JP2015227489A - Solution purification method of cobalt chloride solution - Google Patents
Solution purification method of cobalt chloride solution Download PDFInfo
- Publication number
- JP2015227489A JP2015227489A JP2014113691A JP2014113691A JP2015227489A JP 2015227489 A JP2015227489 A JP 2015227489A JP 2014113691 A JP2014113691 A JP 2014113691A JP 2014113691 A JP2014113691 A JP 2014113691A JP 2015227489 A JP2015227489 A JP 2015227489A
- Authority
- JP
- Japan
- Prior art keywords
- chloride solution
- cobalt
- cobalt chloride
- amount
- impurities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、塩化コバルト溶液の浄液方法に関する。さらに詳しくは、不純物として少なくとも銅を含む塩化コバルト溶液から不純物を除去するための塩化コバルト溶液の浄液方法に関する。 The present invention relates to a method for purifying a cobalt chloride solution. More specifically, the present invention relates to a method for purifying a cobalt chloride solution for removing impurities from a cobalt chloride solution containing at least copper as an impurity.
硫化物からニッケルやコバルトを回収する湿式製錬プロセスでは、原料であるニッケルマットやニッケル・コバルト混合硫化物(MS:ミックスサルファイド)を塩素浸出し、得られた浸出液から不純物を除去する浄液工程などを経て、電解工程で電気ニッケルや電気コバルトを回収する。 In the hydrometallurgical process for recovering nickel and cobalt from sulfides, the clarification process removes impurities from the resulting leachate by leaching the nickel matte and nickel-cobalt mixed sulfide (MS) as raw materials. After that, electrolytic nickel and electrolytic cobalt are recovered in the electrolysis process.
図1に示すように、浸出工程から得られた浸出液は、セメンテーション工程において銅が除去され、脱鉄工程において鉄やヒ素などの不純物が除去された後、コバルト溶媒抽出工程に送られる。コバルト溶媒抽出工程では、溶媒抽出によりニッケルとコバルトとを分離し、粗塩化ニッケル溶液と粗塩化コバルト溶液とを得る。粗塩化ニッケル溶液は、さらに不純物が除去され高純度となってニッケル電解工程に送られる。ニッケル電解工程では電解採取により電気ニッケルが製造される。一方、塩化コバルト溶液は、さらに不純物が除去され高純度となってコバルト電解工程に送られる。コバルト電解工程では電解採取により電気コバルトが製造される。 As shown in FIG. 1, the leachate obtained from the leaching step is sent to the cobalt solvent extraction step after removing copper in the cementation step and removing impurities such as iron and arsenic in the deironing step. In the cobalt solvent extraction step, nickel and cobalt are separated by solvent extraction to obtain a crude nickel chloride solution and a crude cobalt chloride solution. Impurities are further removed from the crude nickel chloride solution to obtain a high purity and sent to the nickel electrolysis process. In the nickel electrolysis process, electric nickel is produced by electrowinning. On the other hand, the cobalt chloride solution is further purified by removing impurities and sent to the cobalt electrolysis process. In the cobalt electrolysis process, electrolytic cobalt is produced by electrowinning.
粗塩化コバルト溶液の浄液工程には複数の詳細工程が含まれるが、その中には脱銅工程がある。脱銅工程では、粗塩化コバルト溶液に硫化剤を添加することで不純物である銅および鉛を硫化澱物として除去する。硫化剤の添加により処理液のpHが低下するため、これを防ぐためにpH調整剤を添加して、処理液のpHを調整することが行われる。 The liquid purification process of the crude cobalt chloride solution includes a plurality of detailed processes, including a copper removal process. In the copper removal step, impurities such as copper and lead are removed as sulfide starch by adding a sulfurizing agent to the crude cobalt chloride solution. Since the pH of the treatment liquid is lowered by the addition of the sulfiding agent, in order to prevent this, a pH adjuster is added to adjust the pH of the treatment liquid.
しかし、上記脱銅工程では、不純物である銅および鉛とともに、有価物であるコバルトの一部も共沈し、硫化澱物として除去されてしまう。そのため、有価物のロスとなるという問題がある。また、硫化澱物に含まれるコバルトの回収のために硫化澱物を浸出工程に繰り返すと、操業効率が低下するという問題がある。 However, in the copper removal step, a part of valuable cobalt is co-precipitated together with impurities copper and lead and removed as sulfide starch. For this reason, there is a problem of loss of valuables. In addition, when the sulfurized starch is repeated in the leaching process for the recovery of cobalt contained in the sulfurized starch, there is a problem that the operation efficiency is lowered.
特許文献1には、脱銅工程において、酸化還元電位(Ag/AgCl電極基準)を50mV以下、pHを0.3〜2.4に調整することが開示されている。また、特許文献2には、塩化コバルト溶液から鉛を除去する工程において、酸化還元電位(Ag/AgCl電極基準)を-50〜0mV、pHを1.0〜2.0に調整することが開示されている。 Patent Document 1 discloses that in the copper removal step, the redox potential (Ag / AgCl electrode reference) is adjusted to 50 mV or less and the pH is adjusted to 0.3 to 2.4. Patent Document 2 discloses that in the step of removing lead from the cobalt chloride solution, the redox potential (Ag / AgCl electrode standard) is adjusted to -50 to 0 mV and the pH is adjusted to 1.0 to 2.0.
しかし、塩化コバルト溶液の主成分であるコバルトの影響により酸化還元電位が安定しないため、酸化還元電位を指標として硫化剤の添加量を調整するのは困難であるという問題がある。そのため、実操業では、確実に不純物を除去するために硫化剤を過剰に添加することが行われており、これにより硫化剤の原単位(コバルト生産量当たりの硫化剤使用量)が高くなるという問題がある。 However, since the oxidation-reduction potential is not stable due to the influence of cobalt, which is the main component of the cobalt chloride solution, there is a problem that it is difficult to adjust the addition amount of the sulfiding agent using the oxidation-reduction potential as an index. Therefore, in actual operation, excessive addition of a sulfiding agent is performed in order to reliably remove impurities, which increases the basic unit of sulfiding agent (the amount of sulfiding agent used per cobalt production). There's a problem.
本発明は上記事情に鑑み、コバルトのロスを低減でき、かつ、硫化剤原単位を低くできる塩化コバルト溶液の浄液方法を提供することを目的とする。 An object of this invention is to provide the liquid purification method of the cobalt chloride solution which can reduce the loss of cobalt and can make a sulfidizing agent basic unit low in view of the said situation.
第1発明の塩化コバルト溶液の浄液方法は、不純物として少なくとも銅を含む塩化コバルト溶液に、硫化剤とpH調整剤とを添加して、不純物を硫化澱物として除去するにあたり、塩化コバルト溶液のpHを1.15〜1.35に調整し、硫化剤の添加量を、塩化コバルト溶液に含まれる不純物量に対して9〜11倍モル当量とすることを特徴とする。
第2発明の塩化コバルト溶液の浄液方法は、第1発明において、塩化コバルト溶液のpHを1.15〜1.25に調整することを特徴とする。
第3発明の塩化コバルト溶液の浄液方法は、第1または第2発明において、前記硫化剤が硫化水素であることを特徴とする。
第4発明の塩化コバルト溶液の浄液方法は、第1、第2または第3発明において、前記pH調整剤が炭酸コバルトであることを特徴とする。
The method for purifying a cobalt chloride solution according to the first aspect of the present invention is to add a sulfurizing agent and a pH adjuster to a cobalt chloride solution containing at least copper as an impurity to remove impurities as a sulfide starch. The pH is adjusted to 1.15 to 1.35, and the addition amount of the sulfurizing agent is 9 to 11 times the molar equivalent of the amount of impurities contained in the cobalt chloride solution.
The cobalt chloride solution purification method of the second invention is characterized in that, in the first invention, the pH of the cobalt chloride solution is adjusted to 1.15 to 1.25.
According to a third aspect of the present invention, in the first or second aspect, the sulfiding agent is hydrogen sulfide.
According to a fourth aspect of the present invention, in the first, second or third aspect, the pH adjusting agent is cobalt carbonate.
第1発明によれば、塩化コバルト溶液のpHを1.15〜1.35に調整するので、硫化澱物のCo/Cu比を低くでき、不純物を十分に除去しつつコバルトのロスを低減できる。また、硫化剤の添加量を不純物量に対して9〜11倍モル当量とするので、硫化剤の添加量を不純物の除去に必要な量に抑えることができ、硫化剤原単位を低くできる。
第2発明によれば、塩化コバルト溶液のpHを1.15〜1.25に調整するので、硫化澱物のCo/Cu比をより低くでき、コバルトのロスをより低減できる。
第3発明によれば、硫化剤が硫化水素であるので、塩化コバルト溶液への他の金属の混入を防止できる。
第4発明によれば、pH調整剤が炭酸コバルトであるので、塩化コバルト溶液への他の金属の混入を防止できる。
According to the first invention, since the pH of the cobalt chloride solution is adjusted to 1.15 to 1.35, the Co / Cu ratio of the sulfide starch can be lowered, and the loss of cobalt can be reduced while sufficiently removing impurities. Further, since the addition amount of the sulfiding agent is 9 to 11 times the molar equivalent of the impurity amount, the addition amount of the sulfiding agent can be suppressed to an amount necessary for removing the impurities, and the sulfiding agent basic unit can be lowered.
According to the second invention, since the pH of the cobalt chloride solution is adjusted to 1.15 to 1.25, the Co / Cu ratio of the sulfide starch can be further reduced, and the loss of cobalt can be further reduced.
According to the third invention, since the sulfiding agent is hydrogen sulfide, it is possible to prevent other metals from being mixed into the cobalt chloride solution.
According to the fourth invention, since the pH adjuster is cobalt carbonate, it is possible to prevent other metals from being mixed into the cobalt chloride solution.
つぎに、本発明の実施形態を図面に基づき説明する。
本発明の一実施形態に係る塩化コバルト溶液の浄液方法は、以下に説明するニッケルおよびコバルトの湿式製錬プロセスに適用される。なお、本発明に係る塩化コバルト溶液の浄液方法は、塩化コバルト溶液の由来を問わず、不純物として少なくとも銅を含む塩化コバルト溶液を浄液するプロセスであれば、いかなるプロセスにも適用される。
Next, an embodiment of the present invention will be described with reference to the drawings.
The cobalt chloride solution purification method according to an embodiment of the present invention is applied to a nickel and cobalt hydrometallurgical process described below. The method for purifying a cobalt chloride solution according to the present invention is applicable to any process as long as it is a process for purifying a cobalt chloride solution containing at least copper as an impurity, regardless of the origin of the cobalt chloride solution.
図1に示すように、ニッケルおよびコバルトの湿式製錬プロセスでは、まず、原料であるニッケル・コバルト混合硫化物(MS:ミックスサルファイド)およびニッケルマットを塩素浸出して浸出液を得る。浸出液は、主成分が塩化ニッケル溶液であり、コバルトのほか、鉄、銅、鉛等の不純物が含まれる。 As shown in FIG. 1, in the nickel and cobalt hydrometallurgical process, first, the raw material nickel / cobalt mixed sulfide (MS: mixed sulfide) and nickel matte are leached with chlorine to obtain a leachate. The main component of the leachate is a nickel chloride solution, which contains impurities such as iron, copper and lead in addition to cobalt.
浸出工程から得られた浸出液は、セメンテーション工程および脱鉄工程を経て、コバルト溶媒抽出工程に送られる。コバルト溶媒抽出工程では、浸出液に含まれるコバルトを溶媒抽出により分離し、塩化ニッケル溶液と塩化コバルト溶液とを得る。なお、説明の便宜のため、コバルト溶媒抽出工程から得られた塩化ニッケル溶液および塩化コバルト溶液を、それぞれ粗塩化ニッケル溶液および粗塩化コバルト溶液と称する。粗塩化コバルト溶液には、不純物として銅や鉛等が含まれる。 The leachate obtained from the leaching step is sent to the cobalt solvent extraction step through a cementation step and a deironing step. In the cobalt solvent extraction step, cobalt contained in the leachate is separated by solvent extraction to obtain a nickel chloride solution and a cobalt chloride solution. For convenience of explanation, the nickel chloride solution and the cobalt chloride solution obtained from the cobalt solvent extraction step are referred to as a crude nickel chloride solution and a crude cobalt chloride solution, respectively. The crude cobalt chloride solution contains copper, lead and the like as impurities.
粗塩化コバルト溶液は、浄液工程で不純物が除去されて高純度塩化コバルト溶液となってコバルト電解工程に送られる。コバルト電解工程では電解採取により電気コバルトが製造される。 In the crude cobalt chloride solution, impurities are removed in the liquid purification step to obtain a high purity cobalt chloride solution, which is sent to the cobalt electrolysis step. In the cobalt electrolysis process, electrolytic cobalt is produced by electrowinning.
粗塩化コバルト溶液の浄液工程には複数の詳細工程が含まれるが、その中には脱銅工程がある。図2に示すように、脱銅工程では、反応槽に供給した粗塩化コバルト溶液に、硫化剤を添加して、不純物である銅や鉛を硫化澱物として析出させる。また、硫化剤の添加により処理液のpHが低下するため、これを防ぐためにpH調整剤を添加して、処理液のpHを調整する。 The liquid purification process of the crude cobalt chloride solution includes a plurality of detailed processes, including a copper removal process. As shown in FIG. 2, in the copper removal step, a sulfurizing agent is added to the crude cobalt chloride solution supplied to the reaction vessel to precipitate copper and lead as impurities as sulfide starch. In addition, since the pH of the treatment liquid is lowered by the addition of the sulfurizing agent, in order to prevent this, a pH adjuster is added to adjust the pH of the treatment liquid.
硫化剤としては、特に限定されないが、例えば、硫化水素、硫化ナトリウム、水硫化ナトリウム等の水溶性の硫化物が用いられる。これらの中で、塩化コバルト溶液への他の金属の混入を防止できる硫化水素が好ましい。 Although it does not specifically limit as a sulfurizing agent, For example, water-soluble sulfides, such as hydrogen sulfide, sodium sulfide, sodium hydrosulfide, are used. Among these, hydrogen sulfide is preferable because it can prevent mixing of other metals into the cobalt chloride solution.
pH調整剤は、処理液のpHおよび/または硫化剤により、アルカリ性または酸性のpH調整剤が選ばれる。pH調整剤としては、特に限定されないが、アルカリ性pH調整剤として水酸化ナトリウム、水酸化カルシウム、炭酸ナトリウム、炭酸コバルト等のアルカリ塩を用いることができ、酸性pH調整剤として塩酸、硫酸等の鉱酸を用いることができる。これらの中で、塩化コバルト溶液への他の金属の混入を防止できる炭酸コバルトが好ましい。 As the pH adjusting agent, an alkaline or acidic pH adjusting agent is selected depending on the pH of the treatment liquid and / or the sulfurizing agent. The pH adjuster is not particularly limited, but an alkaline salt such as sodium hydroxide, calcium hydroxide, sodium carbonate, cobalt carbonate or the like can be used as the alkaline pH adjuster, and mineral such as hydrochloric acid or sulfuric acid can be used as the acidic pH adjuster. An acid can be used. Of these, cobalt carbonate is preferred because it can prevent other metals from being mixed into the cobalt chloride solution.
反応槽から排出された中間スラリーは、フィルタープレス装置等の固液分離装置に送られ、高純度塩化コバルト溶液と硫化澱物とに分離される。このようにして、不純物を硫化澱物として除去することができる。 The intermediate slurry discharged from the reaction tank is sent to a solid-liquid separation device such as a filter press device and separated into a high-purity cobalt chloride solution and sulfide starch. In this way, impurities can be removed as sulfide starch.
得られた高純度塩化コバルト溶液は、必要に応じて他の工程を経て、コバルト電解工程に供給される。また、硫化澱物は浸出工程に繰り返され、硫化澱物に含まれるコバルト等が回収される。 The obtained high-purity cobalt chloride solution is supplied to the cobalt electrolysis step through other steps as necessary. Further, the sulfurized starch is repeated in the leaching step, and cobalt and the like contained in the sulfurized starch are recovered.
本実施形態は、以上の湿式製錬プロセスの脱銅工程において、塩化コバルト溶液のpHを1.15〜1.35、好ましくは1.15〜1.25に調整し、かつ、硫化剤の添加量を、塩化コバルト溶液に含まれる不純物量に対して9〜11倍モル当量とするところに特徴を有する。ここで、pHの調整はpH調整剤の添加量を調整することにより行うことができる。また、不純物量とは、銅や鉛等の不純物の量、例えば銅量と鉛量の和を意味する。 In this embodiment, in the copper removal step of the above hydrometallurgical process, the pH of the cobalt chloride solution is adjusted to 1.15 to 1.35, preferably 1.15 to 1.25, and the addition amount of the sulfiding agent is included in the cobalt chloride solution. It is characterized in that the molar equivalent is 9 to 11 times the amount of impurities. Here, pH adjustment can be performed by adjusting the addition amount of a pH adjuster. Moreover, the amount of impurities means the amount of impurities such as copper and lead, for example, the sum of the amount of copper and the amount of lead.
本願発明者は、脱銅工程において、反応槽中の塩化コバルト溶液のpHに対する硫化澱物のコバルト/銅重量比(以下、Co/Cu比と称する。)を測定したところ、図3に示す結果を得た。 The inventor of the present application measured the cobalt / copper weight ratio (hereinafter referred to as Co / Cu ratio) of the sulfide sulfide with respect to the pH of the cobalt chloride solution in the reaction vessel in the copper removal step. The results shown in FIG. Got.
図3より、塩化コバルト溶液のpHが低いほど、Co/Cu比を低くできることが分かる。すなわち、塩化コバルト溶液のpHを低くするほど、不純物である銅を除去しつつ、有価物であるコバルトの共沈量を低減できるのである。具体的には、塩化コバルト溶液のpHを1.35以下に調整することでCo/Cu比が急激に低下し、塩化コバルト溶液のpHを1.25以下に調整すれば、Co/Cu比を約1.3以下に抑えられることが分かった。 FIG. 3 shows that the Co / Cu ratio can be lowered as the pH of the cobalt chloride solution is lower. That is, as the pH of the cobalt chloride solution is lowered, the coprecipitation amount of valuable cobalt can be reduced while removing copper as impurities. Specifically, the Co / Cu ratio is drastically lowered by adjusting the pH of the cobalt chloride solution to 1.35 or less, and the Co / Cu ratio is reduced to about 1.3 or less by adjusting the pH of the cobalt chloride solution to 1.25 or less. It turns out that it can be suppressed.
以上より、塩化コバルト溶液のpHを1.35以下、好ましくは1.25以下に調整することで、硫化澱物のCo/Cu比を低くでき、不純物を十分に除去しつつコバルトのロスを低減できる。また、コバルトのロスを低減できることから、従来コバルトを硫化するために消費されていた硫化剤を削減でき、硫化剤の添加量を低減できる。 As described above, by adjusting the pH of the cobalt chloride solution to 1.35 or less, preferably 1.25 or less, the Co / Cu ratio of the sulfide starch can be lowered, and the loss of cobalt can be reduced while sufficiently removing impurities. Moreover, since the loss of cobalt can be reduced, it is possible to reduce the sulfiding agent conventionally consumed for sulfiding cobalt, and to reduce the amount of sulfiding agent added.
ただし、塩化コバルト溶液のpHが1.15未満であると、硫化澱物の粒径が小さくなり、固液分離装置で濾過不良が生じることから、塩化コバルト溶液のpHを1.15以上に調整することが好ましい。 However, if the pH of the cobalt chloride solution is less than 1.15, the particle size of the sulfide starch is reduced, and poor filtration occurs in the solid-liquid separation device. Therefore, it is preferable to adjust the pH of the cobalt chloride solution to 1.15 or more. .
また、本願発明者は、脱銅工程で処理する不純物量に対する硫化剤の添加量を調査したところ、不純物量の9〜11倍モル当量が適切であるという知見を得た。
この調査は以下の手順で行った。脱銅工程において、粗塩化コバルト溶液中の不純物量(以下、不純物量(粗)と称する。)に対して硫化剤の添加量を6倍モル当量から12倍モル当量の間で変化させた。各硫化剤添加量において、硫化反応で得られる硫化澱物に含まれる不純物量(以下、不純物量(澱物)と称する。)および、硫化澱物に含まれるコバルト量(以下、コバルト量(澱物)と称する。)を分析した。その結果、硫化剤の添加量が不純物量(粗)の9倍モル当量未満であると、不純物量(澱物)は不純物量(粗)に対して急激に低下して、不純物除去量として90重量%未満となり不充分であることが分かった。また、硫化剤の添加量が不純物量(粗)の11倍モル量を超えると、共沈が急激に加速されてコバルト量(澱物)が粗塩化コバルト溶液中のコバルト量の5重量%を超えてしまうことが分かった。
Moreover, when this inventor investigated the addition amount of the sulfurizing agent with respect to the impurity amount processed at a copper removal process, 9-11 times mole equivalent of the impurity amount was found to be appropriate.
This survey was conducted according to the following procedure. In the copper removal step, the addition amount of the sulfiding agent was changed between 6 to 12 molar equivalents relative to the amount of impurities in the crude cobalt chloride solution (hereinafter referred to as impurity amount (crude)). At each sulfurizing agent addition amount, the amount of impurities contained in the sulfided starch obtained by the sulfurization reaction (hereinafter referred to as impurity amount (starch)) and the amount of cobalt contained in the sulfided starch (hereinafter referred to as cobalt amount (starch). ) Was analyzed. As a result, when the addition amount of the sulfiding agent is less than 9 times the molar equivalent of the impurity amount (crude), the impurity amount (starch) rapidly decreases with respect to the impurity amount (coarse), and the impurity removal amount is 90%. It was found that it was less than% by weight, which was insufficient. If the amount of sulfurizing agent added exceeds 11 times the amount of impurities (crude), coprecipitation is accelerated rapidly, and the amount of cobalt (starch) is reduced to 5% by weight of the amount of cobalt in the crude cobalt chloride solution. I understood that it would exceed.
すなわち、硫化剤の添加量が不純物量の9倍モル当量未満であると、不純物を十分に硫化澱物とすることができない。また、硫化剤の添加量が不純物量の11倍モル当量を超えると、コバルトの共沈量が多くなり、硫化剤原単位が悪化する。 That is, if the addition amount of the sulfiding agent is less than 9 times the molar equivalent of the amount of impurities, the impurities cannot be sufficiently converted to sulfide starch. Moreover, when the addition amount of the sulfiding agent exceeds 11 times the molar equivalent of the impurity amount, the coprecipitation amount of cobalt increases and the sulfiding agent basic unit deteriorates.
以上より、硫化剤の添加量を、塩化コバルト溶液に含まれる不純物量に対して9〜11倍モル当量とすることで、硫化剤の添加量を不純物の除去に必要な量に抑えることができ、硫化剤原単位を低くできる。 From the above, the addition amount of the sulfiding agent can be suppressed to the amount necessary for removing the impurities by setting the molar equivalent of 9 to 11 times the amount of impurities contained in the cobalt chloride solution. The sulfiding agent unit can be lowered.
また、不純物量を基準として硫化剤の添加量を調整するので、従来のように酸化還元電位を基準とする場合に比べて、添加量の調整が容易となる。そのため、硫化剤を過剰に添加する必要がない。 Further, since the addition amount of the sulfiding agent is adjusted based on the impurity amount, the addition amount can be easily adjusted as compared with the conventional case where the oxidation-reduction potential is used as a reference. Therefore, it is not necessary to add an excessive sulfurizing agent.
以上のように、有価物であるコバルトのロスを低減でき、かつ、硫化剤原単位を低くできる。なお、硫化澱物に含有されるコバルト量が低下することから、浸出工程に繰り返されるコバルト量も低下するので、浸出工程における塩素使用量を削減でき、コバルト溶媒抽出工程における塩酸使用量を削減できる。 As described above, loss of valuable cobalt can be reduced, and the sulfidizing agent basic unit can be lowered. In addition, since the amount of cobalt contained in the sulfide starch is reduced, the amount of cobalt repeated in the leaching step is also reduced, so that the amount of chlorine used in the leaching step can be reduced and the amount of hydrochloric acid used in the cobalt solvent extraction step can be reduced. .
つぎに、実施例を説明する。
(共通の条件)
上記湿式精錬プロセスの脱銅工程において、塩化コバルト溶液を浄液した。塩化コバルト溶液の詳細は以下の通りである。なお、硫化剤として硫化水素、pH調整剤として炭酸コバルトを用いた。
塩化コバルト溶液流量 : 90〜120L/min
塩化コバルト溶液有価物濃度:Co 60〜70g/L
塩化コバルト溶液不純物濃度:Cu 60〜110mg/L、Pb 1〜10mg/L
Next, examples will be described.
(Common conditions)
In the copper removal step of the wet refining process, the cobalt chloride solution was purified. Details of the cobalt chloride solution are as follows. In addition, hydrogen sulfide was used as the sulfiding agent, and cobalt carbonate was used as the pH adjusting agent.
Cobalt chloride solution flow rate: 90 ~ 120L / min
Cobalt chloride solution valuable material concentration: Co 60 ~ 70g / L
Cobalt chloride solution impurity concentration: Cu 60-110mg / L, Pb 1-10mg / L
(実施例1)
反応槽内の塩化コバルト溶液のpHが1.35となるようにpH調整剤の添加量を調整した。また、硫化剤の添加量を脱銅工程で処理する銅量に対して10倍モル当量とした。図4に示すように、2012年10月〜2013年6月の8ヶ月間の操業の結果、硫化剤原単位は7.0〜8.0kg/tの範囲となり、平均値は約7.3kg/tであった。また、硫化澱物のCo/Cu比は平均で2.9であった。
Example 1
The addition amount of the pH adjuster was adjusted so that the pH of the cobalt chloride solution in the reaction vessel was 1.35. Moreover, the addition amount of the sulfiding agent was 10 times the molar equivalent with respect to the amount of copper to be treated in the copper removal step. As shown in Fig. 4, as a result of operation for 8 months from October 2012 to June 2013, the sulfidizing agent basic unit was in the range of 7.0 to 8.0 kg / t, and the average value was about 7.3 kg / t. It was. The Co / Cu ratio of the sulfide starch was 2.9 on average.
(比較例1)
反応槽内の塩化コバルト溶液のpHが2.0〜2.5となるようにpH調整剤の添加量を調整した。また、硫化剤は流量を一定として添加した。図4に示すように、2012年4月〜9月の6ヶ月間の操業の結果、硫化剤原単位は8.0〜12.0kg/tの範囲となり、平均値は約9.3kg/tであった。また、硫化澱物のCo/Cu比は平均で4.9であった。
(Comparative Example 1)
The addition amount of the pH adjuster was adjusted so that the pH of the cobalt chloride solution in the reaction vessel was 2.0 to 2.5. The sulfurizing agent was added at a constant flow rate. As shown in FIG. 4, as a result of operation for 6 months from April to September 2012, the sulfidizing agent basic unit was in the range of 8.0 to 12.0 kg / t, and the average value was about 9.3 kg / t. The Co / Cu ratio of the sulfide starch was 4.9 on average.
以上より、実施例1は比較例1に比べて、硫化剤原単位を約20%低減できることが確認された。また、Co/Cu比は約40%低減できることが確認された。 From the above, it was confirmed that Example 1 can reduce the sulfidizing agent basic unit by about 20% compared with Comparative Example 1. It was also confirmed that the Co / Cu ratio can be reduced by about 40%.
Claims (4)
塩化コバルト溶液のpHを1.15〜1.35に調整し、
硫化剤の添加量を、塩化コバルト溶液に含まれる不純物量に対して9〜11倍モル当量とする
ことを特徴とする塩化コバルト溶液の浄液方法。 In removing a impurity as a sulfurized starch by adding a sulfurizing agent and a pH adjuster to a cobalt chloride solution containing at least copper as an impurity,
Adjust the pH of the cobalt chloride solution to 1.15-1.35,
A method for purifying a cobalt chloride solution, wherein the addition amount of the sulfiding agent is 9 to 11 times the molar equivalent of the amount of impurities contained in the cobalt chloride solution.
ことを特徴とする請求項1記載の塩化コバルト溶液の浄液方法。 The method for purifying a cobalt chloride solution according to claim 1, wherein the pH of the cobalt chloride solution is adjusted to 1.15 to 1.25.
ことを特徴とする請求項1または2記載の塩化コバルト溶液の浄液方法。 The method for purifying a cobalt chloride solution according to claim 1 or 2, wherein the sulfurizing agent is hydrogen sulfide.
ことを特徴とする請求項1、2または3記載の塩化コバルト溶液の浄液方法。 4. The method for purifying a cobalt chloride solution according to claim 1, wherein the pH adjuster is cobalt carbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014113691A JP6137054B2 (en) | 2014-06-02 | 2014-06-02 | Purification method of cobalt chloride solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014113691A JP6137054B2 (en) | 2014-06-02 | 2014-06-02 | Purification method of cobalt chloride solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015227489A true JP2015227489A (en) | 2015-12-17 |
JP6137054B2 JP6137054B2 (en) | 2017-05-31 |
Family
ID=54885114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014113691A Active JP6137054B2 (en) | 2014-06-02 | 2014-06-02 | Purification method of cobalt chloride solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6137054B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016014164A (en) * | 2014-07-01 | 2016-01-28 | 住友金属鉱山株式会社 | Method for purifying cobalt chloride solution |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004285368A (en) * | 2003-03-19 | 2004-10-14 | Sumitomo Metal Mining Co Ltd | Method for refining cobalt aqueous solution |
JP2008274382A (en) * | 2007-05-07 | 2008-11-13 | Sumitomo Metal Mining Co Ltd | Method for separating lead from aqueous cobalt chloride solution |
-
2014
- 2014-06-02 JP JP2014113691A patent/JP6137054B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004285368A (en) * | 2003-03-19 | 2004-10-14 | Sumitomo Metal Mining Co Ltd | Method for refining cobalt aqueous solution |
JP2008274382A (en) * | 2007-05-07 | 2008-11-13 | Sumitomo Metal Mining Co Ltd | Method for separating lead from aqueous cobalt chloride solution |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016014164A (en) * | 2014-07-01 | 2016-01-28 | 住友金属鉱山株式会社 | Method for purifying cobalt chloride solution |
Also Published As
Publication number | Publication date |
---|---|
JP6137054B2 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4999108B2 (en) | Gold leaching method | |
JP6004023B2 (en) | Scandium recovery method | |
JP4923584B2 (en) | Method for removing copper ions from aqueous nickel chloride solution | |
JP2011021219A (en) | Method for recovering copper from copper/iron-containing material | |
WO2018066638A1 (en) | Hydrometallurgical method for refining nickel oxide ore | |
JP4079018B2 (en) | Method for purifying cobalt aqueous solution | |
WO2020149122A1 (en) | Method for manufacturing nickel/cobalt mixed sulfide from nickel oxide ore by wet smelting method | |
WO2017110572A1 (en) | Method for removing sulfidizing agent | |
JP4801372B2 (en) | Method for removing manganese from cobalt sulfate solution | |
JP2008013388A (en) | Method for purifying nickel chloride aqueous solution | |
JP6233478B2 (en) | Purification method of bismuth | |
JP6610368B2 (en) | Method for removing impurities from aqueous nickel chloride solution | |
JP6137054B2 (en) | Purification method of cobalt chloride solution | |
JP6256491B2 (en) | Scandium recovery method | |
JP5673471B2 (en) | Method for removing copper ions in aqueous nickel chloride solution and method for producing electronickel | |
JP5156992B2 (en) | Method for recovering indium from indium-containing material | |
JP5423592B2 (en) | Method for producing low chlorine nickel sulfate / cobalt solution | |
JP6137058B2 (en) | Purification method of cobalt chloride solution | |
JP2019081920A (en) | Method for leaching mixed sulfide containing nickel and cobalt | |
JP6634870B2 (en) | Deironing method of nickel chloride aqueous solution | |
JP6981206B2 (en) | Nickel sulfate aqueous solution dezincification system and its method | |
JP2005104809A (en) | Method for purifying nickel chloride aqueous solution | |
JP6221968B2 (en) | Purification method of cobalt chloride solution | |
JP6137035B2 (en) | Purification method of nickel chloride solution | |
JP2021008654A (en) | Nickel oxide ore exudation treatment method and wet smelting method including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170404 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170417 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6137054 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |