JP2015218548A - Fitting structure of elasto-plastic damper to existing structural member - Google Patents

Fitting structure of elasto-plastic damper to existing structural member Download PDF

Info

Publication number
JP2015218548A
JP2015218548A JP2014104959A JP2014104959A JP2015218548A JP 2015218548 A JP2015218548 A JP 2015218548A JP 2014104959 A JP2014104959 A JP 2014104959A JP 2014104959 A JP2014104959 A JP 2014104959A JP 2015218548 A JP2015218548 A JP 2015218548A
Authority
JP
Japan
Prior art keywords
structural member
elastic
existing structural
axial direction
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014104959A
Other languages
Japanese (ja)
Other versions
JP6208623B2 (en
Inventor
衛 小田
Mamoru Oda
衛 小田
泰嗣 黒川
Yasutsugu Kurokawa
泰嗣 黒川
正哉 瀧
Masaya Taki
正哉 瀧
勝大 伊佐治
Katsuhiro Isaji
勝大 伊佐治
芳隆 鈴木
Yoshitaka Suzuki
芳隆 鈴木
雅史 阿部
Masafumi Abe
雅史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2014104959A priority Critical patent/JP6208623B2/en
Publication of JP2015218548A publication Critical patent/JP2015218548A/en
Application granted granted Critical
Publication of JP6208623B2 publication Critical patent/JP6208623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To add an elasto-plastic damper to an existing structural member in a state the plastic deformation capacity of the existing structural member functions, which is shear-deformed when the existing structural member receives shear force in an in-plane direction.SOLUTION: Plural reinforcement members 4, 4 are disposed at a certain distance from each other in an axial direction along an existing structural member 3 in a direction perpendicular to a plane on which shear force acts to shear-deform the existing structural member 3. The reinforcement members 4, 4 positioned at both sides in the axial direction are joined to structural members 1 respectively. An elasto-plastic damper 5 having a plastic deformation part 51, which can shear-yield when shear force is applied to an in-plane direction, is disposed between the reinforcement members 4, 4 which are disposed at a certain distance in the axial direction. A part segment 31 of the existing structural member 3 is removed excluding both ends in the axial direction while leaving a part in an H-direction.

Description

本発明は既存の構造部材に、面内方向のせん断力を受けてせん断変形する弾塑性ダンパーを付加し、弾塑性ダンパーに振動エネルギを吸収させる既存構造部材への弾塑性ダンパーの取付構造に関するものである。   The present invention relates to a structure for attaching an elastic-plastic damper to an existing structural member by adding an elastic-plastic damper that undergoes shear deformation by receiving an in-plane shearing force to an existing structural member, and absorbing vibration energy by the elastic-plastic damper. It is.

既存の構造部材に振動エネルギの吸収能力を持たせるために、せん断変形型の弾塑性ダンパーを構造部材に付加する場合、構造部材が降伏する以前に弾塑性ダンパーを優先的に降伏させるために、構造部材は軸方向の一部において分断され、その分断された構造部材間に跨って弾塑性ダンパーが設置されることになる(特許文献1、2参照)。   In order to give an existing structural member the ability to absorb vibration energy, when a shear deformation type elastic-plastic damper is added to the structural member, in order to preferentially yield the elastic-plastic damper before the structural member yields, The structural member is divided at a part in the axial direction, and an elastoplastic damper is installed between the divided structural members (see Patent Documents 1 and 2).

この場合、既存構造部材としての例えば梁は軸方向に2本の構成部材に分離し、各構成部材はそれが接続する主構造部材としての柱から片持ち梁式に張り出しながら、弾塑性ダンパーを介して連結された状態になるため、見かけ上、並列する柱(主構造部材)と構成部材は柱・梁のフレームを構成する。   In this case, for example, the beam as an existing structural member is separated into two structural members in the axial direction, and each structural member projects in a cantilever manner from a column as a main structural member to which it is connected, and an elastic-plastic damper is attached. As a result, the columns (main structural members) and the constituent members arranged in parallel form a pillar / beam frame.

このフレームの構面内に水平力が作用し、並列する柱間に相対変形が生じたときには、各構成部材はそれぞれの柱に垂直に接続した状態を保とうとする一方、両構成部材を互いに連結している弾塑性ダンパーが両構成部材を互いに引き寄せようとするため、各構成部材には成方向に曲げモーメントが作用する。この結果、構成部材の柱との接合部寄りの曲げモーメントが最大になるため、弾塑性ダンパーの降伏耐力の程度によっては構成部材の柱との接合部寄りの部分が弾塑性ダンパーに先行して降伏する可能性があり、その場合、弾塑性ダンパーは降伏によるエネルギ吸収能力を十分に発揮することができない。   When a horizontal force acts on the frame surface and relative deformation occurs between the parallel columns, each component tries to keep a vertical connection to each column while the components are connected to each other. Since the elasto-plastic damper is trying to draw both components together, a bending moment acts on each component in the forming direction. As a result, since the bending moment of the structural member near the joint with the column is maximized, depending on the yield strength of the elastic-plastic damper, the portion of the structural member near the joint precedes the elastic-plastic damper. In such a case, the elasto-plastic damper cannot sufficiently exhibit the energy absorption capability due to the yield.

また各構成部材の断面形状(成(高さ))が全長に亘って一様である場合には、並列する柱間の相対変形時に曲げモーメントが最大になる構成部材と柱との接合部付近に変形と損傷が集中し、この接合部付近が降伏する可能性があるため、仮に弾塑性ダンパーが降伏することができたとしても、弾塑性ダンパーのエネルギ吸収能力が十分に発揮されなくなることが想定される。   If the cross-sectional shape (composition (height)) of each component is uniform over the entire length, the vicinity of the joint between the component and the column where the bending moment is maximized during relative deformation between the columns in parallel Since deformation and damage concentrate on the joint, and the vicinity of this joint may yield, even if the elastic-plastic damper can yield, the energy absorption capacity of the elastic-plastic damper may not be fully demonstrated. is assumed.

特開平1−203543号公報(第2図、第3図)JP-A-1-203543 (FIGS. 2 and 3) 特開平3−156075号公報(第1図)Japanese Patent Laid-Open No. 3-156075 (FIG. 1)

前記のように構成部材の断面が全長に亘って一様で、構成部材と柱との接合部付近における降伏が弾塑性ダンパーの降伏に先行して発生した場合、構成部材の柱との接合部付近以外の区間は曲げモーメントに対して余力を持っており、曲げモーメントを負担する結果として降伏に至ることはないため、構成部材が弾塑性ダンパーと共に振動エネルギ吸収の機能を果たすことはない。このことは、構造部材が構成部材に分断されなければ本来、発揮し得る塑性変形能力を喪失した使用状態にあるとも言える。   When the cross-section of the component member is uniform over the entire length as described above and the yield in the vicinity of the junction between the component member and the column occurs prior to the yield of the elastic-plastic damper, the junction with the column of the component member Since the section other than the vicinity has a surplus force with respect to the bending moment and does not yield as a result of bearing the bending moment, the constituent member does not perform the function of absorbing vibration energy together with the elastic-plastic damper. This can be said to be in a use state in which the plastic deformation ability that can be originally exhibited is lost unless the structural member is divided into constituent members.

本発明は上記背景より、構造部材が既存の場合に、塑性変形能力を発揮し得る状態で弾塑性ダンパーを構造部材に付加する既存構造部材への弾塑性ダンパーの取付構造を提案するものである。   In view of the above background, the present invention proposes a structure for attaching an elastic-plastic damper to an existing structural member in which an elastic-plastic damper is added to the structural member in a state where the plastic deformation ability can be exhibited when the structural member is already present. .

請求項1に記載の発明の既存構造部材への弾塑性ダンパーの取付構造は、並列する主構造部材間に架設され、前記主構造部材を含む構面の面内方向にせん断変形し得る既存構造部材に弾塑性ダンパーを付加する弾塑性ダンパーの取付構造であり、
前記既存構造部材をせん断変形させるせん断力の作用面に直交する方向に、前記既存構造部材に沿って複数本の補強部材が軸方向に互いに距離を置いて配置され、軸方向の両側に位置する前記補強部材が前記各主構造部材に接合され、
この互いに分離した補強部材間に面内方向のせん断力を負担してせん断降伏し得る塑性変形部を有する弾塑性ダンパーが跨って設置され、
前記既存構造部材の軸方向の端部を除く一部区間が成方向の一部を残して除去されていることを構成要件とする。
The structure for attaching an elastic-plastic damper to an existing structural member according to claim 1 is an existing structure that is installed between parallel main structural members and is capable of undergoing shear deformation in the in-plane direction of the structural surface including the main structural members. An elastic-plastic damper mounting structure that adds an elastic-plastic damper to the member.
A plurality of reinforcing members are arranged along the existing structural member at a distance from each other in the axial direction in a direction perpendicular to the acting surface of the shearing force that shears and deforms the existing structural member, and are located on both sides in the axial direction. The reinforcing member is joined to each main structural member,
An elastic-plastic damper having a plastically deformable portion that can bear a shearing force in the in-plane direction between the reinforcing members separated from each other and can yield a shear,
It is a constituent requirement that a part of the existing structural member except for the end in the axial direction is removed leaving a part in the forming direction.

主構造部材は主に柱、梁等を指し、主構造部材を含む構面は例えば柱・梁からなるフレームの構面を言う。主構造部材は距離を置いて並列していればよいため、隣接する構造物の端部に位置する柱の他、杭の場合もある。図1、図5−(a)に示すように主構造部材1、1が柱の場合、既存構造部材3は梁であり、図5−(b)に示すように主構造部材1、1が梁の場合には既存構造部材3は間柱、耐震壁、ブレース等である。主構造部材1が隣接する構造物の柱の場合、既存構造部材3は各構造物の隣接する構造物側に位置する柱から張り出す梁になる。主構造部材1が杭の場合、既存構造部材3は杭をつなぐ基礎梁になる。但し、主構造部材1と既存構造部材3はこれらには限定されない。   The main structural member mainly refers to a column, a beam, and the like, and the structural surface including the main structural member refers to, for example, a structural surface of a frame including columns and beams. Since the main structural members only need to be arranged in parallel at a distance, the main structural members may be piles in addition to the columns located at the ends of the adjacent structures. When the main structural members 1 and 1 are pillars as shown in FIGS. 1 and 5- (a), the existing structural member 3 is a beam, and as shown in FIG. 5- (b), the main structural members 1 and 1 are In the case of a beam, the existing structural member 3 is a stud, a seismic wall, a brace or the like. When the main structural member 1 is a column of an adjacent structure, the existing structural member 3 is a beam protruding from a column located on the adjacent structure side of each structure. When the main structural member 1 is a pile, the existing structural member 3 is a foundation beam that connects the piles. However, the main structural member 1 and the existing structural member 3 are not limited to these.

図5−(c)に示すように主構造部材1を構成する柱、または梁を含むフレーム2内にブレースが架設され、ブレースがフレーム2を構成する柱、もしくは梁、または柱・梁の接合部のいずれかの部分に接合される場合、ブレースとフレーム2との間には両者が互いに接合されるためのブラケット等が設置されるが、このブレースとフレーム2とに跨って双方に接合されるブラケットが既存構造部材3になることもある。この場合、ブラケットはブレースとフレーム2に跨って連続するため、ブレースが、並列する主構造部材1、1の内の一方の主構造部材1になり、フレーム2(梁、または柱)が他方の主構造部材1になる。   As shown in FIG. 5- (c), braces are erected in a frame 2 including a column or beam constituting the main structural member 1, and the braces constitute a frame 2, or the column, beam, or connection between the columns and beams. When joining to any part of the part, a bracket or the like is installed between the brace and the frame 2 so that they are joined to each other. The bracket may become the existing structural member 3. In this case, since the bracket continues across the brace and the frame 2, the brace becomes one main structural member 1 of the main structural members 1 and 1 arranged in parallel, and the frame 2 (beam or column) becomes the other. It becomes the main structural member 1.

弾塑性ダンパー5は面内方向にせん断力を受けてせん断変形する、あるいは曲げ変形を伴いながらせん断変形するせん断変形型のダンパーであり、ダンパー全体の内、中央部に位置する板状、あるいは棒状(線状)等の領域である塑性変形部51がせん断変形する。図面では塑性変形部51を、せん断力を受けたときのせん断力による曲げモーメント分布に対応した形状に形成しているが、塑性変形部51の形状は任意である。   The elastoplastic damper 5 is a shear deformation type damper that undergoes shear deformation in response to a shear force in the in-plane direction, or that undergoes shear deformation with bending deformation, and is a plate or rod located in the center of the entire damper. The plastic deformation part 51 which is a region such as (linear) undergoes shear deformation. In the drawing, the plastic deformation portion 51 is formed in a shape corresponding to the bending moment distribution due to the shearing force when the shearing force is applied, but the shape of the plastic deformation portion 51 is arbitrary.

弾塑性ダンパー5はその面内のせん断力作用方向に垂直な方向の両側部分(接合部52、52)において互いに分離している補強部材4、4に剛に接合されることで、両側部分に挟まれた中間部の塑性変形部51が補強部材4、4間の相対変位に伴って面内方向のせん断力を受けたときにせん断変形し、あるいは曲げ変形を伴いながらせん断変形し、せん断降伏、もしくは曲げ降伏することにより振動エネルギを吸収する。   The elastoplastic damper 5 is rigidly joined to the reinforcing members 4 and 4 separated from each other at both side portions (joint portions 52 and 52) in the direction perpendicular to the shearing force acting direction in the plane, so The intermediate plastic deformation portion 51 sandwiched is subjected to shear deformation when it receives a shearing force in the in-plane direction along with the relative displacement between the reinforcing members 4 and 4, or shear deformation accompanied by bending deformation, and shear yielding. Or, vibration energy is absorbed by bending yielding.

複数本の補強部材4、4は材軸を既存構造部材3の材軸に平行にした状態で、図1〜図3に示すように既存構造部材3に沿い、軸方向に互いに距離を置きながら配置され、軸方向の両側に位置する補強部材4、4が主構造部材1、1側の端部において主構造部材1に剛に接合される。軸方向に距離を置いて隣接する補強部材4、4は両者間に弾塑性ダンパー5が跨って設置され、接合されることにより連結され、主構造部材1、1間で連続する。弾塑性ダンパー5は補強部材4、4の幅方向の片面、もしくは図3に示すように両面に配置される。   The plurality of reinforcing members 4, 4 are arranged in a state where the material axes are parallel to the material axes of the existing structural member 3, while being spaced apart from each other in the axial direction along the existing structural member 3 as shown in FIGS. The reinforcing members 4, 4 that are arranged and located on both sides in the axial direction are rigidly joined to the main structural member 1 at the ends of the main structural member 1, 1 side. The reinforcing members 4 and 4 which are adjacent to each other at a distance in the axial direction are installed by being connected by joining an elastic-plastic damper 5 therebetween, and are continuous between the main structural members 1 and 1. The elastic-plastic damper 5 is disposed on one side of the reinforcing members 4 and 4 in the width direction, or on both sides as shown in FIG.

図1〜図3は隣接する主構造部材1、1間に配置される補強部材4、4が2本の場合の例を示しているが、2本の場合、各補強部材4は主構造部材1側の端部において主構造部材1に接合され、反対(補強部材4)側の端部において隣接する補強部材4に弾塑性ダンパー5を介して連結される。軸方向に隣接する補強部材4、4間には弾塑性ダンパー5の設置分の距離が確保される。弾塑性ダンパー5はその接合部52において補強部材4に接合されるため、隣接する補強部材4、4間に確保される距離は弾塑性ダンパー5の塑性変形部51の、補強部材4の軸方向に見たときの長さ程度の大きさになる。既存構造部材3に沿って配置される複数本の補強部材4の本数は図6に示すように3本以上であることもある。   1 to 3 show an example in which there are two reinforcing members 4, 4 arranged between adjacent main structural members 1, 1. In the case of two reinforcing members 4, each reinforcing member 4 is a main structural member. It is joined to the main structural member 1 at the end on one side and is connected to the adjacent reinforcing member 4 at the end on the opposite (reinforcing member 4) side through an elastic-plastic damper 5. A distance corresponding to the installation of the elastic-plastic damper 5 is secured between the reinforcing members 4 and 4 adjacent in the axial direction. Since the elastic-plastic damper 5 is joined to the reinforcing member 4 at the joint 52, the distance secured between the adjacent reinforcing members 4, 4 is the axial direction of the plastic deforming portion 51 of the elastic-plastic damper 5 in the axial direction of the reinforcing member 4. It will be about the size of the length when viewed. The number of the plurality of reinforcing members 4 arranged along the existing structural member 3 may be three or more as shown in FIG.

主構造部材1、1間に3本以上の補強部材4が架設される場合には、軸方向の中間部側に位置する補強部材4の端部とそれに隣接する補強部材4の端部との間に弾塑性ダンパー5が跨設される。請求項1における「既存構造部材をせん断変形させるせん断力の作用面に直交する方向」とは、せん断力の作用方向を含む面内に直交する方向を指し、並列する主構造部材1、1を含むフレーム2の構面外方向であり、例えば梁の幅方向になる。   When three or more reinforcing members 4 are installed between the main structural members 1 and 1, the end of the reinforcing member 4 positioned on the intermediate side in the axial direction and the end of the reinforcing member 4 adjacent to the end An elastic-plastic damper 5 is straddled between them. The “direction perpendicular to the acting surface of the shearing force that shears and deforms the existing structural member” in claim 1 refers to a direction perpendicular to the surface including the acting direction of the shearing force. The direction is the out-of-plane direction of the frame 2 including, for example, the width direction of the beam.

また請求項1における「既存構造部材に沿って配置される」とは、補強部材4がせん断力及び曲げモーメントの作用方向である既存構造部材3の成方向(高さ方向)に直交する幅方向に距離を置き、既存構造部材3と並列して配置されることを言い、既存構造部材3の幅方向は「既存構造部材をせん断変形させるせん断力の作用面に直交する方向」でもある。以下では補強部材4が既存構造部材3に沿って配置されることを併設と言う。   Further, in the first aspect, “arranged along the existing structural member” means that the reinforcing member 4 is in the width direction perpendicular to the direction (height direction) of the existing structural member 3 in which the shearing force and the bending moment are applied. The width direction of the existing structural member 3 is also “a direction perpendicular to the acting surface of the shearing force that shears and deforms the existing structural member”. Hereinafter, the reinforcement member 4 being arranged along the existing structural member 3 is referred to as a side view.

補強部材4は既存構造部材3の幅方向の少なくとも片側に配置される。弾塑性ダンパー5を既存構造部材3のウェブに関して均等に配置する場合等には、補強部材4は既存構造部材3の幅方向両側に配置される。「既存構造部材の成方向」は既存構造部材3へのせん断力の作用方向であり、並列する主構造部材1、1を含む構面(フレーム2)の面内方向でもあるから、既存構造部材3の幅方向は構面外方向になる。   The reinforcing member 4 is disposed on at least one side in the width direction of the existing structural member 3. When the elastoplastic dampers 5 are evenly arranged with respect to the web of the existing structural member 3, the reinforcing members 4 are arranged on both sides of the existing structural member 3 in the width direction. “The direction in which the existing structural member is formed” is the direction in which the shearing force acts on the existing structural member 3, and is also the in-plane direction of the structural surface (frame 2) including the main structural members 1 and 1 arranged in parallel. The width direction of 3 is the out-of-plane direction.

軸方向に距離を置きながら配置される複数本の補強部材4、4の互いに対向する側の端部間に弾塑性ダンパー5が跨って設置され、各補強部材4の端部に直接、もしくは間接的に接合される。「間接的に接合」とは、弾塑性ダンパー5の接合部52を補強部材4に接合するための専用の部材を両者間に介在させることを言う。各補強部材4への弾塑性ダンパー5の接合によって両補強部材4、4は互いに連結され、連続する。弾塑性ダンパー5は塑性変形部51のせん断力作用方向に垂直な方向の両側に位置する接合部52において各補強部材4に接合される。それぞれの接合は主にボルト、もしくは溶接による。   An elastic-plastic damper 5 is installed across the ends of the plurality of reinforcing members 4, 4 that are arranged with a distance in the axial direction facing each other, and directly or indirectly to the ends of each reinforcing member 4. Are joined together. “Indirect joining” means that a dedicated member for joining the joint 52 of the elastic-plastic damper 5 to the reinforcing member 4 is interposed between the two. The reinforcing members 4 and 4 are connected to each other by the joining of the elastic-plastic damper 5 to each reinforcing member 4 and are continuous. The elasto-plastic damper 5 is joined to each reinforcing member 4 at joints 52 located on both sides in the direction perpendicular to the shearing force acting direction of the plastic deformation part 51. Each joint is mainly by bolts or welding.

複数本の補強部材4、4の内、主構造部材1寄りに位置する補強部材4は主構造部材1側の端部において主構造部材1に剛に接合されることで、主構造部材1を含むフレーム2の構面内で両主構造部材1、1間に相対変形が生じたときに主構造部材1に追従しようとする。並列する主構造部材1、1に接合された補強部材4、4が各主構造部材1の変形に追従することで、隣接する補強部材4、4間の弾塑性ダンパー5にせん断力を負担させ、弾塑性ダンパー5の塑性変形部51をせん断変形させる。   Of the plurality of reinforcing members 4, 4, the reinforcing member 4 positioned closer to the main structural member 1 is rigidly joined to the main structural member 1 at the end on the main structural member 1 side. When relative deformation occurs between the two main structural members 1 and 1 within the composition plane of the frame 2 to be included, an attempt is made to follow the main structural member 1. The reinforcing members 4 and 4 joined to the main structural members 1 and 1 arranged in parallel follow the deformation of each main structural member 1 so that the elastic-plastic damper 5 between the adjacent reinforcing members 4 and 4 bears a shearing force. Then, the plastic deformation portion 51 of the elastic-plastic damper 5 is subjected to shear deformation.

既存構造部材3は軸方向の端部を除く一部区間31において成方向の一部を残して除去されることで、その一部区間31の降伏耐力が低下させられるため、その一部区間31においては両主構造部材1、1間の相対変形時に既存構造部材3の除去部分32を除いた残存部分が塑性変形部33としてせん断力を受けて降伏し得、塑性変形能力を発揮可能になる。以下では「一部区間31」は軸方向の端部を除く区間を言う。   Since the existing structural member 3 is removed while leaving a part in the forming direction in the partial section 31 except for the end portion in the axial direction, the yield strength of the partial section 31 is reduced. In this case, the remaining portion of the existing structural member 3 except the removed portion 32 at the time of relative deformation between the two main structural members 1 and 1 can yield as a plastic deformation portion 33 by receiving a shearing force, and can exhibit the plastic deformation capability. . In the following, “partial section 31” refers to a section excluding an end portion in the axial direction.

既存構造部材3に塑性変形能力を発揮させる関係で、既存構造部材3には主に鋼材(鉄骨)が使用されるが、必ずしも鋼材には限定されない。成方向の一部が除去される一部区間31は他の区間に優先して降伏するよう、原則として後述のように既存構造部材3の全長の内、曲げ応力度が大きい区間に合わせられるが(請求項3)、必ずしも曲げ応力度が大きい区間に合致している必要はない。   A steel material (steel frame) is mainly used for the existing structural member 3 in order to make the existing structural member 3 exhibit plastic deformation ability, but it is not necessarily limited to the steel material. In principle, the partial section 31 from which a part of the forming direction is removed is matched with a section having a large bending stress in the entire length of the existing structural member 3 as described later so as to yield in preference to the other sections. (Claim 3), it is not always necessary to coincide with a section where the degree of bending stress is large.

既存構造部材3の幅方向に補強部材4が併設され、軸方向に距離を置く補強部材4、4間に弾塑性ダンパー5が跨設されることで、既存構造部材3を分断させることなく、軸方向に連続させた1本の構造部材として利用することが可能になる。すなわち、上記のように既存構造部材3の軸方向の一部区間31を降伏させ、既存構造部材3に塑性変形能力を発揮させることが可能になる。   The reinforcing member 4 is provided side by side in the width direction of the existing structural member 3, and the elastic plastic damper 5 is straddled between the reinforcing members 4 and 4 that are spaced apart in the axial direction, so that the existing structural member 3 is not divided, It can be used as a single structural member that is continuous in the axial direction. That is, as described above, the partial section 31 in the axial direction of the existing structural member 3 is yielded, and the existing structural member 3 can exhibit the plastic deformation ability.

降伏は既存構造部材3の全長の内、軸方向には曲げ応力度σの大きい箇所に生じることから、長期荷重時の曲げモーメントと短期荷重時の曲げモーメントの合計Mを、既存構造部材3の各区間の断面係数Zで割った大きさ(M/Z=σ)が大きくなる区間になる。曲げ応力度σが大きくなる箇所は一部区間31内に位置し、原則として一部区間31は軸方向に隣接する補強部材4、4間に跨設される弾塑性ダンパー5の設置箇所に対応した区間になるから(請求項3)、主構造部材1、1間に架設される補強部材4の本数、すなわち弾塑性ダンパー5の設置数に応じ、既存構造部材3の全長の内、複数箇所であることもある。曲げ応力度σが大きくなる箇所は既存構造部材3の全長内で曲げ応力度σが最大になる箇所とは限らない。   Yield occurs in a portion where the bending stress degree σ is large in the axial direction in the entire length of the existing structural member 3, and therefore, the total M of the bending moment at the long-term load and the bending moment at the short-term load is calculated as It becomes a section where the size (M / Z = σ) divided by the section modulus Z of each section becomes large. The part where the degree of bending stress σ is large is located in the partial section 31, and in principle, the partial section 31 corresponds to the installation position of the elastic-plastic damper 5 straddling between the reinforcing members 4 and 4 adjacent in the axial direction. (Claim 3), depending on the number of reinforcing members 4 installed between the main structural members 1 and 1, that is, the number of installed elastic-plastic dampers 5, a plurality of locations within the total length of the existing structural members 3. Sometimes it is. A portion where the bending stress degree σ is large is not necessarily a portion where the bending stress degree σ is maximum within the entire length of the existing structural member 3.

このことから、既存構造部材3のいずれかの区間の断面係数Z(断面二次モーメント)を調整することで、降伏の発生箇所を自由に設定することが可能になり、短期荷重時に曲げモーメントが最大になる既存構造部材3の主構造部材1寄りの端部に応力と変形を集中させることが回避される。「断面係数を調整する」とは、図4に示すように既存構造部材3を幅方向に見たときに、軸方向の区間における除去部分32の領域(面積)の大きさ(幅と高さ)を調整することによりせん断力作用方向の断面積の大きさを調整することを言う。図4では除去部分32をハッチングで示している。   Therefore, by adjusting the section modulus Z (secondary moment of section) of any section of the existing structural member 3, it becomes possible to freely set the location where the yield occurs, and the bending moment is reduced during short-term loading. It is avoided that stress and deformation are concentrated at the end of the existing structural member 3 that is maximized near the main structural member 1. “Adjusting the section modulus” means the size (width and height) of the area (area) of the removed portion 32 in the axial section when the existing structural member 3 is viewed in the width direction as shown in FIG. ) Is adjusted to adjust the size of the cross-sectional area in the direction of shearing force. In FIG. 4, the removal portion 32 is indicated by hatching.

既存構造部材3の軸方向の一部区間31が成方向の一部を残して除去されることは、除去部分32を有する一部区間31の断面二次モーメント(断面係数)が主構造部材1寄りの端部の断面二次モーメントより小さくなることで、既存構造部材3が長期荷重時の曲げモーメントと短期荷重時の曲げモーメントを負担したときの一部区間31の曲げ応力度が端部の曲げ応力度より大きくなる意味がある。結果として既存構造部材3の軸方向の端部に応力と変形が集中することがなくなり、端部での破断の可能性が低下する一方、中間部寄りの区間(一部区間31)が曲げモーメントで降伏し易くなり、弾塑性ダンパー5の降伏とは独立して、または同期するように既存構造部材3に塑性変形能力を発揮させ、エネルギ吸収能力を発揮させることが可能になる。   The fact that the partial section 31 in the axial direction of the existing structural member 3 is removed leaving a part in the forming direction is that the secondary moment of inertia (sectional modulus) of the partial section 31 having the removed portion 32 is the main structural member 1. When the existing structural member 3 bears the bending moment at the long-term load and the bending moment at the short-term load, the bending stress degree of the partial section 31 when the existing structural member 3 bears the bending moment at the short-term load becomes smaller at the end portion. It is meaningful to be larger than the bending stress. As a result, stress and deformation do not concentrate at the end of the existing structural member 3 in the axial direction, and the possibility of breakage at the end decreases, while the section closer to the middle (partial section 31) has a bending moment. Therefore, the existing structural member 3 can exhibit the plastic deformation ability and the energy absorption ability independently of or in synchronism with the yield of the elastic-plastic damper 5.

請求項1における「既存構造部材の軸方向の端部を除く一部区間が成方向の一部を残して除去される」とは、既存構造部材3の全長の内、断面二次モーメントの減少区間が軸方向の端部の区間を除く中間部寄りの一部区間であることと、その一部区間において成方向の一部が除去されることを言う。成方向の一部が除去されることで、その除去された部分(除去部分32)を含む一部区間31の断面二次モーメント(断面係数Z)が他の区間の断面二次モーメントより低下し、曲げ応力度σが大きくなるため、他の区間に先行して降伏できる状況になる。   “A part of the existing structural member excluding the end portion in the axial direction is removed leaving a part in the forming direction” means that the secondary moment of the cross section of the existing structural member 3 is reduced. This means that the section is a partial section near the intermediate section excluding the section at the end in the axial direction, and that a part of the forming direction is removed in the partial section. By removing a part of the forming direction, the cross-sectional secondary moment (section modulus Z) of the partial section 31 including the removed part (removed part 32) is lower than the cross-sectional secondary moment of the other sections. Since the degree of bending stress σ increases, it becomes possible to yield before other sections.

一部区間31における除去部分32は既存構造部材3の上端側と下端側のいずれかから、または成方向の中間部に形成されればよいが、図1等に示すように既存構造部材3が梁である場合に、既存構造部材3にスラブ7の支持能力を持たせる上では、除去部分32は下端側から形成され、既存構造部材3の上端(フランジ)は平坦に保たれる。既存構造部材3の上端が一部区間31においても平坦に保たれることで、既存構造部材3が全長に亘って連続していることと併せ、既存構造部材3はスラブ7を支持する能力を持つ。   The removed portion 32 in the partial section 31 may be formed from either the upper end side or the lower end side of the existing structural member 3 or in the intermediate portion in the forming direction. However, as shown in FIG. In the case of a beam, in order to give the existing structural member 3 the ability to support the slab 7, the removal portion 32 is formed from the lower end side, and the upper end (flange) of the existing structural member 3 is kept flat. Since the upper end of the existing structural member 3 is kept flat in the partial section 31, the existing structural member 3 has the ability to support the slab 7 together with the existing structural member 3 being continuous over the entire length. Have.

この場合、既存構造部材3は特許文献1、2の構造部材と異なり、軸方向に連続していることで、除去部分32を含む一部区間31がせん断力を受けて降伏し、塑性変形することがあっても、分断している場合程の変形量に至ることはないため、既存構造部材3に支持されたスラブ7を損傷させるに至ることは回避される。   In this case, unlike the structural members of Patent Documents 1 and 2, the existing structural member 3 is continuous in the axial direction, so that the partial section 31 including the removal portion 32 yields due to shearing force and is plastically deformed. Even if this happens, the amount of deformation does not reach as much as when it is divided, so that the slab 7 supported by the existing structural member 3 is prevented from being damaged.

既存構造部材3の軸方向の一部区間31に除去部分32が形成され、軸方向の端部以外の中間部の断面二次モーメントが低下させられることで、並列する主構造部材1、1間に相対変形が生じたときには、既存構造部材3の主構造部材3寄りの端部ではなく、除去部分32のある一部区間31(中間部)の曲げ応力度σが大きくなり、降伏し易い状況になる。ここで、既存構造部材3に併設された補強部材4、4間に跨設された弾塑性ダンパー5の降伏耐力が既存構造部材3の一部区間31の降伏耐力より低く設定されている場合には、既存構造部材3の一部区間31の降伏に先行して弾塑性ダンパー5が降伏することになる。   The removal portion 32 is formed in a partial section 31 in the axial direction of the existing structural member 3, and the cross-sectional secondary moment of the intermediate portion other than the end portion in the axial direction is reduced, so that the main structural members 1, 1 are arranged in parallel. When the relative deformation occurs, the bending stress degree σ of the partial section 31 (intermediate portion) where the removed portion 32 is located, rather than the end portion of the existing structural member 3 near the main structural member 3, becomes large, and is likely to yield. become. Here, when the yield strength of the elastic-plastic damper 5 straddled between the reinforcing members 4 and 4 provided alongside the existing structural member 3 is set lower than the yield strength of the partial section 31 of the existing structural member 3. Will yield the elastic-plastic damper 5 prior to the yielding of the partial section 31 of the existing structural member 3.

但し、弾塑性ダンパー5の降伏耐力が既存構造部材3の一部区間31の降伏耐力より低く設定されている必要はないため、必ずしも既存構造部材3の一部区間31の降伏に先行して弾塑性ダンパー5が降伏するとは限らない。従って既存構造部材3の一部区間31が降伏する場合には、弾塑性ダンパー5の降伏に先行して降伏する場合と、弾塑性ダンパー5の降伏後に降伏する場合の他、同時期に降伏する場合がある。なお、補強部材4と既存構造部材3は成方向のせん断力と曲げモーメントを分担し、それぞれの分担に応じて弾塑性ダンパー5と既存構造部材3の一部区間31を降伏させる上では、基本的には互いに独立し、分離するが、必ずしもその必要はなく、一部において接続されていることもある。   However, since the yield strength of the elastic-plastic damper 5 does not have to be set lower than the yield strength of the partial section 31 of the existing structural member 3, The plastic damper 5 does not always yield. Therefore, when the partial section 31 of the existing structural member 3 yields, it yields at the same time other than the yield before the yield of the elastic-plastic damper 5 and the yield after the yield of the elastic-plastic damper 5. There is a case. In addition, the reinforcing member 4 and the existing structural member 3 share the shearing force and bending moment in the forming direction, and in yielding the elastic plastic damper 5 and the partial section 31 of the existing structural member 3 according to the respective sharing, Although they are independent from each other and separated from each other, they are not necessarily required and may be partially connected.

既存構造部材3と補強部材4には主にH形鋼等、曲げモーメントに対する抵抗要素としてのフランジとせん断力に対する抵抗要素としてのウェブを有する開放形断面形状の鋼材が使用されるが、フランジとウェブを有する断面形状であれば曲げモーメントとせん断力を負担できるため、閉鎖形断面形状の鋼材も使用可能である。その場合、各区間における降伏耐力の調整のために少なくとも一部が開放形断面になることもある。   The existing structural member 3 and the reinforcing member 4 are mainly made of steel having an open cross-sectional shape having a flange as a resistance element against a bending moment and a web as a resistance element against a shearing force, such as H-shaped steel. Since a cross-sectional shape having a web can bear a bending moment and a shearing force, a steel material having a closed cross-sectional shape can also be used. In that case, at least a part may have an open cross section in order to adjust the yield strength in each section.

既存構造部材3に併設される複数本の補強部材4、4は軸方向に互いに距離を置いて並列する主構造部材1、1間に架設されることで、主構造部材1、1間の相対変形時には主構造部材1寄りの補強部材4の主構造部材1への接合部が主構造部材1とのなす角度を保ったまま、前記のように主構造部材1の変形に追従しようとする。但し、隣接する補強部材4、4間に弾塑性ダンパー5が跨設されていることで、補強部材4の弾塑性ダンパー5側の端部は弾塑性ダンパー5に引き寄せられようとするため、主構造部材1寄りの補強部材4は片持ち梁として弾塑性ダンパー5から集中荷重を成方向に受け、全長が曲げモーメントとせん断力を負担する。主構造部材1寄りの補強部材4以外の補強部材4は両端固定梁として軸方向両側の端部において弾塑性ダンパー5からせん断力と曲げモーメントを受ける。   The plurality of reinforcing members 4, 4 provided alongside the existing structural member 3 are installed between the main structural members 1, 1 that are parallel to each other with a distance in the axial direction. At the time of deformation, the joint of the reinforcing member 4 near the main structural member 1 to the main structural member 1 tries to follow the deformation of the main structural member 1 while maintaining the angle formed with the main structural member 1 as described above. However, since the elastic-plastic damper 5 is stretched between the adjacent reinforcing members 4, 4, the end of the reinforcing member 4 on the elastic-plastic damper 5 side tends to be attracted to the elastic-plastic damper 5. The reinforcing member 4 near the structural member 1 receives a concentrated load from the elastic-plastic damper 5 as a cantilever, and the entire length bears a bending moment and a shearing force. The reinforcing members 4 other than the reinforcing member 4 near the main structural member 1 receive shearing force and bending moment from the elastic-plastic damper 5 at both ends in the axial direction as fixed beams at both ends.

この関係で、補強部材4の軸方向には主構造部材1との接合部付近に生じる曲げモーメントが最大になる傾向があり、補強部材4が軸方向に一様な断面形状をしている場合には、断面係数が軸方向に一定であるため、補強部材4の主構造部材1寄りの端部における曲げ応力度が最大になり、この端部に降伏が生じる可能性がないとは言えない。補強部材4の主構造部材1寄りの端部の降伏が弾塑性ダンパー5の降伏に先行することになれば、弾塑性ダンパー5の機能が十分に生かされない可能性がある。そこで、補強部材4の端部に降伏が生じないようにする上では、軸方向に互いに距離を置いて配置される複数本の補強部材4、4の内、主構造部材1側に位置する補強部材4の主構造部材1寄りの端部の断面二次モーメントが軸方向中間部寄りの端部の断面二次モーメントより大きく設定されることが適切である(請求項2)。   In this relationship, the bending moment generated near the joint portion with the main structural member 1 tends to be maximized in the axial direction of the reinforcing member 4, and the reinforcing member 4 has a uniform cross-sectional shape in the axial direction. Since the section modulus is constant in the axial direction, the degree of bending stress at the end of the reinforcing member 4 near the main structural member 1 is maximized, and it cannot be said that there is no possibility of yielding at this end. . If the yielding of the end of the reinforcing member 4 near the main structural member 1 precedes the yielding of the elastic-plastic damper 5, the function of the elastic-plastic damper 5 may not be fully utilized. Therefore, in order to prevent yielding from occurring at the end of the reinforcing member 4, the reinforcing member located on the main structural member 1 side among the plurality of reinforcing members 4, 4 arranged at a distance from each other in the axial direction. It is appropriate that the cross-sectional secondary moment of the end portion of the member 4 near the main structural member 1 is set to be larger than the cross-sectional secondary moment of the end portion close to the intermediate portion in the axial direction.

「主構造部材1側に位置する補強部材」は、隣接する主構造部材1、1間に架設される補強部材4の本数が2本の場合には主構造部材1から片持ち梁状態で張り出す各補強部材4を指し、3本以上の場合も主構造部材1側に位置し、片持ち梁になる2本の補強部材4、4を指す。請求項2における「主構造部材1寄りの端部」と「軸方向中間部寄りの端部」は主構造部材1側に位置する同一の補強部材4の両側の端部を指している。   The “reinforcing member positioned on the main structural member 1 side” is stretched from the main structural member 1 in a cantilevered state when the number of the reinforcing members 4 installed between the adjacent main structural members 1 and 2 is two. Each of the reinforcing members 4 to be ejected is indicated, and in the case of three or more, the two reinforcing members 4 and 4 which are located on the main structural member 1 side and become cantilever beams are indicated. The “end near the main structural member 1” and the “end near the intermediate portion in the axial direction” in claim 2 indicate end portions on both sides of the same reinforcing member 4 located on the main structural member 1 side.

「主構造部材側に位置する補強部材の主構造部材寄りの端部の断面二次モーメントが軸方向中間部寄りの端部の断面二次モーメントより大きい」とは、主構造部材1側に位置する補強部材4が平等強さの梁のように曲げモーメント分布に対応した立面形状等に形成されることを言う。但し、補強部材4の主構造部材1寄りの端部の断面二次モーメントが軸方向中間部寄りの端部の断面二次モーメントより大きければよく、図1に示すように主構造部材1寄りの端部を除く中間部寄りの端部以外の断面二次モーメントは中間部寄りの端部の断面二次モーメントと同等程度でもよいから、補強部材4全体が平等強さの梁である必要はない。   “The cross-sectional secondary moment of the end portion of the reinforcing member located on the main structural member side near the main structural member is larger than the cross-sectional secondary moment of the end portion close to the intermediate portion in the axial direction” It means that the reinforcing member 4 to be formed is formed into an elevational shape corresponding to the bending moment distribution, like a beam of equal strength. However, it is only necessary that the cross-sectional secondary moment at the end of the reinforcing member 4 near the main structural member 1 is larger than the cross-sectional secondary moment at the end near the axially intermediate portion, and as shown in FIG. Since the cross-sectional secondary moment other than the end near the intermediate portion excluding the end may be equivalent to the cross-sectional secondary moment at the end near the intermediate portion, the entire reinforcing member 4 does not have to be a beam of equal strength. .

補強部材4の本数が3本以上の場合、中間部側に位置する補強部材4は軸方向の両端間に弾塑性ダンパー5、5から曲げモーメントを受けることで、前記のように両端固定梁の状態になる。このため、片持ち梁になる主構造部材1側の補強部材4とは曲げモーメントの分布が異なるが、主構造部材1側に位置する補強部材4と同様に平等強さの梁のように曲げモーメント分布に対応した立面形状等に形成されることで、軸方向のいずれかの部分における降伏の発生の可能性はなくなる。「曲げモーメント分布に対応した立面形状」は補強部材4の成(高さ)を軸方向に変化させた場合であり、補強部材4の幅、または成と幅を軸方向に変化させて断面二次モーメントを軸方向に変化させることもある。   When the number of the reinforcing members 4 is three or more, the reinforcing member 4 located on the intermediate side receives the bending moment from the elastic-plastic dampers 5 and 5 between both ends in the axial direction. It becomes a state. Therefore, the distribution of the bending moment is different from that of the reinforcing member 4 on the main structural member 1 side, which is a cantilever beam, but it is bent like a beam of equal strength like the reinforcing member 4 located on the main structural member 1 side. By forming an elevational surface shape corresponding to the moment distribution, the possibility of occurrence of yield in any part in the axial direction is eliminated. The “elevation shape corresponding to the bending moment distribution” is a case where the formation (height) of the reinforcing member 4 is changed in the axial direction, and the cross-section is obtained by changing the width of the reinforcing member 4 or the width of the reinforcing member 4 in the axial direction. The secondary moment may be changed in the axial direction.

結局、主構造部材1、1間に架設される本数に拘わらず、全補強部材4が各補強部材4の軸方向に生じる曲げモーメント分布に対応した立面形状、あるいは軸方向に変化する断面形状に形成されることで、全補強部材4の軸方向のいずれかに降伏が生じる事態が回避されることになる。「断面形状が軸方向に変化する」とは、前記のように補強部材4の幅、または成と幅が軸方向に変化することを意味し、補強部材4が曲げモーメント分布に対応した立体形状をすることになる。   Eventually, regardless of the number of main structural members 1, 1, the total reinforcing member 4 is an elevational shape corresponding to a bending moment distribution generated in the axial direction of each reinforcing member 4, or a cross-sectional shape that changes in the axial direction. As a result, a situation in which yielding occurs in any of the axial directions of all the reinforcing members 4 is avoided. “The cross-sectional shape changes in the axial direction” means that the width or the width of the reinforcing member 4 changes in the axial direction as described above, and the reinforcing member 4 corresponds to the bending moment distribution. Will do.

請求項2では主構造部材1側に位置する補強部材4の主構造部材1寄りの端部の断面二次モーメント(断面係数)が軸方向中間部寄りの端部の断面二次モーメント(断面係数)より大きいことで、補強部材4の主構造部材1寄りの端部の曲げ応力度が低下するため、この端部は弾塑性ダンパー5から受ける曲げモーメントによっては降伏しにくくなる。主構造部材1側に位置する補強部材4の主構造部材1寄りの端部における曲げ応力度が低下することで、軸方向中間部寄りの端部における曲げ応力度は主構造部材1寄りの端部における曲げ応力度より相対的に大きくなるため、補強部材4、4間に跨設された弾塑性ダンパー5の両接合部52、52間にせん断力を集中させ易くなり、弾塑性ダンパー5を補強部材4に先行して確実に降伏させることが可能になる。   According to the second aspect of the present invention, the sectional secondary moment (section modulus) at the end of the reinforcing member 4 located on the main structural member 1 side near the main structural member 1 is the sectional secondary moment (section modulus) at the end near the axially intermediate portion. ) Is larger, the bending stress degree of the end portion of the reinforcing member 4 near the main structural member 1 is lowered, and this end portion is less likely to yield depending on the bending moment received from the elastic-plastic damper 5. The bending stress degree at the end portion near the main structural member 1 of the reinforcing member 4 located on the main structural member 1 side is reduced, so that the bending stress degree at the end portion near the intermediate portion in the axial direction is the end near the main structural member 1. Therefore, the shearing force is easily concentrated between the joint portions 52 and 52 of the elastic-plastic damper 5 straddled between the reinforcing members 4 and 4. It is possible to reliably yield before the reinforcing member 4.

請求項2で言う「断面二次モーメント」は補強部材4の断面形状が成方向に一様でない場合を含めた表現であるが、補強部材4が成方向に一様な断面形状である場合には、請求項2は例えば「主構造部材1側に位置する補強部材4の主構造部材1寄りの端部の成が軸方向の中間部寄りの端部の成より大きい」と言い換えられる。「成」はせん断変形の方向の高さである。「成方向に一様な断面形状でない」とは、例えば補強部材がH形鋼である場合に、ウェブにリブが突設されているようなことを言う。   The “second moment of cross section” referred to in claim 2 is an expression including the case where the cross-sectional shape of the reinforcing member 4 is not uniform in the forming direction, but when the reinforcing member 4 has a uniform cross-sectional shape in the forming direction. In other words, claim 2 can be rephrased as, for example, “the end portion of the reinforcing member 4 located on the main structural member 1 side near the main structural member 1 is larger than the end portion near the intermediate portion in the axial direction”. “Completion” is the height in the direction of shear deformation. “It is not a uniform cross-sectional shape in the forming direction” means that, for example, when the reinforcing member is an H-shaped steel, ribs protrude from the web.

補強部材4は既存構造部材3の幅方向に併設されることで、既存構造部材3と補強部材4が互いに独立した状態で主構造部材1に接合されているか否かに拘わらず、主構造部材1を含むフレーム2の構面外方向(既存構造部材3の幅方向)の水平力の作用時にも既存構造部材3と補強部材4が対になって水平力に抵抗することが可能である。この場合、既存構造部材3と補強部材4のフランジが構面外方向の水平力によるせん断力を負担し、既存構造部材3と補強部材4のウェブが曲げモーメントを負担することになる。   The reinforcing member 4 is provided side by side in the width direction of the existing structural member 3, so that the main structural member regardless of whether the existing structural member 3 and the reinforcing member 4 are joined to the main structural member 1 in an independent state. The existing structural member 3 and the reinforcing member 4 can be paired to resist the horizontal force even when a horizontal force is applied in the direction outside the surface of the frame 2 including 1 (the width direction of the existing structural member 3). In this case, the flanges of the existing structural member 3 and the reinforcing member 4 bear the shearing force due to the horizontal force in the direction outside the surface, and the web of the existing structural member 3 and the reinforcing member 4 bears the bending moment.

上記のように隣接する補強部材4、4間に弾塑性ダンパー5が跨設される区間は、隣接する主構造部材1、1間に複数本の補強部材4が連続的に架設され、補強部材4が連続したときの全長内で曲げ応力度が大きくなる区間になるように補強部材4の断面二次モーメントが調整される。一方、既存構造部材3における除去部分32が形成される一部区間31は既存構造部材3の全長内で他の区間に先行して降伏を生じさせようとする区間であるから、主構造部材1(フレーム2)の立面上、あるいは既存構造部材3と補強部材4を幅方向に重ねて見たときに、補強部材4を連結する弾塑性ダンパー5の位置と既存構造部材3の一部区間31の位置が軸方向に相違していれば、既存構造部材3の内、降伏を生じない一部区間31以外の区間が弾塑性ダンパー5が降伏しようとするときに抵抗力を発揮し、弾塑性ダンパー5の降伏を阻害する可能性がある。   In the section where the elastic-plastic damper 5 is straddled between the adjacent reinforcing members 4 and 4 as described above, a plurality of reinforcing members 4 are continuously installed between the adjacent main structural members 1 and 1. The cross-sectional secondary moment of the reinforcing member 4 is adjusted so that the bending stress is increased within the entire length when 4 is continuous. On the other hand, the partial section 31 in which the removal portion 32 in the existing structural member 3 is formed is a section in which the yield is caused to precede other sections within the entire length of the existing structural member 3. The position of the elasto-plastic damper 5 connecting the reinforcing member 4 and a partial section of the existing structural member 3 when viewed from the vertical surface of the frame 2 or when the existing structural member 3 and the reinforcing member 4 are overlapped in the width direction. If the position of 31 is different in the axial direction, sections of the existing structural member 3 other than the partial section 31 that does not yield yield resistance when the elastic-plastic damper 5 tries to yield, There is a possibility of hindering the yield of the plastic damper 5.

そこで、隣接する補強部材4、4を連結する弾塑性ダンパー5の降伏を補強部材4に併設される既存構造部材3が阻害せず、弾塑性ダンパー5の降伏を生じさせ易くする上では、並列する主構造部材1、1の立面上、既存構造部材3の一部区間31が軸方向に隣接する補強部材4、4間に跨設される弾塑性ダンパー5の設置位置に対応していることが合理的である(請求項3)。「対応している」とは、隣接する主構造部材1、1間の区間における弾塑性ダンパー5の設置数と既存構造部材3の一部区間31の形成数が同一であり、補強部材4の軸方向の弾塑性ダンパー5の配置位置と既存構造部材3の一部区間31の形成位置が立面上、合致していることを言う。但し、補強部材4の軸方向の弾塑性ダンパー5の長さと既存構造部材3の一部区間31の長さが一致している必要はない。   In view of this, the existing structural member 3 provided alongside the reinforcing member 4 does not hinder the yield of the elastic-plastic damper 5 connecting the adjacent reinforcing members 4, 4. The partial section 31 of the existing structural member 3 corresponds to the installation position of the elastic-plastic damper 5 straddling between the reinforcing members 4 and 4 adjacent in the axial direction on the elevation surface of the main structural members 1 and 1 It is reasonable (Claim 3). “Corresponding” means that the number of elastic plastic dampers 5 installed in the section between adjacent main structural members 1 and 1 is the same as the number of partial sections 31 of the existing structural member 3, It means that the arrangement position of the elastoplastic damper 5 in the axial direction and the formation position of the partial section 31 of the existing structural member 3 are coincident with each other on the elevation surface. However, the length of the elastic-plastic damper 5 in the axial direction of the reinforcing member 4 and the length of the partial section 31 of the existing structural member 3 do not need to match.

既存構造部材3の一部区間31が軸方向に隣接する補強部材4、4間に跨設される弾塑性ダンパー5の設置位置に対応していることで、弾塑性ダンパー5を降伏させようとする曲げモーメントが補強部材4、4の端部に作用したときに既存構造部材3が抵抗力を発揮する可能性が低下するため、弾塑性ダンパー5の降伏が阻害されることがなく、弾塑性ダンパー5の降伏を誘発させ、弾塑性ダンパー5にエネルギ吸収能力を効率的に発揮させることが可能になる。   The partial section 31 of the existing structural member 3 corresponds to the installation position of the elastic-plastic damper 5 straddling between the reinforcing members 4 and 4 adjacent in the axial direction, so that the elastic-plastic damper 5 is intended to yield. Since the possibility that the existing structural member 3 exerts a resistance force when the bending moment acting on the ends of the reinforcing members 4 and 4 is reduced, the yield of the elastic-plastic damper 5 is not hindered, and the elastic-plastic It is possible to induce the yielding of the damper 5 and to make the elastic-plastic damper 5 efficiently exhibit the energy absorption capability.

既存構造部材に作用するせん断力の作用面に直交する方向に、既存構造部材に沿い、複数本の補強部材を互いに距離を置いて配置して各主構造部材に接合し、距離を置いた補強部材間にせん断降伏し得る弾塑性ダンパーを跨って設置するため、既存構造部材の一部に弾塑性ダンパーを組み込む場合のように既存構造部材を分断させる必要がなくなる。従って既存構造部材を軸方向に連続させた1本の構造部材として利用することができるため、、既存構造部材の軸方向の一部に降伏耐力の低下した部分を形成することで、この一部の区間を降伏させ、既存構造部材に塑性変形能力を発揮させることができる。   Along the existing structural member in the direction perpendicular to the surface of the shear force acting on the existing structural member, several reinforcing members are placed at a distance from each other and joined to each main structural member, and the reinforcement is placed at a distance. Since the elastic-plastic damper that can yield shear between the members is installed, it is not necessary to divide the existing structural member as in the case where the elastic-plastic damper is incorporated into a part of the existing structural member. Therefore, since the existing structural member can be used as one structural member that is continuous in the axial direction, a part of the existing structural member having a reduced yield strength is formed in a part of the axial direction of the existing structural member. It is possible to cause the existing structural member to exhibit plastic deformation ability by yielding the section.

この結果、既存構造部材のいずれかの区間の曲げ応力度の大きさに応じて断面係数を調整することで、降伏の発生箇所を自由に設定することが可能になり、短期荷重時に曲げモーメントが最大になる既存構造部材の主構造部材寄りの端部に応力と変形が集中することを回避することができる。   As a result, by adjusting the section modulus according to the magnitude of the bending stress in any section of the existing structural member, it is possible to freely set the location where yield occurs, and the bending moment during short-term loading It is possible to avoid stress and deformation from concentrating on the end portion of the existing structural member that is maximized near the main structural member.

既存構造部材の幅方向片側に補強部材を併設し、隣接する補強部材間に弾塑性ダンパーを跨設した様子を示した立面図である。It is the elevation which showed a mode that the reinforcement member was provided side by side in the width direction one side of the existing structural member, and the elastic-plastic damper was straddled between adjacent reinforcement members. 図1のx−x線断面図である。It is the xx sectional view taken on the line of FIG. 図2のy−y線断面図である。FIG. 3 is a sectional view taken along line yy of FIG. 2. 図1に示す既存構造部材における除去部分を示した立面図である。It is the elevation which showed the removal part in the existing structural member shown in FIG. (a)は既存構造部材が隣接する柱間に架設された梁である場合の補強部材と弾塑性ダンパーの設置状態を示した立面図、(b)は既存構造部材が隣接する梁間に架設された間柱である場合の補強部材と弾塑性ダンパーの設置状態を示した立面図、(c)は既存構造部材が、隣接する梁間に架設されたブレースと梁間に跨って設置されたブラケットである場合の補強部材と弾塑性ダンパーの設置状態を示した立面図である。(A) is an elevation view showing the installation state of a reinforcing member and an elasto-plastic damper when the existing structural member is a beam erected between adjacent columns, and (b) is an erection between the adjacent beams of the existing structural member (C) is an elevation view showing the installed state of the reinforcing member and the elasto-plastic damper in the case of the formed stud, and (c) is a brace installed between adjacent beams and a bracket installed between the beams. It is the elevation which showed the installation state of the reinforcement member and elastic-plastic damper in a certain case. (a)は既存構造部材が隣接する柱間に架設された梁であり、補強部材が軸方向に3本に区分された場合の補強部材と弾塑性ダンパーの設置状態を示した立面図、(b)は既存構造部材が隣接する梁間に架設された間柱であり、補強部材が軸方向に3本に区分された場合の補強部材と弾塑性ダンパーの設置状態を示した立面図、(c)は既存構造部材が隣接する梁間に架設された間柱であり、補強部材が軸方向に4本に区分された場合の補強部材と弾塑性ダンパーの設置状態を示した立面図である。(A) is a beam in which an existing structural member is installed between adjacent columns, and an elevation view showing an installation state of the reinforcing member and the elastic-plastic damper when the reinforcing member is divided into three in the axial direction; (B) is an intermediate column in which an existing structural member is installed between adjacent beams, and an elevation view showing the installation state of the reinforcing member and the elastic-plastic damper when the reinforcing member is divided into three in the axial direction. c) is an elevational view showing an installed state of the reinforcing member and the elastic-plastic damper when the existing structural member is spanned between adjacent beams and the reinforcing member is divided into four in the axial direction.

図1〜図3は並列する柱等の主構造部材1、1間に架設された、主構造部材1、1を含む構面(フレーム2)の面内方向にせん断変形し得る既存構造部材3の幅方向に弾塑性ダンパー5を設置するための複数本の補強部材4、4を軸方向に互いに距離を置いて配置し、この軸方向に距離を置いた補強部材4、4間に弾塑性ダンパー5を跨設した様子を示す。「既存構造部材3の幅方向」は主構造部材1、1を含む構面の面外方向であり、主構造部材1、1が構面内方向に相対変形を生じたときに既存構造部材3に作用するせん断力の作用方向に直交する方向を言う。図1〜図3は主構造部材1が柱で、既存構造部材3が梁である場合の例を示している。   1 to 3 show an existing structural member 3 that can be shear-deformed in the in-plane direction of a structural surface (frame 2) including the main structural members 1 and 1 that is installed between the main structural members 1 and 1 such as parallel columns. A plurality of reinforcing members 4, 4 for installing the elastoplastic damper 5 in the width direction are arranged at a distance from each other in the axial direction, and elastoplasticity is provided between the reinforcing members 4, 4 at a distance in the axial direction. A state where the damper 5 is straddled is shown. The “width direction of the existing structural member 3” is the out-of-plane direction of the structural surface including the main structural members 1, 1, and the existing structural member 3 when the main structural members 1, 1 undergo relative deformation in the in-plane direction. The direction perpendicular to the acting direction of the shearing force acting on. 1 to 3 show an example in which the main structural member 1 is a column and the existing structural member 3 is a beam.

図面では主構造部材1に角形鋼管を使用し、既存構造部材3と補強部材4にH形鋼を使用しているが、主構造部材1と既存構造部材3、及び補強部材4の構造種別は問われず、断面形状も問われない。複数本の補強部材4の内、軸方向の両側に位置する補強部材4、4はそれぞれの側に位置する主構造部材1、1に接合される。図中、7は既存構造部材3に支持されるスラブを示す。   In the drawing, a square steel pipe is used for the main structural member 1 and an H-shaped steel is used for the existing structural member 3 and the reinforcing member 4, but the structural types of the main structural member 1, the existing structural member 3 and the reinforcing member 4 are as follows. Regardless, the cross-sectional shape is not questioned. Among the plurality of reinforcing members 4, the reinforcing members 4 and 4 positioned on both sides in the axial direction are joined to the main structural members 1 and 1 positioned on the respective sides. In the figure, 7 indicates a slab supported by the existing structural member 3.

既存構造部材3は元々、軸方向の両端部において主構造部材1、1に剛に接合されていることで、主構造部材1、1間の、構面内の相対変形時に両端部を除く中間部においてせん断変形しようとする。既存構造部材3のせん断変形の方向は既存構造部材3の成方向、すなわちせん断力と曲げモーメントの作用方向である。   The existing structural member 3 is originally rigidly joined to the main structural members 1 and 1 at both ends in the axial direction, so that the intermediate structural members 1 and 1 except for both ends are relatively deformed in the composition plane. Attempts to shear deformation at the part. The direction of shear deformation of the existing structural member 3 is the direction in which the existing structural member 3 is formed, that is, the direction in which the shearing force and the bending moment are applied.

補強部材4は既存構造部材3のせん断変形の方向に直交する方向である幅方向の少なくとも片側に、既存構造部材3に平行に配置される。補強部材4は少なくとも2本で組になって隣接する主構造部材1、1間に架設され、主構造部材1側の端部において主構造部材1に剛に接合される。軸方向に隣接する補強部材4、4間には弾塑性ダンパー5の設置のための距離が確保され、この距離を置いて対向する補強部材4、4間に弾塑性ダンパー5が跨設され、各補強部材4にボルト6や溶接等により剛に接合される。   The reinforcing member 4 is arranged in parallel to the existing structural member 3 on at least one side in the width direction, which is a direction orthogonal to the direction of shear deformation of the existing structural member 3. At least two reinforcing members 4 form a set and are laid between adjacent main structural members 1 and 1 and are rigidly joined to the main structural member 1 at the end on the main structural member 1 side. A distance for installation of the elastic-plastic damper 5 is secured between the reinforcing members 4 and 4 adjacent in the axial direction, and the elastic-plastic damper 5 is straddled between the reinforcing members 4 and 4 facing each other at this distance. Each reinforcing member 4 is rigidly joined by bolts 6 or welding.

弾塑性ダンパー5はフレーム2の構面内方向に主構造部材1、1間に相対変形が生じたときにせん断力、またはせん断力と曲げモーメントを負担し、せん断力、またはせん断力と曲げモーメントによって塑性変形する塑性変形部51を少なくとも持ち、補強部材4にボルト6により接合される場合には塑性変形部51のせん断力作用方向に直交する方向の両側に補強部材4に接合されるための接合部52、52が形成される。   The elasto-plastic damper 5 bears a shearing force or a shearing force and a bending moment when a relative deformation occurs between the main structural members 1 and 1 in the in-plane direction of the frame 2. In the case of having at least the plastic deformation portion 51 that is plastically deformed by the bolt and being joined to the reinforcing member 4 by the bolt 6, the plastic deformation portion 51 is joined to the reinforcing member 4 on both sides in the direction perpendicular to the shearing force acting direction. Joints 52, 52 are formed.

弾塑性ダンパー5は補強部材4に直接、もしくは間接的に溶接される場合には、塑性変形部51の、せん断力作用方向に直交する方向の両側において補強部材4に溶接されるが、その場合にも塑性変形部51の両側には溶接代が確保されるため、その溶接代は接合部52に相当する。接合部52が補強部材4にボルト6により接合される場合には、接合部52に複数個のボルト6用の挿通孔が形成される。   When the elastic-plastic damper 5 is welded directly or indirectly to the reinforcing member 4, it is welded to the reinforcing member 4 on both sides of the plastic deformation portion 51 in the direction orthogonal to the shearing force acting direction. In addition, since a welding allowance is secured on both sides of the plastic deformation portion 51, the welding allowance corresponds to the joint portion 52. When the joint portion 52 is joined to the reinforcing member 4 by the bolt 6, a plurality of insertion holes for the bolt 6 are formed in the joint portion 52.

図1、図5では弾塑性ダンパー5の塑性変形部51が、両端固定梁の両側にせん断力作用方向に集中荷重が交互に作用したときに生じる曲げモーメント分布に対応した立面形状をした場合の例を示しているが、塑性変形部51の形状は任意であり、多角形状、方形状その他の、一部に曲線を含む形状である場合もある。   1 and 5, when the plastic deformation portion 51 of the elastic-plastic damper 5 has an elevational shape corresponding to the bending moment distribution generated when concentrated loads are alternately applied to both sides of the both ends fixed beam in the shearing force acting direction. However, the shape of the plastic deformation portion 51 is arbitrary, and may be a polygonal shape, a square shape, or a shape that partially includes a curve.

図4は図1に示す補強部材4、4の背面側に存在している既存構造部材3の軸方向の端部を除く中間部である一部区間31を主構造部材1、1の相対変形時に降伏させるために、既存構造部材3の一部区間31に塑性変形部33を形成する要領を示す。一部区間31においては成方向の一部を残し、他の部分を除去することにより残された部分が塑性変形部33になる。図4中、ハッチングを入れた領域が除去部分32を示している。図4は補強部材4がH形鋼の場合の例を示しているが、この場合、下部フランジと下部フランジに連続するウェブの一部が除去される。   FIG. 4 shows a relative deformation of the main structural members 1 and 1 in a partial section 31 which is an intermediate portion excluding an axial end of the existing structural member 3 existing on the back side of the reinforcing members 4 and 4 shown in FIG. In order to sometimes yield, a procedure for forming the plastic deformation portion 33 in the partial section 31 of the existing structural member 3 is shown. In the partial section 31, a part of the forming direction is left, and the remaining part becomes the plastic deformation part 33 by removing the other part. In FIG. 4, the hatched area indicates the removed portion 32. FIG. 4 shows an example in which the reinforcing member 4 is an H-shaped steel. In this case, the lower flange and a part of the web continuous to the lower flange are removed.

既存構造部材3の全長の内、塑性変形部33が形成される一部区間31の軸方向の位置は図1、図2に示すように既存構造部材3の一部区間31以外の区間が複数本の補強部材4、4間に跨設される弾塑性ダンパー5に生じようとする降伏を阻害しないよう、補強部材4、4間の弾塑性ダンパー5の設置位置に合致させられる。すなわち、既存構造部材3と補強部材4を幅方向に見たとき、既存構造部材3の一部区間31(塑性変形部33)が、既存構造部材3に併設される補強部材4、4間に跨設される弾塑性ダンパー5の位置に対応した位置に配置されるように、一部区間31の長さと補強部材4の長さ等が設定される。図1〜図4では既存構造部材3の一部区間31の軸方向の長さと弾塑性ダンパー5の長さが一致しているが、必ずしもその必要はない。   Of the entire length of the existing structural member 3, the axial position of the partial section 31 where the plastic deformation portion 33 is formed is a plurality of sections other than the partial section 31 of the existing structural member 3 as shown in FIGS. It is made to correspond to the installation position of the elasto-plastic damper 5 between the reinforcing members 4 and 4 so as not to hinder the yield that is likely to occur in the elasto-plastic damper 5 straddled between the reinforcing members 4 and 4 of the book. That is, when the existing structural member 3 and the reinforcing member 4 are viewed in the width direction, a partial section 31 (plastic deformation portion 33) of the existing structural member 3 is interposed between the reinforcing members 4 and 4 provided alongside the existing structural member 3. The length of the partial section 31, the length of the reinforcing member 4 and the like are set so as to be disposed at a position corresponding to the position of the elastic plastic damper 5 that is laid. 1 to 4, the axial length of the partial section 31 of the existing structural member 3 and the length of the elastic-plastic damper 5 are the same, but this is not always necessary.

既存構造部材3の一部区間31において成方向の一部が除去されることで、残された部分(塑性変形部33)の成方向(面内方向)の剛性が一部区間31以外の区間の剛性より低下するため、一部区間31の残存部分が成方向のせん断力と曲げモーメントを受けたときにせん断変形し易い状態にあり、せん断変形により塑性変形可能な塑性変形部33になる。一部区間31は図4に示すように既存構造部材3の軸方向には除去部分32の両端を結ぶ区間になる。除去部分32の形成時には除去部分32の隅角部はその周辺の残存部分に応力の集中が生じないよう、曲線状に除去される。   Sections other than the partial section 31 have rigidity in the forming direction (in-plane direction) of the remaining part (plastic deformation portion 33) by removing a part of the forming direction in the partial section 31 of the existing structural member 3 Therefore, when the remaining portion of the partial section 31 is subjected to a shearing force and a bending moment in the forming direction, it is in a state of being easily sheared and becomes a plastically deformable portion 33 that can be plastically deformed by shear deformation. As shown in FIG. 4, the partial section 31 is a section connecting both ends of the removal portion 32 in the axial direction of the existing structural member 3. When the removal portion 32 is formed, the corner portion of the removal portion 32 is removed in a curved line so that stress concentration does not occur in the remaining portion around the removal portion 32.

隣接する主構造部材1、1間に互いに距離を置いて架設される複数本の補強部材4、4は主構造部材1側の端部において主構造部材1に剛に接合される。隣接する補強部材4、4同士も両者間に跨設され、剛に接合される弾塑性ダンパー5を介して互いに接合されることで、複数本の補強部材4、4は1本の連続した部材として主構造部材1、1間に架設された状態になる。   A plurality of reinforcing members 4, 4 installed at a distance from each other between the adjacent main structural members 1, 1 are rigidly joined to the main structural member 1 at the end on the main structural member 1 side. Adjacent reinforcing members 4, 4 are also stretched between them and joined together via an elastic-plastic damper 5 that is rigidly joined, so that the plurality of reinforcing members 4, 4 are one continuous member. As a result, the main structural members 1 and 1 are installed.

主構造部材1、1間に架設される補強部材4が図1、図5に示すように2本の場合、各補強部材4は主構造部材1から張り出した片持ち梁になり、図6に示すように3本以上の場合も、主構造部材1側に位置する補強部材4は片持ち梁になる。主構造部材1、1間の架設本数が3本以上の場合の、軸方向中間部側に位置する(主構造部材1側以外の)補強部材4は軸方向の両側(両端部)に剛に接合される弾塑性ダンパー5、5から材軸に直交する方向の曲げモーメントを受けるため、両端固定梁として挙動する。   When there are two reinforcing members 4 installed between the main structural members 1 and 1 as shown in FIGS. 1 and 5, each reinforcing member 4 is a cantilever projecting from the main structural member 1, and FIG. As shown, also in the case of three or more, the reinforcing member 4 located on the main structural member 1 side is a cantilever beam. When the number of installations between the main structural members 1 and 1 is 3 or more, the reinforcing member 4 (other than the main structural member 1 side) located on the axially intermediate portion side is rigid on both axial sides (both ends). Since it receives a bending moment in a direction orthogonal to the material axis from the elastic-plastic dampers 5 and 5 to be joined, it behaves as a both-end fixed beam.

この関係で、フレーム2への水平力の作用(短期荷重)による主構造部材1、1間の相対変形時には、主構造部材1側に位置する補強部材4の主構造部材1側の端部の曲げモーメントが最大になる。このときの補強部材4の主構造部材1側の端部が曲げモーメントによって降伏することになれば、弾塑性ダンパー5の降伏を先行させることができないため、弾塑性ダンパー5の降伏前に補強部材4のいずれかの部分に降伏が生じないようにする必要がある。   In this relationship, at the time of relative deformation between the main structural members 1 and 1 due to the action of a horizontal force on the frame 2 (short-term load), the end of the reinforcing member 4 located on the main structural member 1 side on the main structural member 1 side The bending moment is maximized. If the end on the main structural member 1 side of the reinforcing member 4 at this time yields due to a bending moment, the yielding of the elastic-plastic damper 5 cannot be preceded, so the reinforcing member before the yielding of the elastic-plastic damper 5 It is necessary to prevent yielding in any part of 4.

そこで、軸方向に互いに距離を置いて配置される複数本の補強部材4、4の内、主構造部材1側に位置する補強部材4の主構造部材1寄りの端部の断面二次モーメントが、同じ補強部材4の軸方向中間部寄りの端部の断面二次モーメントより大きくなるように、補強部材4の立面形状や断面形状が設定される。このことは、補強部材4が軸方向に生じる曲げモーメント分布に対応した立面形状等に形成されることでもある。   Therefore, among the plurality of reinforcing members 4, 4 arranged at a distance from each other in the axial direction, the cross-sectional secondary moment of the end portion of the reinforcing member 4 located on the main structural member 1 side near the main structural member 1 is The elevation shape and the cross-sectional shape of the reinforcing member 4 are set so as to be larger than the cross-sectional secondary moment of the end portion of the same reinforcing member 4 near the intermediate portion in the axial direction. This also means that the reinforcing member 4 is formed in an elevational shape corresponding to the bending moment distribution generated in the axial direction.

主構造部材1、1間に架設される補強部材4が3本以上の場合、主構造部材1側以外の補強部材4は上記のように両端固定梁として挙動するため、図6に示すように主構造部材1側に位置する補強部材4と同様に軸方向に生じる曲げモーメント分布に対応し、軸方向の両端部の断面二次モーメントが中央部の断面二次モーメントより大きくなる立面形状等に形成される。このように隣接する主構造部材1、1間に架設される補強部材4の本数に拘わらず、全補強部材4が軸方向に生じる曲げモーメント分布に対応した立面形状等に形成されることで、軸方向のいずれの部分にも降伏の発生の可能性がなくなる。   When there are three or more reinforcing members 4 installed between the main structural members 1 and 1, the reinforcing members 4 other than the main structural member 1 behave as fixed beams at both ends as described above. Corresponding to the bending moment distribution generated in the axial direction in the same manner as the reinforcing member 4 located on the main structural member 1 side, the vertical surface shape in which the cross-sectional secondary moment at both ends in the axial direction is larger than the cross-sectional secondary moment at the central portion, etc. Formed. Thus, regardless of the number of reinforcing members 4 installed between the adjacent main structural members 1, 1, all the reinforcing members 4 are formed in an elevational shape corresponding to the bending moment distribution generated in the axial direction. The possibility of yielding in any part in the axial direction is eliminated.

図1、図5−(a)〜(c)は主構造部材1、1間に2本の補強部材4、4が架設され、両補強部材4、4間に弾塑性ダンパー5が跨設された場合の例を示す。これらの場合、各補強部材4は主構造部材1側の端部において主構造部材1に剛に接合されることで、弾塑性ダンパー5から受けるせん断力と曲げモーメントに対して片持ち梁として挙動するため、各補強部材4の主構造部材1側の端部の断面二次モーメントが弾塑性ダンパー5側の端部の断面二次モーメントより大きくなるように補強部材4の立面形状、または断面形状が調整される。図1では補強部材4の全長を軸方向に3区間に区分し、弾塑性ダンパー5側の区間の成(高さ)を一定にし、主構造部材1寄りの区間と中間の区間のそれぞれの成が弾塑性ダンパー5側から主構造部材1側へ次第に拡大し、主構造部材1寄りの区間の成が弾塑性ダンパー5寄りの区間の成以上になるような立面形状に補強部材4を形成している。   1 and FIGS. 5 (a) to 5 (c), two reinforcing members 4, 4 are laid between the main structural members 1, 1, and an elastic-plastic damper 5 is straddled between the reinforcing members 4, 4. An example is shown. In these cases, each reinforcing member 4 behaves as a cantilever beam against the shearing force and bending moment received from the elastic-plastic damper 5 by being rigidly joined to the main structural member 1 at the end on the main structural member 1 side. Therefore, the vertical shape or cross section of the reinforcing member 4 is such that the secondary moment of section of the end of each reinforcing member 4 on the main structural member 1 side is greater than the sectional moment of inertia of the end of the elastic plastic damper 5 side. The shape is adjusted. In FIG. 1, the total length of the reinforcing member 4 is divided into three sections in the axial direction, the section (height) of the section on the elasto-plastic damper 5 side is made constant, and each of the sections closer to the main structural member 1 and the intermediate section is formed. Is gradually expanded from the elastoplastic damper 5 side to the main structural member 1 side, and the reinforcing member 4 is formed in an elevational shape so that the section near the main structural member 1 is equal to or greater than the section near the elastoplastic damper 5. doing.

図5−(a)は図1と同じく、主構造部材1、1が柱で、既存構造部材3が梁である場合に、補強部材4の成が弾塑性ダンパー5側から主構造部材1側へ次第に拡大する立面形状に補強部材4を形成した場合である。(b)は主構造部材1、1が梁で、既存構造部材3が梁間に架設された間柱である場合に、補強部材4の成が弾塑性ダンパー5側から主構造部材1側へ次第に拡大する立面形状に補強部材4を形成した場合、(c)は一方の主構造部材1がブレースで、他方の主構造部材1が梁であり、既存構造部材3がブレースと梁間に跨設されるブラケットである場合に、補強部材4の成が弾塑性ダンパー5側から主構造部材1側へ次第に拡大する立面形状に補強部材4を形成した場合である。   5A is the same as FIG. 1, when the main structural members 1 and 1 are columns and the existing structural member 3 is a beam, the reinforcement member 4 is formed from the elastic-plastic damper 5 side to the main structural member 1 side. This is a case where the reinforcing member 4 is formed in an upright shape that gradually expands. (B) shows that when the main structural members 1 and 1 are beams and the existing structural members 3 are studs erected between the beams, the formation of the reinforcing members 4 gradually expands from the elastic-plastic damper 5 side to the main structural member 1 side. When the reinforcing member 4 is formed in an upright shape, (c) shows that one main structural member 1 is a brace, the other main structural member 1 is a beam, and an existing structural member 3 is straddled between the brace and the beam. This is a case where the reinforcing member 4 is formed in an elevational shape in which the reinforcement member 4 gradually expands from the elastic-plastic damper 5 side to the main structural member 1 side.

図5−(a)では図1〜図4に示す例と同様、既存構造部材3の軸方向中間部の、弾塑性ダンパー5の設置位置に対応した位置に一部区間31(除去部分32、または塑性変形部33)を配置している。図5−(b)、(c)では既存構造部材3が(a)の既存構造部材3と相違するが、これらにおいても既存構造部材3の軸方向中間部の、弾塑性ダンパー5の設置位置に対応した位置に一部区間31を配置している。但し、既存構造部材3は(a)の場合と異なり、スラブ7を支持する必要がないため、一部区間31においては既存構造部材3の成方向両側に除去部分32、32を形成し、成方向中間部に塑性変形部33を形成している。図5−(b)、(c)において既存構造部材3がH形断面の場合、フランジとウェブの一部を含む成方向の両側から除去部分32が形成されるため、残存部分である塑性変形部33はウェブに形成される。   In FIG. 5- (a), as in the example shown in FIGS. 1 to 4, a partial section 31 (removal portion 32, the intermediate portion in the axial direction of the existing structural member 3 is located at a position corresponding to the installation position of the elastic-plastic damper 5. Alternatively, a plastic deformation portion 33) is arranged. In FIGS. 5B and 5C, the existing structural member 3 is different from the existing structural member 3 in FIG. 5A, but also in these, the installation position of the elastic-plastic damper 5 in the intermediate portion in the axial direction of the existing structural member 3 A partial section 31 is arranged at a position corresponding to. However, unlike the case of (a), the existing structural member 3 does not need to support the slab 7, and therefore, in some sections 31, removal portions 32 and 32 are formed on both sides of the existing structural member 3 in the forming direction. A plastic deformation portion 33 is formed in the middle portion in the direction. When the existing structural member 3 has an H-shaped cross section in FIGS. 5B and 5C, the removed portions 32 are formed from both sides in the forming direction including the flange and a part of the web. The portion 33 is formed on the web.

図6−(a)〜(c)は隣接する主構造部材1、1間に架設される補強部材4が3本以上である場合の、補強部材4の形状例と既存構造部材3への塑性変形部33の形成例を示す。(a)は主構造部材1、1が柱で、既存構造部材3が梁である場合に、主構造部材1、1間に3本の補強部材4を架設した場合である。(b)、(c)は主構造部材1、1が梁で、既存構造部材3が間柱である場合に、主構造部材1、1間に3本、もしくは4本の補強部材4を架設した場合である。図6では弾塑性ダンパー5を方形状に簡略化して示している。図6−(b)、(c)では既存構造部材3が間柱である点で、図5−(b)と共通するため、既存構造部材3には成方向の両側から除去部分32が形成され、一部区間31において残されたウェブが塑性変形部33になる。   6A to 6C show examples of the shape of the reinforcing member 4 and the plasticity to the existing structural member 3 when there are three or more reinforcing members 4 installed between the adjacent main structural members 1 and 1. An example of forming the deformable portion 33 is shown. (A) is a case where three reinforcing members 4 are installed between the main structural members 1 and 1 when the main structural members 1 and 1 are pillars and the existing structural member 3 is a beam. (B) and (c), when the main structural members 1 and 1 are beams and the existing structural member 3 is a stud, three or four reinforcing members 4 are installed between the main structural members 1 and 1. Is the case. In FIG. 6, the elasto-plastic damper 5 is shown in a simplified rectangular shape. 6 (b) and 6 (c), the existing structural member 3 is a stud, and is common to FIG. 5 (b). Therefore, the existing structural member 3 is formed with removal portions 32 from both sides in the forming direction. The web left in the partial section 31 becomes the plastic deformation portion 33.

主構造部材1、1間に3本以上の補強部材4が架設される場合、補強部材4の軸方向の両側に位置する補強部材4は主構造部材1に剛に接合されて片持ち梁になる。このため、図5に示す例の補強部材4と同様に、その補強部材4の主構造部材1側の端部の断面二次モーメントが弾塑性ダンパー5側の端部の断面二次モーメントより大きくなるように補強部材4の立面形状、または断面形状を含む立体形状が調整される。   When three or more reinforcing members 4 are installed between the main structural members 1 and 1, the reinforcing members 4 located on both sides in the axial direction of the reinforcing member 4 are rigidly joined to the main structural member 1 to be cantilevered. Become. For this reason, like the reinforcing member 4 in the example shown in FIG. 5, the sectional secondary moment at the end of the reinforcing member 4 on the main structural member 1 side is larger than the sectional secondary moment at the end on the elastic-plastic damper 5 side. Thus, the elevation shape of the reinforcing member 4 or the three-dimensional shape including the cross-sectional shape is adjusted.

軸方向の中間部に位置する補強部材4は軸方向の両端部において弾塑性ダンパー5、5に剛に接合されることで、両端固定梁として挙動しようとするため、補強部材4の形状は前記のように軸方向に生じる曲げモーメント分布に対応し、例えば図示するように軸方向両端部の断面二次モーメント(成)が中央部の断面二次モーメント(成)より大きくなるように調整される。図6−(a)〜(c)では軸方向の中間部に位置する補強部材4の両端部の成が軸方向の両側に位置する補強部材4の両端部の成と等しくなっているが、両側の補強部材4の両端部の成より大きい場合も小さい場合もある。   The reinforcing member 4 positioned in the axial intermediate portion is rigidly joined to the elastic-plastic dampers 5 and 5 at both axial end portions so as to behave as both-end fixed beams. Corresponding to the bending moment distribution generated in the axial direction, for example, as shown in the figure, the cross-sectional secondary moment (composition) at both ends in the axial direction is adjusted to be larger than the cross-sectional secondary moment (composition) at the central portion. . 6 (a) to 6 (c), both ends of the reinforcing member 4 positioned at the intermediate portion in the axial direction are equal to the ends of the reinforcing member 4 positioned on both sides in the axial direction. It may be larger or smaller than both ends of the reinforcing members 4 on both sides.

1……主構造部材、2……フレーム、
3……既存構造部材、31……一部区間、32……除去部分、33……塑性変形部、
4……補強部材、
5……弾塑性ダンパー、51……塑性変形部、52……接合部、6……ボルト、
7……スラブ。
1 ... Main structural member, 2 ... Frame,
3 ... Existing structural member, 31 ... Partial section, 32 ... Removal part, 33 ... Plastic deformation part,
4 …… Reinforcing member,
5 ... Elastic-plastic damper, 51 ... Plastic deformation part, 52 ... Joint part, 6 ... Bolt,
7 …… Slab.

Claims (3)

並列する主構造部材間に架設され、前記主構造部材を含む構面の面内方向にせん断変形し得る既存構造部材に弾塑性ダンパーを付加する弾塑性ダンパーの取付構造であり、
前記既存構造部材をせん断変形させるせん断力の作用面に直交する方向に、前記既存構造部材に沿って複数本の補強部材が軸方向に互いに距離を置いて配置され、軸方向の両側に位置する前記補強部材が前記各主構造部材に接合され、
前記軸方向に距離を置いた補強部材間に面内方向のせん断力を負担してせん断降伏し得る塑性変形部を有する弾塑性ダンパーが跨って設置され、
前記既存構造部材の軸方向の端部を除く一部区間が成方向の一部を残して除去されていることを特徴とする既存構造部材への弾塑性ダンパーの取付構造。
An elastic-plastic damper mounting structure that is laid between parallel main structural members and adds an elastic-plastic damper to an existing structural member that can be shear-deformed in the in-plane direction of the structural surface including the main structural member,
A plurality of reinforcing members are arranged along the existing structural member at a distance from each other in the axial direction in a direction perpendicular to the acting surface of the shearing force that shears and deforms the existing structural member, and are located on both sides in the axial direction. The reinforcing member is joined to each main structural member,
An elastic-plastic damper having a plastically deformable portion that can bear a shearing force in the in-plane direction between the reinforcing members spaced apart in the axial direction and can yield a shear yield,
A structure for attaching an elastic-plastic damper to an existing structural member, wherein a part of the existing structural member excluding an end portion in the axial direction is removed leaving a part in a forming direction.
軸方向に互いに距離を置いて配置される前記複数本の補強部材の内、前記主構造部材側に位置する補強部材の前記主構造部材寄りの端部の断面二次モーメントは軸方向中間部寄りの端部の断面二次モーメントより大きいことを特徴とする請求項1に記載の既存構造部材への弾塑性ダンパーの取付構造。   Of the plurality of reinforcing members arranged at a distance from each other in the axial direction, the secondary moment at the end of the reinforcing member located on the main structural member side near the main structural member is close to the intermediate portion in the axial direction. The structure for mounting an elastic-plastic damper to an existing structural member according to claim 1, wherein the structure is larger than the moment of inertia of the cross section at the end of the structure. 並列する前記主構造部材の立面上、前記既存構造部材の前記一部区間は前記軸方向に隣接する補強部材間に跨設される前記弾塑性ダンパーの設置位置に対応していることを特徴とする請求項1、もしくは請求項2に記載の既存構造部材への弾塑性ダンパーの取付構造。
On the elevational surface of the main structural members arranged in parallel, the partial section of the existing structural member corresponds to an installation position of the elastic-plastic damper straddled between the reinforcing members adjacent in the axial direction. A structure for attaching an elastic-plastic damper to the existing structural member according to claim 1 or 2.
JP2014104959A 2014-05-21 2014-05-21 Elasto-plastic damper mounting structure to existing structural members Active JP6208623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014104959A JP6208623B2 (en) 2014-05-21 2014-05-21 Elasto-plastic damper mounting structure to existing structural members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014104959A JP6208623B2 (en) 2014-05-21 2014-05-21 Elasto-plastic damper mounting structure to existing structural members

Publications (2)

Publication Number Publication Date
JP2015218548A true JP2015218548A (en) 2015-12-07
JP6208623B2 JP6208623B2 (en) 2017-10-04

Family

ID=54778159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014104959A Active JP6208623B2 (en) 2014-05-21 2014-05-21 Elasto-plastic damper mounting structure to existing structural members

Country Status (1)

Country Link
JP (1) JP6208623B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268933A (en) * 1988-04-20 1989-10-26 Kajima Corp Elastic and plastic damper
JPH02176229A (en) * 1988-12-28 1990-07-09 Kajima Corp Elastic and plastic damper of structure
JP2005220714A (en) * 2004-01-06 2005-08-18 Maeda Corp Vibration control device for building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268933A (en) * 1988-04-20 1989-10-26 Kajima Corp Elastic and plastic damper
JPH02176229A (en) * 1988-12-28 1990-07-09 Kajima Corp Elastic and plastic damper of structure
JP2005220714A (en) * 2004-01-06 2005-08-18 Maeda Corp Vibration control device for building

Also Published As

Publication number Publication date
JP6208623B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6842626B2 (en) Elastoplastic history type damper
JP2013057207A (en) Exposure type column base structure of iron frame column
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP2010216611A (en) Seismic response control metallic plate
KR101487134B1 (en) Cantilever Type Vibration Control Device Using Bearings
KR102122028B1 (en) Column type vibration isolation apparatus
JP2006336378A (en) Earthquake resisting wall
JP4395419B2 (en) Vibration control pillar
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP6208623B2 (en) Elasto-plastic damper mounting structure to existing structural members
JP6994846B2 (en) Seismic control structure
JP6117974B1 (en) Joint structure of seismic retrofitting frame
JP5551652B2 (en) Bending-yield elastic-plastic damper
JP2009161937A (en) Damping frame
JP2010018951A (en) Vibration control stud concurrently using viscoelastic damper and buckling restraining brace
JP7052953B2 (en) Damping structure
JP5318298B1 (en) Beam joint structure
JP6769758B2 (en) Vibration damping device
JP2009281074A (en) Connecting vibration control structure of building
JP4411444B2 (en) Shear panel type damper mounting structure to structure
JP6479371B2 (en) Joint structure of seismic control frame
JP5559073B2 (en) Shear deformation type elastic-plastic damper
JP6208621B2 (en) Elasto-plastic damper mounting structure to existing structural members
JP6126789B2 (en) Tank support structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170907

R150 Certificate of patent or registration of utility model

Ref document number: 6208623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250