JP6479371B2 - Joint structure of seismic control frame - Google Patents

Joint structure of seismic control frame Download PDF

Info

Publication number
JP6479371B2
JP6479371B2 JP2014175940A JP2014175940A JP6479371B2 JP 6479371 B2 JP6479371 B2 JP 6479371B2 JP 2014175940 A JP2014175940 A JP 2014175940A JP 2014175940 A JP2014175940 A JP 2014175940A JP 6479371 B2 JP6479371 B2 JP 6479371B2
Authority
JP
Japan
Prior art keywords
frame
erection
construction material
force
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014175940A
Other languages
Japanese (ja)
Other versions
JP2016050417A (en
Inventor
尚志 前阪
尚志 前阪
栗野 治彦
治彦 栗野
友貴 矢口
友貴 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2014175940A priority Critical patent/JP6479371B2/en
Publication of JP2016050417A publication Critical patent/JP2016050417A/en
Application granted granted Critical
Publication of JP6479371B2 publication Critical patent/JP6479371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は距離を置いて対向する柱と柱間に架設される梁を有する架構の柱の対向する方向の振動を、引張力等を負担し得る架設材の引張力等を利用して減衰させる制震架構の接合部構造に関するものである。   The present invention attenuates vibrations in the opposing direction of a column of a frame having columns facing each other at a distance and the beam laid between the columns by using the tensile force of the construction material that can bear the tensile force and the like. It relates to the joint structure of a seismic control frame.

PC鋼材や鋼材等、引張力を負担し得る引張材の引張力を利用して架構(構造体)の地震時等の振動を減衰させようとする場合、引張材と架構との間に生じる相対変位、または相対変位時の相対速度を引張材と架構との間に跨って設置される制震装置(ダンパ)に伝達させることになる(特許文献1参照)。   When attempting to dampen the vibration of a frame (structure) during an earthquake using the tensile force of a tensile material that can bear the tensile force, such as PC steel or steel, the relative generated between the tensile material and the frame The displacement or the relative speed at the time of relative displacement is transmitted to a vibration control device (damper) installed across the tension member and the frame (see Patent Document 1).

引張材と架構との間の相対変位は、地震時等に架構が水平力の作用方向に変形したときに引張材が架構の変形に追従せずに元の位置に留まることにより発生する。引張材が架構の変形に拘わらず、元の位置に留まることは、架構の下層階と上層階との間の層間変形による相対変位が生じることにより実現されるが(段落0056、図4)、引張材の両端部を架構の同一階に接続しても架構との間に相対変位を生じさせることはできないため、必ず引張材の両端部を架構の下層階と上層階に接続することが必要になる。   The relative displacement between the tension member and the frame is generated when the frame is deformed in the direction of the horizontal force during an earthquake or the like, and the tension member does not follow the deformation of the frame and stays at the original position. Although the tensile material remains in the original position regardless of the deformation of the frame, it is realized by the relative displacement caused by the interlayer deformation between the lower floor and the upper floor of the frame (paragraph 0056, FIG. 4). Even if both ends of the tensile material are connected to the same floor of the frame, relative displacement cannot be generated between them. Therefore, it is necessary to connect both ends of the tensile material to the lower and upper floors of the frame. become.

この関係で、引張材は水平方向と鉛直方向に対して傾斜した方向に架設されるが、架構の振動は正負の向きに交互に生じるから、鉛直線に対して対称に架設される形になる。この2方向に架設された引張材の交点が架構の上層階に接続されることになるが、振動する架構に対して交点を元の位置に留まらせる上では、交点を直接、架構に対し、水平方向に自由に移動可能に接続することが困難であるから、架構に対して水平方向に自由にスライド可能な移動体(スライダ)に交点を接続することが必要になっている(段落0043、図2)。   In this relationship, the tensile material is installed in a direction inclined with respect to the horizontal direction and the vertical direction, but the vibration of the frame alternately occurs in the positive and negative directions, so that it is installed symmetrically with respect to the vertical line. . The intersection of the tensile members erected in these two directions will be connected to the upper floor of the frame. However, in order to keep the intersection in the original position for the vibrating frame, the point of intersection directly to the frame, Since it is difficult to connect freely movable in the horizontal direction, it is necessary to connect the intersection point to a movable body (slider) that can freely slide in the horizontal direction with respect to the frame (paragraph 0043, Figure 2).

張力を与えられない限り、形態を維持する能力を持たないケーブルのような引張材は2方向に交差して連結された状態でも交点としての形態を維持することができないため、引張材が2方向に架設される以上、その2方向の引張材の交点を架構の振動から絶縁させるための移動体を併用することは不可欠になる。   Unless tension is applied, a tensile material such as a cable that does not have the ability to maintain its form cannot maintain its shape as an intersection even in a state where it is connected across two directions. Therefore, it is indispensable to use a moving body to insulate the intersection of the tensile members in the two directions from the vibration of the frame.

特開2008−240289号公報(請求項1、段落0039〜0063、図4)JP 2008-240289 A (Claim 1, paragraphs 0039 to 0063, FIG. 4)

このように特許文献1では架構の振動から独立した引張材を、架構の振動時に架構との間で水平方向に相対変位を生じるように架構に接続し、制震装置に水平方向の相対変位を生じさせる上で、架構に対して水平方向に移動可能な移動体を架構内に配置する必要が生じているため、制震装置に減衰力を発生させるための構成要素が多くなっている。   In this way, in Patent Document 1, a tensile material independent from the vibration of the frame is connected to the frame so that a relative displacement is generated in the horizontal direction with the frame when the frame is vibrated. Since it is necessary to arrange a movable body that can move in the horizontal direction with respect to the frame in order to generate it, the number of components for generating a damping force in the vibration control device is increased.

また架構に振動が生じ、制震装置に減衰力を発生させるとき、引張材には制震装置に生じる減衰力の反力が作用するが、引張材は水平と鉛直に対して傾斜して架設されていることから、反力としては引張材に生じる引張力の内、水平成分のみが抵抗できるに過ぎないため、引張材に生じる引張力の反力としての利用効率が悪い。   In addition, when vibration is generated in the frame and damping force is generated in the vibration control device, the reaction force of the damping force generated in the vibration control device acts on the tensile material. Therefore, as the reaction force, only the horizontal component of the tensile force generated in the tensile material can be resisted, so the utilization efficiency as the reaction force of the tensile force generated in the tensile material is poor.

本発明は上記背景より、架構とは分離して架設される引張材等を用いて制震装置に減衰力を発生させる上で、架構内に組み込まれる移動体の併用を必要とせず、制震装置から受ける反力の負担効率のよい形態の引張材等の架設材を用いた制震架構の接合部構造を提案するものである。   From the background described above, the present invention does not require the combined use of a moving body incorporated in the frame in order to generate a damping force in the vibration control device using a tension member or the like that is installed separately from the frame. We propose a joint structure for a seismic control frame that uses a construction material such as a tensile material that has a good load-bearing efficiency for the reaction force received from the device.

請求項1に記載の発明の制震架構の接合部構造は、距離を置いて対向する柱と、この対向する柱間に架設され、前記柱に接合される梁を有する架構において、前記架構から独立した架設材が前記柱の対向する方向に架設され、軸方向の少なくとも一部において地盤に直接、もしくは間接的に定着され、この架設材と前記架構との間に、前記架構との間の前記架設材の軸方向の相対変位の発生時に前記架設材の軸方向の相対変位が軸方向の変形となって減衰力を発生する制震装置が介在していることを構成要件とする。
The joint structure of the seismic response control frame according to the first aspect of the present invention is a structure having a column facing at a distance and a beam installed between the facing columns and joined to the column. An independent erection material is erected in the direction in which the pillars face each other, and is fixed directly or indirectly to the ground in at least a part of the axial direction, and between this erection material and the frame, between the frame When the relative displacement in the axial direction of the erection material is generated, a seismic control device that intervenes in the axial direction of the erection material and deforms in the axial direction to generate a damping force is included.

柱は梁の架設方向であるスパン方向に対向するが、その方向に直交する方向の桁行方向にも配列し、架構は基本的にこれら2方向に対向する柱と梁、及び梁の方向に直交する方向に架設される桁から構成される。「柱間に架設される梁を有する架構」はスパン方向にも桁行方向にも少なくとも1スパン、すなわち各方向に2本の柱を有すればよく、図4等に示すように必ずしも複数スパン分の柱を有する必要はない。   The columns are opposed to the span direction, which is the construction direction of the beam, but they are also arranged in the row direction perpendicular to that direction, and the frame is basically perpendicular to the columns and beams that are opposed to these two directions, and the direction of the beam. It consists of girders that are erected in the direction of “A frame with beams installed between columns” needs to have at least one span in both the span direction and the row direction, that is, two columns in each direction. As shown in FIG. There is no need to have a pillar.

地震時等の架構の変形(振動)は梁の架設方向(スパン方向)と桁の架設方向(桁行方向)に発生し得るが、制震装置による架構の振動減衰は基本的には梁の架設方向を対象にし、場合により桁の架設方向も対象にする。架設材の架設方向は柱の対向する方向(スパン方向)であるから、実質的に水平方向であるが、必ずしも水平でなければならないことはなく、水平に対して傾斜した方向であることもある。架構の振動の方向は架設材の架設方向である。   Deformation (vibration) of the frame during an earthquake, etc. can occur in the beam erection direction (span direction) and the beam erection direction (girder row direction), but the vibration damping of the frame by the seismic control device is basically erection of the beam Target the direction and, in some cases, the installation direction of the girder. Since the installation direction of the installation material is the direction in which the columns face each other (span direction), it is substantially horizontal, but it does not necessarily have to be horizontal and may be inclined with respect to the horizontal. . The direction of vibration of the frame is the installation direction of the installation material.

梁3の架設方向は柱2、2の対向する方向であるが、梁3は隣接する柱2、2間に必ずしも水平に架設されるとは限らず、山形状に、あるいは湾曲した状態で架設されることもある。図4−(a)、(b)は梁3が平面トラス、もしくは立体トラスからなる場合の架設例を示しているが、梁3の形態と柱2への接合方法は問われない。   The erection direction of the beam 3 is the direction in which the columns 2 and 2 are opposed to each other. However, the beam 3 is not necessarily laid horizontally between the adjacent columns 2 and 2 but is erected in a mountain shape or in a curved state. Sometimes. 4- (a) and (b) show an example of installation when the beam 3 is a flat truss or a solid truss, but the form of the beam 3 and the method of joining to the column 2 are not limited.

「架設材が架構から独立して架設される」とは、図8に示すように地震時等に架構1が梁3の架設方向に振動(変形)を生じるときに、架設材5が架構1の振動に追従することなく、元の架設状態を維持することを言い、架構1の振動時にも架設材5は元の架設状態を維持することで、架構1との間に相対変位が生じる。   “The erection material is erected independently from the framing” means that the erection material 5 is oscillated (deformed) in the erection direction of the beam 3 during an earthquake or the like as shown in FIG. This means that the original erection state is maintained without following the vibration of the frame 1, and the erection material 5 maintains the original erection state even when the frame 1 vibrates, thereby causing relative displacement between the frame 1 and the frame 1.

架設材5は図1〜図3に示すように梁3の架設方向に架構1とは制震装置6を介して接続される。架構1の桁4の架設方向の振動も制震装置6を用いて減衰させる場合には、図2、図3に示すように桁行方向にも架設材5が架設され、架構1のいずれかの部分との間に制震装置6が介在させられる。制震装置6が配置される「架構」は架構1のいずれかの部分を言い、梁3の架設方向には架構1を構成する柱2、もしくは梁3、または柱・梁の接合部の他、これらのいずれかから架設材5の架設位置に向け、張り出すように突設されるブラケット等を指す。架設材5の地盤12への定着部分以外の区間は架構1の梁3と平行に架設され、制震装置6は架構1の柱2と架設材5との間に架設される(請求項3)。 As shown in FIGS. 1 to 3, the erection material 5 is connected to the gantry 1 via a vibration control device 6 in the erection direction of the beam 3. When the vibration in the erection direction of the girder 4 of the frame 1 is also damped by using the vibration control device 6, the erection material 5 is erected in the girder direction as shown in FIGS. The vibration control device 6 is interposed between the parts. The “frame” on which the vibration control device 6 is arranged refers to any part of the frame 1, and in the erection direction of the beam 3, the column 2 constituting the frame 1, the beam 3, or the joint of the column / beam A bracket or the like that protrudes from either of them toward the erection position of the erection material 5. Sections other than the fixing portion of the construction material 5 to the ground 12 are constructed in parallel with the beam 3 of the frame 1, and the vibration control device 6 is constructed between the column 2 of the frame 1 and the construction material 5. ).

架設材5の架設状態は架構1の振動とは独立している必要があるから、架設材5の軸方向(長さ方向)の少なくとも一部は地盤12からの反力を得るために、架構1には接続されず、地盤12に直接、もしくは間接的に定着される。「軸方向の少なくとも一部」とは、主に軸方向の両端部の場合と、両端部を除く中間部の区間である場合と、軸方向の少なくとも一方の端部と中間部の場合がある。架設材5の内、地盤12に定着される部分以外の区間は架構1には直接、接続されず、架構1とは分離した(絶縁された)状態に保たれ、その架構1と分離した区間の内の少なくともいずれかの部分に制震装置6が介在させられる。   Since the erection state of the erection material 5 needs to be independent of the vibration of the erection frame 1, at least a part of the erection material 5 in the axial direction (length direction) is required to obtain a reaction force from the ground 12. 1 and is fixed directly or indirectly to the ground 12. “At least a part in the axial direction” mainly includes a case of both ends in the axial direction, a case of an intermediate portion excluding both ends, and a case of at least one end and an intermediate portion in the axial direction. . Sections other than the part fixed to the ground 12 in the construction material 5 are not directly connected to the frame 1 and are kept separated (insulated) from the frame 1 and separated from the frame 1 The vibration control device 6 is interposed in at least one of the portions.

「架設材が間接的に地盤に定着される」とは、架設材5の一部が直接には、架設材5の軸方向の少なくとも一部に配置され、架設材5の引張力等の軸方向力を負担しながら、地盤12に伝達する反力部材10に接続されることを言う(請求項2)。架設材5の軸方向力は圧縮力を含む。架設材5は軸方向の両端部、もしくは中間部を含む少なくとも2箇所において反力部材10、10に接続され、変位を拘束される(請求項2)。反力部材10は地盤12に定着され、架設材5の軸方向力を負担し、地盤12に伝達する(請求項2)。架設材5は軸方向の一部において地盤12に定着され、それ以外の区間において架構1に接続されずに架構1から分離しながら架構1の振動方向に架設されることで、地盤12から反力を軸方向力として受けることができる。 “The construction material is indirectly fixed to the ground” means that a part of the construction material 5 is directly disposed on at least a part of the construction material 5 in the axial direction, and the shaft such as the tensile force of the construction material 5 is It is connected to the reaction force member 10 that transmits to the ground 12 while bearing the directional force (claim 2). The axial force of the construction material 5 includes a compressive force. The erection material 5 is connected to the reaction force members 10 and 10 at at least two locations including both ends in the axial direction or an intermediate portion, and the displacement is restrained (Claim 2). The reaction force member 10 is fixed to the ground 12, bears the axial force of the construction material 5, and transmits it to the ground 12 (claim 2). The construction material 5 is fixed to the ground 12 in a part in the axial direction, and is separated from the construction 1 without being connected to the construction 1 in the other sections, and is constructed in the vibration direction of the construction 1 so as to be separated from the ground 12. The force can be received as an axial force.

また架設材5の地盤5への定着部分を除く区間を梁3の架設方向に平行(水平)に、架構1とは接続されない状態で架設することが可能であるため、架構1の振動時にも架設材5を架構1に追従させることなく、架構1から独立させて柱2、2の対向する方向(スパン方向)に、すなわち水平等に架設した状態を維持することが可能になる。この結果、架構1に梁3の架設方向(架設材5の架設方向)の振動が生じたときには、架構1の振動に拘わらず、架設材5は架構1の振動前の状態を維持するため、架構1との間に相対変位が生じる。この相対変位がそのまま制震装置6に生じる相対変位になる。   Further, since the section excluding the fixing portion of the erection material 5 on the ground 5 can be erected in parallel (horizontal) to the erection direction of the beam 3 and not connected to the framing 1, Without causing the erection material 5 to follow the framing 1, it is possible to maintain the erection state in the direction (span direction) in which the pillars 2 and 2 are opposed to each other, that is, horizontally, independently. As a result, when vibration in the erection direction of the beam 3 (erection direction of the erection material 5) occurs in the frame 1, the erection material 5 maintains the state before vibration of the frame 1 regardless of the vibration of the frame 1. A relative displacement occurs between the frame 1 and the frame 1. This relative displacement becomes the relative displacement generated in the vibration control device 6 as it is.

反力部材10は架設材5に作用する引張力や圧縮力を負担しながら地盤12に伝達するため、反力部材10には水平力に対する抵抗要素(耐震要素)となり得る耐震壁、図4−(a)に示す柱・梁のフレーム、(b)に示すブレース付きのフレーム、もしくは図5−(b)に示す柱単体の他、同図に示すケーブルのような斜材とそれに連続して接続される地盤アンカー11の組み合わせ等が使用される。反力部材10は架設材5が地盤12に定着されるべき位置である架設材5の軸方向の少なくとも一部に配置されるが、主に架設材5の端部、もしくは中間部に配置される。   Since the reaction force member 10 transmits the tensile force and the compression force acting on the construction material 5 to the ground 12 while bearing it, the reaction force member 10 has a seismic wall which can be a resistance element (seismic element) against horizontal force, FIG. In addition to the pillar / beam frame shown in (a), the frame with braces shown in (b), or the single pillar shown in FIG. 5- (b), an oblique material such as a cable shown in FIG. A combination of ground anchors 11 to be connected is used. The reaction force member 10 is arranged at least in the axial direction of the construction material 5 where the construction material 5 is to be fixed to the ground 12, but is mainly arranged at an end portion or an intermediate portion of the construction material 5. The

反力部材10の構造(形態)は架設材5が引張力のみ、もしくは圧縮力のみを負担できるか、引張力と圧縮力を負担できるかによって決められることもある。反力部材10は図4、図5に示すように脚部やそれに一体化する基礎において地盤12中に埋設されることにより、または脚部等を貫通する地盤アンカー11が地中に定着されることにより地盤12に定着される。   The structure (form) of the reaction force member 10 may be determined depending on whether the construction material 5 can bear only the tensile force, the compressive force, or the tensile force and the compressive force. As shown in FIGS. 4 and 5, the reaction force member 10 is embedded in the ground 12 on the leg or the foundation integrated therewith, or the ground anchor 11 penetrating the leg is fixed in the ground. As a result, it is fixed to the ground 12.

反力部材10が架設材5の軸方向の両端部に配置されるか、両端部を除く中間部の区間等に配置されるかは、基本的には架設材5が引張力と圧縮力のいずれかのみを負担できるか、引張力と圧縮力のいずれをも負担できるかによって決められる。架設材5が引張力、もしくは圧縮力のみを負担できる場合には、架設材5は架構1の変形の向きに引張力、もしくは圧縮力を負担するが、架設材5の引張力は架構1の変形の向き側と反対側に配置される反力部材10で負担される必要があり、圧縮力は架構1の変形の向き側に配置される反力部材10で負担される必要がある。このため、架構1の正負のいずれの向きの変形時にも架設材5に生じる引張力や圧縮力を反力部材10が負担できるよう、反力部材10は図5−(a)、(b)に示すように架設材5の軸方向の両端部に配置される。図5はスパン方向に対称な形をした架構1の片側(左側)のみを示している。   Whether the reaction member 10 is arranged at both ends of the construction material 5 in the axial direction or in an intermediate section other than the both ends is basically determined by whether the construction material 5 has a tensile force and a compression force. It is determined depending on whether only one of them can be borne or whether both tensile force and compressive force can be borne. When the construction material 5 can bear only the tensile force or the compression force, the construction material 5 bears the tensile force or the compression force in the direction of deformation of the structure 1, but the tensile force of the construction material 5 is the same as that of the structure 1. The reaction force member 10 disposed on the opposite side of the deformation direction needs to be borne, and the compressive force needs to be borne by the reaction force member 10 disposed on the deformation direction side of the frame 1. For this reason, the reaction force member 10 is configured so that the reaction force member 10 can bear the tensile force and the compression force generated in the erection material 5 when the frame 1 is deformed in any of the positive and negative directions, as shown in FIGS. As shown in FIG. 4, the construction material 5 is disposed at both ends in the axial direction. FIG. 5 shows only one side (left side) of the frame 1 having a symmetrical shape in the span direction.

反力部材10が架設材5の軸方向の両端部に配置された場合に、架設材5が引張力と圧縮力を負担できる場合には、架構1の変形の向き側に配置された反力部材10に変位を拘束される架設材5に圧縮力が作用し、その側の反力部材10が架設材5の圧縮力を負担することができるため、架設材5が引張力と圧縮力を負担できる場合には、反力部材10は架設材5の軸方向の両端部に配置されることもある。架構1の変形の向き側と反対側に配置される反力部材10は架設材5の引張力を負担する。   When the reaction member 10 is arranged at both ends in the axial direction of the construction material 5 and the construction material 5 can bear the tensile force and the compression force, the reaction force arranged on the deformation direction side of the frame 1. Since the compressive force acts on the construction material 5 whose displacement is constrained to the member 10 and the reaction member 10 on the side can bear the compressive force of the construction material 5, the construction material 5 exerts a tensile force and a compressive force. When the burden can be applied, the reaction force member 10 may be disposed at both ends of the construction material 5 in the axial direction. The reaction force member 10 disposed on the opposite side of the deformation direction of the frame 1 bears the tensile force of the building material 5.

架設材5が引張力と圧縮力を負担できる場合にはまた、図4−(a)、(b)に示すように反力部材10が架設材5の軸方向の中間部に配置されれば、反力部材10に関して架構1の変形側に位置する架設材5の区間には引張力が作用し、反力部材10に関して架構1の変形側の反対側に位置する架設材5の区間には圧縮力が作用するが、いずれの区間の引張力と圧縮力も反力部材10が負担できるため、架設材5の軸方向の中間部の1箇所に反力部材が配置されれば足りることになる。   When the erection material 5 can bear the tensile force and the compression force, the reaction force member 10 is also arranged at the intermediate portion in the axial direction of the erection material 5 as shown in FIGS. 4- (a) and (b). Tensile force acts on the section of the construction material 5 located on the deformation side of the frame 1 with respect to the reaction force member 10, and on the section of the construction material 5 located on the opposite side of the deformation member 1 on the reaction force member 10. Although the compressive force acts, the reaction force member 10 can bear the tensile force and the compressive force in any section. Therefore, it is sufficient if the reaction force member is arranged at one place in the intermediate portion in the axial direction of the construction material 5. .

架設材5は軸方向の一部において地盤12に定着される一方、梁3の架設方向に制震装置6を介して架構1と接続されることで、架構1に梁3の架設方向(架設材5の架設方向)の振動が生じたときには、架設材5は架構1の振動に追従しようとするが、反力部材10に元の位置からの変位を拘束されていることで、元の架設状態を維持するため、架構1との間に相対変位を生じる。この架構1と架設材5との間の相対変位がそのまま制震装置6の軸方向の変形となり、制震装置6は変形量に応じた、または変形時の速度に応じた減衰力を発生する。   The erection material 5 is fixed to the ground 12 in a part of the axial direction, and is connected to the frame 1 via the vibration control device 6 in the erection direction of the beam 3, so that the erection direction of the beam 3 (erection) When the vibration in the erection direction of the material 5 occurs, the erection material 5 tries to follow the vibration of the frame 1, but the displacement from the original position is restrained by the reaction force member 10. In order to maintain the state, a relative displacement is generated between the frame 1 and the frame 1. The relative displacement between the frame 1 and the construction material 5 is directly deformed in the axial direction of the vibration control device 6, and the vibration control device 6 generates a damping force according to the deformation amount or the speed at the time of deformation. .

架設材5の架設方向は架構1の梁3の架設方向であり、実質的に水平方向であるから、架構1の振動時には架設材5との間に架設材5の軸方向に相対変位を生じる。架設材5は架構1との間の相対変位に追従しようとするときに、反力部材10から架構1の変位の向きと逆向きの反力を受ける。架設材5が反力部材10から受ける反力が制震装置6に架設材5の軸方向の変形を与えるから、制震装置6の変形の向きと架設材5の反力(軸方向力)の向きは一致する。   Since the erection direction of the erection material 5 is the erection direction of the beam 3 of the frame 1 and is substantially horizontal, a relative displacement occurs in the axial direction of the erection material 5 with the erection material 5 when the frame 1 vibrates. . When the construction material 5 tries to follow the relative displacement between the construction material 1 and the construction material 1, the construction material 5 receives a reaction force in the direction opposite to the displacement direction of the construction material 1 from the reaction force member 10. The reaction force received by the construction material 5 from the reaction force member 10 gives the vibration damping device 6 axial deformation of the construction material 5, so the direction of deformation of the vibration control device 6 and the reaction force of the construction material 5 (axial force). The direction of is the same.

架設材5が少なくとも軸方向の一部において地盤12に定着されていることで、地盤12への定着部分以外の区間は架構1の振動に追従せずに、常に梁3の架設方向に平行な架設状態を維持できるため、架設材5の定着部分以外の区間を架構1の振動から独立(絶縁)させるための、特許文献1の移動体に相当する部品の設置は不要になり、架構1と架設材5との間に架設される制震装置6に減衰力を発生させるための構成要素が削減される。   Since the erection material 5 is fixed to the ground 12 at least in a part in the axial direction, sections other than the fixing part to the ground 12 do not follow the vibration of the frame 1 and are always parallel to the erection direction of the beam 3. Since the installation state can be maintained, it is not necessary to install a part corresponding to the moving body of Patent Document 1 in order to make the section other than the fixing portion of the installation material 5 independent (insulated) from the vibration of the structure 1. The components for generating a damping force in the vibration control device 6 installed between the installation material 5 are reduced.

また架設材5の地盤12への定着部分以外の区間は架構1の梁3と平行に架設された状態を維持することから、架設材5と架構1との間に水平方向に相対変位が発生し、制震装置6に変形を生じさせ、減衰力を発生させるときに、架設材5の軸方向には制震装置6から受ける反力として引張力、もしくは圧縮力が生じる。ここで、架設材5に生じる制震装置6からの反力の作用方向が架設材5の軸方向に一致していることで、架設材5が負担し得る限りの軸方向力が反力として有効に利用されるため、架設材6が発生する軸方向力の反力としての利用効率が高い。   In addition, since the section other than the fixing portion of the construction material 5 on the ground 12 is maintained parallel to the beam 3 of the frame 1, horizontal displacement occurs between the construction material 5 and the frame 1. When the damping device 6 is deformed and a damping force is generated, a tensile force or a compressive force is generated as a reaction force received from the damping device 6 in the axial direction of the construction material 5. Here, since the acting direction of the reaction force from the vibration control device 6 generated in the construction material 5 coincides with the axial direction of the construction material 5, the axial force that can be borne by the construction material 5 is the reaction force. Since it is used effectively, the utilization efficiency as a reaction force of the axial force generated by the erection material 6 is high.

架構1が梁3の架設方向に振動し、柱2と架設材5との間に水平方向の相対変位が生じたとき、柱2と架設材5との間に介在する制震装置6には架設材5の柱2に対する相対変位の方向と同一方向の変形が生じる状態にあるため、前記のように架設材5と架構1との間の相対変位、または相対変位時の相対速度がそのまま制震装置6に生じ、相対変位等に応じた減衰力を発生する。   When the frame 1 vibrates in the erection direction of the beam 3 and a horizontal relative displacement occurs between the column 2 and the erection material 5, the vibration control device 6 interposed between the column 2 and the erection material 5 includes Since the construction material 5 is deformed in the same direction as the relative displacement direction with respect to the column 2, the relative displacement between the construction material 5 and the frame 1 or the relative speed at the time of relative displacement is directly controlled as described above. A damping force is generated in the seismic device 6 according to the relative displacement and the like.

架構1と架設材5との間の相対変位は主に架構1の梁3の架設方向を対象にするため、その方向の相対変位、または相対変位時の相対速度に応じた減衰力を発生する形式であれば、制震装置6の形態は問われない。具体的には制震装置6には例えば相対変位方向に伸縮するピストンロッドを持つオイルダンパ等の粘性ダンパ、摩擦ダンパの他、相対変位方向の相対移動を利用する形式の粘弾性ダンパ、弾塑性ダンパ等が使用される。   Since the relative displacement between the frame 1 and the building material 5 mainly covers the installation direction of the beam 3 of the frame 1, a relative displacement in that direction or a damping force corresponding to the relative speed at the time of the relative displacement is generated. If it is a form, the form of the damping device 6 will not be ask | required. Specifically, the damping device 6 includes, for example, a viscous damper such as an oil damper having a piston rod that expands and contracts in the relative displacement direction, a friction damper, a viscoelastic damper of a type that uses relative movement in the relative displacement direction, and elastoplasticity. A damper or the like is used.

制震装置6は架構1の柱2と架設材5との間の水平方向等の相対変位時に減衰力を発生するため、地震時や風荷重時の架構1の振動を低減し、揺れの増大を抑制する他、架構1のスパン方向の距離が大きい場合のように、温度変化による架構1の伸縮が無視できない場合には、温度変化による架構1の伸縮時にも架構1内への応力の発生を回避する働きをする。   The seismic control device 6 generates a damping force at the time of relative displacement in the horizontal direction between the column 2 of the frame 1 and the building material 5, thereby reducing the vibration of the frame 1 during an earthquake or wind load and increasing the shaking. If the expansion and contraction of the frame 1 due to temperature changes cannot be ignored, as in the case where the span 1 of the frame 1 is large, stress is generated in the frame 1 even when the frame 1 expands and contracts due to temperature changes. Work to avoid.

制震装置6を介して架構1に接続される架設材5には架構1の振動時に架構1から正負の向きに水平力が作用するため、架設材5はこの水平力を引張力、もしくは圧縮力として負担する。架設材5が例えば引張力しか負担できない引張材である場合には、架設材5の全長の内、制震装置6に関して軸方向のいずれか一方側に位置する区間が引張力を負担し、他方側に位置する区間は軸方向力(圧縮力)を負担しない。架設材5が引張力と圧縮力を負担できる場合には、制震装置6の一方側に位置する区間が引張力を負担し、他方側が圧縮力を負担する。   Since a horizontal force acts in the positive and negative directions from the frame 1 when the frame 1 vibrates, the frame member 5 connected to the frame 1 via the vibration control device 6 applies the horizontal force to a tensile force or a compression force. Bear as a force. When the construction material 5 is, for example, a tension material that can bear only a tensile force, a section located on one side in the axial direction with respect to the vibration control device 6 bears the tensile force in the entire length of the construction material 5. The section located on the side does not bear the axial force (compression force). When the construction material 5 can bear the tensile force and the compressive force, the section located on one side of the vibration control device 6 bears the tensile force, and the other side bears the compressive force.

架設材5には図1、図2に示すようなPC鋼材や鋼材(形鋼)、繊維強化材料の単体の他、図3に示すような複数本の鋼材から組み立てられ、圧縮力を負担し得る平面トラスや立体トラス等が使用される。架設材5が鋼材の場合にも座屈を生じない範囲では圧縮力を負担可能である。架設材5がPC鋼材のような緊張材である場合には、架設材5に予め緊張力が導入されていることで(請求項)、圧縮力の負担によっても収縮することがないため、圧縮力が作用したときにも圧縮力の負担による座屈の発生は回避可能になる。この場合、架設材5に作用すると想定される圧縮力の大きさを超える大きさの緊張力を予め架設材5に付与しておけば、架設材5に圧縮力が作用したときにも架設材5を弛緩させることがないため、制震装置6を安定させた状態で支持し続けることが可能である。 The construction material 5 is assembled from a plurality of steel materials as shown in FIG. 3 in addition to a single piece of PC steel, steel (shape steel) and fiber reinforced material as shown in FIGS. 1 and 2, and bears compressive force. A flat truss or a solid truss to obtain is used. Even when the construction material 5 is a steel material, a compressive force can be borne within a range in which buckling does not occur. When the construction material 5 is a tension material such as a PC steel material, since the tension force is previously introduced into the construction material 5 (Claim 6 ), it does not shrink even under the burden of compressive force. Even when a compressive force is applied, the occurrence of buckling due to the load of the compressive force can be avoided. In this case, if a tension force having a magnitude exceeding the magnitude of the compressive force assumed to act on the construction material 5 is applied to the construction material 5 in advance, the construction material can be applied even when the compression force acts on the construction material 5. Since 5 is not relaxed, it is possible to continue supporting the vibration control device 6 in a stable state.

架設材5に予め緊張力を付与しておく場合にはまた、剛性の小さいPC鋼材等の架設材5が幅方向(径方向)に振動を生じにくくなることで、制震装置6を安定させた状態で保持し易くなるため、架構1の水平方向の振動時にその振動を制震装置6に確実に伝達し、減衰させ易くすることも可能になる。   When tension is applied to the construction material 5 in advance, the construction material 5 such as PC steel having low rigidity is less likely to generate vibration in the width direction (radial direction), thereby stabilizing the vibration control device 6. Therefore, when the frame 1 vibrates in the horizontal direction, the vibration can be reliably transmitted to the vibration control device 6 and can be easily damped.

架構1の振動時、地盤12に対する振幅、すなわち地盤12に対する相対変位量は柱2が1層の場合には柱2の頂部の位置で最大になり、元の架設状態を維持する架設材5との相対変位量も柱2の頂部位置で最大になる。柱2が複数層に亘る場合には、振動の腹になる、柱2の上下の梁3との接合部位置に挟まれた中間区間における地盤12に対する相対変位量が接合部位置における相対変位量より大きくなる。   When the frame 1 vibrates, the amplitude with respect to the ground 12, that is, the relative displacement with respect to the ground 12 is maximum at the position of the top of the column 2 when the column 2 is one layer, and the building material 5 that maintains the original erected state The relative displacement amount is also maximized at the top position of the column 2. When the pillar 2 extends over a plurality of layers, the relative displacement amount with respect to the ground 12 in the intermediate section sandwiched between the joint portions of the pillar 2 and the upper and lower beams 3 that become antinodes of vibration is the relative displacement amount at the joint position. Become bigger.

このことから、架構1と架設材5との相対変位を利用して効果的に制震装置6に減衰力を発生させる上では、架設材5の両端部以外の区間が1層の場合の柱2の頂部、もしくは頂部寄りの位置を、複数層の場合には柱2の梁3との接合部位置以外の中間区間の位置を通り、柱2の対向する方向である梁3の架設方向に平行に架設されることが合理的である。「柱の頂部寄りの位置」とは柱2が1層分の場合は柱2の脚部から頂部(頭部)までの全長の内、脚部より頂部に近い位置を指す。「中間区間の位置」とは、下層側の接合部位置と上層側の接合部位置とに挟まれた中間部の区間を指す。   Therefore, in order to effectively generate a damping force in the vibration control device 6 using the relative displacement between the frame 1 and the building material 5, the column in the case where the section other than the both ends of the building material 5 has one layer is used. In the case of a plurality of layers, the position of the top of 2 or the position near the top passes through the position of the intermediate section other than the position of the joint portion of the pillar 2 with the beam 3, and the direction in which the beam 3 is erected. It is reasonable to install them in parallel. “The position near the top of the column” refers to a position closer to the top than the leg in the total length from the leg to the top (head) of the column 2 when the column 2 is for one layer. The “position of the intermediate section” refers to a section of the intermediate section sandwiched between the joint position on the lower layer side and the joint position on the upper layer side.

制震装置6を架構1と架設材5との間に架設した状態での安定性を高める上では、架設材5は具体的には架構1の柱2の幅方向と高さ方向の少なくともいずれかの方向に並列して配置される(請求項)。これら複数本の架設材5に直接、もしくは間接的に跨って接合板8が配置され、この接合板8が架設材5に直接、もしくは間接的固定され、接合板8と前記架構1との間に制震装置6が架設される(請求項4)。「接合板が全架設材に間接的に跨る」とは、例えば図1−(a)、(b)に示すように全架設材5が連結材7で互いに連結された上で、連結材7に接合板8が固定されるようなことを言う。 In order to improve the stability in a state where the vibration control device 6 is installed between the frame 1 and the building material 5, the building material 5 is concretely at least one of the width direction and the height direction of the column 2 of the frame 1. Are arranged in parallel in these directions (claim 4 ). Directly to all erection member 5 of a plurality of, or is indirectly arranged junction plates 8 over, directly to the junction plate 8 erection member 5, or is indirectly fixed, and the bonding plate 8 the Frame 1 The vibration control device 6 is installed between the two (claim 4) . “Indirectly straddling the joining plate over the entire construction material” means that, for example, as shown in FIGS. 1A and 1B, the entire construction material 5 is connected to each other by the connection material 7 and then the connection material 7. This means that the joining plate 8 is fixed.

架設材5が図3に示すように4本等、複数本の弦材としての架設材構成材51と斜材52から立体トラスを構成する場合には、架設材5が柱2の幅方向と高さ方向に並列して配置される形に相当する。   As shown in FIG. 3, when the three-dimensional truss is constructed from the construction material constituting material 51 and the diagonal material 52 as a plurality of string materials such as four as shown in FIG. 3, the construction material 5 is arranged in the width direction of the column 2. This corresponds to a shape arranged in parallel in the height direction.

図1は架設材5を柱2の幅方向と高さ方向に並列させた場合の例を示すが、「柱の幅方向と高さ方向の少なくともいずれかの方向に並列し」には、2本の架設材5、5が例えば柱2の幅方向と高さ方向に並列する場合を含む。「複数本」は2本、もしくは4本とは限らず、3本等、奇数本の場合もある。これらの場合、少なくとも2本の架設材5、5に跨って接合板8が固定され、接合板8と架構1との間に制震装置6が架設されることで、制震装置6を支持する架設材5、5が安定性を保ち易くなるため、架構1と架設材5との間の相対変位時に制震装置6に偏心荷重を作用させずに軸方向力を作用させることが可能になる。   FIG. 1 shows an example in which the erection material 5 is juxtaposed in the width direction and the height direction of the column 2, but “in parallel in at least one of the column width direction and the height direction” The case where the construction materials 5 and 5 of a book are parallel in the width direction and height direction of the pillar 2, for example is included. The “plurality” is not limited to two or four, but may be an odd number such as three. In these cases, the joining plate 8 is fixed across at least two construction members 5 and 5, and the damping device 6 is installed between the joining plate 8 and the frame 1 to support the damping device 6. Since the construction materials 5 and 5 to be maintained are easy to maintain stability, it is possible to apply an axial force without applying an eccentric load to the vibration control device 6 at the time of relative displacement between the construction frame 1 and the construction material 5. Become.

架設材5が1本である場合にも、例えば図2、図3に示すように柱2がラチス柱のような組立柱である場合のように、架設材5を柱2の内部を貫通した状態で架設することが可能であれば、接合板8を使用することなく、架設材5に支持される制震装置6の安定性を確保しながら、直接、柱2の側面と架設材5との間に制震装置6を架設することは可能である。架設材5が1本の場合、架設材5は架設状態で撓みを生じない程度の剛性を持つ必要がある。   Even when there is only one erection material 5, the erection material 5 penetrates the interior of the column 2 as in the case where the column 2 is an assembly column such as a lattice column as shown in FIGS. If it can be installed in a state, it is possible to directly connect the side surface of the column 2 and the installation material 5 without securing the stability of the vibration control device 6 supported by the installation material 5 without using the joining plate 8. It is possible to install the vibration control device 6 between the two. When the number of the erection material 5 is one, the erection material 5 needs to have a rigidity that does not cause bending in the erected state.

架設材5が複数本、配置される場合(請求項)には、各架設材5の、架構1のいずれか部分と対向する位置に固定具9が固定され、この全固定具9間に全固定具9を互いに連結する連結材7が架設されることで(請求項)、接合板8を全架設材5に均等に接合し易い状態を得ることが可能である。この場合、接合板8は全固定具9に跨る連結材7に固定されることで、間接的に全架設材5に均等に接合される形になるため、全架設材5に作用する軸方向力が不均衡になることが回避され、全架設材5が負担すべき軸方向力を等しくし、各架設材5の軸方向力による伸縮量を等しくすることが可能である。架設材5が複数本の架設材構成材(弦材)51から構成される場合には、図3に示すように各架設材構成材51に固定具9が固定される。 When a plurality of construction materials 5 are arranged (Claim 4 ), a fixture 9 is fixed at a position facing each part of the frame 1 of each construction material 5. By linking the connecting member 7 that connects all the fixtures 9 to each other (Claim 5 ), it is possible to obtain a state in which the joining plate 8 can be easily joined evenly to the entire building member 5. In this case, since the joining plate 8 is fixed to the connecting member 7 straddling all the fixtures 9, it is indirectly joined evenly to all the erected members 5, so that the axial direction acting on all the erected members 5 It is possible to prevent the forces from becoming unbalanced, equalize the axial force to be borne by all the erection materials 5, and equalize the amount of expansion / contraction due to the axial force of each erection material 5. When the erection material 5 is composed of a plurality of erection material components (string material) 51, the fixture 9 is fixed to each erection material component 51 as shown in FIG.

柱の対向する方向に、柱に直接、接続されない架設材を架設し、架設材の少なくとも一部を架構に接続することなく地盤に定着させることで、架設材の地盤への定着部分以外の区間を常に梁に平行な状態に保つことができるため、架設材の定着部分以外の区間を架構の振動から独立(絶縁)させるための部品の設置が不要になり、架構と架設材との間に架設される制震装置に減衰力を発生させるための構成要素を削減することができる。   Sections other than the fixed part of the construction material on the ground by laying a construction material that is not directly connected to the pillar in the opposite direction of the pillar, and fixing at least a part of the construction material to the ground without connecting to the structure Can always be kept parallel to the beam, so there is no need to install parts to isolate (isolate) the sections other than the anchoring part of the construction material from the vibration of the construction. It is possible to reduce the components for generating a damping force in the installed vibration control device.

また架設材の地盤への定着部分以外の区間は架構の梁と平行に架設されていることで、架設材が制震装置から受ける反力の作用方向と架設材の軸方向が一致しているため、架設材と架構との間に相対水平変位が発生し、制震装置に減衰力を発生させるときに、架設材が負担し得る軸方向力を反力として有効に利用することができ、架設材が発生する軸方向力の反力としての利用効率が高い。   In addition, the sections other than the anchoring part of the construction material on the ground are constructed parallel to the beam of the construction frame, so that the direction of reaction force applied to the construction material from the vibration control device and the axial direction of the construction material are the same. Therefore, relative horizontal displacement occurs between the construction material and the frame, and when the damping device generates a damping force, the axial force that can be borne by the construction material can be effectively used as a reaction force. Use efficiency is high as a reaction force of the axial force generated by the construction material.

(a)はPC鋼材である架設材と柱との間に制震装置を水平に架設した接合部の様子を示した立面図、(b)は(a)のx−x線断面図である。(A) is an elevation view showing a state of a joint part in which a damping device is horizontally installed between a construction material and a column made of PC steel, and (b) is a sectional view taken along line xx of (a). is there. 図1に示す柱を有する架構と架設材、及び制震装置との関係を示した立面図である。It is the elevation which showed the relationship between the frame which has the pillar shown in FIG. 1, a construction material, and a damping device. 図2における架設材が立体トラスに置き換えられた場合の架構と架設材、及び制震装置との関係を示した立面図である。FIG. 3 is an elevational view showing the relationship between the frame, the building material, and the vibration control device when the building material in FIG. 2 is replaced with a three-dimensional truss. 梁の架設方向に複数スパンを有する架構に複数スパンに亘って架設材を架設し、架構のスパン方向中間部に配置された反力部材に架設材を接続した場合の架設材の架設例であり、(a)は架構のスパン方向の中間部に配置された反力部材が柱・梁のフレームである場合、(b)はブレースである場合である。This is an example of installation of a construction material when a construction material is installed over a span that spans multiple spans in the construction direction of the beam, and the construction material is connected to a reaction member arranged in the span direction intermediate part of the construction (A) is a case where the reaction force member arranged in the intermediate portion of the span direction of the frame is a column / beam frame, and (b) is a case where it is a brace. (a)は架構のスパン方向の端部に柱・梁フレームの反力部材を設置した場合の反力部材10と架設材5との接続例を示した立面図、(b)は柱の反力部材を設置した場合の反力部材10と架設材5との接続例を示した立面図である。(A) is an elevation showing an example of connection between the reaction force member 10 and the construction material 5 when a column / beam frame reaction force member is installed at the end of the frame in the span direction, and (b) is an elevation view of the column. It is the elevation which showed the example of a connection of the reaction force member 10 at the time of installing a reaction force member, and the construction material 5. FIG. 架構のスパン方向の端部寄りの1スパンの柱の内、スパン方向中間部側の柱の外側に柱からなる反力部材を配置した場合の例を示した立面図である。It is the elevation which showed the example at the time of arrange | positioning the reaction force member which consists of a column in the outer side of the column of the span direction intermediate part side among the columns of 1 span near the edge part of the span direction of a frame. (a)、(b)は架構のスパン方向の中間部と端部に反力部材を配置した場合の例を示した立面図である。(A), (b) is the elevation which showed the example at the time of arrange | positioning a reaction force member in the intermediate part and edge part of the span direction of a frame. 図6に示す架構にスパン方向の変形(振動)したときの様子をモデル化して示した図である。It is the figure which modeled and showed the mode when it deform | transforms in the span direction (vibration) to the frame shown in FIG.

図1−(a)、(b)は距離を置いて対向する柱2、2と、対向する柱2、2間に架設される梁3を有する架構1において、架構1から独立し、柱2、2の対向する方向に架設される架設材5と架構1のいずれかの部分との間に、両者間の相対変位時に減衰力を発生する制震装置6を介在させた接合部の様子を示す。架設材5の少なくとも一部は地盤12に直接、もしくは間接的に定着され、地盤12から反力を受けることにより、架設材5は制震装置6を介して架構1に接続されながらも、架構1の梁3の架設方向への振動(変形)時に架構1に追従することなく、元の架設状態を維持する。架構1は既存の場合と新設の場合がある。   1- (a) and (b) show a column 1 having columns 2 and 2 facing each other at a distance and a beam 3 installed between the columns 2 and 2 facing each other. 2 shows a state of a joint portion between a construction material 5 constructed in two opposing directions and any part of the construction 1 with a vibration control device 6 that generates a damping force at the time of relative displacement therebetween. Show. At least a part of the construction material 5 is fixed directly or indirectly to the ground 12 and receives a reaction force from the ground 12, so that the construction material 5 is connected to the construction 1 via the vibration control device 6. The original erected state is maintained without following the frame 1 at the time of vibration (deformation) of the first beam 3 in the erection direction. Frame 1 may be existing or newly installed.

図1は例えば図4−(a)、(b)に示すような、梁3の架設方向に複数本の柱2が配列し、隣接する柱2、2間にトラスの梁3が架設された形式の架構1の一部である柱2と架設材5との接合部を示しているが、架構1は柱2、2と柱2、2間に架設される梁3を備えていればよく、柱2と梁3の形態、及び架構1の形態は問われない。   In FIG. 1, for example, as shown in FIGS. 4A and 4B, a plurality of columns 2 are arranged in the erection direction of the beam 3, and the truss beam 3 is erected between the adjacent columns 2 and 2. Although the joint part of the pillar 2 which is a part of the form frame 1 and the construction material 5 is shown, the frame 1 should just be provided with the beam 3 constructed between the pillars 2 and 2 and the pillars 2 and 2 The form of the pillar 2 and the beam 3 and the form of the frame 1 are not questioned.

図1はまた、架設材5がPC鋼線を含むPC鋼材等のように引張力のみを負担可能な材料であり、柱2の幅方向と高さ方向の少なくともいずれかの方向に並列して配置され、複数本の架設材5が組み合わせられた状態で柱2の周囲に配置された場合の例を示すが、図3に示すように架設材3には圧縮力を負担可能な鋼材、または鋼材の組み合わせの他、圧縮力のみを負担可能な材料が使用されることもある。   FIG. 1 also shows that the construction material 5 is a material that can bear only a tensile force, such as a PC steel material including a PC steel wire, and is arranged in parallel in at least one of the width direction and the height direction of the column 2. Although the example in the case of arrange | positioning and arrange | positioning the circumference | surroundings of the pillar 2 in the state which combined the several construction material 5 is shown, as shown in FIG. 3, the steel material which can bear compressive force as shown in FIG. 3, or In addition to the combination of steel materials, a material that can bear only the compression force may be used.

図1、図3のいずれも、柱2との間に架設される制震装置6を安定させて支持するために、4本の架設材5を組み合わせ、柱2の幅方向と高さ方向に並列させているが、制震装置6を支持するための架設材5の本数は複数本である必要はなく、1本の架設材5が制震装置6を支持することもある。図面では制震装置6がピストンに対してピストンロッドが軸方向に伸縮する形式のオイルダンパである場合の例を示しているが、制震装置6は架設材5の軸方向に相対移動することにより減衰力を発生する形式であれば、種類と形態を問わない。   1 and 3, in order to stably support the vibration control device 6 installed between the pillars 2, four construction materials 5 are combined in the width direction and the height direction of the pillars 2. Although it is arranged in parallel, the number of the construction materials 5 for supporting the vibration control device 6 is not necessarily plural, and one construction material 5 may support the vibration control device 6. The drawing shows an example in which the vibration control device 6 is an oil damper in which the piston rod extends and contracts in the axial direction with respect to the piston, but the vibration control device 6 moves relative to the construction material 5 in the axial direction. Any type and form can be used as long as a damping force is generated.

4本の架設材5を組み合わせる場合、全架設材5は例えば図1−(b)に示すように柱2の外周側に、すなわち柱2を幅方向に挟み込むように、幅方向と高さ方向に並列して配置され、全架設材5に同時に跨り、全架設材5を連結する連結材7によって互いに連結され、拘束される。図面では連結材7が、4本の架設材5を軸方向に見たときに、4本の架設材5を対角線方向に連結する十字形の形状をしている場合の例を示しているが、連結材7はこの他、全架設材5を覆う面積を持つ板状の形状に形成される等、連結材7の形状は任意である。   When combining the four erection members 5, all the erection members 5 are arranged in the width direction and the height direction so as to sandwich the column 2 in the width direction, for example, on the outer peripheral side of the column 2 as shown in FIG. Are connected to each other by a connecting member 7 that connects all the erected members 5 at the same time, and straddles all the erected members 5. The drawing shows an example in which the connecting member 7 has a cross shape that connects the four erection members 5 in the diagonal direction when the four erection members 5 are viewed in the axial direction. In addition to this, the shape of the connecting material 7 is arbitrary, for example, the connecting material 7 is formed in a plate shape having an area covering the entire construction material 5.

図1等に示す例の場合、連結材7は2方向の板が互いに交差した形状をすることで、制震装置6の軸方向の一方の端部、例えばピストンロッドの端部に一体化した端板61を安定させて支持しにくいことから、架設材5を軸方向に見たときの連結材7の中央部に、全架設材5に直接、もしくは間接的に跨り、制震装置6を受ける接合板8を固定し、この接合板8に制震装置6の一方の端板61をボルト62等により固定している。接合板8は全架設材5に直接、跨る大きさを持つこともあり、その場合、連結材7は必ずしも必要とはされない。接合板8は制震装置6の他方の端部(端板61)を受ける柱2や梁3等の、架設材5側の接合板8と対向する位置にも固定される。各接合板8、8には制震装置6のピストンとピストンロッドの端部に一体化した端板61、61がボルト62等により接合される。   In the case of the example shown in FIG. 1 and the like, the connecting member 7 is integrated with one end of the vibration control device 6 in the axial direction, for example, the end of the piston rod, by making the plates in two directions intersect each other. Since the end plate 61 is stable and difficult to support, the damping device 6 is directly or indirectly straddled over the entire construction material 5 at the center of the connection material 7 when the construction material 5 is viewed in the axial direction. The joining plate 8 to be received is fixed, and one end plate 61 of the vibration control device 6 is fixed to the joining plate 8 with a bolt 62 or the like. The joining plate 8 may have a size that directly straddles the entire construction material 5, and in that case, the connecting material 7 is not necessarily required. The joining plate 8 is also fixed at a position facing the joining plate 8 on the construction material 5 side, such as the column 2 and the beam 3 that receive the other end (end plate 61) of the vibration control device 6. End plates 61, 61 integrated with the end portions of the piston and piston rod of the damping device 6 are joined to the joint plates 8, 8 by bolts 62 or the like.

4本の架設材5を連結材7によって互いに連結するために、各架設材5の、柱2等、架構1のいずれかの部分と対向する位置には連結材7を架設材5に固定するための固定具9が固定され、この全固定具9間に全固定具9を互いに連結する連結材7が架設される。固定具9は制震装置6が軸方向力を負担したときの反力を架設材5が受けることができるよう、例えばカプラーやスリーブ等を用いることにより各架設材5に固定状態で接合されるが、固定方法は問われない。   In order to connect the four erection materials 5 to each other by the linking material 7, the linking material 7 is fixed to the erection material 5 at a position facing each part of the frame 1 such as the column 2 of each erection material 5. A fixing member 9 is fixed, and a connecting member 7 that connects all the fixing members 9 to each other is installed between all the fixing members 9. The fixture 9 is joined to each erection material 5 in a fixed state by using, for example, a coupler or a sleeve so that the erection material 5 can receive a reaction force when the vibration control device 6 bears an axial force. However, the fixing method is not questioned.

図1、図2は架設材5が引張力のみを負担可能なPC鋼線等の緊張材である場合の例を示している。この場合、架設材5が梁3の架設方向に平行な水平な状態を保つように張力を付与されて架設されていても、架構1の振動時に架構1(制震装置6)から圧縮力を受けたときに弛緩する可能性があるため、圧縮力を受けたときにも架設材5が弛緩せず、制震装置6を支持した状態を維持できるよう、予め想定される圧縮力を超える大きさの緊張力が架設材5に与えられることが適切である。   1 and 2 show an example in which the erection material 5 is a tension material such as a PC steel wire that can bear only a tensile force. In this case, even if the construction material 5 is installed with tension so as to maintain a horizontal state parallel to the construction direction of the beam 3, a compressive force is applied from the construction 1 (the vibration control device 6) when the construction 1 vibrates. Since it may be relaxed when it is received, the construction material 5 does not relax even when it receives a compressive force, so that it can maintain a state where the vibration control device 6 is supported. It is appropriate that this tension is applied to the construction material 5.

図3は架設材5が、圧縮力を負担可能な弦材である複数本の架設材構成材51と架設材構成材51間に架設される斜材52から構成される立体トラスである場合の制震装置6の設置例を示す。ここに示す例は4本の架設材構成材51が柱2の幅方向と高さ方向にそれぞれ並列して配置され、幅方向に隣接する架設材構成材51、51と高さ方向に隣接する架設材構成材51、51間に両者を互いに連結する斜材52が架設され、架設材5が立体トラスを構成している点以外、制震装置6を支持するための接合板8とこれを受けるための連結材7、及び連結材7を架設材5に固定するための固定具9が使用されていることは図1に示す例と同じである。   FIG. 3 shows a case where the erection material 5 is a three-dimensional truss composed of a plurality of erection material components 51 that are chord materials capable of bearing a compressive force and an oblique member 52 laid between the erection material components 51. An installation example of the vibration control device 6 is shown. In the example shown here, four construction material components 51 are arranged in parallel in the width direction and the height direction of the pillar 2 and are adjacent to the construction material components 51 and 51 adjacent in the width direction in the height direction. A connecting member 8 for supporting the vibration control device 6 and the connecting member 8 are provided except that an oblique member 52 for connecting the two members to each other is installed between the installation members 51 and 51, and the installation member 5 constitutes a three-dimensional truss. It is the same as the example shown in FIG. 1 that the connecting member 7 for receiving and the fixture 9 for fixing the connecting member 7 to the construction member 5 are used.

制震装置6は架構1側の接合板8と架設材5側の接合板8との間に、架構1の振動方向である水平方向等に架設され、両端部においてそれぞれの接合板8、8に固定される。架構1が振動を起こし、図1−(a)において柱2が元の架設状態を維持する架設材5に対して右側へ変形したときに、制震装置6は収縮して減衰力を発生し、左側へ変形したときに伸長して減衰力を発生する。   The vibration control device 6 is installed between the joining plate 8 on the frame 1 side and the joining plate 8 on the construction material 5 side in the horizontal direction, which is the vibration direction of the frame 1, and the joining plates 8, 8 at both ends. Fixed to. When the frame 1 vibrates and the pillar 2 in FIG. 1- (a) is deformed to the right side with respect to the construction material 5 that maintains the original construction state, the vibration control device 6 contracts to generate a damping force. When it is deformed to the left, it expands and generates a damping force.

架構1の振動時にも架設材5が元の架設状態を維持することは、図4−(a)、(b)に示すように架設材5の軸方向の少なくとも一部に配置された反力部材10に架設材5が接続されることにより可能になる。反力部材10は架設材5に接続されることにより架設材5の引張力等を負担し、地盤12に伝達する。   The fact that the erection material 5 maintains the original erection state even when the frame 1 vibrates is that the reaction force disposed on at least a part of the erection material 5 in the axial direction as shown in FIGS. 4- (a) and (b). This is made possible by connecting the construction material 5 to the member 10. The reaction force member 10 bears the tensile force and the like of the construction material 5 by being connected to the construction material 5 and transmits it to the ground 12.

反力部材10は架設材5に作用する引張力や圧縮力、または引張力と圧縮力を負担するため、架設材5の反力部材10側の端部は反力部材10に少なくとも抜け出し等が拘束された状態に、すなわち引張力や圧縮力に抵抗可能な状態に接合される。架設材5から反力部材10に圧縮力が伝達される場合には、接合部において圧縮力に抵抗可能な状態に接合される。架設材5の反力部材10への接合方法は任意であるが、反力部材10の構造に応じ、例えば架設材5はコンクリート中への埋設(定着)やボルト接合等に接合される。   Since the reaction force member 10 bears a tensile force or a compression force acting on the erection material 5 or a tensile force and a compression force, at least the end of the erection material 5 on the reaction force member 10 side is pulled out to the reaction force member 10. It is joined in a restrained state, that is, in a state capable of resisting a tensile force or a compressive force. When a compressive force is transmitted from the construction material 5 to the reaction force member 10, the joining portion is joined in a state that can resist the compressive force. Although the joining method of the construction material 5 to the reaction force member 10 is arbitrary, for example, the construction material 5 is joined by embedment (fixing) in concrete or bolt joining according to the structure of the reaction force member 10.

図4−(a)は反力部材10が鉄骨造、または鉄筋コンクリート造等の柱と梁からなるフレームである場合、(b)は鉄骨造の柱・梁フレーム内にブレースを架設した平面トラス、もしくは立体トラスである場合の例を示すが、反力部材10が架設材5からの軸方向力を負担しながら地盤12に伝達できる能力を持てば、反力部材10の形態と構造種別は問われない。図4−(a)、(b)では反力部材10の脚部の浮き上がりや水平方向への滑りを防止するために、反力部材10の脚部等に地中に定着される地盤アンカー11を接続している。   FIG. 4- (a) shows a case where the reaction force member 10 is a frame made of steel and reinforced concrete or the like and a frame and a beam, and (b) shows a plane truss with braces installed in a steel frame / beam frame, Alternatively, an example in the case of a three-dimensional truss is shown, but if the reaction force member 10 has the ability to transmit to the ground 12 while bearing the axial force from the erection material 5, the form and structure type of the reaction force member 10 are not questioned. I will not. 4 (a) and 4 (b), the ground anchor 11 is fixed to the leg of the reaction force member 10 in the ground in order to prevent the reaction force member 10 from lifting and slipping in the horizontal direction. Is connected.

反力部材10が図4−(a)、(b)に示すように架構1のスパン方向の中間部(架構1の内部)に配置された場合、架構1に図8に示すような変形が生じたとき、架設材5には図4における反力部材10より架構1の変形の向き側(右側)の区間に引張力が作用し、反対側の、反力部材10より左側に位置する区間に圧縮力が作用する。この関係で、反力部材10が架構1のスパン方向の中間部に配置された場合、架設材5には引張力と圧縮力を負担する能力が与えられ、反力部材10は架設材5に作用する引張力と圧縮力を交互に負担する。   When the reaction member 10 is arranged at the intermediate portion in the span direction of the frame 1 (inside the frame 1) as shown in FIGS. 4- (a) and (b), the frame 1 is deformed as shown in FIG. When this occurs, a tensile force acts on the construction material 5 in a section on the deformation direction side (right side) of the frame 1 from the reaction force member 10 in FIG. 4, and a section located on the left side of the reaction force member 10 on the opposite side. Compressive force acts on In this relationship, when the reaction force member 10 is disposed in the intermediate portion in the span direction of the frame 1, the construction material 5 is given the ability to bear the tensile force and the compression force, and the reaction force member 10 is applied to the construction material 5. The acting tensile force and compressive force are alternately borne.

反力部材10が図5−(a)、(b)に示すように架構1のスパン方向の端部の外側(架構1の外部)に配置された場合、架設材5には架構1がいずれかの端部の反力部材10から遠ざかる向きに変形したときに引張力が作用し、そのときに反力部材10は引張力を負担する。架構1が反力部材10に接近する向きに変形したときには架設材5には圧縮力が作用するが、架設材5が圧縮力を負担する能力を持たなければ、圧縮力を負担しない。架設材5が圧縮力を負担する能力を持つ場合には、反力部材10は引張力と圧縮力を交互に負担し、架設材5が圧縮力を負担する能力を持たない場合には、反力部材10は引張力のみを負担する。この関係で、架設材5が圧縮力を負担する能力を持たない場合には、反力部材10は架構1のスパン方向の両側の端部に配置される。   When the reaction member 10 is arranged outside the span direction end of the frame 1 (outside the frame 1) as shown in FIGS. 5A and 5B, the frame 1 is included in the construction material 5. A tensile force is applied when the end portion is deformed away from the reaction force member 10, and the reaction force member 10 bears the tensile force at that time. When the frame 1 is deformed so as to approach the reaction force member 10, a compressive force acts on the erection material 5, but if the erection material 5 does not have an ability to bear the compressive force, the compressive force is not borne. When the construction material 5 has the ability to bear the compressive force, the reaction member 10 bears alternately the tensile force and the compression force, and when the construction material 5 does not have the ability to bear the compressive force, The force member 10 bears only the tensile force. In this relation, when the erection material 5 does not have the ability to bear the compressive force, the reaction force member 10 is disposed at both ends of the frame 1 in the span direction.

図4−(a)、(b)はまた、架設材5の、反力部材10が設置された側の反対側の端部(架構1の端部)を架構1の柱2等に接続した場合の例を示している。架設材5の、反力部材10を介して地盤12に定着される部分以外の区間の内、架構1のいずれかの部分と水平方向に対向する部分は架構1の柱2等に制震装置6を介して接続されるから、図面では地盤12に定着される部分以外の架構1と水平方向に対向する全部分に制震装置6を介在させている。図4−(a)、(b)に示す架構1は反力部材10の設置箇所に関して対称な形状をしている。   4 (a) and 4 (b), the end of the construction material 5 opposite to the side where the reaction member 10 is installed (the end of the construction 1) is connected to the column 2 of the construction 1 and the like. An example of the case is shown. Of the section of the construction material 5 other than the part fixed to the ground 12 via the reaction force member 10, the part facing the horizontal direction of any part of the frame 1 is attached to the column 2 of the frame 1 or the like. In the drawing, the vibration control device 6 is interposed in all parts of the frame 1 that are opposed to the frame 1 other than the part fixed to the ground 12 in the horizontal direction. The frame 1 shown in FIGS. 4A and 4B has a symmetrical shape with respect to the installation location of the reaction force member 10.

図5−(a)、(b)は架構1のスパン方向の端部の、架構1の外側に反力部材10を設置した場合の反力部材10と架設材5との接続例を示す。(a)は図4−(a)に示す反力部材10と同じく反力部材10が柱・梁のフレームである場合、(b)は反力部材10が柱である場合の例を示す。図5−(a)では反力部材10の脚部に浮き上がり防止等のための地盤アンカー11を接続し、(b)では反力部材10の頭部に架設材5の引張力に抵抗させるための地盤アンカー11を接続している。   5A and 5B show connection examples of the reaction force member 10 and the construction material 5 when the reaction force member 10 is installed on the outer side of the construction frame 1 at the end in the span direction of the construction structure 1. 4A shows an example in which the reaction member 10 is a pillar / beam frame, and FIG. 4B shows an example in which the reaction member 10 is a pillar, as in the reaction member 10 shown in FIG. In FIG. 5A, a ground anchor 11 is connected to the leg portion of the reaction force member 10 to prevent lifting, and in FIG. 5B, the head of the reaction force member 10 is resisted to the tensile force of the construction material 5. The ground anchor 11 is connected.

図5−(b)の場合、反力部材10が柱の単体であるから、反力部材10(柱)の頭部に架設材5から引張力が作用したときの転倒を防止する目的で、地盤アンカー11は反力部材10の頭部に接続され、架設材5の反対側に鉛直に対して傾斜して架設される。この関係で、図5−(b)に示す反力部材10は主に架設材5に作用する引張力に抵抗する。   In the case of FIG. 5- (b), since the reaction force member 10 is a single column, for the purpose of preventing a fall when a tensile force is applied to the head of the reaction force member 10 (column) from the construction material 5, The ground anchor 11 is connected to the head of the reaction force member 10 and is installed on the opposite side of the installation material 5 with an inclination with respect to the vertical. In this relation, the reaction force member 10 shown in FIG. 5B resists the tensile force mainly acting on the construction material 5.

図6は架構1のスパン方向の端部寄りの1スパンを構成する、対向する柱2、2の内、スパン方向中間部側の柱2のスパン方向外側寄りに、傾斜した地盤アンカー11で地盤12に定着された柱からなる反力部材10を配置した場合の例を示す。この例では反力部材10と地盤アンカー11を架構1の内部に納め、架構1の外部に突出させずに済むため、限られた敷地内に反力部材10を設置することを可能にしている。   FIG. 6 is a diagram showing an example in which the ground is formed by an inclined ground anchor 11 on the outer side in the span direction of the column 2 on the intermediate side in the span direction, which constitutes one span closer to the end in the span direction of the frame 1. An example in which a reaction force member 10 composed of a pillar fixed to 12 is arranged is shown. In this example, since the reaction force member 10 and the ground anchor 11 are accommodated in the frame 1 and do not protrude outside the frame 1, the reaction force member 10 can be installed in a limited site. .

図7−(a)、(b)は架構1のスパン方向の中間部と端部の外側に反力部材10を配置した場合の例を示す。(a)はスパン方向の中間部に柱・梁のフレームの反力部材10を配置し、端部に柱の反力部材10を配置した場合、(b)はスパン方向の中間部にフレーム内にブレースを架設したトラスの反力部材10を配置し、端部に柱の反力部材10を配置した場合である。   FIGS. 7A and 7B show an example in which the reaction force member 10 is disposed outside the intermediate portion and the end portion in the span direction of the frame 1. (A) When the reaction force member 10 of the column / beam frame is arranged at the intermediate portion in the span direction and the reaction force member 10 of the column is arranged at the end portion, (b) is inside the frame at the intermediate portion in the span direction. This is a case where the truss reaction force member 10 with braces installed is arranged and the column reaction force member 10 is arranged at the end.

1……架構、
2……柱、3……梁、4……桁、
5……架設材、51……架設材構成材(弦材)、52……斜材、
6……制震装置、61……端板、62……ボルト、
7……連結材、8……接合板、9……固定具、
10……反力部材、11……地盤アンカー、12……地盤。
1 …… Frame,
2 ... pillars, 3 ... beams, 4 ... girders,
5 …… Construction material, 51 …… Construction material component (string material), 52 …… Diagonal material,
6 ... Damping device, 61 ... End plate, 62 ... Bolt,
7 ... Connecting material, 8 ... Joint plate, 9 ... Fixing tool,
10 ... Reaction force member, 11 ... Ground anchor, 12 ... Ground.

Claims (6)

距離を置いて対向する柱と、この対向する柱間に架設され、前記柱に接合される梁を有する架構において、前記架構から独立した架設材が前記柱の対向する方向に架設され、軸方向の少なくとも一部において地盤に直接、もしくは間接的に定着され、この架設材と前記架構との間に、前記架構との間の前記架設材の軸方向の相対変位の発生時に前記架設材の軸方向の相対変位が軸方向の変形となって減衰力を発生する制震装置が介在していることを特徴とする制震架構の接合部構造。 In a frame having pillars facing each other at a distance and a beam constructed between the opposed columns and joined to the columns, a construction material independent from the frame is constructed in a direction in which the columns face each other, and the axial direction at least a portion directly ground in, or is indirectly fixing, between the bridging member and the Frame, the axis of the erection member in the event of relative axial displacement of the bridging member between the Frame of A joint structure for a seismic control frame, characterized in that a seismic control device is interposed in which a relative displacement in the direction is axially deformed to generate a damping force. 前記架設材は軸方向の両端部、もしくは中間部を含む少なくとも2箇所において、前記地盤に定着され、前記架設材の軸方向力を負担しながら前記地盤に伝達する反力部材に接続され、変位を拘束されていることを特徴とする請求項1に記載の制震架構の接合部構造。 The erection member at both ends in the axial direction, or at least two positions including an intermediate portion, is fixed to the ground, while bear the axial force of the bridging member being connected to the reaction member for transmitting to the ground, The joint structure of a seismic control frame according to claim 1, wherein displacement is constrained . 距離を置いて対向する柱と、この対向する柱間に架設され、前記柱に接合される梁を有する架構において、前記架構から独立した架設材が前記柱の対向する方向に架設され、軸方向の少なくとも一部において地盤に直接、もしくは間接的に定着され、この架設材と前記架構との間に、前記架構との間の前記架設材の軸方向の相対変位の発生時に前記架設材の軸方向の相対変位が軸方向の変形となって減衰力を発生する制震装置が介在しており、
前記架設材の前記地盤への定着部分以外の区間は前記架構の前記梁の架設方向に平行に架設され、
前記制震装置は前記架構の前記柱と前記架設材との間に架設されていることを特徴とする制震架構の接合部構造。
In a frame having pillars facing each other at a distance and a beam constructed between the opposed columns and joined to the columns, a construction material independent from the frame is constructed in a direction in which the columns face each other, and the axial direction at least a portion directly ground in, or is indirectly fixing, between the bridging member and the Frame, the axis of the erection member in the event of relative axial displacement of the bridging member between the Frame of There is a vibration control device that generates a damping force due to the relative displacement in the direction being axial deformation .
Sections other than the fixing portion of the erection material to the ground are laid in parallel to the erection direction of the beam of the frame,
The joint structure of a vibration control frame, wherein the vibration control device is installed between the column of the frame and the erection material.
前記架設材は前記架構の前記柱の幅方向と高さ方向の少なくともいずれかの方向に並列して配置され、これら複数本の架設材に直接、もしくは間接的に跨って接合板が配置され、この接合板が前記架設材に直接、もしくは間接的に固定され、前記接合板と前記架構との間に前記制震装置が架設されていることを特徴とする請求項1乃至請求項3のいずれかに記載の制震架構の接合部構造。 The construction material is arranged in parallel in at least one of the width direction and the height direction of the column of the frame, and a joining plate is arranged directly or indirectly across all the plurality of construction materials. directly to the junction plate the bridging member, or is indirectly fixed, according to claim 1 to claim 3, wherein said vibration control device between said joining plate said Frames are bridged The joint structure of the seismic control frame described in any one of the above. 前記各架設材の、前記架構と対向する位置に固定具が固定され、この全固定具間に全固定具を互いに連結する連結材が架設され、この連結材に前記接合板が固定されていることを特徴とする請求項に記載の制震架構の接合部構造。 A fixing tool is fixed at a position of each erection material facing the frame, a connecting material for connecting all the fixing tools to each other is installed between all the fixing tools, and the joining plate is fixed to the connecting material. The joint structure of a seismic control frame according to claim 4 . 前記架設材に予め張力が導入されていることを特徴とする請求項1乃至請求項のいずれかに記載の制震架構の接合部構造。 The joint structure of a vibration control frame according to any one of claims 1 to 5 , wherein a tension is previously introduced into the construction material.
JP2014175940A 2014-08-29 2014-08-29 Joint structure of seismic control frame Active JP6479371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014175940A JP6479371B2 (en) 2014-08-29 2014-08-29 Joint structure of seismic control frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014175940A JP6479371B2 (en) 2014-08-29 2014-08-29 Joint structure of seismic control frame

Publications (2)

Publication Number Publication Date
JP2016050417A JP2016050417A (en) 2016-04-11
JP6479371B2 true JP6479371B2 (en) 2019-03-06

Family

ID=55658136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014175940A Active JP6479371B2 (en) 2014-08-29 2014-08-29 Joint structure of seismic control frame

Country Status (1)

Country Link
JP (1) JP6479371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853913B (en) * 2021-01-14 2022-11-18 中铁二十五局集团第五工程有限公司 Horizontal splicing bridge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064913A (en) * 1999-08-25 2001-03-13 Nkk Corp Rigid frame bridge pier
JP2003239220A (en) * 2002-02-18 2003-08-27 Shimizu Corp Vibration control elevated structure
JP2007170103A (en) * 2005-12-26 2007-07-05 Tds:Kk Aseismatic reinforcing structure
JP5059687B2 (en) * 2008-05-23 2012-10-24 大成建設株式会社 Building seismic control structure
CN104452577B (en) * 2014-12-24 2016-06-29 福州大学 A kind of bridge pier-bent cap structure improving beam bridge Horizontal Seismic performance and construction method

Also Published As

Publication number Publication date
JP2016050417A (en) 2016-04-11

Similar Documents

Publication Publication Date Title
JP2016183539A (en) Base-isolating structure, steel support structure and base-isolating construction method of existing steel support structure
JP2014194116A (en) Vibration control structure of building
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
KR20090025496A (en) Structure for reinforcing earthquake-proof efficiency
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP2005139770A (en) Vibration control reinforcing frame for existing building and vibration control building using it
JP6479371B2 (en) Joint structure of seismic control frame
JP5429812B2 (en) Joining structure and method of shaft member and RC member
JP5059687B2 (en) Building seismic control structure
JP6117974B1 (en) Joint structure of seismic retrofitting frame
JP6412684B2 (en) Vibration control structure
JP3297413B2 (en) Damping frame with friction damping mechanism
JP2009185469A (en) Beam flexual yielding preceding type frame
JP6503177B2 (en) Reinforcement frame
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP4956765B2 (en) Building structure
JP6383533B2 (en) Seismic retrofit method for existing buildings
JP2022130986A (en) Sliding seismic isolator installation method
JP6181894B1 (en) Axial force introducing device for seismic retrofitting frame
JP2004353351A (en) Upper extension method for existing building
JP6052460B2 (en) Seismic reinforcement structure and construction method
JP5314203B1 (en) Structure connection structure
JP2004300912A (en) Vibration control damper coping with habitability
JP2020090812A (en) Vibration control structure
JP5978363B1 (en) Connection structure of connecting slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190206

R150 Certificate of patent or registration of utility model

Ref document number: 6479371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250