JP2015232914A - 異常診断装置、異常診断方法及び異常診断プログラム - Google Patents

異常診断装置、異常診断方法及び異常診断プログラム Download PDF

Info

Publication number
JP2015232914A
JP2015232914A JP2015195901A JP2015195901A JP2015232914A JP 2015232914 A JP2015232914 A JP 2015232914A JP 2015195901 A JP2015195901 A JP 2015195901A JP 2015195901 A JP2015195901 A JP 2015195901A JP 2015232914 A JP2015232914 A JP 2015232914A
Authority
JP
Japan
Prior art keywords
group
plant
variable
value
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015195901A
Other languages
English (en)
Other versions
JP6347771B2 (ja
Inventor
志保 袖子田
Shiho Sodekoda
志保 袖子田
中村 恵子
Keiko Nakamura
恵子 中村
肇 坂野
Hajime Sakano
肇 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2015195901A priority Critical patent/JP6347771B2/ja
Publication of JP2015232914A publication Critical patent/JP2015232914A/ja
Application granted granted Critical
Publication of JP6347771B2 publication Critical patent/JP6347771B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing And Monitoring For Control Systems (AREA)

Abstract

【課題】プラントの異常を高精度で診断する。
【解決手段】グループデータを読み出し、各グループについて、読み出したグループデータに含まれる変数の値と、プラントから入力した当該プラントの状態を表す複数の変数の値とを利用してマハラノビス距離を算出する第1算出部13と、第1算出部13で算出された複数のグループに関するマハラノビス距離から最小値を抽出し、抽出したマハラノビス距離のグループを異常の判定に利用するグループとして選択する選択部14と、選択部14が選択したグループに関するグループデータを読み出し、当該グループについて、読み出したグループデータから抽出した各変数の値と、プラントから入力した変数の値とを利用してマハラノビス距離を算出する第2算出部15と、第2算出部15で算出されたマハラノビス距離を利用してプラントの状態を異常と判定する診断部16とを備える。
【選択図】図1

Description

本発明はプラントの異常を診断する異常診断装置、異常診断方法及び異常診断プログラムに関する。
プラントは、複数の機器が様々な条件で運転されている。また、プラントでは、複数のセンサを利用して状態が計測されている。プラントの異常は、この複数の条件値や、複数のセンサの計測値から検出することができるが、例えば、各センサの計測値が各センサの計測値毎に定められる上下限値(閾値)を超えたときに異常と判断する方法が主流である。一方、各センサの計測値毎に上下限値を設定する場合、使用するセンサを増やすと上下限値の数も増やす必要があり、異常判定用の値の管理が複雑になる問題があった。
これに対し、近年、MT法(マハラノビス・タグチメソッド)というパターン認識技術を用いて異常を診断する技術もある。MT法は、「いつもと同じ」状態であるかどうかを診断するものであり、予め設定したいつもと同じ状態を表すマハラノビス空間の中心を基準として、求めた診断対象のマハラノビス距離がこのマハラノビス空間より遠くなるときに異常と判断する方法である。具体的には、センサの計測データを複数のグループに分け、それぞれのグループ毎に単位空間を生成し、MT法を利用して異常を診断するものがある(例えば、特許文献1参照)。
ここで、正常であっても、運転負荷、季節、又は時間等によって状態が変動する。したがって、診断する時点におけるプラントの状態に合わせた単位空間を利用して診断することが望ましい。一方、自動制御で自動的に状態が変わる場合、、リアルタイムでプラントの状態を判断して単位空間を生成することは困難であった。
特開2010−181188号公報
上述したように、プラントのリアルタイムな状態に応じて、高精度で異常診断することは困難であった。
上記課題に鑑み、プラントのリアルタイムな状態に応じて、高精度で異常診断する異常診断装置、異常診断方法及び異常診断プログラムを提供することを目的としている。
上記目的を達成するために、本発明は、プラントの異常を診断する異常診断装置であって、プラントの運転状態を表す変数を含むレコードから成るグループが記憶されるグループデータ記憶部と、所定のタイミングで繰り返し、前記グループデータ記憶部から読み出された複数のグループの各々について、当該グループに含まれる変数の値と、当該変数に対応する前記プラントの新たな状態を表す変数の値とを利用してマハラノビス距離を算出する第1算出部と、前記複数のグループのうち前記マハラノビス距離が最小であるグループを選択する選択部と、異常を診断する所定のタイミングで、前記グループデータ記憶部から読み出された前記選択部が選択したグループについて、当該グループに含まれる変数の値と、当該変数に対応する前記プラントの新たな状態を表す変数の値とを利用してマハラノビス距離を算出する第2算出部と、前記第2算出部で算出されたマハラノビス距離を利用してプラントの状態を判定する診断部とを備えることを特徴とする。
また、本発明は、プラントの異常を診断する異常診断装置で行う異常診断方法であって、プラントの運転状態を表す変数を含むレコードから成るグループが記憶されるグループデータ記憶部から、所定のタイミングで繰り返し読み出された複数のグループの各々について、当該グループに含まれる変数の値と、当該変数に対応する前記プラントの新たな状態を表す変数の値とを利用してマハラノビス距離を算出する第1の算出ステップと、前記複数のグループのうち前記マハラノビス距離が最小であるグループを選択する選択ステップと、異常を診断する所定のタイミングで、前記グループデータ記憶部から読み出され前記選択ステップで選択されたグループについて、当該グループに含まれる変数の値と、当該変数に対応する前記プラントの新たな状態を表す変数の値とを利用してマハラノビス距離を算出する第2の算出ステップと、前記第2の算出ステップで算出されたマハラノビス距離を利用してプラントの状態を判定する診断ステップとを備えることを特徴とする。
さらに、本発明は、前記異常診断装置としてコンピュータを機能させることを特徴とする異常診断プログラムである。
本発明によれば、プラントの異常診断の精度を向上させることができる。
実施形態に係る異常診断装置を説明するブロック図である。 異常診断装置で利用する蓄積データの一例を説明するデータ構成図である。 異常診断装置における処理の一例を説明するフローチャートである。 MT法を利用した異常診断について説明する概念図である。
実施形態に係る異常診断装置は、プラントの運転の異常を診断する異常診断装置である。例えば、異常診断装置が診断するプラントは、発電プラントである。発電プラントは、複数の機器(ポンプ、バルブ等)を備えており、これらの機器を制御する値が目標値として設定されている。この目標値は、例えば、ポンプの圧力、バルブの開閉等である。また、発電プラントでは、複数のセンサを備えており、各センサで吸気量、排気量、発電量等が計測されている。
さらに、発電プラントでは、様々なモードが設定可能であって、このモードによって各機器に設定する目標値、各センサで計測される計測値が異なる。例えば、発電プラントでは、常に一定量の電力を発電する必要はなく、電力需要に合わせて発電する。したがって、時間帯、曜日、季節等に合わせて複数のモードが規定されており、設定されているモード毎に各機器の目標値が異なる。また、各機器の目標値が異なることにより、設定されるモード毎に各センサの計測値も異なる。
図1に示すように、実施形態に係る異常診断装置1は、プラントから入力した新たな変数で蓄積データ21を更新する更新部11と、異常の診断に利用するグループを生成し、各グループに診断で利用する判定値を設定してグループデータ22として記憶させる生成部12と、プラントから新たに入力する変数とグループデータ22の変数を利用して複数のグループについてマハラノビス距離を算出する第1算出部13と、第1算出部13が算出したマハラノビス距離のうち最小値のグループを選択する選択部14と、プラントから新たに入力した変数と選択部14が選択したグループのグループデータ22の変数とを利用してマハラノビス距離を算出する第2算出部15と、第2算出部15が算出したマハラノビス距離を判定値と比較して異常を診断する診断部16とを備えている。
異常診断装置1は、例えば、中央処理装置(CPU)10や記憶装置20を備える情報処理装置であって、記憶装置20に記憶される異常診断プログラムPが読み出されて実行されることで、図1に示すように、CPU10に更新部11、生成部12、第1算出部13、選択部14、第2算出部15及び診断部16が実装される。記憶装置20では、異常診断プログラムPの他、蓄積データ21及びグループデータ22を記憶している。また、異常診断装置1は、操作を入力するキーボード、マウス、操作ボタン、タッチパネル等の入力装置2と接続されており、異常診断の処理過程や結果を出力するディスプレイ、スピーカ等の出力装置3と接続されている。
更新部11は、プラントから新たに各変数の値を入力すると、入力した各変数の値を含む新たなレコードを生成し、生成したレコードを追加して記憶装置20に記憶される蓄積データ21を更新する。
蓄積データ21は、過去のプラントの状態を表す変数のレコードを蓄積したデータである。蓄積データ21の変数は、プラントの運転の条件値及び当該条件値の場合にプラントで計測された計測値である。図2に示す一例では、蓄積データ21は、プラントの運転の条件値であるプラントの各機器に設定する目標値(変数1、2)と、このモード及び目標値の場合に計測された計測値(変数4、5)等を関連づけたレコードを有している。また、図2に示す蓄積データ21の一例では、各レコードに時刻等のサンプル番号を付している。
生成部12は、グループを生成する所定のタイミングで、記憶装置20から蓄積データ21を読み出し、変数が所定の抽出条件を満たすレコードを抽出して複数のグループを生成する。この抽出条件は、例えば、入力装置2を介して入力される。例えば、変数1や変数2(目標値)の値、変数4や変数5(計測値)の値のいずれか一つを抽出条件としても良いし、複数の変数の値の組み合わせを抽出条件としても良い。生成部12は、生成した複数のグループにプラントの異常診断に利用する判定値を設定し、グループの各変数の値と判定値とを含むグループデータ22を生成して記憶装置20に記憶する。
なお、図1の一例では、記憶装置20には1つのグループデータ22を記憶するものとして示しているが、記憶装置20では、各グループについてのグループデータ22を記憶するものとする。
ここで、生成部12がグループを生成する所定のタイミングは、例えば、定期的なタイミングや、入力装置2を介して入力されるタイミングである。また、生成部12で判定値とする値は、このグループについて求められるマハラノビス空間を表す値である。この判定値は、例えば、入力装置2を介して入力される。
第1算出部13は、異常の診断に利用するグループを選択する所定のタイミングで、記憶装置20から各グループのグループデータ22を読み出し、読み出したグループデータ22が有する各変数の値を抽出する。また、第1算出部13は、グループデータ22から抽出した各変数の値と異常を診断する所定のタイミングでプラントから入力した新たな変数とを利用して、各グループのマハラノビス距離を求め、求めた値を選択部14に出力する。ここで、異常の診断に利用するグループを選択する所定のタイミングとは、例えば、定期的なタイミングや診断部16によって異常と診断されたタイミングである。
具体的には、(1)まず、第1算出部13は、各変数に対して平均値と標準偏差を求める。(2)その後、第1算出部13は、各変数の値と、各変数に対して求めた平均値及び標準偏差を利用してデータを基準化し、各変数に対する基準化値を求める。(3)続いて、第1算出部13は、各変数に対して求めた基準化値を利用して、各変数についての相関行列を求めるとともに、相関行列の逆行列を求める。(4)最後に、第1算出部13は、求めた逆行列を利用してマハラノビス距離を求める。このようにして求められたマハラノビス距離により、対象のグループの値について現在の状態といつもの状態との違いを特定することができ、プラントにおける現在の状態といつもの状態との違いを求めることができる。
選択部14は、第1算出部13から各グループのマハラノビス距離を入力すると、入力した複数のマハラノビス距離から最小値を選択し、この最小値のグループを異常の診断に利用するグループとして選択する。
第2算出部15は、異常を診断する所定のタイミングで、記憶装置20から選択部14で選択された異常の診断に使用するグループのグループデータ22を読み出し、読み出したグループデータ22が有する各変数の値を抽出する。また、第2算出部15は、グループデータ22から抽出した各変数の値と異常を診断する所定のタイミングでプラントから入力した新たな変数とを利用して、マハラノビス距離を求め、診断部16に求めた値を出力する。第2算出部15におけるマハラノビス距離の算出方法も第1算出部13における算出方法と同様である。
ここで、異常を診断する所定のタイミングとは、例えば、定期的なタイミングである。また、第2算出部15は、第1算出部13よりも短い時間間隔でマハラノビス距離を算出する。すなわち、異常診断装置1では、第1算出部13が算出した複数のマハラノビス距離を利用し、選択部14が異常の診断に利用するグループを選択する。その後、第2算出部15は、選択部14が選択したグループを利用してプラントの異常を診断するためのマハラノビス距離の算出を継続するが、プラントの状態に合わせたグループを選択するため、第1算出部13がグループを確認するタイミングで再びマハラノビス距離を算出する。したがって、第2算出部15は、第1算出部13より短いタイムスパンでマハラノビス距離を算出する。
第1算出部13が再度複数のマハラノビス距離を算出した場合、プラントの状態が変化したことで、異常の診断に使用するグループを変更することが望ましい場合には、選択部14は、前回とは異なるグループを選択するため、その後、第2算出部15は新たに選択されたグループのマハラノビス距離を算出する。一方、異常の診断に使用するグループを変更する必要がない場合には、選択部14は、前回と同一のグループを選択するため、第2算出部15は、その後も前回と同一のグループのマハラノビス距離を算出する。
診断部16は、第2算出部15からマハラノビス距離を入力すると、グループデータ22から異常の診断に使用するグループデータ22を読み出し、読み出したグループデータ22が有する判定値を抽出する。また、診断部16は、第2算出部15から入力したマハラノビス距離を、グループデータ22から抽出した判定値と比較し、プラントの運転状態が正常であるか異常であるかを判定して判定結果を出力装置3に出力する。
例えば、図4に示すように、MT法を利用して異常を判定する場合、第2算出部15で求めたマハラノビス距離が設定された判定値より小さいとき、すなわちマハラノビス空間内にあるとき、診断部16は、現在のプラントの状態はいつもの状態と同じであるとし、プラントは正常に運転していると診断する。一方、第2算出部15で求めたマハラノビス距離が設定された判定値より大きいとき、すなわち、マハラノビス空間から外れているとき、診断部16は、現在のプラントの状態がいつもの状態とは異なる状態であるとし、プラントで異常が発生していると診断する。
なお、第1算出部13は、上述したように第2算出部15よりも長い定期的なタイムスパンで各グループのマハラノビス距離を算出する他、診断部16で異常と診断された場合に異常を診断するグループを選択するタイミングとして各グループのマハラノビス距離を算出してもよい。すなわち、第2算出部15が算出したグループのマハラノビス距離が所定の判定値の範囲外である場合であっても、プラントの状態が変化したことにより、使用していたグループでの診断が最適ではなくなった可能性もある。この場合に、使用していたグループで異常を診断することは、異常診断の精度の信頼性は低い。したがって、再度、第1算出部13で各グループのマハラノビス距離を算出してもなお、使用していたグループが選択されて、異常と診断された場合には異常診断の精度も信頼することができる。
また、異常診断装置1は、複数の情報処理装置から構成されていてもよく、例えば、更新部11のみ他の処理部12〜16とは異なる情報処理装置に含まれていてもよい。また、記憶装置20に記憶されるデータの一部のみ外部の記憶装置に記憶されていてもよい。
続いて、図3に示すフローチャートを用いて、異常診断装置1において最適なグループで異常を診断する処理について説明する。
生成部12が、グループデータ22を生成するタイミングで、記憶装置20から蓄積データ21を読み出して抽出条件を満たすレコードの値を抽出し、グループデータ22を生成して記憶装置20に記憶させる(S1)。
その後、第1算出部13は、各グループについてそれぞれマハラノビス距離を算出する(S2)。続いて、選択部14は、第1算出部13が算出した複数のマハラノビス距離から最小値を選択し、マハラノビス距離が最小値のグループを異常の診断に利用するグループとして選択する(S3)。
第2算出部15は、異常を診断するタイミングで、プラントから新たに入力した変数の値と、ステップS3で選択したグループについてのグループデータ22の各変数の値とを利用してマハラノビス距離を求めて診断部16に出力する(S4)。
第2算出部15からマハラノビス距離を入力した診断部16は、入力したマハラノビス距離をグループデータ22で異常の診断に利用するグループに設定されている判定値と比較し、プラントの運転状態が異常であるか診断し、診断結果を出力装置3に出力する(S5)。
その後、異常診断装置1では、グループの確認のタイミングになるまで(S6でNO)、選択部14が選択したグループデータ22を使用してマハラノビスの距離の算出及び異常診断を繰り返す(S4及びS5)。また、異常診断装置1では、グループの確認のタイミングになると(S6でYES)、ステップS2に戻り、ステップS2乃至S5の処理を繰り返す。
なお、図3に示すフローチャートでは、グループデータ22の生成を繰り返すことについては示していないが、グループデータ22も、例えば定期的等の所定のタイミングで繰り返して生成しても良い。
上述したように、本発明に係る異常診断装置では、プラントのリアルタイムな状態に応じて選択されたグループデータを利用してマハラノビス距離を算出して異常を診断するため、高精度で異常診断することができる。
以上、実施形態を用いて本発明を詳細に説明したが、本発明は本明細書中に説明した実施形態に限定されるものではない。本発明の範囲は、特許請求の範囲の記載及び特許請求の範囲の記載と均等の範囲により決定されるものである。
1…異常診断装置
10…CPU
11…更新部
12…生成部
13…第1算出部
14…選択部
15…第2算出部
16…診断部
20…記憶装置(蓄積データ記憶部、グループデータ記憶部)
21…蓄積データ
22…グループデータ
P…異常診断プログラム
2…入力装置
3…出力装置

Claims (4)

  1. プラントの異常を診断する異常診断装置であって、
    プラントの運転状態を表す変数を含むレコードから成るグループが記憶されるグループデータ記憶部と、
    所定のタイミングで繰り返し、前記グループデータ記憶部から読み出された複数のグループの各々について、当該グループに含まれる変数の値と、当該変数に対応する前記プラントの新たな状態を表す変数の値とを利用してマハラノビス距離を算出する第1算出部と、
    前記複数のグループのうち前記マハラノビス距離が最小であるグループを選択する選択部と、
    異常を診断する所定のタイミングで、前記グループデータ記憶部から読み出された前記選択部が選択したグループについて、当該グループに含まれる変数の値と、当該変数に対応する前記プラントの新たな状態を表す変数の値とを利用してマハラノビス距離を算出する第2算出部と、
    前記第2算出部で算出されたマハラノビス距離を利用してプラントの状態を判定する診断部とを備えることを特徴とする異常診断装置。
  2. 前記第2算出部は、前記第1算出部よりも短い時間間隔でマハラノビス距離を算出することを特徴とする請求項1記載の異常診断装置。
  3. プラントの異常を診断する異常診断装置で行う異常診断方法であって、
    プラントの運転状態を表す変数を含むレコードから成るグループが記憶されるグループデータ記憶部から、所定のタイミングで繰り返し読み出された複数のグループの各々について、当該グループに含まれる変数の値と、当該変数に対応する前記プラントの新たな状態を表す変数の値とを利用してマハラノビス距離を算出する第1の算出ステップと、
    前記複数のグループのうち前記マハラノビス距離が最小であるグループを選択する選択ステップと、
    異常を診断する所定のタイミングで、前記グループデータ記憶部から読み出され前記選択ステップで選択されたグループについて、当該グループに含まれる変数の値と、当該変数に対応する前記プラントの新たな状態を表す変数の値とを利用してマハラノビス距離を算出する第2の算出ステップと、
    前記第2の算出ステップで算出されたマハラノビス距離を利用してプラントの状態を判定する診断ステップとを備えることを特徴とする異常診断方法。
  4. 請求項1または2に記載の異常診断装置としてコンピュータを機能させることを特徴とする異常診断プログラム。
JP2015195901A 2015-10-01 2015-10-01 異常診断装置、異常診断方法及び異常診断プログラム Active JP6347771B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015195901A JP6347771B2 (ja) 2015-10-01 2015-10-01 異常診断装置、異常診断方法及び異常診断プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015195901A JP6347771B2 (ja) 2015-10-01 2015-10-01 異常診断装置、異常診断方法及び異常診断プログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011178807A Division JP5817323B2 (ja) 2011-08-18 2011-08-18 異常診断装置

Publications (2)

Publication Number Publication Date
JP2015232914A true JP2015232914A (ja) 2015-12-24
JP6347771B2 JP6347771B2 (ja) 2018-06-27

Family

ID=54934270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015195901A Active JP6347771B2 (ja) 2015-10-01 2015-10-01 異常診断装置、異常診断方法及び異常診断プログラム

Country Status (1)

Country Link
JP (1) JP6347771B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078769A1 (ja) * 2016-10-27 2018-05-03 株式会社日立製作所 制御装置
JP2018133033A (ja) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 プラントの診断装置および診断方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181188A (ja) * 2009-02-03 2010-08-19 Mitsubishi Heavy Ind Ltd プラント運転状態監視方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181188A (ja) * 2009-02-03 2010-08-19 Mitsubishi Heavy Ind Ltd プラント運転状態監視方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078769A1 (ja) * 2016-10-27 2018-05-03 株式会社日立製作所 制御装置
JP2018133033A (ja) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 プラントの診断装置および診断方法
WO2018150785A1 (ja) * 2017-02-17 2018-08-23 三菱日立パワーシステムズ株式会社 プラントの診断装置および診断方法
CN110291476A (zh) * 2017-02-17 2019-09-27 三菱日立电力系统株式会社 成套设备的诊断装置以及诊断方法
US11480501B2 (en) 2017-02-17 2022-10-25 Mitsubishi Heavy Industries, Ltd. Diagnosis device and diagnosis method for plant

Also Published As

Publication number Publication date
JP6347771B2 (ja) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6647473B1 (ja) 異常検知装置および異常検知方法
JP5824959B2 (ja) 異常診断装置
JPWO2012073289A1 (ja) プラントの診断装置及びプラントの診断方法
US20190196458A1 (en) Method for selecting leading associated parameter and method for combining critical parameter and leading associated parameter for equipment prognostics and health management
JP6492555B2 (ja) 異常診断方法、異常診断装置及び異常診断プログラム
JP5939439B2 (ja) 異常診断装置
JP4922265B2 (ja) プラント監視装置およびプラント監視方法
JP5949135B2 (ja) 異常診断方法及び異常診断装置
TWI755794B (zh) 異常診斷方法、異常診斷裝置以及異常診斷程式
TW202006488A (zh) 資料處理裝置及資料處理方法
JP2015083731A (ja) 作業機械の管理装置及び作業機械の異常判定方法
JP6347771B2 (ja) 異常診断装置、異常診断方法及び異常診断プログラム
EP3971669B1 (en) Monitoring apparatus, monitoring method, monitoring program, and computer-readable medium having recorded thereon monitoring program
JP5817323B2 (ja) 異常診断装置
JP5811683B2 (ja) 異常診断装置
JP5948998B2 (ja) 異常診断装置
JP5949032B2 (ja) 前処理方法及び異常診断装置
JP6115607B2 (ja) 異常診断装置、異常診断方法及び異常診断プログラム
JP2017142624A (ja) 監視装置及び監視装置の制御方法
JP2014074659A (ja) 異常検出前処理装置および方法ならびにプログラム、それを備えた異常検出装置
JP2017091485A (ja) 監視支援装置、監視支援方法、及びプログラム
US20220188570A1 (en) Learning apparatus, learning method, computer program and recording medium
JP2013050759A (ja) 異常診断装置
JP2012112247A (ja) センサ異常判定装置、センサ異常判定方法、及びプログラム
JP2013050758A (ja) 異常診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160923

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170124

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180529

R150 Certificate of patent or registration of utility model

Ref document number: 6347771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150