive. |
| JP2006305527A (ja) | 2005-05-02 | 2006-11-09 | Altis Kk | 光触媒粒子、および該光触媒粒子を含有した塗料、並びに光触媒粒子の製造方法 |
| ES2277531B2 (es) | 2005-08-03 | 2008-07-16 | Universidad De Santiago De Compostela | Procedimiento para la obtencion de clusteres cuanticos atomicos. |
| KR20090122453A (ko) | 2007-02-20 | 2009-11-30 | 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘 | 하이브리드 금속-반도체 나노입자 그리고 광―유도 전하 분리를 위한 방법 및 그의 적용 |
| JP2008221153A (ja) * | 2007-03-14 | 2008-09-25 | Kokuchu Ko | 光を吸収して作用を提供する材料、及びその応用 |
| DE102008048737A1 (de) * | 2007-10-31 | 2009-07-16 | Sigrid Dr. Obenland | Monolithisches Katalysatorsystem für die Photolyse von Wasser |
| WO2011011064A2 (en) | 2009-07-24 | 2011-01-27 | Stc.Unm | Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles |
| JP5361612B2 (ja) * | 2009-08-26 | 2013-12-04 | 独立行政法人科学技術振興機構 | 光電変換素子 |
| CN102665968A (zh) * | 2009-09-17 | 2012-09-12 | 耶路撒冷希伯来大学伊森姆研究发展公司 | 笼状纳米结构及其制备 |
| ES2360649B2 (es) * | 2009-11-25 | 2011-10-17 | Universidade De Santiago De Compostela | Tintas conductoras obtenidas por combinación de aqcs y nanopartículas metálicas. |
| ES2365313B2 (es) * | 2010-03-18 | 2012-01-19 | Universidad De Santiago De Compostela | PROCEDIMIENTO PARA LA PREPARACIÓN DE NANOPARTÍCULAS METÁLICAS ANISOTRÓPICAS MEDIANTE CATÁLISIS POR AQCs. |
| US9925592B2 (en) * | 2010-09-24 | 2018-03-27 | Nanyang Technological University | Method for fabricating a gold nanoparticle |
| CN103314073B (zh) | 2010-12-30 | 2015-09-16 | 印度马德拉斯理工学院 | 金和银量子簇以及用于它们的制备和使用的方法 |
-
2012
- 2012-11-30 WO PCT/EP2012/074111 patent/WO2013079669A1/en not_active Ceased
- 2012-11-30 JP JP2014543916A patent/JP6154395B2/ja active Active
- 2012-11-30 US US14/360,658 patent/US10464047B2/en active Active
- 2012-11-30 ES ES12791810.0T patent/ES2647879T3/es active Active
- 2012-11-30 KR KR1020147018072A patent/KR102100318B1/ko active Active
- 2012-11-30 EP EP12791810.0A patent/EP2785456B1/en active Active
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2015506817A5 (enExample) | ||
| Jana et al. | Synthesis and modeling of hollow intermetallic Ni–Zn nanoparticles formed by the Kirkendall effect | |
| He et al. | Structural evolution and compositional modulation of ZIF-8-derived hybrids comprised of metallic Ni nanoparticles and silica as interlayer | |
| Wang et al. | Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching | |
| Song et al. | Pt nanocrystals: shape control and langmuir− blodgett monolayer formation | |
| Fan et al. | Thin metal nanostructures: synthesis, properties and applications | |
| Zhou et al. | Simultaneous synthesis and assembly of noble metal nanoclusters with variable micellar templates | |
| Chen et al. | Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process | |
| Sun et al. | Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation | |
| Ahmed et al. | Highly active graphene-supported Ni x Pd100–x binary alloyed catalysts for electro-oxidation of ethanol in an alkaline media | |
| Fan et al. | Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes | |
| Pan et al. | Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light | |
| Chen et al. | High-yield seedless synthesis of triangular gold nanoplates through oxidative etching | |
| Qi et al. | Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity | |
| Viau et al. | Ruthenium nanoparticles: size, shape, and self-assemblies | |
| Logar et al. | Cu and CuO/titanate nanobelt based network assemblies for enhanced visible light photocatalysis | |
| Seo et al. | Double hydrophilic block copolymer templated Au nanoparticles with enhanced catalytic activity toward nitroarene reduction | |
| Jin et al. | Facile synthesis and properties of hierarchical double-walled copper silicate hollow nanofibers assembled by nanotubes | |
| Wang et al. | Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid | |
| Kang et al. | One-pot synthesis of trimetallic Au@ PdPt core–shell nanoparticles with high catalytic performance | |
| Liu et al. | Hollow and cage-bell structured nanomaterials of noble metals | |
| Zhang et al. | Cu2+-assisted synthesis of hexoctahedral Au–Pd alloy nanocrystals with high-index facets | |
| Wang et al. | Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts | |
| Chen et al. | Synthesis of palladium nanoparticles and their applications for surface-enhanced Raman scattering and electrocatalysis | |
| Neppolian et al. | Sonochemically synthesized mono and bimetallic Au–Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity |