JP2015227998A - 照明光学系およびこれを用いた画像表示装置 - Google Patents

照明光学系およびこれを用いた画像表示装置 Download PDF

Info

Publication number
JP2015227998A
JP2015227998A JP2014114431A JP2014114431A JP2015227998A JP 2015227998 A JP2015227998 A JP 2015227998A JP 2014114431 A JP2014114431 A JP 2014114431A JP 2014114431 A JP2014114431 A JP 2014114431A JP 2015227998 A JP2015227998 A JP 2015227998A
Authority
JP
Japan
Prior art keywords
light
light beam
optical system
pbs
fly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014114431A
Other languages
English (en)
Inventor
勇樹 前田
Yuuki Maeda
勇樹 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014114431A priority Critical patent/JP2015227998A/ja
Publication of JP2015227998A publication Critical patent/JP2015227998A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

【課題】 本発明の目的は、より小型な照明光学系およびこれを用いた画像表示装置を提供することである。
【解決手段】 照明光学系が、光源1からの光束を複数の光束に分割するフライアイレンズ3と、フライアイレンズ3から出射する光束を再びフライアイレンズ3に入射させるミラー5と、フライアイレンズ3とミラー5との間に配置された1/4波長板4と、を備える。さらに照明光学系が、液晶パネル7とフライアイレンズ3との間に配置され、光源1からのS偏光光をフライアイレンズ3に導くとともに、フライアイレンズ3からのP偏光光を液晶パネル7に導くPBS2と、を備える。
【選択図】 図2

Description

本発明は、照明光学系およびこれを用いたプロジェクターなどの画像表示装置に関する。
一般に、液晶プロジェクターが均一な明るさの画像を投射するために、被照明面である液晶パネルを均一に照明することができる照明光学系が求められている。
このような照明光学系として、特許文献1及び特許文献2に記載された構成が知られている。
特許文献1では、第1のフライアイレンズの近傍に、プリズム型PBSとプリズム型ミラーで構成される偏光変換素子を設けることで、所定の方向の偏光光にそろえる技術が開示されている。
特許文献2では、第2のフライアイレンズの近傍に、PBSアレイと1/2波長板アレイで構成される偏光変換素子を設けることで、所定の方向の偏光光にそろえる技術が開示されている。
特開2004−053641号公報 特開2003−287808号公報
特許文献1及び特許文献2に記載されている構成は、第1のフライアイレンズと第2のフライアイレンズと、偏光変換素子を備える構成である。このような構成によって、均一な明るさで液晶パネルを照明することが可能である。
しかしながら、液晶プロジェクターには、均一な明るさの画像を投射することが可能であることだけではなく、利用者の利便性を考慮し、より小型であることも求められている。
そこで、本発明の目的は、より小型な照明光学系およびこれを用いた画像表示装置を提供することである。
上記目的を達成するために、本発明の照明光学系は、
光源からの光束を被照明面に導くための照明光学系であって、
前記光源からの光束を複数の光束に分割するレンズアレイと、
前記光源からの光束に含まれる第1の偏光方向の光束を前記レンズアレイに導くとともに、前記第1の偏光方向の光束と偏光方向が異なる第2の偏光方向の光束を前記被照明面に導く第1の偏光素子と、
第1の位相板と、
第1の光学素子と、を備え、
前記第1の位相板は、前記レンズアレイと前記第1の光学素子との間に設けられ、
前記第1の光学素子は、前記レンズアレイから前記第1の位相板を介して前記第1の光学素子に入射する光束を、前記第1の光学素子から前記第1の位相板を介して前記レンズアレイに入射する方向に導くように構成される、
ことを特徴とする。
本発明によれば、より小型な照明光学系およびこれを用いた画像表示装置を提供することができる。
本発明の実施例で示す照明光学系を用いた画像表示装置の説明図 本発明の実施例1で示す照明光学系の説明図 フライアイレンズ3とミラー5の位置関係を説明する図 本発明の実施例2で示す照明光学系の説明図 本発明の実施例3で示す照明光学系の説明図 本発明の実施例4で示す照明光学系の説明図 本発明の実施例4で示す照明光学系の説明図 本発明の実施例4で示す照明光学系の説明図 本発明の実施例5で示す照明光学系の説明図
以下に図面を参照して、この発明の好適な実施の形態を例示的に説明する。ただし、この実施の形態に記載されている構成部品の相対配置などは、この発明が適用される装置の構成や各種条件により適宜変更されるべきものである。すなわち、構成部品の相対配置などは、この発明の範囲を以下の実施の形態に限定する趣旨で規定されたものではない。
〔画像表示装置の構成の説明〕
図1は、後述の本発明の実施例で示す照明光学系を搭載した画像表示装置Mの構成を説明する図である。
発光管100から全方向に射出した光束は、放物面鏡200によって略平行光束となって射出され、照明光学系Lへ入射する。もちろん、完全な平行光束である必要はなく、使用に耐える範囲で若干発散していても収束していても構わない。
照明光学系Lには、後述の本発明の各実施例を適用することができる。
ダイクロイックミラー700はB(青)とR(赤)の色光を反射し、G(緑)の色光を透過する特性を備える。
PBS(偏光ビームスプリッター)800は、Gの色光のうち、P偏光方向の光束を、P偏光方向の光束と偏光方向が異なるS偏光方向の光束と異なる方向に導く。具体的には、PBS800は、P偏光を透過し、S偏光を反射するPBSである。
900(900R,900G,900B)はそれぞれ、Rの色光用の液晶パネル、Gの色光用の液晶パネル、Bの色光用の液晶パネルである。液晶パネル900は、色光を変調し、変調光を出射する光変調素子である。本実施例において、液晶パネル900は、反射型液晶素子である。
1/4波長板1000(1000R,1000G,1000B)はそれぞれ、Rの色光用の1/4波長板、Gの色光用の1/4波長板、Bの色光用の1/4波長板である。
1100はP偏光を透過する入射側偏光板であり、1200はRの色光の偏光方向を90度変換し、Bの色光の偏光方向は変換しない色選択性位相差板である。
PBS1300はP偏光を透過し、S偏光を反射するPBS(第1の偏光素子)であり、偏光分離面1300aを有する。
1400はS偏光を透過するGの色光用の出側偏光板である。
合成プリズム1700(光合成素子)は、B、Gの色光に対してはBの色光を透過し、Gの色光を反射するダイクロイックミラーとして作用する。一方、Rの色光に対しては、P偏光を透過し、S偏光を反射するPBSとして作用する。すなわち、合成プリズム1700は、Bの変調光と、Rの変調光と、Gの変調光とを合成する。
以上のダイクロイックミラー700から合成プリズム1700により、色分離合成系Cを構成している。
1800は投射レンズ光学系であり、上記の照明光学系L,色分解合成光学系Cおよび投射レンズ光学系1800により画像表示光学系を構成している。
以上が、画像表示装置Mの構成である。次に、照明光学系Lを通過した後の光学的な作用を説明する。まず、Gの光路について説明する。
ダイクロイックミラー700を透過したGの色光はPBS800に入射して偏光分離面でP偏光の光が透過し、液晶パネル900Gへと至る。液晶パネル900Gにおいては、Gの色光が画像変調されて反射される。画像変調されたGの反射光のうちP偏光成分は、再びPBS800の偏光分離面を透過し、光源側に戻され、投射光から除去される。
一方、画像変調されたGの反射光のうちS偏光成分は、PBS800の偏光分離面で反射され、S偏光を透過する出側偏光板1400を透過し、投射光として合成プリズム1700に向かう。
このとき、すべての偏光成分をP偏光に変換した状態である黒表示状態においては、1/4波長板1000Gの進相軸または遅相軸がPBS800への入射光の光軸と反射光の光軸を含む平面に略垂直な方向に調整する。なお、1/4波長板1000Gは、PBS800と液晶パネル900Gとの間に設けられている。これにより、PBS800と液晶パネル900Gで発生する偏光状態の乱れの影響を抑制することができる。すなわち、1/4波長板1000Gは、PBS800から出射するGの色光の偏光方向を変換する位相板である。
一方、ダイクロイックミラー700を反射したRとBの色光は、P偏光光を透過する入射側偏光板1100に入射する。そしてRとBの色光は、入射側偏光板1100から出射した後、色選択性位相差板1200に入射する。色選択性位相差板1200は、Rの色光のみ偏光方向を90度回転させる作用を持っており、これによりRの色光はS偏光として、Bの色光はP偏光としてPBS13に入射する。
S偏光としてPBS1300に入射したRの色光は、PBS1300の偏光分離面で反射され、液晶パネル900Rへと至る。また、P偏光としてPBS1300に入射したBの色光は、PBS1300の偏光分離面を透過して液晶パネル9Bへと至る。
液晶パネル900Rに入射したRの色光は画像変調されて反射される。画像変調されたRの反射光のうちS偏光成分は、再びPBS1300の偏光分離面で反射されて光源側に戻され、投射光から除去される。一方、画像変調されたRの反射光のうちP偏光成分はPBS1300の偏光分離面を透過して投射光として合成プリズム1700に向かう。
すなわち、PBS1300は、Bの色光及びRの色光のうち、一方の色光を他方の色光と異なる方向に導く偏光素子である。
また、PBS1300を透過したBの色光は、液晶パネル9Bに入射し、画像変調されて反射される。画像変調されたBの反射光のうちP偏光成分は、再びPBS1300の偏光分離面を透過して光源側に戻され、投射光から除去される。一方、画像変調されたBの反射光のうちS偏光成分はPBS1300の偏光分離面で反射して投射光として合成プリズム1700に向かう。
このとき、1/4波長板1000Rおよび1000Bの進相軸または遅相軸をGの色光の場合と同じように調整することにより、RおよびBの色光それぞれの黒の表示の調整を行うことができる。なお、1/4波長板1000Rおよび1000Bは、PBS1300と液晶パネル900Rおよび900Bの間に設けられている。
すなわち、1/4波長板1000Bは、PBS1300から出射するBの色光の偏光方向を変換し、1/4波長板1000Rは、PBS1300から出射するRの色光の偏光方向を変換する位相板である。
こうして1つの光束に合成され、PBS1300から出射したRとBの色光は、合成プリズム1700に入射する、合成プリズム1700に入射したRとBの色光は合成プリズム1700を透過し、Gの色光と合成されて投射レンズ光学系1800に至る。
そして、合成されたR,G,Bの投射光は、投射レンズ光学系1800によってスクリーンなどの被投射面に拡大投影される。
以上説明した光路は液晶パネル9が白表示を行う場合である。以下に液晶パネル900が黒表示を行う場合での光路を説明する。
ダイクロイックミラー700を透過したGの色光のP偏光はPBS800に入射して偏光分離面を透過し、G用の反射型液晶表示素子900Gへと至る。液晶パネル900Gが黒表示を行う場合、Gの色光は画像変調されないまま反射される。したがって、液晶パネル900Gで反射された後もGの色光はP偏光のままである為、再びPBS800の偏光分離面を透過し、光源側に戻され、投射光から除去される。
次に、RとBの色光の光路について説明する。
ダイクロイックミラー700で反射されたRとBの色光は、P偏光を透過する入射側偏光板1100に入射する。そしてRとBの色光は、入射側偏光板1100から出射した後、色選択性位相差板1200に入射する。色選択性位相差板1200は、Rの色光のみ偏光方向を90度回転する作用を持っており、これによりRの色光はS偏光として、Bの色光はS偏光としてPBS1300に入射する。S偏光としてPBS1300に入射したRの色光は、PBS1300の偏光分離面で反射され、液晶パネル900Rへと至る。
P偏光としてPBS1300に入射したBの色光は、PBS1300の偏光分離面を透過して、液晶パネル900Bへと至る。液晶パネル900Rは黒表示の為、液晶パネル900Rに入射したRの色光は画像変調されないまま反射される。したがって、液晶パネル900Rで反射された後もRの色光はS偏光のままである為、再びPBS1300の偏光分離面で反射され、色選択性位相差板1200により、P偏光に変換される。P偏光に変換されたRの色光は、再び入射側偏光板1100を通過して光源側に戻され、投射光から除去される為、黒表示となる。
一方、液晶パネル900Bに入射したBの色光は液晶パネル900Bが黒表示の為、画像変調されないまま反射される。したがって、液晶パネル900Bで反射された後もBの色光はP偏光のままである為、再びPBS1300の偏光分離面を透過し、入射側偏光板1100を透過して光源側に戻されて投射光から除去される。
このように、RGBの色光が投射光から除去されるために、黒表示を行うことができる。
以下、照明光学系Lに適用可能な構成について、図2を用いて説明する。
本発明の実施例で示す照明光学系は、被照明面である液晶パネル(光変調素子)7に光源(光源ユニット)1からの光束を導くために、PBS(第1の偏光素子)2と、フライアイレンズ(レンズアレイ)3と、1/4波長板(第1の位相板)4とを備える。
さらに、本発明の実施例で示す照明光学系は、ミラー(第1の光学素子)5と、コンデンサーレンズ(第1の正レンズ)6と、を備えても良い。
光源1はLD光源である。なお、本発明の実施例においては、発光管と放物面鏡からなる水銀ランプであっても、発光管と楕円鏡からなる水銀ランプからの収斂光束をコリメータレンズによって略平行光化しても良い。
PBS2は、光源1からの光束に含まれるS偏光(第1の偏光方向の光束)をフライアイレンズ3に導く偏光素子であり、より具体的にはプリズム型PBSである。なお、本発明の実施例においては、プリズム型PBSではなく、ワイヤーグリッド型PBSを用いても良い。
フライアイレンズ3は、光源1からの光束を複数の光束に分割する。
1/4波長板4は、S偏光の偏光方向を変換する。
ミラー5は、フライアイレンズ3から1/4波長板4を介してミラー5に入射する光束を、ミラー5から1/4波長板4を介してフライアイレンズ3に入射する方向に導くように構成している。
コンデンサーレンズ6は、P偏光を液晶パネル7に導く。
なお、本発明の実施例で示す照明光学系の具体的な構成と、その構成により得られる効果は、以下の実施例で述べる。
〔第1実施例〕
図2は、本発明の第1実施例で示す照明光学系の構成を示す図である。図2を用いて、光源1からの光束が液晶パネル7を照明するための構成を説明する。
図2において、コンデンサーレンズ6の光軸と平行な軸をZ軸、光源1の光軸と平行な軸をX軸、X軸およびZ軸と直交する軸をY軸とする。
本実施で示す照明光学系は、光源1からの光束で液晶パネル7を照明するための照明光学系である。液晶パネル7によって画像変調された光である画像光は、不図示のPBSまたは偏光板を介して不図示の投射レンズに導かれ、スクリーン等の被投射面に投射される。
光源1はLD(レーザーダイオード)光源であり、本実施においては、S偏光光を出射するLD光源であり、後述のPBS2に入射するように配置されている。ここで、P偏光光とは、図2においてPBS2の面法線と光軸のなす平面を主平面としたとき、光源1からの光束と直交し、かつ、主平面内で振動する直線偏光光である。さらに、S偏光光とは、P偏光光及び主平面に垂直に振動する直線偏光光である。
光源1から出射したS偏光光は、ワイヤーグリッドPBSであるPBS2に入射する。PBS2は、P偏光光を透過し、S偏光光を反射する特性を備えるため、光源1から出射したS偏光光はPBS2によって反射され、フライアイレンズ3で複数の分割光束に分割される。
フライアイレンズ3に分割された複数の分割光束は、1/4波長板4によって、1/4波長板4から後述のミラー5へ向かう方向に対して右回りの円偏光光1Rに変換される。
円偏光光1Rは、ミラー5で反射されることで、ミラー5から1/4波長板4へ向かう方向に対して左回りの円偏光光に変換され、1/4波長板4へ向かう。円偏光光は、1/4波長板4を透過して、P偏光光に変換され、フライアイレンズ3近傍に集光する。
フライアイレンズ3近傍に集光した複数の分割光束は、P偏光光であるために、PBS2を透過して、コンデンサーレンズ6に入射する。コンデンサーレンズ6に入射した光束は、コンデンサーレンズ6によって液晶パネル7を重畳的に照明する。
以上が、光源1からの光束が液晶パネル7を照明するための構成である。上述のように、本実施例においては、光源1からの光束がフライアイレンズ3に2回入射することが可能である。これにより、レンズアレイの枚数をより少なくすることが可能となり、従来2枚だったフライアイレンズ間の光路を折り返すことで、より小型な照明光学系および画像表示装置を提供することが可能となる。 なお、液晶パネル7において画像変調および反射された光は、PBSまたは偏光板を介して投射レンズに導かれる。本実施例では、液晶パネル7を1枚のみ示しているが、実際の一般的なプロジェクターでは、R,G,Bに対応した3つの液晶パネルが設けられる。PBSまたは偏光板は、これら3つの液晶パネルに対してR,G,Bの各色照明光を導き、3つの液晶パネルからの各色画像光を合成する、いわゆる色分離合成系の一部を構成している。
以上が、本発明の実施例で示す構成の照明光学系によって得られる効果である。
本発明の実施例では、上述の効果をより強くするため、あるいは、その他の効果を得るために、次に述べる構成も持つ。ただし、本発明は、次に述べる構成の全てを持つ照明光学系に限定されるものではない。
フライアイレンズ3が有する各レンズセルの焦点距離をf、レンズセルの頂点からミラー5の反射面への空気換算距離をdとする。ここで、空気換算距離とは、物理的な距離を屈折率で割ったものであり、例えば、厚みtで屈折率nの媒質に光線が入射したときの空気換算距離はt/nとなる。なお、同様の媒質における光路長はn×tとなる。本実施例において、空気換算距離dは、フライアイレンズ3の厚みと屈折例率によって求まる値と、フライアイレンズ3とミラー5との間の空気層の厚みと空気層の屈折率によって求まる値との合計値である。なお、フライアイレンズ3とミラー5との間は空気層ではなく、ガラス層であっても良い。この場合、空気換算距離dは、フライアイレンズ3の厚みと屈折例率によって求まる値と、ガラス層の厚みと屈折率によって求まる値である。
このとき、本発明の実施例において、
1.8 < f/d < 2.3
の条件式を満たすと良い。
更に望ましくは、
2.0 < f/d < 2.3
の条件式を満たすと良い。
上述の条件式を満たすことによる効果について説明する。
一般には、2枚のフライアイレンズを用いた照明光学系を、第1のフライアイレンズ3と第2のフライアイレンズ8の間隔が、フライアイレンズのレンズセル3aの焦点距離にほぼ等しくなるように構成している。このような構成を図3に示す。
図3において、第1のフライアイレンズ3を上述のフライアイレンズ3とし、仮想的に第2のフライアイレンズ8を点線で図示し、第1のフライアイレンズ3と第2のフライアイレンズ8との間にミラー5の反射面5Sを示している。
図3に示すように、フライアイレンズ3のレンズセル3aに入射した平行光束は、フライアイレンズ8のレンズセル8aに入射し、レンズセル8aに光源像がつくられる。
このように2枚のフライアイレンズを用いた構成と同様の効果を得るために、本実施例では、フライアイレンズ3とフライアイレンズ8の中間に反射面5Sが配置されている。言い換えれば、フライアイレンズ3の焦点距離の半分の値が、フライアイレンズ3と反射面5Sとの間隔と等しくなるように、ミラー5を配置している。
これにより、反射面5Sがフライアイレンズ3からの光束を反射し、2枚のフライアイレンズを用いた構成と同様に、レンズセル3aに光源像をつくることが可能となる。
しかし、上述の条件式に示すように、本発明の実施例では、フライアイレンズ3の焦点距離の半分の値が、フライアイレンズ3とミラー5との間隔と等しくなるように、ミラー5を配置しなくても良い。
上述の条件式の上限を逸脱することの意味を説明する。この場合、フライアイレンズ3で分割された部分光束は、フライアイレンズ3よりも液晶パネル7側に光源像を結像させる。その結果、対応するレンズセルとは異なるレンズセルに入射する光量が増え、液晶パネル7の有効領域外を照明する不要光が増えるおそれがある。したがって、上述の条件式の上限を満たすことが望ましい。
上述の条件式の下限を逸脱することの意味を説明する。この場合、フライアイレンズ3で分割された部分光束は、フライアイレンズ3よりもミラー5側に光源像を結像させる。その結果、フライアイレンズ3からPBS2へ向かう光束は拡散光となり、コンデンサーレンズ6へ入射しない光束が増え、光の利用効率が低下するおそれがある。したがって、上述の条件式の下限を満たすことが望ましい。
以上の理由から、上述の条件式を満たせば、光の利用効率をより良くすることが可能で、より小型な照明光学系および画像表示装置を提供することができる。
ここで、2枚のフライアイレンズを用いた構成と本実施例で示した構成とを比較した場合について説明する。
2枚のフライアイレンズを用いた構成において、平行偏芯のずれ量をΔA1、2枚のフライアイレンズ間の距離をL、液晶パネル上での照明領域のずれ量をΔP1、照明倍率をBとする。
このとき、平行偏芯が生じた状態で照明倍率を向上させると、照明倍率を向上させた分、液晶パネルでの照明領域がずれてしまう。すなわち、ΔP1は(1)式に示す通りである。
ΔP1=ΔA1・B (1)
一方、本実施例において、ミラー5の角度方向の取り付け誤差をθとする。さらに、θが0.1°等の充分に小さい場合における、PBS2からフライアイレンズ3へ向かう光束の主光線と、ミラー5から1/4波長板4を介してフライアイレンズ3へ向かう光束の集光線との、コンデンサーレンズ6の光軸と直交する方向の距離をΔA2とする。なお、ΔA2はコンデンサーレンズ6とフライアイレンズ3との間における値である。さらに、液晶パネル7上での照明領域のずれ量をΔP2とするとき、ΔA2及びΔP2は(2)式及び(3)式に示す通りである。
ΔA2=(L/2)・sin(2θ) (2)
ΔP2=ΔA2・B (3)
前述のように、液晶パネルをより均一に照明するためには、照明倍率の向上が有効である。そこで、照明倍率Bを2倍にすることを想定する。
平行偏芯が生じた状態で照明倍率を向上させると、照明倍率を向上させた分、液晶パネルでの照明領域がずれてしまうために、ΔP1´は(4)式に示す通りである。
ΔP1´=ΔA1・2B=2ΔP2 (4)
ここで、照明倍率Bを2倍にするためには、レンズセル3aを小さくして焦点距離fを半分にする必要がある。焦点距離fが2枚のフライアイレンズ間の距離Lと等しい場合には、距離Lは照明倍率の向上によって(5)式に示す通りとなる。
L´=L/2 (5)
したがって、距離L´の場合でのΔA2であるΔA2´は(6)式に示す通りである。
ΔA2´=(L´/2)・sin(2θ) (6)
また、照明倍率2Bにおける、液晶パネル7上での照明領域のずれ量であるΔP2´は(7)式に示す通りである。
ΔP2´=ΔA2´・2B=ΔA2・B=ΔP2 (7)
上述の(1)〜(7)に示すように、2枚のフライアイレンズを用いた構成では、照明倍率が2倍になると、液晶パネルでの照明領域のずれ量も2倍になってしまうおそれがある。一方、本実施例においては、照明倍率が2倍になっても、液晶パネルでの照明領域のずれ量が2倍になることを抑制することが可能となる。言い換えれば、本実施例を適用すれば、2枚のフライアイレンズを用いた構成と比較して、照明倍率の向上による照明領域の位置ずれへの影響を抑制することが可能で、より小型な照明光学系およびこれを用いた画像表示装置を提供することができる。
なお、本実施例における数値実施例は表1に示すとおりである。
(表1)
f d f/d
50 25.0 2.0
40 22.0 1.82
50 22.0 2.27
40 18.5 2.16
〔第2実施例〕
図4は、本発明の第2実施例で示す照明光学系の構成を示す図である。
前述の第1実施例と本実施例との違いは、光源1Lの構成、光源1Lからの光束をフライアイレンズ3に導くための構成と、コリメータレンズ13を備える点である。さらに、ワイヤーグリッド型PBS2ではなく、プリズム型PBS14および16を備える点である。
本実施例において、光源1Lは高圧水銀放電管である発光管11と楕円鏡12からなるランプであり、ランプは前述の第1実施例と異なり、S偏光光とP偏光光を含む光束を出射する。楕円鏡12は、発光管11から放射状に発せられる光束を、コリメータレンズ13へ近づくについて互いの距離を縮める光束に変換する。
コリメータレンズ13は、光源1Lからの光束を略平行光束1Hに変換し、光源1Lからの光束をPBS14に導く負レンズである。もちろん、略平行光束1H、完全な平行光束である必要はなく、実用に耐えうる範囲で、若干発散気味でも収斂気味でも良い。
プリズム型PBSであるPBS14およびPBS16はS偏光光を反射し、P偏光光を透過する特性を備える。このため、略平行光束1Hのうち、S偏光光はPBS14によって反射され、フライアイレンズ3に入射する。一方、PBS14を透過したP偏光光は、1/2波長板15でS偏光光に変換にされ、PBS16によって反射され、フライアイレンズ3に入射する。
PBS14およびPBS16によって反射され、フライアイアイレンズ3に入射した光束は、フライアイレンズ3で複数の分割光束に分割される。
フライアイレンズ3によって分割された複数の分割光束が、1/4波長板4およびミラー5によって偏光方向を変換され、フライアイレンズ3近傍に集光するまでは、前述の第1実施例と同様である。
フライアイレンズ3近傍に集光した複数の分割光束は、P偏光光であるために、PBS14およびPBS16を透過して、コンデンサーレンズ6に入射する。コンデンサーレンズ6に入射した光束は、コンデンサーレンズ6によって液晶パネル7を重畳的に照明する。
このように、本実施例は、前述の第1実施例と異なり、複数の光束がフライアイアイレンズ3に入射する構成である。このような構成であっても、レンズアレイの枚数をより少なくし、均一な照度で被照明面を照明することが可能な照明光学系を提供することができる。
図4において、コンデンサーレンズ6の光軸と平行な軸をZ軸、光源1Lの光軸と平行な軸をX軸、X軸およびZ軸と直交する軸をY軸とする。また、本実施例において、液晶パネル7の形状は長方形である。
本実施例において、XZ断面ではPBS14およびPBS16からの光束がコンデンサーレンズ6へ導かれる。このため、コンデンサーレンズ6へ入射する光束をXZ断面に垂直に投影した場合の光束径は、コンデンサーレンズ6へ入射する光束をYZ断面に垂直に投影した場合の光束径よりも大きくなる。
従って、液晶パネル7の長手方向がX軸と平行になるように、液晶パネル7を配置することで、XZ断面においてより多くの光束を液晶パネル7へ導くことが可能となる。
さらに、フライアイレンズ3のレンズセルの形状は、液晶パネルの形状と相似の関係にある。ここで、フライアイレンズ3のレンズセルの形状が、液晶パネル7と相似形の長方形であり、レンズセルの長手方向がX軸と平行になるように、フライアイレンズ3を配置したとする。このとき、本実施例のように、液晶パネル7の長手方向がX軸と平行な場合には、フライアイレンズ3のX軸方向の分割数と、Y軸方向の分割数の差を少なくすることが可能となる。これにより、製造コストをより削減することが可能となる。
なお、本実施例において、より望ましい条件は前述の第1実施例と同様であるが、本実施例は、前述の第1実施例と異なり、1/2波長板15を備える。
本実施例において、前述の条件式の上限を逸脱すると、フライアイレンズ3で分割された部分光束は、フライアイレンズ3よりも液晶パネル7側に光源像を結像させる。その結果、対応するレンズセルとは異なるレンズセルに入射する光量が増え、液晶パネル7の有効領域外を照明する不要光が増えるおそれがある。したがって、上述の条件式の上限を満たすことが望ましい。
一方、本実施例において、前述の条件式の上限を逸脱すると、フライアイレンズ3で分割された部分光束は、フライアイレンズ3よりもミラー5側に光源像を結像させる。その結果、フライアイレンズ3からPBS14および16へ向かう光束は拡散光となり、フライアイレンズ3からPBS14および16へ向かい、1/2波長板15へ入射してしまう光束が増えるおそれがある。
本実施例においては、液晶パネル7へ導かれる光束はP偏光光に揃えられる。しかし、フライアイレンズ3からPBS14および16へ向かい、1/2波長板15へ入射してしまう光束が増えると、液晶パネル7へ導かれる光束がP偏光光とS偏光光が混ざった光束になってしまう。その結果、色分離合成系Cにおいて、Bの色光の光路にRの色光が混入してしまい、投影画像のコントラストが悪化するおそれがある。
本実施例においては、PBS14の偏光分離面14aの端部14arと14alのうち、フライアイレンズ3に近い方の端部である端部14arから、レンズセル3aの頂点までの距離をcとする。
このとき、
0.02 < c/f < 0.2
となる条件を満たすことが好ましい。
上述の条件式を満たすことで、ライアイレンズ3からPBS14および16へ向かい、1/2波長板15へ入射してしまう光束の量を低減することが可能となる。
上述の条件式の上限を逸脱することは、焦点距離fに対して距離cが相対的に大きすぎることを意味する。この場合、フライアイレンズ3からの光束のうち、1/2波長板15へ入射してしまう光束の量が増加してしまうおそれがある。また、距離cが大きくなるために、画像表示装置が大型化してしまうおそれがある。
一方、上述の条件式の下限を逸脱することは、距離cに対して焦点距離fが相対的に大きすぎることを意味する。焦点距離fが大きくなることは、フライアイレンズ3に入射した略平行光が結像する位置がフライアイレンズ3から遠ざかることを意味する。この場合に、フライアイレンズ3に光源像を結像するためには、フライアイレンズ3からミラー5を遠ざける必要が生じる。すなわち、距離dが大きくなるために、画像表示装置が大型化してしまうおそれがある。
なお、本実施例において、距離cの値は、
1 < c < 10 [mm]
である。
以上の理由から、上述の条件式を満たせば、より偏光方向が揃った光束を射出可能で、より小型な照明光学系および画像表示装置を提供することができる。
〔第3実施例〕
図5は、本発明の第3実施例で示す照明光学系の構成を示す図である。
前述の第2実施例と本実施例との違いは、プリズム型PBSではなく、ワイヤーグリッド型PBSであるPBS34とPBS35を備える点である。さらに、1/2波長板15の位置も、前述の第2実施例と異なる。
ワイヤーグリッド型PBSとは、入射光の波長よりも狭い間隔で金属ワイヤーが並べられた構造(サブ波長格子構造)をもつ偏光板である。ワイヤーグリッド型PBSは、金属ワイヤーの長手方向に平行に振動する直線偏光光を反射し、金属ワイヤーの長手方向と直交する方向に振動する直線偏光光を透過する性質を持つ。
本実施例においては、PBS34の金属ワイヤーは図5に示すy軸方向と平行に並んでいるため、PBS34はS偏光光を反射し、P偏光光を透過させる。
一方、PBS35の金属ワイヤーは図5に示すy軸方向と直交する方向と平行に並んでいるため、PBS35はS偏光光を透過させ、P偏光光を反射する。
略平行光束1Hのうち、S偏光光はワイヤーグリッド型PBSであるPBS34によって反射され、フライアイレンズ3に入射する。
本実施例においては、PBS16の代わりにPBS35を用いている。PBS35は、PBS16と異なり、S偏光光を透過し、P偏光光を反射する特性である。
したがって、PBS34を透過したP偏光光はPBS35によって反射され、フライアイレンズ3に入射する。
PBS34およびPBS35によって反射され、フライアイアイレンズに3入射した光束は、フライアイレンズ3で複数の分割光束に分割される。フライアイレンズ3によって分割された複数の分割光束が、1/4波長板4およびミラー5によって偏光方向を変換され、フライアイレンズ3近傍に集光するまでは、前述の第1実施例と同様である。
フライアイレンズ3近傍に集光した複数の分割光束のうち、フライアイレンズ3からPBS34へ入射する光束はP偏光光である。このため、PBS34へ入射した光束は、PBS34を透過して、コンデンサーレンズ6に入射する。
一方、フライアイレンズ3からPBS35へ入射する光束は、S偏光光であるため、PBS35を透過して、1/2波長板15でP偏光光に変換にされ、コンデンサーレンズ6に入射する。コンデンサーレンズ6に入射した光束は、コンデンサーレンズ6によって液晶パネル7を重畳的に照明する。
このように、本実施例は、前述の第2実施例と異なり、互いに特性の異なる複数のワイヤーグリッド型PBSを用いた構成である。このような構成であっても、レンズアレイの枚数をより少なくし、均一な照度で被照明面を照明することが可能な照明光学系を提供することができる。
なお、本実施例において、より望ましい条件は前述の第1実施例と同様であるが、本実施例は、前述の第1実施例と異なり、1/2波長板15を備える。さらに、1/2波長板15の位置は、前述の第2実施例と異なる。
本実施例において、前述の条件式の上限を逸脱すると、フライアイレンズ3で分割された部分光束は、フライアイレンズ3よりも液晶パネル7側に光源像を結像させる。その結果、対応するレンズセルとは異なるレンズセルに入射する光量が増え、液晶パネル7の有効領域外を照明する不要光が増えるおそれがある。したがって、上述の条件式の上限を満たすことが望ましい。
一方、本実施例において、前述の条件式の上限を逸脱すると、フライアイレンズ3で分割された部分光束は、フライアイレンズ3よりもミラー5側に光源像を結像させる。その結果、フライアイレンズ3からPBS35へ向かう光束は拡散光となり、フライアイレンズ3からPBS35へ向かい、1/2波長板15へ入射しない光束が増えるおそれがある。本実施例においては、液晶パネル7へ導かれる光束はP偏光光に揃えられるが、フライアイレンズ3からPBS35へ向かい、1/2波長板15へ入射しない光束が増えると、液晶パネル7へ導かれる光束がP偏光光とS偏光光が混ざった光束になってしまう。その結果、色分離合成系Cにおいて、Bの色光の光路にRの色光が混入してしまい、投影画像のコントラストが悪化するおそれがある。したがって、上述の条件式の上限を満たすことが望ましい。
以上の理由から、上述の条件式を満たせば、より偏光方向が揃った光束を射出可能で、より小型な照明光学系および画像表示装置を提供することができる。
〔第4実施例〕
図6〜図8は、本発明の第4実施例で示す照明光学系の構成を示す図であり、図6及び図7はxz断面での図、図8はxy断面での図である。
前述の第2実施例と本実施例との違いは、第2の発光点である光源2Lを新たに追加した点である。すなわち、本実施において、光源からの光束は互いに異なる位置に配置された光源1Lと、光源2Lから射出する複数の光束である。
さらに、光源2Lからの光束を偏光変換するためのPBS65(第3の偏光素子)及びPBS66(第4の偏光素子)を新たに追加した点も、前述の第2実施例と本実施例の違いである。PBS65は、PBS16に隣り合うように配置され、PBS66は、PBS14に隣り合うように配置されている。
PBS65は、液晶パネル7とフライアイレンズ3との間に配置され、光源からの光束に含まれるS偏光光をフライアイレンズ3に導くとともに、フライアイレンズ3から出射する光束に含まれ、S偏光光と偏光方向が異なるP偏光光を液晶パネル7に導く。
また、PBS66は、PBS65から出射する光束をフライアイレンズ3に導き、ミラー5から1/4波長板4を介してフライアイレンズ4へ導かれる光束を液晶パネル7に導く。
第1の発光点である光源1Lからの略平行光束1Hが、フライアイレンズ3によって分割されて複数の分割光束となり、1/4波長板4およびミラー5によって偏光方向を変換され、フライアイレンズ3近傍に集光するまでは、前述の第2実施例と同様である。つまり、光源1Lは、光源1Lからの光束1HがPBS14に入射するように配置されている。
一方、光源2Lからの略平行光束2Hは、略平行光束1Hと異なり、PBS65に入射する。なお、光源2Lは、高圧水銀放電管である発光管62と楕円鏡63からなる水銀ランプである。また、PBS65及びPBS66は、P偏光光を透過させ、S偏光光を反射する偏光素子である。つまり、光源2Lは、光源2Lからの光束2HがPBS65に入射するように配置されている。
なお、本実施例において、第1の偏光素子はPBS14であり、第2の偏光素子はPBS16であり、第3の偏光素子はPBS65であり、第4の偏光素子はPBS66である。
または、図6及び図7に示すように、PBS14及びPBS16の偏光分離面は互いに平行であり、PBS65及びPBS66の偏光分離面は互いに平行である。さらに、PBS14及びPBS65の偏光分離面は互いに直交している。このように、各PBSの偏光分離面を配置することで、後述のように、偏光方向の揃った光束で被照明面を照明することができる。
PBS65に入射した略平行光束2Hに含まれるS偏光光は、PBS65に反射され、図8に示すz軸方向に設けられているミラー5に導かれる。なお、図8においては、フライアイレンズ3及び1/4波長板4を省略している。
ミラー5へ導かれたS偏光光は、前述の第2実施例と同様に、1/4波長板4およびミラー5によって偏光方向を変換され、P偏光光となってPBS65を透過し、液晶パネル7へ導かれる。
一方、PBS65に入射した略平行光束2Hに含まれるP偏光光は、PBS65を透過し、1/2波長板15に入射し、S偏光光に変換され、PBS66に入射する。PBS66に入射したS偏光光は、PBS66によって反射され、前述の第2実施例と同様に、1/4波長板4およびミラー5によって偏光方向を変換され、P偏光光となってPBS66を透過し、液晶パネル7へ導かれる。
このように、本実施例は複数の光源を備えつつ、偏光方向の揃った光束で被照明面を照明することができるため、前述の実施例と比較して、より明るい画像を投射することが可能である。
なお、本実施例において、より望ましい条件は前述の第1実施例と同様であり、前述の条件式を満たすことによる効果は前述の第2実施例と同様である。
また、本実施例においては、光源1Lを、光源1Lからの光束がPBS14に入射するように配置し、光源2Lを、光源2Lからの光束がPBS65に入射するように配置する。
しかし、例えば、光源1Lを、光源1Lからの光束がPBS14に入射するように配置し、光源2Lを、光源2Lからの光束がPBS66に入射するように配置してもよい。このように光源1L及び光源2Lを配置する場合には、PBS14、16、65、66を、各PBSの偏光分離面が互いに平行になるように配置する必要がある。
また、本実施例においては、プリズム型PBSを用いた構成を例示したが、例えばワイヤーグリッド型PBSを用いても良い。
〔第5実施例〕
図9は、本発明の第5実施例で示す照明光学系の構成を示す図である。
前述の第2実施例と本実施例との違いは、PBS14の代わりに、屈折面74bを有するPBS74を用いることにより、偏光分離面への入射角を45°よりも大きくすることが可能な点である。
光源1Lからの光束が、平行光束1Hに変換されるまでは、前述の第2実施例と同様である。なお、平行光束1Hの主光線は、光源1の光軸O11と平行である。
平行光束1Hの主光線は、PBS74の入射面74bによって、光軸O12と平行な方向に導かれる。光軸O12は、入射面74bによって屈折された平行光束1Hの主光線と平行である。
PBS74に入射した平行光束1Hのうち、S偏光光は偏光分離面74aによって反射され、フライアイレンズ3に導かれる。一方、P偏光光は、偏光分離面74aを透過し、1/2波長板75でS偏光光に変換され、PBS76に入射し、偏光分離面76aで反射され、フライアイレンズ3に導かれる。
光源1Lからの光束が、フライアイレンズ3によって分割されて複数の分割光束となり、1/4波長板4およびミラー5によって偏光方向を変換され、フライアイレンズ3近傍に集光するまでは、前述の第2実施例と同様である。
さらに、前述の第2実施例と同様の原理で、フライアイレンズ3近傍に集光した複数の分割光束は、P偏光光であるために、PBS74およびPBS76を透過して、コンデンサーレンズ6に入射する。コンデンサーレンズ6に入射した光束は、コンデンサーレンズ6によって液晶パネル7を重畳的に照明する。
このような構成にすることで、偏光分離面74aおよび偏光分離面76aへの入射角を45°よりも大きくすることが可能となる。
ここで、一般に、屈折率の大きいガラスは高価であるため、費用の面においては可能な限り、屈折率の小さいガラスを用いたプリズム型PBSであることが望ましい。さらに、一般に、偏光分離の効率を高めるためには、屈折率の小さいガラスを用いたプリズム型PBSの場合は、屈折率の大きいガラスを用いたプリズム型PBSの場合よりも、偏光分離面への入射角を大きくする必要がある。
従って、本実施例のように、偏光分離面への入射角をより大きくすることが可能な構成を用いれば、プリズム型PBSに屈折率のより小さいガラスを用いることが可能となる。その結果、製造コストをより削減することが可能となる。
より具体的には、PBS74の偏光分離面74aの法線74nと偏光分離面74aに入射する光束の主光線とのなす角度をθ1とし、PBS76の偏光分離面76aの法線76nと偏光分離面76aに入射する光束の主光線とのなす角度をθ2とするとき、
45° < θ1 = θ2 < 70°
となる条件を満足することと良い。
更に望ましくは、
50° < θ1 = θ2 < 60°
の条件式を満たすと良い。
上述の条件式を満たすことで、より屈折率の小さいガラスを用いたプリズム型PBSを用いることが可能となり、製造コストをより削減できる。
上式の下限を逸脱すると、光利用効率を高めるためには、膜総数を増したり、高価な屈折率の高い硝子を使用したりする必要があり、光学系のコストが高くなってしまうため、好ましくない。また、上式の上限を逸脱すると、入射角の大きい光束をPBS74に取り込むために、プリズムを大きくする必要があり、光学系のコストが高くなってしまうため、好ましくない。
以上の理由から、上述の条件式を満たせば、より安価で、より小型な照明光学系および画像表示装置を提供することができる。
〔他の実施形態〕
前述した実施例では、本発明の実施例で示す照明光学系を搭載可能な画像表示装置の構成として、投射レンズを備える構成を例示した。しかし、本発明はこれに限定されるものではない。画像表示装置であれば、例えば、着脱可能な投射レンズを用いる構成などでも良い。
また、前述した実施例の一部では、高圧水銀ランプを用いた照明装置の構成を例示したが、本発明はこれに限定されるものではない。白色の光を発する光源であれば、例えば、青色LEDや青色LD(半導体レーザー)と蛍光体を組み合わせた構成などであっても良い。さらに、本発明は、光源の数が1つの場合のみに限定されるものではない。例えば、複数のLEDあるいはLDをアレイ状に並べた構成などであっても良い。
また、前述した実施例で、ワイヤーグリッドPBSを用いた構成とプリズム型PBSを用いた構成の両方を説明したように、本発明は、ワイヤーグリッドPBSとプリズム型PBSのいずれか一方のみに限定されるものではない。
また、前述した実施例の一部では、ランプ、コリメータレンズ、PBS、フライアイレンズ、1/4波長板、ミラー、コンデンサーレンズ、そして、液晶パネルを備える構成を例示した。しかし、本発明はこれに限定されるものではない。平行偏芯による影響を低減し、より均一な照度で被照明面を照明することが可能な構成であれば、例えば、コリメータレンズおよびコンデンサーレンズを両方用いない、あるいは、片方のみ用いるなどの構成であっても良い。
2 偏光ビームスプリッター(第1の偏光素子)
3 フライアイレンズ(レンズアレイ)
4 1/4波長板(第1の位相板)
5 ミラー(第1の光学素子)

Claims (12)

  1. 光源からの光束を被照明面に導くための照明光学系であって、
    前記光源からの光束を複数の光束に分割するレンズアレイと、
    前記レンズアレイから出射する光束を再び前記レンズアレイに入射させる第1の光学素子と、
    前記レンズアレイと前記第1の光学素子との間に配置された第1の位相板と、
    前記被照明面と前記レンズアレイとの間に配置され、前記光源からの光束に含まれる第1の偏光方向の光束を前記レンズアレイに導くとともに、前記レンズアレイから出射する光束に含まれ、前記第1の偏光方向と偏光方向が異なる第2の偏光方向の光束を前記被照明面に導く第1の偏光素子と、を備える、
    ことを特徴とする照明光学系。
  2. 前記第1の光学素子はミラーであって、
    前記レンズアレイが備えるレンズセルの焦点距離をfとし、
    前記レンズセルの頂点から前記ミラーの反射面までの空気換算距離をdとするとき、
    1.8 < f/d < 2.3
    となる条件を満足する、
    ことを特徴とする請求項1に記載の照明光学系。
  3. 前記レンズアレイが備えるレンズセルの焦点距離をfとし、
    前記第1の偏光素子の偏光分離面の端部のうち前記レンズアレイに近い方の端部から、前記レンズセルの頂点までの距離をcとするとき、
    0.02 < c/f < 0.2
    となる条件を満足する、
    ことを特徴とする請求項1または2に記載の照明光学系。
  4. 前記第1の位相板と異なる位置に設けられている第2の位相板と、
    前記第1の偏光素子から出射する光束を前記レンズアレイに導くとともに、前記レンズアレイから出射する光束を前記被照明面に導く第2の偏光素子と、をさらに備え、
    前記第2の位相板は、前記第1の位相板と特性が異なる、
    ことを特徴とする請求項1乃至3のいずれか1項に記載の照明光学系。
  5. 前記第2の位相板は、前記第1の偏光素子と前記第2の偏光素子の間に設けられており、
    前記第1の偏光素子と前記第2の偏光素子はともに、前記第1の偏光方向の光束を反射し、前記第2の偏光方向の光束を透過させる特性を備える、
    ことを特徴とする請求項4に記載の照明光学系。
  6. 前記第2の位相板は、前記第2の偏光素子と前記被照明面との間に設けられており、
    前記第1の偏光素子は、前記第1の偏光方向の光束を反射し、前記第2の偏光方向の光束を透過させる特性を備え、
    前記第2の偏光素子は、前記第1の偏光方向の光束を透過させ、前記第2の偏光方向の光束を反射する特性を備える、
    ことを特徴とする請求項4に記載の照明光学系。
  7. 前記光源からの光束は、互いに異なる位置に配置された第1の発光点と、第2の発光点から射出する複数の光束であり、
    前記被照明面と前記レンズアレイとの間に配置されており、前記光源からの光束に含まれる第1の偏光方向の光束を前記レンズアレイに導くとともに、前記レンズアレイから出射する光束に含まれ、前記第1の偏光方向と偏光方向が異なる第2の偏光方向の光束を前記被照明面に導く第3の偏光素子と、
    前記第3の光学素子から出射する光束を前記レンズアレイに導き、前記第1の光学素子から前記第1の位相板を介して前記レンズアレイへ導かれる光束を前記被照明面に導く第4の光学素子と、をさらに備え、
    前記第3の偏光素子は、前記第2の偏光素子に隣り合うように配置されており、
    前記第4の偏光素子は、前記第1の偏光素子に隣り合うように配置されており、
    前記第1の発光点は、前記第1の発光点からの光束が前記第1の偏光素子に入射するように配置されており、
    前記第2の発光点は、前記第2の発光点からの光束が前記第3の偏光素子または前記第4の偏光素子に入射するように配置されている、
    ことを特徴とする請求項4に記載の光源装置。
  8. 前記第1の偏光素子の偏光分離面の法線と前記第1の偏光素子の偏光分離面に入射する光束の主光線とのなす角度をθ1とし、
    前記第2の偏光素子の偏光分離面の法線と前記第2の偏光素子の偏光分離面に入射する光束の主光線とのなす角度をθ2とするとき、
    45° < θ1 = θ2 < 70°
    なる条件を満足する、
    ことを特徴とする請求項4に記載の照明光学系。
  9. 前記第2の偏光方向の光束を前記被照明面に導く第1の正レンズをさらに備える、
    ことを特徴とする請求項1乃至8のいずれか1項に記載の照明光学系。
  10. 前記光源からの光束が入射する負レンズをさらに備える、
    ことを特徴とする請求項1乃至9のいずれか1項に記載の照明光学系。
  11. 光源ユニットと、
    請求項1乃至10のいずれか1項に記載の照明光学系と、
    を備えることを特徴とする照明装置。
  12. 光変調素子と、
    前記光源ユニットからの光束を波長ごとに分離するとともに、前記光変調素子からの光束を合成する色分離合成系と、
    請求項11に記載の照明装置と、
    を備えることを特徴とする画像表示装置。
JP2014114431A 2014-06-02 2014-06-02 照明光学系およびこれを用いた画像表示装置 Pending JP2015227998A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014114431A JP2015227998A (ja) 2014-06-02 2014-06-02 照明光学系およびこれを用いた画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114431A JP2015227998A (ja) 2014-06-02 2014-06-02 照明光学系およびこれを用いた画像表示装置

Publications (1)

Publication Number Publication Date
JP2015227998A true JP2015227998A (ja) 2015-12-17

Family

ID=54885483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114431A Pending JP2015227998A (ja) 2014-06-02 2014-06-02 照明光学系およびこれを用いた画像表示装置

Country Status (1)

Country Link
JP (1) JP2015227998A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227809A (ja) * 2016-06-23 2017-12-28 キヤノン株式会社 照明装置およびこれを用いた投射型表示装置
CN111837073A (zh) * 2018-03-20 2020-10-27 索尼公司 图像显示设备
CN117590679A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 光源装置和投影设备
CN117590678A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 合光系统和投影设备

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227809A (ja) * 2016-06-23 2017-12-28 キヤノン株式会社 照明装置およびこれを用いた投射型表示装置
CN111837073A (zh) * 2018-03-20 2020-10-27 索尼公司 图像显示设备
EP3770681A4 (en) * 2018-03-20 2021-03-24 Sony Corporation IMAGE DISPLAY DEVICE
JPWO2019181404A1 (ja) * 2018-03-20 2021-04-01 ソニー株式会社 画像表示装置
CN111837073B (zh) * 2018-03-20 2022-10-11 索尼公司 图像显示设备
JP7342854B2 (ja) 2018-03-20 2023-09-12 ソニーグループ株式会社 画像表示装置
US11953699B2 (en) 2018-03-20 2024-04-09 Sony Group Corporation Image display apparatus
CN117590679A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 光源装置和投影设备
CN117590678A (zh) * 2024-01-19 2024-02-23 宜宾市极米光电有限公司 合光系统和投影设备
CN117590679B (zh) * 2024-01-19 2024-04-19 宜宾市极米光电有限公司 光源装置和投影设备
CN117590678B (zh) * 2024-01-19 2024-05-28 宜宾市极米光电有限公司 合光系统和投影设备

Similar Documents

Publication Publication Date Title
JP5164421B2 (ja) 色分解合成光学系およびそれを用いた画像投影装置
JP2014077817A (ja) 光源装置およびそれを用いた投射型表示装置
US9016865B2 (en) Illumination device and projection type display device using the same
JP2012032553A (ja) 光源装置及び投写型映像表示装置
JP2014029430A (ja) 画像表示装置
JP4945314B2 (ja) 投写型表示装置
JP4353287B2 (ja) プロジェクタ
JP6512919B2 (ja) 画像表示装置
JP2015227998A (ja) 照明光学系およびこれを用いた画像表示装置
US8142022B2 (en) Image display apparatus
WO2005036255A1 (ja) 照明装置及びこれを備えたプロジェクタ
JP5334219B2 (ja) 偏光光照明装置とそれを用いた投射型表示装置
JP2007322584A (ja) 照明装置及びそれを用いた投写型映像表示装置
JP2010224160A (ja) 光学素子、照明装置および投写型映像表示装置
JP5311519B2 (ja) 照明装置とそれを用いた投射型表示装置
CN210835555U (zh) 光源装置以及投影型显示装置
WO2005114319A1 (ja) プロジェクタ
JP2015210488A (ja) 照明光学系およびこれを用いた画像表示装置
JP5067647B2 (ja) 照明装置とそれを用いた投射型表示装置
CN111837073B (zh) 图像显示设备
US11490059B2 (en) Light source device and projection type display device
US10809540B2 (en) Projector having at least four projection light sources and a beam splitter device comprising a polarization beam splitter and projection optics having a beam splitter device
JP2006301376A (ja) 偏光変換部材及び照明装置及び投写型映像表示装置
JP2007193119A (ja) 照明装置及びプロジェクタ
JP2010243881A (ja) 照明装置及び投写型映像表示装置