JP2016014164A - Method for purifying cobalt chloride solution - Google Patents

Method for purifying cobalt chloride solution Download PDF

Info

Publication number
JP2016014164A
JP2016014164A JP2014135506A JP2014135506A JP2016014164A JP 2016014164 A JP2016014164 A JP 2016014164A JP 2014135506 A JP2014135506 A JP 2014135506A JP 2014135506 A JP2014135506 A JP 2014135506A JP 2016014164 A JP2016014164 A JP 2016014164A
Authority
JP
Japan
Prior art keywords
cobalt
chloride solution
cobalt chloride
solution
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014135506A
Other languages
Japanese (ja)
Other versions
JP6221968B2 (en
Inventor
敬介 柴山
Keisuke Shibayama
敬介 柴山
服部 靖匡
Yasumasa Hattori
靖匡 服部
智暁 米山
Tomoaki Yoneyama
智暁 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014135506A priority Critical patent/JP6221968B2/en
Publication of JP2016014164A publication Critical patent/JP2016014164A/en
Application granted granted Critical
Publication of JP6221968B2 publication Critical patent/JP6221968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying a cobalt chloride solution, capable of sufficiently reducing calcium content.SOLUTION: In the purification method, a neutralizing agent added in an oxidation-neutralization step and a pH adjusting agent added in a copper removal step are non-calcium-based alkali slurries, a diluent for the neutralizing agent added in the oxidation-neutralization step and a diluent for the pH adjusting agent added in the copper removal step are pure water or soft water, and a diluent for a back extraction liquid supplied to a back extraction stage in a solvent extraction step is pure water or soft water. By addition of the neutralizing agent, the pH adjusting agent, and the back extraction liquid, contamination of the cobalt chloride solution with calcium can be prevented, and a high-purity cobalt chloride solution having sufficiently low calcium content can be obtained.

Description

本発明は、塩化コバルト溶液の浄液方法に関する。さらに詳しくは、塩化コバルト溶液から不純物を除去するための塩化コバルト溶液の浄液方法に関する。   The present invention relates to a method for purifying a cobalt chloride solution. More specifically, the present invention relates to a method for purifying a cobalt chloride solution for removing impurities from the cobalt chloride solution.

硫化物からニッケルやコバルトを回収する湿式製錬プロセスでは、原料であるニッケルマットやニッケル・コバルト混合硫化物(MS:ミックスサルファイド)を塩素浸出し、得られた浸出液から不純物を除去する浄液工程などを経て、電解工程で電気ニッケルや電気コバルトを回収する。   In the hydrometallurgical process for recovering nickel and cobalt from sulfides, the clarification process removes impurities from the resulting leachate by leaching the nickel matte and nickel-cobalt mixed sulfide (MS) as raw materials. After that, electrolytic nickel and electrolytic cobalt are recovered in the electrolysis process.

図1に示すように、浸出工程から得られた浸出液は、セメンテーション工程において銅が除去され、脱鉄工程において鉄やヒ素などの不純物が除去されてニッケル・コバルト混合液となり、コバルト溶媒抽出工程に送られる。コバルト溶媒抽出工程では、溶媒抽出によりニッケルとコバルトとを分離し、粗塩化ニッケル溶液(抽出残液)と粗塩化コバルト溶液(逆抽出後液)とを得る。粗塩化ニッケル溶液は、さらに不純物が除去され高純度となってニッケル電解工程に送られる。ニッケル電解工程では電解採取により電気ニッケルが製造される。一方、塩化コバルト溶液は、さらに不純物が除去され高純度となってコバルト電解工程に送られる。コバルト電解工程では電解採取により電気コバルトが製造される。   As shown in FIG. 1, in the leachate obtained from the leaching process, copper is removed in the cementation process, and impurities such as iron and arsenic are removed in the deironing process to become a nickel-cobalt mixed liquid, and the cobalt solvent extraction process Sent to. In the cobalt solvent extraction step, nickel and cobalt are separated by solvent extraction to obtain a crude nickel chloride solution (extraction residual liquid) and a crude cobalt chloride solution (liquid after back extraction). Impurities are further removed from the crude nickel chloride solution to obtain a high purity and sent to the nickel electrolysis process. In the nickel electrolysis process, electric nickel is produced by electrowinning. On the other hand, the cobalt chloride solution is further purified by removing impurities and sent to the cobalt electrolysis process. In the cobalt electrolysis process, electrolytic cobalt is produced by electrowinning.

コバルト溶媒抽出工程では、ニッケルとコバルトとを分離するとともに、大部分の不純物を除去することができる。例えば特許文献1には、溶媒抽出工程によりカルシウムをはじめとする不純物を除去できることが開示されている。   In the cobalt solvent extraction step, nickel and cobalt can be separated and most impurities can be removed. For example, Patent Document 1 discloses that impurities such as calcium can be removed by a solvent extraction step.

図3に示すように、粗塩化コバルト溶液の浄液工程には、酸化中和工程と脱銅工程とが含まれている。酸化中和工程では、酸化中和法により塩化コバルト溶液に残留した鉄およびマンガンを除去する。脱銅工程では、塩化コバルト溶液に硫化剤を添加することで残留した銅および鉛を硫化澱物として除去して、高純度塩化コバルト溶液を得る。   As shown in FIG. 3, the purification process of the crude cobalt chloride solution includes an oxidation neutralization process and a copper removal process. In the oxidation neutralization step, iron and manganese remaining in the cobalt chloride solution are removed by an oxidation neutralization method. In the copper removal step, the remaining copper and lead are removed as sulfide starch by adding a sulfiding agent to the cobalt chloride solution to obtain a high purity cobalt chloride solution.

ニッケル・コバルト混合液に含まれる不純物のうち、カルシウムはコバルト溶媒抽出工程で除去されるが、後工程である浄液工程ではカルシウムの除去が行われない。そのため、浄液工程でカルシウムが混入すると、得られた高純度塩化コバルト溶液にカルシウムが残存するという問題がある。   Of the impurities contained in the nickel / cobalt mixed solution, calcium is removed in the cobalt solvent extraction step, but calcium is not removed in the subsequent cleaning step. Therefore, when calcium is mixed in the liquid purification process, there is a problem that calcium remains in the obtained high purity cobalt chloride solution.

特開2004−285368号公報JP 2004-285368 A

本発明は上記事情に鑑み、カルシウム品位を十分に低減できる塩化コバルト溶液の浄液方法を提供することを目的とする。   An object of this invention is to provide the liquid purification method of the cobalt chloride solution which can fully reduce calcium quality in view of the said situation.

第1発明の塩化コバルト溶液の浄液方法は、不純物を含む塩化コバルト溶液の浄液方法であって、塩化コバルト溶液に含まれる不純物を酸化中和法により除去する酸化中和工程と、塩化コバルト溶液に硫化剤を添加して不純物を硫化澱物として除去する脱銅工程と、を備え、前記酸化中和工程に添加する中和剤、および前記脱銅工程に添加するpH調整剤が、非カルシウム系アルカリスラリーであることを特徴とする。
第2発明の塩化コバルト溶液の浄液方法は、第1発明において、前記酸化中和工程に添加する中和剤の希釈液、および前記脱銅工程に添加するpH調整剤の希釈液が、純水または軟水であることを特徴とする。
第3発明の塩化コバルト溶液の浄液方法は、第1発明において、前記酸化中和工程に添加する中和剤の希釈液、および前記脱銅工程に添加するpH調整剤の希釈液が、カルシウム濃度3mg/L以下であることを特徴とする。
第4発明の塩化コバルト溶液の浄液方法は、第1、第2または第3発明において、前記塩化コバルト溶液は、ニッケル・コバルト混合液に含まれるコバルトを溶媒抽出により分離する溶媒抽出工程から得られたものであり、前記溶媒抽出工程の逆抽出段に供給する逆抽出液の希釈液が、純水または軟水であることを特徴とする。
第5発明の塩化コバルト溶液の浄液方法は、第1、第2または第3発明において、前記塩化コバルト溶液は、ニッケル・コバルト混合液に含まれるコバルトを溶媒抽出により分離する溶媒抽出工程から得られたものであり、前記溶媒抽出工程の逆抽出段に供給する逆抽出液の希釈液が、カルシウム濃度3mg/L以下であることを特徴とする。
The cobalt chloride solution purification method of the first invention is a method for purifying a cobalt chloride solution containing impurities, an oxidation neutralization step for removing impurities contained in the cobalt chloride solution by an oxidation neutralization method, and cobalt chloride. A copper removal step for removing impurities as sulfide starch by adding a sulfurizing agent to the solution, and a neutralizing agent added to the oxidation neutralization step and a pH adjuster added to the copper removal step are non- It is a calcium-based alkali slurry.
The method for purifying a cobalt chloride solution according to a second aspect of the present invention is the method according to the first aspect, wherein the neutralizing agent dilution added to the oxidation neutralization step and the pH adjusting agent dilution added to the copper removal step are pure. It is characterized by being water or soft water.
The method for purifying a cobalt chloride solution according to a third aspect of the present invention is the first aspect of the invention, wherein the diluting solution for the neutralizing agent added to the oxidation neutralization step and the diluting solution for the pH adjusting agent added to the copper removal step are calcium The concentration is 3 mg / L or less.
According to a fourth aspect of the present invention, in the first, second or third aspect, the cobalt chloride solution is obtained from a solvent extraction step of separating cobalt contained in the nickel / cobalt mixture by solvent extraction. The diluted liquid of the back extract supplied to the back extraction stage of the solvent extraction step is pure water or soft water.
According to a fifth aspect of the present invention, in the first, second or third aspect, the cobalt chloride solution is obtained from a solvent extraction step in which cobalt contained in the nickel / cobalt mixture is separated by solvent extraction. The diluted solution of the back extract supplied to the back extraction stage of the solvent extraction step has a calcium concentration of 3 mg / L or less.

第1発明によれば、中和剤およびpH調整剤が非カルシウム系アルカリスラリーであるので、中和剤およびpH調整剤の添加により塩化コバルト溶液にカルシウムが混入することを防止でき、カルシウム品位が十分に低い高純度塩化コバルト溶液が得られる。
第2発明によれば、中和剤およびpH調整剤の希釈液がカルシウム濃度の低い純水または軟水であるので、中和剤およびpH調整剤の添加により塩化コバルト溶液にカルシウムが混入することを防止でき、カルシウム品位が十分に低い高純度塩化コバルト溶液が得られる。
第3発明によれば、中和剤およびpH調整剤の希釈液がカルシウム濃度3mg/L以下であるので、中和剤およびpH調整剤の添加により塩化コバルト溶液にカルシウムが混入することを防止でき、カルシウム品位が十分に低い高純度塩化コバルト溶液が得られる。
第4発明によれば、逆抽出液の希釈液がカルシウム濃度の低い純水または軟水であるので、逆抽出液の添加により塩化コバルト溶液にカルシウムが混入することを防止でき、カルシウム品位が十分に低い高純度塩化コバルト溶液が得られる。
第5発明によれば、逆抽出液の希釈液がカルシウム濃度3mg/L以下であるので、逆抽出液の添加により塩化コバルト溶液にカルシウムが混入することを防止でき、カルシウム品位が十分に低い高純度塩化コバルト溶液が得られる。
According to the first invention, since the neutralizing agent and the pH adjusting agent are non-calcium alkaline slurries, it is possible to prevent calcium from being mixed into the cobalt chloride solution by adding the neutralizing agent and the pH adjusting agent. A sufficiently low purity cobalt chloride solution is obtained.
According to the second invention, since the diluting solution of the neutralizing agent and the pH adjusting agent is pure water or soft water having a low calcium concentration, the addition of the neutralizing agent and the pH adjusting agent prevents calcium from being mixed into the cobalt chloride solution. A high purity cobalt chloride solution that can be prevented and has a sufficiently low calcium quality is obtained.
According to the third invention, since the diluting solution of the neutralizing agent and the pH adjusting agent has a calcium concentration of 3 mg / L or less, the addition of the neutralizing agent and the pH adjusting agent can prevent calcium from being mixed into the cobalt chloride solution. A high-purity cobalt chloride solution with sufficiently low calcium quality can be obtained.
According to the fourth invention, since the diluted solution of the back extract is pure water or soft water having a low calcium concentration, the addition of the back extract can prevent calcium from being mixed into the cobalt chloride solution, and the calcium quality is sufficiently high. A low purity cobalt chloride solution is obtained.
According to the fifth invention, since the diluted solution of the back extract has a calcium concentration of 3 mg / L or less, the addition of the back extract can prevent calcium from being mixed into the cobalt chloride solution, and the calcium quality is sufficiently low. A pure cobalt chloride solution is obtained.

湿式製錬プロセスの全体工程図である。It is a whole process figure of a hydrometallurgical process. コバルト溶媒抽出工程の詳細工程図である。It is a detailed process drawing of a cobalt solvent extraction process. 浄液工程の詳細工程図である。It is a detailed process drawing of a liquid purification process.

つぎに、本発明の実施形態を図面に基づき説明する。
本発明の一実施形態に係る塩化コバルト溶液の浄液方法は、以下に説明するニッケルおよびコバルトの湿式製錬プロセスに適用される。なお、本発明に係る塩化コバルト溶液の浄液方法は、塩化コバルト溶液の由来を問わず、不純物を含む塩化コバルト溶液を浄液するプロセスであれば、いかなるプロセスにも適用される。
Next, an embodiment of the present invention will be described with reference to the drawings.
The cobalt chloride solution purification method according to an embodiment of the present invention is applied to a nickel and cobalt hydrometallurgical process described below. The method for purifying a cobalt chloride solution according to the present invention is applicable to any process as long as it is a process for purifying a cobalt chloride solution containing impurities regardless of the origin of the cobalt chloride solution.

図1に示すように、ニッケルおよびコバルトの湿式製錬プロセスでは、まず、原料であるニッケル・コバルト混合硫化物(MS:ミックスサルファイド)およびニッケルマットを塩素浸出して浸出液を得る。浸出液は、主成分が塩化ニッケル溶液であり、コバルトのほか、鉄、銅、鉛、マンガン、カルシウム等の不純物が含まれる。   As shown in FIG. 1, in the nickel and cobalt hydrometallurgical process, first, the raw material nickel / cobalt mixed sulfide (MS: mixed sulfide) and nickel matte are leached with chlorine to obtain a leachate. The main component of the leachate is a nickel chloride solution, which contains impurities such as iron, copper, lead, manganese, and calcium in addition to cobalt.

浸出工程から得られた浸出液は、セメンテーション工程および脱鉄工程を経てニッケル・コバルト混合液となり、コバルト溶媒抽出工程に送られる。コバルト溶媒抽出工程では、ニッケル・コバルト混合液に含まれるコバルトを溶媒抽出により分離し、塩化ニッケル溶液と塩化コバルト溶液とを得る。なお、説明の便宜のため、コバルト溶媒抽出工程から得られた塩化ニッケル溶液および塩化コバルト溶液を、それぞれ粗塩化ニッケル溶液および粗塩化コバルト溶液と称する。   The leachate obtained from the leaching step becomes a nickel / cobalt mixed solution through the cementation step and the iron removal step, and is sent to the cobalt solvent extraction step. In the cobalt solvent extraction step, cobalt contained in the nickel / cobalt mixture is separated by solvent extraction to obtain a nickel chloride solution and a cobalt chloride solution. For convenience of explanation, the nickel chloride solution and the cobalt chloride solution obtained from the cobalt solvent extraction step are referred to as a crude nickel chloride solution and a crude cobalt chloride solution, respectively.

粗塩化コバルト溶液は、浄液工程で不純物が除去されて高純度塩化コバルト溶液となってコバルト電解工程に送られる。コバルト電解工程では電解採取により電気コバルトが製造される。   In the crude cobalt chloride solution, impurities are removed in the liquid purification step to obtain a high purity cobalt chloride solution, which is sent to the cobalt electrolysis step. In the cobalt electrolysis process, electrolytic cobalt is produced by electrowinning.

図3に示すように、粗塩化コバルト溶液の浄液工程は、第1工程の酸化中和工程、第2工程の脱銅工程からなる。これらの工程を経ることで、粗塩化コバルト溶液に含まれる鉄、銅、鉛、マンガン等の不純物が除去され、高純度塩化コバルト溶液が得られる。   As shown in FIG. 3, the crude cobalt chloride solution purification process includes a first oxidation neutralization process and a second copper removal process. By passing through these steps, impurities such as iron, copper, lead, and manganese contained in the crude cobalt chloride solution are removed, and a high purity cobalt chloride solution is obtained.

以下、コバルト溶媒抽出工程と、浄液工程を構成する酸化中和工程および脱銅工程の詳細を説明する。   Hereinafter, details of the cobalt solvent extraction step and the oxidation neutralization step and the copper removal step constituting the liquid purification step will be described.

(コバルト溶媒抽出工程)
コバルト溶媒抽出工程では、溶媒抽出により、ニッケルとコバルトとを分離するとともに、大部分の不純物を除去する。
(Cobalt solvent extraction process)
In the cobalt solvent extraction step, nickel and cobalt are separated by solvent extraction and most impurities are removed.

図2に、コバルト溶媒抽出工程の詳細を示す。なお、図2において破線は有機溶媒の流れを意味する。コバルト溶媒抽出工程には抽出始液としてニッケル・コバルト混合液が供給される。抽出始液は、まず抽出段に供給され溶媒抽出が行われる。抽出段では有機相にコバルトおよび鉄を抽出し、水相にニッケル、マンガンおよびカルシウムを残存させる。ニッケル、マンガンおよびカルシウムを含む水相は抽出残液として排出される。この抽出残液は、粗塩化ニッケル溶液として、浄液工程を経てニッケル電解工程に送られる。   FIG. 2 shows details of the cobalt solvent extraction step. In addition, the broken line in FIG. 2 means the flow of the organic solvent. In the cobalt solvent extraction step, a nickel / cobalt mixed solution is supplied as an extraction starting solution. The extraction starting solution is first supplied to the extraction stage and solvent extraction is performed. In the extraction stage, cobalt and iron are extracted in the organic phase, and nickel, manganese and calcium are left in the aqueous phase. The aqueous phase containing nickel, manganese and calcium is discharged as an extraction residue. This extraction residual liquid is sent as a crude nickel chloride solution to a nickel electrolysis process through a liquid purification process.

一方、抽出段から得られた、コバルトおよび鉄を含む有機相は洗浄段で洗浄された後、逆抽出段に送られる。逆抽出段では、有機溶媒に逆抽出液を混合して、有機溶媒中のコバルトを水相側に逆抽出し、有機相に鉄を残存させる。逆抽出段の水相は逆抽出後液として排出される。この逆抽出後液は、粗塩化コバルト溶液として、浄液工程に送られる。   On the other hand, the organic phase containing cobalt and iron obtained from the extraction stage is washed in the washing stage and then sent to the back extraction stage. In the back extraction stage, the back extract is mixed with the organic solvent, cobalt in the organic solvent is back extracted to the aqueous phase side, and iron remains in the organic phase. The aqueous phase in the back extraction stage is discharged as a solution after back extraction. This back-extracted solution is sent to the liquid purification process as a crude cobalt chloride solution.

コバルト溶媒抽出工程に用いられる有機溶媒は特に限定されないが、有機抽出剤として、TNOA(Tri-n-octylamine)、TIOA(Tri-i-octylamine)等に代表されるアミン系抽出剤が用いられる。   The organic solvent used in the cobalt solvent extraction step is not particularly limited, but amine extractants represented by TNOA (Tri-n-octylamine), TIOA (Tri-i-octylamine) and the like are used as the organic extractant.

逆抽出段に供給する逆抽出液としては、希塩酸等の弱酸性水溶液が用いられる。本実施形態では、逆抽出液の希釈液、例えば塩酸の濃度を調整するために混合される希釈液が、純水または軟水であるところに特徴を有する。また、逆抽出液の希釈液をカルシウム濃度3mg/L以下、好ましくは1mg/L以下の水としてもよい。   A weakly acidic aqueous solution such as dilute hydrochloric acid is used as the back extraction liquid supplied to the back extraction stage. The present embodiment is characterized in that the diluted liquid of the back extract, for example, the diluted liquid mixed for adjusting the concentration of hydrochloric acid is pure water or soft water. The diluted solution of the back extract may be water having a calcium concentration of 3 mg / L or less, preferably 1 mg / L or less.

ここで、純水とは、不純物をほとんど含まない水を意味する。また、軟水とは、硬度120以下の水である。硬度は、カルシウム濃度(mg/L)×2.5+マグネシウム濃度(mg/L)×4.1で近似される。   Here, pure water means water containing almost no impurities. Soft water is water having a hardness of 120 or less. The hardness is approximated by calcium concentration (mg / L) × 2.5 + magnesium concentration (mg / L) × 4.1.

(浄液工程:酸化中和工程)
図3に示すように、酸化中和工程では、コバルト溶媒抽出工程で得られた逆抽出後液(塩化コバルト溶液)に残存する不純物、主に鉄およびマンガンを酸化中和法により除去する。
(Purification process: oxidation neutralization process)
As shown in FIG. 3, in the oxidation neutralization step, impurities remaining in the post-back extraction solution (cobalt chloride solution) obtained in the cobalt solvent extraction step, mainly iron and manganese, are removed by an oxidation neutralization method.

酸化中和工程では、塩化コバルト溶液に酸化剤を添加しつつ、中和剤を添加することで、塩化コバルト溶液に残存する鉄およびマンガンを中和澱物として除去する。なお、塩化コバルト溶液のpHを1.0以上、好ましくはpH2.3〜2.6に調整し、かつ、酸化還元電位(Ag/AgCl電極基準)を1050mV以上に調整することが好ましい。   In the oxidation neutralization step, the iron and manganese remaining in the cobalt chloride solution are removed as neutralized starch by adding the neutralizing agent while adding the oxidizing agent to the cobalt chloride solution. It is preferable to adjust the pH of the cobalt chloride solution to 1.0 or more, preferably pH 2.3 to 2.6, and to adjust the oxidation-reduction potential (Ag / AgCl electrode standard) to 1050 mV or more.

中和澱物を含む塩化コバルト溶液を固液分離することで、中和澱物が除去された塩化コバルト溶液(反応後液)を得ることができる。   By separating the cobalt chloride solution containing the neutralized starch by solid-liquid separation, a cobalt chloride solution from which the neutralized starch has been removed (post-reaction solution) can be obtained.

酸化中和工程に添加する酸化剤としては、特に限定されないが、例えば、塩素、酸素、オゾン等が用いられる。本実施形態では、中和剤として、苛性ソーダ、ソーダ灰、炭酸コバルト等の非カルシウム系アルカリスラリーを用いるところに特徴を有する。また、中和剤の希釈液が、純水または軟水であるところに特徴を有する。中和剤の希釈液をカルシウム濃度3mg/L以下、好ましくは1mg/L以下の水としてもよい。   Although it does not specifically limit as an oxidizing agent added to an oxidation neutralization process, For example, chlorine, oxygen, ozone etc. are used. This embodiment is characterized in that a non-calcium alkaline slurry such as caustic soda, soda ash, cobalt carbonate or the like is used as a neutralizing agent. Further, the neutralizing agent is characterized in that the diluted solution is pure water or soft water. The diluting solution of the neutralizing agent may be water having a calcium concentration of 3 mg / L or less, preferably 1 mg / L or less.

(浄液工程:脱銅工程)
脱銅工程では、酸化中和工程で得られた反応後液(塩化コバルト溶液)に硫化剤を添加して不純物、主に銅および鉛を硫化澱物として除去する。
(Purification process: copper removal process)
In the copper removal step, a sulfurizing agent is added to the post-reaction solution (cobalt chloride solution) obtained in the oxidation neutralization step to remove impurities, mainly copper and lead, as sulfide starch.

脱銅工程では、塩化コバルト溶液に、硫化剤を添加して、不純物である銅および鉛を硫化澱物として析出させる。また、硫化剤の添加により処理液のpHが低下するため、これを防ぐためにpH調整剤を添加して、処理液のpHを調整する。なお、コバルトの共沈量を低減するためには、塩化コバルト溶液のpHを1.5以下に調整することが好ましい。   In the copper removal step, a sulfurizing agent is added to the cobalt chloride solution to precipitate copper and lead as impurities as sulfide starch. In addition, since the pH of the treatment liquid is lowered by the addition of the sulfurizing agent, in order to prevent this, a pH adjuster is added to adjust the pH of the treatment liquid. In order to reduce the amount of cobalt coprecipitation, the pH of the cobalt chloride solution is preferably adjusted to 1.5 or lower.

硫化澱物を含む塩化コバルト溶液を固液分離することで、硫化澱物が除去された高純度塩化コバルト溶液を得ることができる。   A high-purity cobalt chloride solution from which sulfide starch is removed can be obtained by solid-liquid separation of the cobalt chloride solution containing sulfide starch.

脱銅工程に添加する硫化剤としては、特に限定されないが、例えば、硫化水素、硫化ナトリウム、水硫化ナトリウム等の水溶性の硫化物が用いられる。これらの中で、塩化コバルト溶液への他の金属の混入を防止できる硫化水素が好ましい。   Although it does not specifically limit as a sulfurizing agent added to a copper removal process, For example, water-soluble sulfides, such as hydrogen sulfide, sodium sulfide, sodium hydrosulfide, are used. Among these, hydrogen sulfide is preferable because it can prevent mixing of other metals into the cobalt chloride solution.

本実施形態では、pH調整剤として、苛性ソーダ、ソーダ灰、炭酸コバルト等の非カルシウム系アルカリスラリーを用いるところに特徴を有する。また、pH調整剤の希釈液が、純水または軟水であるところに特徴を有する。pH調整剤の希釈液をカルシウム濃度3mg/L以下、好ましくは1mg/L以下の水としてもよい。   This embodiment is characterized in that a non-calcium alkaline slurry such as caustic soda, soda ash, cobalt carbonate or the like is used as a pH adjuster. Further, the present invention is characterized in that the diluted solution of the pH adjusting agent is pure water or soft water. The diluted solution of the pH adjuster may be water having a calcium concentration of 3 mg / L or less, preferably 1 mg / L or less.

以上のように、(1)コバルト溶媒抽出工程の逆抽出段に供給する逆抽出液の希釈剤がカルシウム濃度の低い純水もしくは軟水、またはカルシウム濃度3mg/L以下の水であるので、逆抽出液の添加により塩化コバルト溶液にカルシウムが混入することを防止できる。   As described above, (1) Since the diluent of the back extract supplied to the back extraction stage of the cobalt solvent extraction process is pure water or soft water having a low calcium concentration, or water having a calcium concentration of 3 mg / L or less, back extraction is performed. By adding the liquid, it is possible to prevent calcium from being mixed into the cobalt chloride solution.

なお、逆抽出液としての希塩酸は塩酸を希釈して作成する。従来はこの希釈液として純水や軟水よりもカルシウム濃度が高い工業用水や、湿式製錬プロセス内の貧液が使用されていた。また、コバルト溶媒抽出工程では、抽出段でカルシウムが抽出残液に含まれてコバルトから分離されるが、逆抽出段ではカルシウムを除去することができない。そのため、逆抽出液に由来するカルシウムが逆抽出後液(粗塩化コバルト溶液)に含まれていた。これに対して本実施形態のように、希釈液のカルシウム濃度を低くすることで、得られる逆抽出後液、すなわち粗塩化コバルト溶液のカルシウム濃度を低減することができる。   Note that dilute hydrochloric acid as a back extract is prepared by diluting hydrochloric acid. Conventionally, industrial water having a higher calcium concentration than pure water or soft water or a poor liquid in a hydrometallurgical process has been used as the diluting liquid. In the cobalt solvent extraction step, calcium is contained in the extraction residual liquid and separated from cobalt in the extraction stage, but calcium cannot be removed in the back extraction stage. Therefore, calcium derived from the back extract was contained in the back-extracted solution (crude cobalt chloride solution). On the other hand, as in this embodiment, the calcium concentration of the diluted solution can be reduced by reducing the calcium concentration of the diluted solution, that is, the calcium concentration of the crude cobalt chloride solution.

また、(2)酸化中和工程に添加する中和剤が非カルシウム系アルカリスラリーであり、しかも、中和剤の希釈液がカルシウム濃度の低い純水もしくは軟水、またはカルシウム濃度3mg/L以下の水であるので、中和剤の添加により塩化コバルト溶液にカルシウムが混入することを防止できる。   (2) The neutralizing agent added to the oxidation neutralization step is a non-calcium alkaline slurry, and the neutralizing agent dilution is pure water or soft water having a low calcium concentration, or a calcium concentration of 3 mg / L or less. Since it is water, it is possible to prevent calcium from being mixed into the cobalt chloride solution by adding a neutralizing agent.

さらに、(3)脱銅工程に添加するpH調整剤が非カルシウム系アルカリスラリーであり、しかも、pH調整剤の希釈液がカルシウム濃度の低い純水もしくは軟水、またはカルシウム濃度3mg/L以下の水であるので、pH調整剤の添加により塩化コバルト溶液にカルシウムが混入することを防止できる。   Further, (3) the pH adjuster added to the copper removal step is a non-calcium alkaline slurry, and the diluted solution of the pH adjuster is pure water or soft water having a low calcium concentration, or water having a calcium concentration of 3 mg / L or less. Therefore, it is possible to prevent calcium from being mixed into the cobalt chloride solution by adding a pH adjuster.

上記(1)、(2)、(3)より、浄液工程において、塩化コバルト溶液にカルシウムが混入しないので、カルシウム品位が十分に低い高純度塩化コバルト溶液が得られる。   From the above (1), (2), and (3), since calcium is not mixed into the cobalt chloride solution in the liquid purification step, a high-purity cobalt chloride solution having a sufficiently low calcium quality can be obtained.

なお、上記実施形態では、浄液工程を構成する酸化中和工程および脱銅工程をこの順に行う形態としたが、これら工程を逆の順序で行う形態としてもよい。   In addition, in the said embodiment, although it was set as the form which performs the oxidation neutralization process and copper removal process which comprise a liquid purification process in this order, it is good also as a form which performs these processes in reverse order.

つぎに、実施例を説明する。
(共通の条件)
ニッケルおよびコバルトの湿式製錬プロセスの操業を行った。ニッケル・コバルト混合液は、ニッケル濃度180g/L、コバルト濃度7.5g/L、カルシウム濃度0.6g/L、銅濃度0.03g/L、鉄濃度0.02g/L、マンガン濃度0.005g/Lであった。
Next, examples will be described.
(Common conditions)
The nickel and cobalt hydrometallurgical process was operated. The nickel / cobalt mixture had a nickel concentration of 180 g / L, a cobalt concentration of 7.5 g / L, a calcium concentration of 0.6 g / L, a copper concentration of 0.03 g / L, an iron concentration of 0.02 g / L, and a manganese concentration of 0.005 g / L. .

コバルト溶媒抽出工程では、始液流量を100L/分とした。また、有機溶媒の有機抽出剤としてTNOAを用いた。   In the cobalt solvent extraction step, the starting liquid flow rate was 100 L / min. Moreover, TNOA was used as an organic extractant for the organic solvent.

酸化中和工程では、酸化剤として塩素ガス、中和剤としてソーダ灰を用いた。塩化コバルト溶液のpHを2.5、酸化還元電位(Ag/AgCl電極基準)を1050mV以上に調整した。   In the oxidation neutralization step, chlorine gas was used as the oxidizing agent, and soda ash was used as the neutralizing agent. The pH of the cobalt chloride solution was adjusted to 2.5, and the oxidation-reduction potential (Ag / AgCl electrode standard) was adjusted to 1050 mV or more.

脱銅工程では、硫化剤として硫化水素、pH調整剤として炭酸ナトリウム(ソーダ灰)を用いた。脱銅工程に供給される塩化コバルト溶液は、コバルト濃度60〜70g/L、銅濃度60〜110mg/L、鉛濃度1〜10mg/Lであった。この塩化コバルト溶液を流量90〜120L/分で供給した。   In the copper removal step, hydrogen sulfide was used as the sulfiding agent, and sodium carbonate (soda ash) was used as the pH adjusting agent. The cobalt chloride solution supplied to the copper removal step had a cobalt concentration of 60 to 70 g / L, a copper concentration of 60 to 110 mg / L, and a lead concentration of 1 to 10 mg / L. The cobalt chloride solution was supplied at a flow rate of 90 to 120 L / min.

(実施例1)
コバルト溶媒抽出工程の逆抽出段に供給する逆抽出液の希釈液、酸化中和工程に添加する中和剤の希釈液、および脱銅工程に添加するpH調整剤の希釈液を、軟水(カルシウム濃度1mg/L以下)とした。
(Example 1)
The diluted solution of the back extract to be supplied to the back extraction stage of the cobalt solvent extraction step, the diluted solution of the neutralizing agent to be added to the oxidation neutralization step, and the diluted solution of the pH adjuster to be added to the copper removal step are mixed with soft water (calcium The concentration was 1 mg / L or less).

その結果、得られた高純度塩化コバルト溶液のカルシウム濃度は0.002g/Lであった。実操業の要請、例えば後工程であるコバルト電解工程における不純物低減の要請から、高純度コバルト溶液のカルシウム濃度は0.005g/L以下が求められている。実施例1で得られた高純度コバルト溶液は、この要求を満たすものであった。   As a result, the calcium concentration of the obtained high purity cobalt chloride solution was 0.002 g / L. From the request of actual operation, for example, the request to reduce impurities in the cobalt electrolysis process, which is a subsequent process, the calcium concentration of the high purity cobalt solution is required to be 0.005 g / L or less. The high purity cobalt solution obtained in Example 1 fulfilled this requirement.

(比較例1)
コバルト溶媒抽出工程の逆抽出段に供給する逆抽出液の希釈液、酸化中和工程に添加する中和剤の希釈液、および脱銅工程に添加するpH調整剤の希釈液を、工業用水(カルシウム濃度0.012g/L)とした。
(Comparative Example 1)
The dilution of the back extract to be supplied to the back extraction stage of the cobalt solvent extraction process, the dilution of the neutralizer to be added to the oxidation neutralization process, and the dilution of the pH adjuster to be added to the copper removal process are carried out with industrial water ( The calcium concentration was 0.012 g / L).

その結果、得られた高純度塩化コバルト溶液のカルシウム濃度は0.04g/Lであった。実施例1に比べてカルシウム濃度が高く、実操業の要請を満たさないものであった。   As a result, the calcium concentration of the obtained high purity cobalt chloride solution was 0.04 g / L. Compared to Example 1, the calcium concentration was high and did not satisfy the demand for actual operation.

以上のことから、実施例1によれば、カルシウム品位が十分に低い高純度塩化コバルト溶液が得られることが確認された。   From the above, according to Example 1, it was confirmed that a high-purity cobalt chloride solution having a sufficiently low calcium quality was obtained.

Claims (5)

不純物を含む塩化コバルト溶液の浄液方法であって、
塩化コバルト溶液に含まれる不純物を酸化中和法により除去する酸化中和工程と、
塩化コバルト溶液に硫化剤を添加して不純物を硫化澱物として除去する脱銅工程と、を備え、
前記酸化中和工程に添加する中和剤、および前記脱銅工程に添加するpH調整剤が、非カルシウム系アルカリスラリーである
ことを特徴とする塩化コバルト溶液の浄液方法。
A method for cleaning a cobalt chloride solution containing impurities,
An oxidation neutralization step of removing impurities contained in the cobalt chloride solution by an oxidation neutralization method;
A copper removal step of adding a sulfurizing agent to the cobalt chloride solution to remove impurities as sulfide starch,
The method for purifying a cobalt chloride solution, wherein the neutralizing agent added to the oxidation neutralization step and the pH adjuster added to the copper removal step are non-calcium alkaline slurries.
前記酸化中和工程に添加する中和剤の希釈液、および前記脱銅工程に添加するpH調整剤の希釈液が、純水または軟水である
ことを特徴とする請求項1記載の塩化コバルト溶液の浄液方法。
2. The cobalt chloride solution according to claim 1, wherein the diluting solution of the neutralizing agent added to the oxidation neutralizing step and the diluting solution of the pH adjusting agent added to the copper removal step are pure water or soft water. Liquid purification method.
前記酸化中和工程に添加する中和剤の希釈液、および前記脱銅工程に添加するpH調整剤の希釈液が、カルシウム濃度3mg/L以下である
ことを特徴とする請求項1記載の塩化コバルト溶液の浄液方法。
2. The chloride according to claim 1, wherein the diluting solution of the neutralizing agent added to the oxidation neutralizing step and the diluting solution of the pH adjusting agent added to the copper removal step have a calcium concentration of 3 mg / L or less. A method for purifying a cobalt solution.
前記塩化コバルト溶液は、ニッケル・コバルト混合液に含まれるコバルトを溶媒抽出により分離する溶媒抽出工程から得られたものであり、
前記溶媒抽出工程の逆抽出段に供給する逆抽出液の希釈液が、純水または軟水である
ことを特徴とする請求項1、2または3記載の塩化コバルト溶液の浄液方法。
The cobalt chloride solution is obtained from a solvent extraction step of separating cobalt contained in the nickel / cobalt mixed solution by solvent extraction,
4. The method for purifying a cobalt chloride solution according to claim 1, wherein the diluted solution of the back extract supplied to the back extraction stage of the solvent extraction step is pure water or soft water.
前記塩化コバルト溶液は、ニッケル・コバルト混合液に含まれるコバルトを溶媒抽出により分離する溶媒抽出工程から得られたものであり、
前記溶媒抽出工程の逆抽出段に供給する逆抽出液の希釈液が、カルシウム濃度3mg/L以下である
ことを特徴とする請求項1、2または3記載の塩化コバルト溶液の浄液方法。
The cobalt chloride solution is obtained from a solvent extraction step of separating cobalt contained in the nickel / cobalt mixed solution by solvent extraction,
The method for purifying a cobalt chloride solution according to claim 1, 2 or 3, wherein the diluted solution of the back extract supplied to the back extraction stage of the solvent extraction step has a calcium concentration of 3 mg / L or less.
JP2014135506A 2014-07-01 2014-07-01 Purification method of cobalt chloride solution Expired - Fee Related JP6221968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014135506A JP6221968B2 (en) 2014-07-01 2014-07-01 Purification method of cobalt chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135506A JP6221968B2 (en) 2014-07-01 2014-07-01 Purification method of cobalt chloride solution

Publications (2)

Publication Number Publication Date
JP2016014164A true JP2016014164A (en) 2016-01-28
JP6221968B2 JP6221968B2 (en) 2017-11-01

Family

ID=55230588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135506A Expired - Fee Related JP6221968B2 (en) 2014-07-01 2014-07-01 Purification method of cobalt chloride solution

Country Status (1)

Country Link
JP (1) JP6221968B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100020948A1 (en) 2021-08-03 2023-02-03 Ferrari Spa APPARATUS AND METHOD FOR ESTIMING A GRIP FACTOR OF A WHEEL OF A ROAD VEHICLE AND RELATED ROAD VEHICLE

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004990A (en) * 1974-08-06 1977-01-25 Sumitomo Metal Mining Co., Limited Process for separating and recovering nickel and cobalt
JPS5477297A (en) * 1977-12-01 1979-06-20 Toray Ind Inc Manufacture of cobalt hydroxide and/or nickel hydroxide
JPH10183266A (en) * 1996-12-19 1998-07-14 Sumitomo Metal Mining Co Ltd Separation of copper and calcium from cobalt aqueous solution
JPH11269568A (en) * 1998-03-19 1999-10-05 Sumitomo Metal Mining Co Ltd Separation of alkaline earth metal from cobalt aqueous solution
JP2001020021A (en) * 1999-07-02 2001-01-23 Kojundo Chem Lab Co Ltd Manufacture of high purity cobalt
JP2004123469A (en) * 2002-10-03 2004-04-22 Sumitomo Metal Mining Co Ltd Method for manufacturing cobalt solution having low manganese concentration
JP2004285368A (en) * 2003-03-19 2004-10-14 Sumitomo Metal Mining Co Ltd Method for refining cobalt aqueous solution
JP2006027913A (en) * 2004-07-12 2006-02-02 Kazumitsu Kato High purity metal hydroxide, its refining method and production method, hydroxide and oxide obtained by their methods, and synthetic resin composition and synthetic resin molded article
JP2008063164A (en) * 2006-09-05 2008-03-21 Tanaka Chemical Corp Method for producing high-purity cobalt compound
JP2008274382A (en) * 2007-05-07 2008-11-13 Sumitomo Metal Mining Co Ltd Method for separating lead from aqueous cobalt chloride solution
JP2010001564A (en) * 2008-05-22 2010-01-07 Sumitomo Metal Mining Co Ltd Method for recovering cobalt from aqueous chloride solution
JP2015227489A (en) * 2014-06-02 2015-12-17 住友金属鉱山株式会社 Solution purification method of cobalt chloride solution

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004990A (en) * 1974-08-06 1977-01-25 Sumitomo Metal Mining Co., Limited Process for separating and recovering nickel and cobalt
JPS5477297A (en) * 1977-12-01 1979-06-20 Toray Ind Inc Manufacture of cobalt hydroxide and/or nickel hydroxide
JPH10183266A (en) * 1996-12-19 1998-07-14 Sumitomo Metal Mining Co Ltd Separation of copper and calcium from cobalt aqueous solution
JPH11269568A (en) * 1998-03-19 1999-10-05 Sumitomo Metal Mining Co Ltd Separation of alkaline earth metal from cobalt aqueous solution
JP2001020021A (en) * 1999-07-02 2001-01-23 Kojundo Chem Lab Co Ltd Manufacture of high purity cobalt
JP2004123469A (en) * 2002-10-03 2004-04-22 Sumitomo Metal Mining Co Ltd Method for manufacturing cobalt solution having low manganese concentration
JP2004285368A (en) * 2003-03-19 2004-10-14 Sumitomo Metal Mining Co Ltd Method for refining cobalt aqueous solution
JP2006027913A (en) * 2004-07-12 2006-02-02 Kazumitsu Kato High purity metal hydroxide, its refining method and production method, hydroxide and oxide obtained by their methods, and synthetic resin composition and synthetic resin molded article
JP2008063164A (en) * 2006-09-05 2008-03-21 Tanaka Chemical Corp Method for producing high-purity cobalt compound
JP2008274382A (en) * 2007-05-07 2008-11-13 Sumitomo Metal Mining Co Ltd Method for separating lead from aqueous cobalt chloride solution
JP2010001564A (en) * 2008-05-22 2010-01-07 Sumitomo Metal Mining Co Ltd Method for recovering cobalt from aqueous chloride solution
JP2015227489A (en) * 2014-06-02 2015-12-17 住友金属鉱山株式会社 Solution purification method of cobalt chloride solution

Also Published As

Publication number Publication date
JP6221968B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6304530B2 (en) Tellurium separation and recovery method
JP4216307B2 (en) Process for electrolytically precipitated copper
JP4710034B2 (en) Arsenic-containing material treatment method
WO2015146329A1 (en) Copper removal method for aqueous nickel chloride solution
JP2016141839A (en) Method for recovering scandium
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP2018062691A (en) Method for collecting tungsten concentrate from cobalt-tungsten raw material
EA020759B1 (en) Method of processing nickel bearing raw material
JP7016463B2 (en) How to collect tellurium
JP6090394B2 (en) Method for producing scandium oxide
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP5843069B2 (en) Tellurium separation and recovery method
JP5200588B2 (en) Method for producing high purity silver
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
JP6221968B2 (en) Purification method of cobalt chloride solution
JP6233177B2 (en) Method for producing rhenium sulfide
JP2010264331A (en) Separation method of arsenic
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP7360091B2 (en) Solvent extraction method and method for producing cobalt aqueous solution
JP2015137200A (en) Method for producing low chlorine nickel/cobalt sulphate solution
JP2008088470A (en) Method for recovering indium from indium-containing material
JP5091493B2 (en) Method for producing antimony oxide and method for producing metal antimony
JP2008013388A (en) Method for purifying nickel chloride aqueous solution
JP6137058B2 (en) Purification method of cobalt chloride solution
JP2021008385A (en) Method for producing zinc carbonate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6221968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees