JP6117974B1 - Joint structure of seismic retrofitting frame - Google Patents

Joint structure of seismic retrofitting frame Download PDF

Info

Publication number
JP6117974B1
JP6117974B1 JP2016105908A JP2016105908A JP6117974B1 JP 6117974 B1 JP6117974 B1 JP 6117974B1 JP 2016105908 A JP2016105908 A JP 2016105908A JP 2016105908 A JP2016105908 A JP 2016105908A JP 6117974 B1 JP6117974 B1 JP 6117974B1
Authority
JP
Japan
Prior art keywords
column
plate
main structure
joined
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016105908A
Other languages
Japanese (ja)
Other versions
JP2017210830A (en
Inventor
等 塩原
等 塩原
芳生 井上
芳生 井上
佐藤 貴志
貴志 佐藤
八木沢 康衛
康衛 八木沢
健治 横田
健治 横田
岡 功治
功治 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kse Network
Original Assignee
Kse Network
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kse Network filed Critical Kse Network
Priority to JP2016105908A priority Critical patent/JP6117974B1/en
Application granted granted Critical
Publication of JP6117974B1 publication Critical patent/JP6117974B1/en
Publication of JP2017210830A publication Critical patent/JP2017210830A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

【課題】例えば既存の、あるいは新設のコンクリート造等の主構造体の構面外に、主構造体を制震補強する制震補強架構を主構造体の構面に平行に構築し、制震補強架構の支柱を主構造体の柱に距離を置いて接合に、柱の軸方向(鉛直方向)のせん断力を伝達可能に支柱材を柱に接合する。【解決手段】制震補強架構1の複数本の支柱2の内、少なくともいずれかの支柱2の最下層の支柱材21に対向する主構造体6の柱61の制震補強架構1側の正面に境界面プレート7を重ねて接合すると共に、境界面プレート7を直接、もしくは間接的に最下層の支柱材21に接合し、柱61の正面と支柱材21との間にコンクリート8を充填し、コンクリート8中に境界面プレート7とその支柱材21への接合部分を埋設する。【選択図】図1[PROBLEMS] For example, a seismic reinforcement frame for damping and reinforcing a main structure is constructed in parallel to the main structure, outside the main structure of an existing or new concrete structure. The column of the reinforcing frame is joined to the column of the main structure at a distance, and the column material is joined to the column so that shear force in the axial direction (vertical direction) of the column can be transmitted. A front surface of a pillar 61 of a main structure 6 facing a strut member 21 at the lowest layer of at least one of struts 2 among a plurality of struts 2 of the seismic reinforcement frame 1 on the seismic reinforcement frame 1 side. The boundary surface plate 7 is overlapped and bonded to each other, and the boundary surface plate 7 is directly or indirectly bonded to the lowermost strut material 21, and the concrete 8 is filled between the front surface of the column 61 and the strut material 21. Then, the boundary plate 7 and the joint portion to the support material 21 are embedded in the concrete 8. [Selection] Figure 1

Description

本発明は例えば既存の、あるいは新設のコンクリート造、鉄骨造等の主構造体の構面外に、主構造体を制震補強する制震補強架構を主構造体の構面に平行に構築する際に、制震補強架構を構成する少なくともいずれかの支柱を主構造体の柱にこれから距離を置いて接合した制震補強架構柱の接合構造に関するものである。   The present invention constructs, for example, a seismic reinforcement frame for controlling and reinforcing the main structure in parallel to the main surface of the main structure outside the main surface of the existing main structure such as concrete or steel frame. At this time, the present invention relates to a joint structure for a seismic reinforcing frame column in which at least one of the columns constituting the seismic reinforcing frame is joined to a main structure column at a distance from the column.

例えば既存のコンクリート造躯体等の主構造体に耐震性能、あるいは制震性能を付与する目的で、主構造体の表面に接した状態、もしくは接近した状態で構築され、主構造体に接合される制震補強架構の例として、主構造体の構面外にその構面内水平方向に配列する支柱と、隣接する支柱材間に架設されるつなぎ梁を有する形態の補強架構がある(特許文献1、2参照)。   For example, for the purpose of giving seismic performance or vibration control performance to an existing main structure such as a concrete structure, it is constructed in contact with or close to the surface of the main structure and joined to the main structure. As an example of a seismic retrofitting frame, there is a reinforcing frame in the form of having struts arranged in the horizontal direction in the surface of the main structure outside the surface of the main structure, and connecting beams installed between adjacent strut members (Patent Document). 1 and 2).

この制震補強架構の各支柱は特許文献1の図3(特許文献2の図9)に示すように主構造体の構面内方向の層間変形に追従できるよう、鉛直方向に分離した複数本の支柱材からなり、上下に分離した支柱材間にはそれぞれの軸の向きを保ったまま両者間の相対水平移動を許容する、水平剛性の小さい絶縁装置(積層ゴム支承や滑り支承等)が介在させられる。絶縁装置は構面内水平方向に隣接する支柱材間の相対移動時に支柱材(の軸)が鉛直状態を維持するように、上下に隣接する支柱材間に配置される。特許文献1の図3は本件明細書に添付の図10に相当する。   As shown in FIG. 3 of Patent Document 1 (FIG. 9 of Patent Document 2), each of the columns of the seismic reinforcement frame is divided into a plurality of columns separated in the vertical direction so as to follow interlayer deformation in the in-plane direction of the main structure. Insulating devices (laminated rubber bearings, sliding bearings, etc.) with low horizontal rigidity that allow relative horizontal movement between the two struts separated from each other while maintaining the orientation of the axes. Intervened. The insulating device is disposed between the strut members adjacent to each other so that the strut member (the axis thereof) maintains a vertical state during relative movement between the strut members adjacent in the horizontal direction in the composition plane. FIG. 3 of Patent Document 1 corresponds to FIG. 10 attached to this specification.

隣接する支柱の、レベルの相違する支柱材間には主構造体の層間変形に制震補強架構が追従したときの支柱材間の相対移動を利用して減衰力を発生するダンパーを組み込んだブレース(ダンパー一体型ブレース)が架設される。つなぎ梁は主構造体が構面内水平方向(桁行方向)に層間変形を生じたときに、その層間変形に制震補強架構が追従できるよう、制震補強架構を主構造体に一体構造化させるために、隣接する支柱材間に架設されながら、主構造体の梁やスラブ等、いずれかの躯体に接合される(特許文献1の段落0066、図11)。   Braces incorporating dampers that generate a damping force using the relative movement between the strut members when the seismic reinforcement frame follows the interlayer deformation of the main structure between adjacent strut members at different levels. (Damper integrated brace) is installed. The tethered beam is integrated into the main structure so that the seismic reinforcement frame can follow the interlayer deformation when the main structure undergoes inter-layer deformation in the horizontal direction (girder direction). In order to achieve this, it is joined to one of the frames such as a beam or a slab of the main structure while being installed between adjacent support members (paragraph 0066 of FIG. 11 and FIG. 11).

主構造体の構面内水平方向に地震が発生し、その方向に主構造体に層間変形が生じたときには、主構造体の各階のスラブ等に接合された制震補強架構のつなぎ梁とつなぎ梁に接合されている支柱材が主構造体に追従して相対移動し(特許文献1の図3)、構面内水平方向に隣接する支柱材間に架設されているブレースのダンパーが伸縮することにより減衰力を発生し、振動エネルギを吸収する(特許文献1の段落0019、0028)。   When an earthquake occurs in the horizontal direction of the main structure, and the main structure undergoes interlayer deformation in that direction, it is connected to the connecting beam of the seismic reinforcement frame that is joined to the slabs on each floor of the main structure. The strut material joined to the beam relatively moves following the main structure (FIG. 3 of Patent Document 1), and the brace damper extending between the strut materials adjacent to each other in the horizontal direction in the composition plane expands and contracts. Thus, a damping force is generated and vibration energy is absorbed (paragraphs 0019 and 0028 of Patent Document 1).

ブレースは構面内水平方向に隣接する支柱の内、一方側の支柱の下方側の支柱材、もしくはその付近のつなぎ梁とそれに隣接する支柱の上方側、または下方側の支柱材、もしくはその付近のつなぎ梁との間に斜めに架設されるため(特許文献1の図3)、制震補強架構が主構造体の構面内方向の層間変形に追従するときには、ブレースが架設された隣接する支柱の支柱材間に軸方向の引張力と圧縮力が交互に作用する。ブレースが架設された隣接する支柱の支柱材とは、ブレースでつながれた支柱材を指す。   Braces are struts that are adjacent to each other in the horizontal direction of the construction surface. The struts on the lower side of the struts on one side, or the connecting beam in the vicinity thereof, and the struts on or near the lower side of the struts. Since it is installed diagonally between the connecting beams (FIG. 3 of Patent Document 1), when the seismic reinforcing frame follows the inter-layer deformation in the in-plane direction of the main structure, the adjacent brace is installed. Axial tensile force and compressive force act alternately between the strut members. The support material of the adjacent support | pillar with which the brace was constructed refers to the support | pillar material connected with the brace.

ブレースでつながれた、レベルを異にして隣接する支柱材間に相対変位が生じ、ブレースに引張力と圧縮力が交互に作用するときには、支柱の中の最も下方に位置する支柱材は鉛直方向上向きと下向きに移動しようとする力を交互に受ける。ここで、最下層に位置する支柱材が主構造体の柱に接合されていなければ、その支柱材に隣接する支柱の支柱材に追従しようとすることで、浮き上がるか押し下げられようとし、ブレースが予定通りに伸縮することができなくなり、ダンパーが減衰力を発生することができなくなる。   When relative displacement occurs between adjacent struts connected at different levels and connected by braces, and the tensile and compressive forces act alternately on the braces, the struts located at the bottom of the struts are vertically upward. Alternately receive the force to move downward. Here, if the strut member located at the lowermost layer is not joined to the pillar of the main structure, the brace will be lifted or pushed down by trying to follow the strut member of the strut adjacent to the strut member. It will not be possible to expand and contract as planned, and the damper will not be able to generate damping force.

特許第4038472号公報(請求項1、段落0013〜0026、図1、図3)Japanese Patent No. 4038472 (Claim 1, paragraphs 0013 to 0026, FIGS. 1 and 3) 特許第4837145号公報(請求項1、段落0015〜0021、図1、図9)Japanese Patent No. 4837145 (Claim 1, paragraphs 0015 to 0021, FIGS. 1 and 9)

このような事情から、最下層の支柱材は地盤に、または支柱に対向する主構造体に拘束される必要があるが、例えば主構造体の柱に支柱材を拘束しようとすれば、支柱材と主構造体の柱との接合面には鉛直方向のせん断力が作用するため、このせん断力に抵抗できる状態に支柱材と柱は接合されている必要がある。   For these reasons, it is necessary for the bottom strut material to be constrained to the ground or to the main structure facing the strut. For example, if the strut material is constrained to the pillar of the main structure, the strut material Since a shearing force in the vertical direction acts on the joint surface between the main structure and the column of the main structure, it is necessary that the support material and the column be joined in a state that can resist the shearing force.

本発明は上記背景より、主構造体の構面外に制震補強架構を配置し、その支柱を主構造体の柱に接合する際に、柱の軸方向(鉛直方向)のせん断力を伝達可能に支柱材を柱に接合した制震補強架構柱の接合構造を提案するものである。   In the present invention, a seismic reinforcement frame is placed outside the main structure and the shear force in the axial direction (vertical direction) of the column is transmitted when the column is joined to the column of the main structure. It proposes the joint structure of the seismic reinforcement reinforced frame column where the column material is bonded to the column.

請求項1に記載の発明の制震補強架構柱の接合構造は、柱・梁からなるフレームを有する主構造体の構面外にその構面に平行に配列し、互いに間隔を隔てて立設される支柱と、構面内水平方向に隣接する支柱間に架設されるつなぎ梁と、構面内水平方向に隣接する支柱間に架設される、ブレース本体にダンパーを組み込んだダンパー一体型ブレースを備え、前記支柱が鉛直方向に複数本の支柱材に分離し、上下に分離した支柱材間に両者間の相対水平移動を許容する絶縁装置が介在した、前記主構造体を制震補強するための制震補強架構が前記主構造体の前記フレームから距離を置いた位置に配置され、前記主構造体に接合された制震補強架構付き構造物において、
前記制震補強架構の複数本の支柱の内、少なくともいずれかの支柱の最下層の前記支柱材に対向する前記主構造体の前記柱の前記制震補強架構側の正面に境界面プレートが重なって接合されると共に、この境界面プレートが直接、もしくは間接的に前記最下層の前記支柱材に接合され、前記柱の前記正面とこの正面との間に距離が確保された前記支柱材との間にコンクリートが充填され、このコンクリート中に前記境界面プレートとその前記支柱材への接合部分が埋設され
前記最下層の前記支柱材の幅方向両側に、前記支柱材から前記柱側へ張り出し、前記コンクリートの充填領域を仕切る側面プレートが一体化し、この側面プレートは前記柱の、前記正面に交差する側面に重なって前記柱に接合されていることを構成要件とする。
The joint structure of the seismic reinforced frame according to the first aspect of the present invention is arranged outside the main surface of the main structure having a frame composed of columns and beams, and arranged in parallel to the surface of the main structure, and is erected at intervals. A damper-integrated brace that incorporates a damper in the brace body that is installed between the struts that are to be mounted, the connecting beams that are laid between the struts that are adjacent in the horizontal direction in the frame, and the struts that are adjacent in the horizontal direction in the frame. In order to seismically reinforce the main structure, in which the strut is separated into a plurality of strut members in the vertical direction, and an insulating device that allows relative horizontal movement between the strut members separated vertically is interposed In the structure with the seismic reinforcement frame that is arranged at a position spaced from the frame of the main structure and is joined to the main structure,
A boundary surface plate overlaps the front surface of the pillar of the main structure opposite to the strut member of the bottom layer of at least one of the plurality of struts of the seismic reinforcement frame. And the boundary plate is directly or indirectly joined to the support material of the lowermost layer, and the support material of which the distance is secured between the front surface of the pillar and the front surface. The concrete is filled in between, and the interface plate and the joint portion to the support material are embedded in the concrete ,
Side plates that project from the column material to the column side and partition the concrete filling region are integrated on both sides in the width direction of the lowermost column material, and the side plate is a side surface of the column that intersects the front surface. It is a constituent requirement that it is overlapped with and joined to the column .

制震補強架構1の複数本の支柱2は図8に示すように主構造体6の構面に平行に、構面内水平方向に互いに間隔を隔てて配列し、各支柱2は鉛直方向に複数本の支柱材21〜23に分離する。上下に分離した支柱材21、22(22、23)間には両者間の相対水平移動を許容しながら、相対水平移動後に原位置に復帰させる絶縁装置5が介在する。同一レベルで水平方向に隣接する支柱材21、21(22、22(23、23))間には両支柱材21、21を互いにつなぎ、相対水平移動時にも両支柱材21、21の軸線が鉛直方向を向くように両支柱材21、21を保持するつなぎ梁3が架設される。   As shown in FIG. 8, a plurality of columns 2 of the seismic retrofit frame 1 are arranged in parallel to the surface of the main structure 6 and spaced apart from each other in the horizontal direction in the surface of the structure. It isolate | separates into the multiple support | pillar materials 21-23. Between the vertically separated support members 21 and 22 (22 and 23), there is an insulating device 5 that allows the relative horizontal movement between them and returns to the original position after the relative horizontal movement. Both strut members 21, 21 are connected to each other between strut members 21, 21 (22, 22 (23, 23)) horizontally adjacent at the same level, and the axes of both strut members 21, 21 are also in relative horizontal movement. A connecting beam 3 for holding both support members 21 and 21 is installed so as to face the vertical direction.

レベルを異にして隣接する支柱材21、22(22、23)間にはその隣接する支柱材21、22(22、23)間の相対水平移動時に、支柱材21、22(22、23)間の距離の変化に応じて伸縮し、その相対移動量、または相対速度に応じた減衰力を発生するダンパー42を内蔵したダンパー一体型ブレース(以下、ブレース)4が架設される。「構面内水平方向」は主構造体6の桁行方向を指し、主構造体6のスパン方向は構面外方向になる。   The strut members 21, 22 (22, 23) are moved between the adjacent strut members 21, 22 (22, 23) at different levels during the relative horizontal movement between the adjacent strut members 21, 22 (22, 23). A damper-integrated brace (hereinafter referred to as “brace”) 4 that includes a damper 42 that expands and contracts according to a change in the distance between them and generates a damping force according to the relative movement amount or relative speed is installed. The “horizontal direction in the composition plane” indicates the direction of the main structure 6 in the direction of the rows, and the span direction of the main structure 6 is the direction outside the composition plane.

制震補強架構1は少なくともいずれかの支柱2において主構造体6の柱61に接合されるが、主構造体6の層間変形時の主構造体6からの水平せん断力を制震補強架構1に伝達させるために、制震補強架構1は図3、図9に示すようにつなぎ梁3においても主構造体6の梁やスラブ、壁62等の構造部材に接続スラブ31を介して接合される。接続スラブ31は主構造体6の構造部材とつなぎ梁3との間に構築され、双方に少なくとも水平せん断力の伝達が可能な状態に接合される。   The seismic control frame 1 is joined to the pillar 61 of the main structure 6 at least on one of the columns 2. The horizontal shear force from the main structure 6 when the main structure 6 is deformed between layers is used to control the seismic control frame 1. As shown in FIGS. 3 and 9, the seismic reinforcement frame 1 is joined to structural members such as beams and slabs of the main structural body 6 and walls 62 via the connecting slab 31 as shown in FIGS. 3 and 9. The The connection slab 31 is constructed between the structural member of the main structural body 6 and the connecting beam 3 and is joined to both in a state where at least horizontal shearing force can be transmitted.

請求項1における「制震補強架構柱」の「柱」は支柱2であり、特に最下層の支柱材21を指す。支柱2は主に鉄骨造、または鉄筋コンクリート造(鉄骨鉄筋コンクリート造を含む)である。また請求項1における「制震補強架構1が主構造体6のフレームから距離を置いた位置に配置される」の「フレーム」は主構造体6の制震補強架構1寄りの、構面内方向に平行な構面をなすフレームを指す。   The “column” of the “seismic damping reinforcement column” in claim 1 is the column 2, particularly the column material 21 at the lowest layer. The strut 2 is mainly a steel structure or a reinforced concrete structure (including a steel reinforced concrete structure). Further, the “frame” in “the seismic reinforcement frame 1 is disposed at a distance from the frame of the main structure 6” in claim 1 is an in-plane position near the seismic reinforcement frame 1 of the main structure 6. A frame that forms a plane parallel to the direction.

前記のように制震補強架構1が主構造体6の層間変形に追従して変形するときにブレース4に内蔵されたダンパー41に減衰力を発生させる上では、少なくともいずれかの支柱2の内、最下層に位置する支柱材21が主構造体6の柱61に接合される必要があるため、支柱2の最下層の支柱材21が、柱61に重なって接合される境界面プレート7を介して柱61に接合される。   As described above, when the damping control frame 1 is deformed following the inter-layer deformation of the main structure 6, the damping 41 built in the brace 4 generates a damping force. Since the support material 21 located in the lowermost layer needs to be joined to the pillar 61 of the main structure 6, the interface plate 7 to which the support material 21 in the lowermost layer of the support 2 is joined to the pillar 61 is joined. It is joined to the column 61 via.

境界面プレート7は主構造体6のフレームを構成する柱61の制震補強架構1側を向いた正面に重なって接合され、それに対向する制震補強架構1の最下層の支柱材21には直接、接合されるか、または図1、図2に示すように境界面プレート7と支柱材21のそれぞれに接合される接合プレート11と連結材211が互いに接合されることにより間接的に接合される。「直接、接合される」とは、境界面プレート7が支柱材21を構成する鉄骨部材(鋼材)に溶接により、またはボルト等を用いて接合されることを言う。   The boundary surface plate 7 is joined to the front of the pillar 61 constituting the frame of the main structure 6 facing the seismic reinforcement frame 1 side, and is joined to the strut member 21 at the lowest layer of the seismic reinforcement frame 1 facing it. Directly joined or indirectly joined by joining the joining plate 11 and the connecting member 211 joined to the boundary surface plate 7 and the support material 21 as shown in FIGS. The “Directly joined” means that the boundary surface plate 7 is joined to a steel frame member (steel material) constituting the support member 21 by welding or using a bolt or the like.

請求項1における「境界面プレートと支柱材との接合部分」は直接、接合される場合の両者の接合部分を指し、接合プレート11と連結材211を介して間接的に接合される場合の両者を含む接合部分を指す。境界面プレート7と支柱材21との接合部分は柱61の正面と支柱材21との間に充填されるコンクリート(以下、本項目中、充填コンクリートと言う)8中に埋設され、この充填コンクリート8中への接合部分の埋設と定着により最下層の支柱材21が主構造体6の柱61に剛に接合される。充填コンクリート8中には必要により柱61の軸方向の引張抵抗材としての鉄筋が配筋されることもある。   The “joint portion between the boundary surface plate and the support member” in claim 1 refers to the joint portion of both when directly joined, and both when indirectly joined via the joining plate 11 and the connecting member 211. Refers to a joint portion including The joint portion between the boundary surface plate 7 and the column material 21 is embedded in concrete (hereinafter referred to as “filled concrete” in this item) 8 filled between the front surface of the column 61 and the column material 21. 8 is rigidly joined to the column 61 of the main structure 6 by burying and fixing the joining portion in the base 8. Reinforcing bars as tensile resistance members in the axial direction of the columns 61 may be arranged in the filled concrete 8 as necessary.

境界面プレート7は主構造体6の柱61の正面(表面)に重なって接合されることで、前記のように柱61の鉛直せん断力を支柱2の最下層の支柱材21に伝達する働きをするため、柱61の軸方向(鉛直方向)には連続した形状をしていることが合理的である。一方、柱61の正面と支柱材21との間には両者を接合する充填コンクリート8の充填のための距離が確保されることで、境界面プレート7を柱61の軸方向に不連続な形状にしなければならない事情はないため、境界面プレート7を柱61の軸方向に連続した形状に形成することが可能であり、図4、図5に示すように境界面プレート7に支柱材21の全長に亘る長さを与えることも可能である。   The boundary surface plate 7 is overlapped and joined to the front surface (front surface) of the column 61 of the main structure 6 to transmit the vertical shearing force of the column 61 to the column material 21 at the lowest layer of the column 2 as described above. Therefore, it is reasonable that the pillar 61 has a continuous shape in the axial direction (vertical direction). On the other hand, the distance between the front surface of the column 61 and the column material 21 for filling the filled concrete 8 that joins both is secured, so that the boundary surface plate 7 is formed in a discontinuous shape in the axial direction of the column 61. Therefore, it is possible to form the boundary surface plate 7 in a shape that is continuous in the axial direction of the column 61. As shown in FIG. 4 and FIG. It is also possible to give a length over the entire length.

図5に示すように境界面プレート7が柱61の軸方向に連続した、例えば長方形状に形成されている場合には、境界面プレート7の連続した長さの範囲で支柱材21の軸方向の伸び変形が柱61に拘束されるため、境界面プレート7による支柱材21の拘束効果が高まり、柱61と支柱材21の一体性も強まる。境界面プレート7が柱61の軸方向に連続しない場合には、不連続の区間において柱61による支柱材21の拘束効果も不連続になるのに対し、連続している場合には、拘束効果が断続しないことによる。   As shown in FIG. 5, in the case where the boundary surface plate 7 is formed in a rectangular shape that is continuous in the axial direction of the column 61, for example, the axial direction of the support material 21 within the range of the continuous length of the boundary surface plate 7. Therefore, the effect of restraining the column material 21 by the boundary surface plate 7 is enhanced, and the integrity of the column 61 and the column material 21 is also strengthened. When the boundary surface plate 7 is not continuous in the axial direction of the column 61, the constraining effect of the column material 21 by the column 61 is discontinuous in the discontinuous section, whereas when it is continuous, the constraining effect By not intermittent.

また境界面プレート7が重なった柱61の正面には境界面プレート7と充填コンクリート8を介して支柱材21が接合される結果、境界面プレート7が支柱材21の伸び変形を拘束し、鉛直せん断力を伝達するときに軸方向引張力を負担するため、境界面プレート7は柱61の正面を引張力に対して補強する効果も発揮する。特に境界面プレート7が柱61の軸方向に連続した形状をした場合には、柱61の境界面プレート7が重なった面の区間が軸方向に連続して引張力に対して補強されるため、補強効果が不連続になることがなく、補強効果が高い。   In addition, as a result of the column material 21 being joined to the front surface of the column 61 on which the boundary surface plate 7 overlaps via the boundary surface plate 7 and the filled concrete 8, the boundary surface plate 7 restrains the expansion and deformation of the column material 21, and the vertical plate Since the axial tensile force is borne when transmitting the shearing force, the boundary surface plate 7 also exhibits an effect of reinforcing the front surface of the column 61 against the tensile force. In particular, when the boundary surface plate 7 has a shape that is continuous in the axial direction of the column 61, the section of the surface of the column 61 on which the boundary surface plate 7 overlaps is continuously reinforced in the axial direction against tensile force. The reinforcement effect is not discontinuous and the reinforcement effect is high.

境界面プレート7の支柱材21側の表面全体と支柱材21との接合部分は充填コンクリート8中に埋設されることで、柱61の鉛直せん断力が支柱材21に伝達されようとするときに、充填コンクリート8との間で付着力と支圧力を発生させる。この付着力と支圧力は柱61の鉛直せん断力に対する抵抗力になるため、これらの力を通じて鉛直せん断力が支柱材21に伝達される。付着力は境界面プレート7の表面と接合部の表面に生じ、支圧力はコンクリート8中に埋設される接合部分の鉛直せん断力の作用方向に直交する面に生じ、大きさは鉛直せん断力の作用方向への投影面積分になる。 When the entire surface of the boundary surface plate 7 on the side of the support material 21 and the support material 21 are embedded in the filled concrete 8, the vertical shearing force of the pillar 61 is transmitted to the support material 21. The adhesive force and the supporting pressure are generated between the filled concrete 8. Since the adhesion force and the supporting pressure become a resistance force against the vertical shearing force of the column 61, the vertical shearing force is transmitted to the column material 21 through these forces. Adhesive force is generated on the surface of the boundary surface plate 7 and the surface of the joint, and the supporting pressure is generated on a surface perpendicular to the direction of the vertical shear force acting on the joint portion embedded in the concrete 8 . The projected area in the direction of action

特に境界面プレート7の支柱材21側の面に、支柱材21との間で柱61の軸方向のせん断力を伝達するための複数のせん断力伝達部材10が柱61の軸方向に間隔を置いて突設された場合(請求項)には、せん断力伝達部材10の表面に生じる付着力と支圧力が鉛直せん断力に対する充填コンクリート8中での抵抗力に加算されるため、柱61からの鉛直せん断力の支柱材21への伝達効果が向上する。境界面プレート7の支柱材21側の面は境界面プレート7の表面である。 In particular, a plurality of shear force transmission members 10 for transmitting the shearing force in the axial direction of the column 61 to and from the column material 21 are spaced apart in the axial direction of the column 61 on the surface of the boundary surface plate 7 on the column material 21 side. When placed and protruded (Claim 5 ), the adhesion force and the support pressure generated on the surface of the shearing force transmission member 10 are added to the resistance force in the filled concrete 8 against the vertical shearing force. The transmission effect of the vertical shearing force from to the support material 21 is improved. The surface of the boundary surface plate 7 on the column material 21 side is the surface of the boundary surface plate 7.

せん断力伝達部材10の形態は問われないが、例えば軸方向が柱61と支柱材21が対向する方向を向く棒状(ボルト状)、または図1に示すように柱61の軸方向に直交等、交差する方向を向く面を持つ板(プレート)状の部材が使用される。板状の部材には孔あき鋼板も使用可能であり、その場合、表面が柱61の軸方向に向けられる。   The form of the shearing force transmitting member 10 is not limited, but for example, a rod shape (bolt shape) in which the axial direction faces the direction in which the column 61 and the column material 21 face each other, or orthogonal to the axial direction of the column 61 as shown in FIG. A plate-like member having a surface facing the intersecting direction is used. A perforated steel plate can also be used for the plate-like member, and in this case, the surface is directed in the axial direction of the column 61.

せん断力伝達部材10は柱61の軸方向に間隔を置いて複数、支柱材21側へ突設されることで、柱61(支柱材21)の軸方向に分散して充填コンクリート8中に埋設されるため、柱61の鉛直せん断力が柱61の軸方向の全長から均等に、あるいは分散して支柱材21の軸方向に伝達される状態になり、いずれかのせん断力伝達部材10に鉛直せん断力が集中するようなことはない。   A plurality of shearing force transmission members 10 are provided in the axial direction of the pillars 61 at intervals in the axial direction of the pillars 61, so that they are dispersed in the axial direction of the pillars 61 (postal pillars 21) and embedded in the filled concrete 8. Therefore, the vertical shearing force of the column 61 is transmitted from the entire length of the column 61 in the axial direction of the column member 21 evenly or distributed from the entire length in the axial direction of the column 61. Shear force is not concentrated.

請求項1では制震補強架構1の支柱材21に対向する柱61の制震補強架構1側の正面(表面)に境界面プレート7が重なって接合されると共に、境界面プレート7が直接、もしくは間接的に支柱材21に接合され、柱61と支柱材21間の充填コンクリート8中に境界面プレート7とその支柱材21への接合部分が埋設されることで、主構造体6の柱61のコンクリートからの鉛直せん断力を境界面プレート7に伝達し、境界面プレート7と充填コンクリート8との接合部分を通じて支柱材21に伝達することができる。   In claim 1, the boundary surface plate 7 is overlapped and joined to the front surface (surface) of the column 61 facing the support material 21 of the vibration suppression reinforcement frame 1 on the side of the vibration suppression reinforcement frame 1 and the boundary surface plate 7 is directly joined. Alternatively, the column of the main structure 6 is indirectly bonded to the support member 21 and the interface plate 7 and the connection portion to the support member 21 are embedded in the filling concrete 8 between the column 61 and the support member 21. The vertical shearing force from the concrete 61 can be transmitted to the boundary surface plate 7 and transmitted to the support member 21 through the joint portion between the boundary surface plate 7 and the filled concrete 8.

柱61の鉛直せん断力が支柱材21に伝達されることで、主構造体6の層間変形時にも制震補強架構1の最下層の支柱材21が主構造体6の柱61に拘束されるため、主構造体6の構面内水平方向に隣接する支柱材21、21間に架設されているブレース4のダンパー42を予定通りに伸縮させることができる結果、ダンパー42に予定通りの減衰力を発生させることが可能になる。   By transmitting the vertical shearing force of the column 61 to the column member 21, the column member 21 in the lowermost layer of the seismic reinforcement frame 1 is restrained by the column 61 of the main structure 6 even when the main structure 6 is deformed between layers. Therefore, the damper 42 of the brace 4 installed between the support members 21 and 21 adjacent in the horizontal direction in the composition plane of the main structure 6 can be expanded and contracted as planned. As a result, the damper 42 has a predetermined damping force. Can be generated.

境界面プレート7は支柱材21との間で柱61の軸方向のせん断力(鉛直せん断力)の伝達が可能な状態で柱61に接合されれば、境界面プレート7自体の形状と柱61への接合方法は問われず、主構造体6がコンクリート造躯体であれば、既存であるか新設であるか等の条件に応じて決められる。   If the boundary surface plate 7 is joined to the column 61 in a state where the axial shearing force (vertical shearing force) of the column 61 can be transmitted between the boundary surface plate 21 and the column member 21, the shape of the boundary surface plate 7 itself and the column 61 are obtained. There is no limitation on the joining method, and if the main structure 6 is a concrete structure, it is determined depending on whether it is an existing structure or a new structure.

例えば主構造体6が新設のコンクリート造躯体である場合には、境界面プレート7の柱61(コンクリート充填)側に、柱61の軸方向に直交等、交差する方向を向く面を持つ定着プレート等の板を突設し、これを柱61のコンクリート中に埋設することもできる。但し、主構造体6が既存のコンクリート造躯体の場合には柱61側への定着プレートの突設ができないか、困難であるため、図1等に示すように境界面プレート7を貫通する複数本の棒状(ボルト状)のせん断抵抗材9をコンクリート造躯体である場合の柱61のコンクリート中に埋設させる方法が適切である(請求項)。主構造体6の柱61が鉄骨造である場合には、せん断抵抗材9が使用される必要はない。せん断抵抗材9は主に柱61が既存のコンクリート造躯体である場合の柱61のコンクリート中に埋設されるが、新設のコンクリート造躯体の柱61にも使用可能である。 For example, when the main structure 6 is a new concrete structure, a fixing plate having a surface facing the intersecting direction such as orthogonal to the axial direction of the column 61 on the column 61 (concrete filling) side of the boundary surface plate 7. It is also possible to project a plate such as the like and embed it in the concrete of the pillar 61. However, in the case where the main structure 6 is an existing concrete structure, it is difficult or difficult to project a fixing plate to the column 61 side, so that a plurality of pieces penetrating the boundary surface plate 7 as shown in FIG. method of the present of the shear resistance material 9 of the rod-shaped (V-shaped) is embedded in the concrete of the pillar 61 when it is concrete skeleton is appropriate (claim 6). When the column 61 of the main structure 6 is steel, the shear resistance material 9 need not be used. The shear resistance material 9 is mainly embedded in the concrete of the column 61 when the column 61 is an existing concrete structure, but can also be used for the column 61 of a new concrete structure.

せん断抵抗材9も柱61のコンクリート中では表面の付着力とせん断力の作用方向への投影面積分の支圧力をせん断力に対する抵抗力として発揮し、境界面プレート7にその面内方向に係合することで、柱61からの鉛直せん断力を境界面プレート7に伝達する。せん断抵抗材9は柱61のコンクリート中に埋設される区間において柱61の鉛直せん断力を受け、境界面プレート7に係合する部分から境界面プレート7に伝達する。せん断抵抗材9を介して境界面プレート7に伝達された柱61からの鉛直せん断力は境界面プレート7と支柱材21との接合部分と、境界面プレート7に突設された場合の上記のせん断力伝達部材10を介して支柱材21に定着される。   In the concrete of the column 61, the shear resistance material 9 also exerts a surface adhesion force and a supporting pressure corresponding to the projected area in the direction of the shear force acting as a resistance force against the shear force, and is applied to the boundary plate 7 in the in-plane direction. By combining, the vertical shearing force from the column 61 is transmitted to the interface plate 7. The shear resistance material 9 receives the vertical shearing force of the column 61 in the section embedded in the concrete of the column 61 and transmits it to the boundary surface plate 7 from the portion engaging with the boundary surface plate 7. The vertical shearing force from the column 61 transmitted to the boundary surface plate 7 through the shear resistance material 9 is the above-mentioned when the boundary surface plate 7 and the column material 21 are joined to the boundary surface plate 7 and the boundary surface plate 7 is projected. It is fixed to the support material 21 via the shear force transmission member 10.

せん断抵抗材9は図7に示すように例えば棒状(ボルト状)の形状をした本体部の軸部91と、軸部91の先端部に形成、または螺合等により接続され、柱61の表面より奥側のコンクリート中に埋設されて定着される定着部92と、軸部91のコンクリートから露出する部分に形成、または螺合等により接続される頭部93を持つ。せん断抵抗材9の定着部92は柱61のコンクリート中に定着される一方、コンクリートから露出する頭部93の少なくとも一部は境界面プレート7の厚さの範囲内に位置し、境界面プレート7に面内方向に係合する。定着部92はコンクリート中に埋設されることで、せん断抵抗材9に生じる軸方向の引き抜き力に抵抗し、境界面プレート7を柱61の表面に接合した状態を維持する。   As shown in FIG. 7, the shear resistance material 9 is connected to the shaft portion 91 of the main body portion, for example, in the shape of a rod (bolt shape), and the front end portion of the shaft portion 91 by screwing or the like. A fixing portion 92 is embedded and fixed in the deeper concrete, and a head portion 93 is formed or connected to a portion exposed from the concrete of the shaft portion 91 by screwing or the like. The fixing portion 92 of the shear resistance material 9 is fixed in the concrete of the column 61, while at least a part of the head portion 93 exposed from the concrete is located within the thickness range of the boundary surface plate 7. Is engaged in the in-plane direction. The fixing portion 92 is embedded in the concrete, thereby resisting the axial pulling force generated in the shear resistance material 9 and maintaining the state where the interface plate 7 is joined to the surface of the column 61.

せん断抵抗材9は柱61が主に既存のコンクリート造の場合に柱61のコンクリート中に埋設されるが、その場合、定着部92を含むせん断抵抗材9の本体(軸部91)は柱61のコンクリート中に境界面プレート7側の正面から形成された削孔61a中に挿入される。定着部92は削孔61a内の奥まで挿入され、削孔61a内にモルタル、接着剤等の充填材61bが充填されることにより軸部91と共にコンクリート(充填材61b)中に埋設され、定着される。頭部93はコンクリートの表面側に位置する。   The shear resistance material 9 is embedded in the concrete of the column 61 when the column 61 is mainly made of existing concrete. In this case, the main body (shaft portion 91) of the shear resistance material 9 including the fixing portion 92 is the column 61. Is inserted into a drilling hole 61a formed from the front surface on the boundary surface plate 7 side. The fixing portion 92 is inserted to the back of the drilling hole 61a. By filling the drilling hole 61a with a filler 61b such as mortar and adhesive, the fixing portion 92 is embedded in the concrete (filler 61b) together with the shaft portion 91 to be fixed. Is done. The head 93 is located on the surface side of the concrete.

定着部92と頭部93はせん断抵抗材9本体である軸部91の一部であることもあるが、コンクリートの削孔61a中にせん断抵抗材9が挿入された後の削孔61a内への充填材61bの充填作業を容易にするために、頭部93は螺合等により軸部91から分離自在に接続されることもある。頭部93が軸部91から分離自在である場合、削孔61a内には頭部93が不在の状態で充填材61bが充填され、充填完了後、頭部93が軸部91に螺合により接続される。定着部92も軸部91の先端部に螺合等により接続されることもある。   The fixing portion 92 and the head portion 93 may be a part of the shaft portion 91 which is the main body of the shear resistance material 9, but into the hole 61a after the shear resistance material 9 is inserted into the concrete hole 61a. In order to facilitate the filling operation of the filler 61b, the head portion 93 may be detachably connected from the shaft portion 91 by screwing or the like. When the head portion 93 is separable from the shaft portion 91, the hole 61a is filled with the filler 61b in the absence of the head portion 93. After the filling is completed, the head portion 93 is screwed into the shaft portion 91. Connected. The fixing unit 92 may also be connected to the tip of the shaft unit 91 by screwing or the like.

せん断抵抗材9は頭部93において境界面プレート7に面内方向に係合するが、図7に示すように頭部93の定着部92側に、削孔61a内に挿入される挿入部94が一体的に形成された場合には、頭部93は削孔61aの周囲のコンクリートにも放射方向に係合することができる。このため、頭部93が挿入部94において柱61のコンクリートから直接、鉛直せん断力を受け、そのまま境界面プレート7に伝達することが可能になり、挿入部94がない場合より鉛直せん断力の伝達効果が高まる。   The shear resistance material 9 engages with the boundary surface plate 7 in the in-plane direction at the head portion 93, but as shown in FIG. 7, the insertion portion 94 is inserted into the hole 61a on the fixing portion 92 side of the head portion 93. Is integrally formed, the head portion 93 can also engage with the concrete around the hole 61a in the radial direction. For this reason, it becomes possible for the head 93 to receive the vertical shearing force directly from the concrete of the column 61 at the insertion portion 94 and transmit it directly to the interface plate 7, and transmit the vertical shearing force as compared with the case where there is no insertion portion 94. Increases effectiveness.

せん断抵抗材9も柱61の軸方向に間隔を置いて複数、配列することで、柱61の軸方向に分散して柱61のコンクリート中に埋設されるため、柱61の鉛直せん断力が柱61の軸方向の全長から均等に、あるいは分散して支柱材21の軸方向に伝達される状態になり、いずれかのせん断抵抗材9に鉛直せん断力が集中するようなことはない。せん断抵抗材9が柱61の軸方向に間隔を置いて配列することで、柱61に接合される支柱材21の全長に亘ってせん断抵抗材9を配列させることができる結果、柱21の鉛直せん断力を支柱材21の全長を通じて支柱材21に伝達させることができ、鉛直せん断力の伝達量が増大するため、鉛直せん断力の伝達効果が向上する。   Since a plurality of shear resistance members 9 are arranged at intervals in the axial direction of the columns 61, they are dispersed in the axial direction of the columns 61 and are embedded in the concrete of the columns 61. The axial length of 61 is evenly or dispersedly transmitted to the axial direction of the strut material 21, and the vertical shear force does not concentrate on any shear resistance material 9. By arranging the shear resistance material 9 at intervals in the axial direction of the column 61, the shear resistance material 9 can be arranged over the entire length of the column material 21 joined to the column 61. Since the shear force can be transmitted to the support material 21 through the entire length of the support material 21, and the amount of transmission of the vertical shear force is increased, the transmission effect of the vertical shear force is improved.

せん断抵抗材9は棒状である場合には、図1、図5に示すように境界面プレート7の幅方向に並列して配列可能であり、境界面プレート7の幅方向に並列することで、境界面プレート7の幅方向にも均等に柱61の鉛直せん断力が複数本のせん断抵抗材9に伝達される状態を得ることが可能である。   When the shear resistance material 9 is rod-shaped, it can be arranged in parallel in the width direction of the interface plate 7 as shown in FIGS. 1 and 5, and in parallel in the width direction of the interface plate 7, It is possible to obtain a state in which the vertical shearing force of the column 61 is evenly transmitted to the plurality of shear resistance members 9 in the width direction of the boundary surface plate 7.

なお、コンクリート造の構造部材の表面に重なるプレートを用いてプレートの面内方向のせん断力が構造部材に伝達されるようにプレートを構造部材に接合する方法として、構造部材の表面にベースプレートを重ね、ベースプレートを貫通するアンカーをその構造部材中に埋設する方法がある(特許第4189292号公報参照)。ここでのアンカーは請求項のせん断抵抗材9に相当し得る。この方法によれば、ベースプレートの面内方向に作用するせん断力をベースプレートの挿通孔の内周面からアンカーに伝達し、アンカーから構造部材に伝達することができる(段落0026)。 As a method of joining a plate to a structural member so that a shear force in the in-plane direction of the plate is transmitted to the structural member using a plate overlapping the surface of the structural member made of concrete, a base plate is overlaid on the surface of the structural member. There is a method of embedding an anchor penetrating the base plate in the structural member (see Japanese Patent No. 4189292). The anchor here may correspond to the shear resistance material 9 of claim 6 . According to this method, the shearing force acting in the in-plane direction of the base plate can be transmitted from the inner peripheral surface of the insertion hole of the base plate to the anchor, and transmitted from the anchor to the structural member (paragraph 0026).

しかしながら、この方法ではベースプレートに接続されるブレースに作用する軸方向力の、ベースプレート面内方向成分を構造部材に伝達することを想定しているため(段落0005、0069、0075)、本発明のように一方の柱61の軸方向力を鉛直せん断力として他方の柱(支柱材21)に伝達させるように両柱を接合するには、本方法をそのまま適用するだけでは十分とは言えず、何らかの追加の工夫を必要とする。   However, this method assumes that the in-plane direction component of the axial force acting on the brace connected to the base plate is transmitted to the structural member (paragraphs 0005, 0069, 0075). In order to join the two columns so that the axial force of one column 61 is transmitted to the other column (post material 21) as a vertical shear force, it is not sufficient to apply this method as it is. Requires additional ingenuity.

この点、請求項1ではコンクリート造躯体である主構造体6の柱61の正面(表面)に重なって接合される境界面プレート7を前記のように柱61の軸方向に連続した形状に形成することが可能であり、連続させることに障害はないため、請求項のように複数本のせん断抵抗材9を柱61の軸方向に間隔を置いて配列させることが可能になっている。この結果、前記のように柱61の鉛直せん断力を支柱材21の全長に分散したせん断抵抗材9を通じて支柱材21に伝達させることができるため、柱61と支柱材21との間で十分な鉛直せん断力の伝達を図ることが可能になっている。 In this regard, in claim 1, the boundary surface plate 7 which is joined to the front surface (surface) of the column 61 of the main structure 6 which is a concrete structure is formed in a continuous shape in the axial direction of the column 61 as described above. Since there is no hindrance to the continuity, a plurality of shear resistance members 9 can be arranged at intervals in the axial direction of the pillar 61 as in the sixth aspect . As a result, since the vertical shearing force of the column 61 can be transmitted to the column material 21 through the shear resistance material 9 dispersed over the entire length of the column material 21 as described above, a sufficient amount between the column 61 and the column material 21 is sufficient. It is possible to transmit the vertical shear force.

請求項1ではまた、柱61の正面と支柱材21との間に充填コンクリート8が充填され、境界面プレート7とその支柱材21との接合部分が充填コンクリート8中に埋設されるため、境界面プレート7の表面にせん断力伝達部材10を突設することで(請求項)、柱61からの鉛直せん断力をせん断力伝達部材10を介しても支柱材21に伝達することが可能になっている。 Further, in the first aspect, the filling concrete 8 is filled between the front surface of the column 61 and the support material 21, and the joint portion between the boundary surface plate 7 and the support material 21 is embedded in the filling concrete 8. By projecting the shearing force transmitting member 10 on the surface of the face plate 7 (Claim 5 ), the vertical shearing force from the column 61 can be transmitted to the support material 21 even through the shearing force transmitting member 10. It has become.

只、境界面プレート7にせん断力伝達部材10を突設する場合(請求項)にも、柱61の表面と充填コンクリート8とは境界面プレート7を介して接合されるに過ぎないため、柱61からの鉛直せん断力の支柱材21への伝達が十分でないこともある。 Even when the shear force transmitting member 10 is projected from the boundary surface plate 7 (Claim 5 ), the surface of the column 61 and the filled concrete 8 are merely joined via the boundary surface plate 7. The transmission of the vertical shearing force from the column 61 to the column material 21 may not be sufficient.

そこで、主構造体6が既存のコンクリート造躯体の場合には、最下層の支柱材21の主構造体6の柱61側に、柱61の、正面に交差する面をなす側面に重なって柱61に接合される側面プレート14を一体化させることで(請求項)、鉛直せん断力の支柱材21への伝達を側面プレート14に補わせることもある。側面プレート14は柱61の正面から距離を置いた支柱材21から柱61側へ張り出して柱61の側面に重なることで、柱61と支柱材21間に充填される充填コンクリート8の充填領域を仕切るため、充填コンクリート8のせき板を兼ねる役目も果たす。 Therefore, when the main structure 6 is an existing concrete structure, the column 61 is overlapped with the side of the column 61 that intersects the front surface of the column 61 on the column 61 side of the main structure 6 of the lowermost support member 21. By integrating the side plate 14 joined to 61 (Claim 1 ), the transmission of the vertical shearing force to the column material 21 may be supplemented to the side plate 14. The side plate 14 protrudes from the column material 21 at a distance from the front of the column 61 to the column 61 side and overlaps the side surface of the column 61, so that a filling region of the filled concrete 8 filled between the column 61 and the column material 21 is formed. In order to partition, it also serves as a slat of filled concrete 8.

請求項では柱61の側面に重なって接合される側面プレート14が支柱材21の柱61側に一体化することで、境界面プレート7に加え、側面プレート14からも柱61の鉛直せん断力が支柱材21に伝達されるため、柱61と支柱材21の一体性が強まる。この場合には、柱61の側面からも側面プレート14を介して鉛直せん断力が支柱材21に伝達されることで、柱61の正面の境界面プレート7のみから支柱材21に伝達される場合より、鉛直せん断力伝達時の柱61のコンクリートに生じる境界面プレート7からの反力が境界面プレート7と側面プレート14に分散するため、柱61のコンクリートの損傷が生じにくくなる利点もある。 In claim 1 , the side plate 14 joined to overlap the side surface of the column 61 is integrated with the column 61 side of the column material 21, so that the vertical shear force of the column 61 is also applied from the side plate 14 in addition to the boundary surface plate 7. Is transmitted to the support material 21, the integrity of the pillar 61 and the support material 21 is enhanced. In this case, when the vertical shearing force is transmitted from the side surface of the column 61 to the column material 21 via the side plate 14, the vertical shear force is transmitted from only the boundary surface plate 7 in front of the column 61 to the column material 21. Further, since the reaction force from the boundary surface plate 7 generated in the concrete of the column 61 at the time of transmission of the vertical shear force is distributed to the boundary surface plate 7 and the side surface plate 14, there is an advantage that the concrete of the column 61 is hardly damaged.

側面プレート14の柱61の側面への接合方法も問われないが、側面プレート14は例えば境界面プレート7と同様に、側面プレート14を厚さ方向に貫通し、側面プレート14にその面内方向に係合するせん断抵抗材9が柱61中に定着されることにより柱61に接合される(請求項)。柱61の側面は正面の両側の側面である場合と、いずれか片側の側面である場合があるが、側面プレート14の接合による柱61への偏心の影響を回避する上では両側が合理的である。 The method of joining the side plate 14 to the side surface of the column 61 is not limited, but the side plate 14 penetrates the side plate 14 in the thickness direction, for example, similarly to the boundary surface plate 7, and passes through the side plate 14 in the in-plane direction. The shear resistance material 9 that engages with the pillar 61 is fixed in the pillar 61 to be joined to the pillar 61 (claim 2 ). The side surface of the column 61 may be a side surface on both sides of the front side or one of the side surfaces, but both sides are reasonable in order to avoid the influence of eccentricity on the column 61 due to the joining of the side plate 14. is there.

側面プレート14は支柱材21の柱61側には主に溶接、またはボルト接合により一体化させられ、支柱材21から充填コンクリート8の領域を越えて柱61に跨り、柱61の側面に重なる。図面ではH形鋼からなる支柱材21のフランジの柱61側の側面に側面プレート14を溶接している。   The side plate 14 is integrated on the column 61 side of the column material 21 mainly by welding or bolting, extends over the column 61 from the column material 21 over the region of the filled concrete 8, and overlaps the side surface of the column 61. In the drawing, the side plate 14 is welded to the side surface of the flange 61 of the column material 21 made of H-shaped steel on the column 61 side.

柱61の側面に主構造体6の壁62が接続している場合のように、側面プレート14を重ねようとする柱61の区間に柱61の側面が露出していないような場合には、壁62の柱61との目地等、壁62と柱61の境界の一部が除去され(斫られ)、柱61の側面が露出させられる。側面プレート14を貫通するせん断抵抗材9は側面プレート14の幅方向(柱61と支柱材21が対向する方向)には、柱61の側面への重なり代(幅)に応じ、1列、または複数列、配置される。   When the wall 61 of the main structure 6 is connected to the side surface of the column 61, when the side surface of the column 61 is not exposed in the section of the column 61 where the side plate 14 is to be stacked, A part of the boundary between the wall 62 and the column 61 such as a joint between the wall 62 and the column 61 is removed (squeezed), and the side surface of the column 61 is exposed. The shear resistance material 9 penetrating the side plate 14 is arranged in one row in the width direction of the side plate 14 (direction in which the column 61 and the column material 21 face each other), depending on the overlap margin (width) to the side surface of the column 61, or Multiple rows are arranged.

柱61からの鉛直せん断力の支柱材21への伝達効果、及び鉛直せん断力伝達時に柱61のコンクリートに生じる境界面プレート7等からの反力の分散効果は側面プレート14の主構造体6側の端部に、柱61の正面の反対側の背面に重なって柱61に接合される背面プレート16を一体化させることで(請求項)、更に高まる。背面プレート16が側面プレート14に一体化しなければ、支柱材21への鉛直せん断力の伝達効果は生じないため、背面プレート16が柱61に接合される場合には鉛直せん断力の伝達上、背面プレート16は側面プレート14に一体化することに意味がある。 The transmission effect of the vertical shear force from the column 61 to the column material 21 and the dispersion effect of the reaction force from the boundary surface plate 7 and the like generated in the concrete of the column 61 when the vertical shear force is transmitted are the main structure 6 side of the side plate 14. This is further enhanced by integrating the back plate 16 that is joined to the column 61 so as to overlap the back surface of the column 61 opposite to the front side of the column 61 (Claim 3 ). If the back plate 16 is not integrated with the side plate 14, the transmission effect of the vertical shear force to the support material 21 does not occur. It is meaningful to integrate the plate 16 with the side plate 14.

側面プレート14は柱61の側面の幅方向には側面の全幅に跨って重なる場合と、図1等に示すように柱61の支柱材21寄りの一部の区間にのみ重なる場合があるが、背面プレート16の形状は側面プレート14の柱61への重なり区間に応じて相違する。側面プレート14が柱61の全幅に跨る場合には、背面プレート16は柱61の背面にのみ重なれば側面プレート14に一体化(接合)されるが、側面プレート14が支柱材21寄りの一部の区間にのみ重なる場合には、図2−(d)に示すように背面プレート16は柱61の背面から柱61の側面に回り込み、側面プレート17を有する形状に形成され、柱61の側面における側面プレート17において側面プレート14に一体化される。   The side plate 14 may overlap over the entire width of the side surface in the width direction of the side surface of the column 61, or may overlap only in a part of the column 61 near the column member 21 as shown in FIG. The shape of the back plate 16 differs depending on the overlapping section of the side plate 14 on the column 61. When the side plate 14 extends over the entire width of the column 61, the back plate 16 is integrated (bonded) to the side plate 14 if it overlaps only the back of the column 61. In the case of overlapping only the section of the section, as shown in FIG. 2D, the back plate 16 wraps around the side surface of the column 61 from the back surface of the column 61 and is formed in a shape having the side plate 17. The side plate 17 is integrated with the side plate 14.

側面プレート14に背面プレート16が一体化する場合には、支柱材21に一体化した側面プレート14と背面プレート16が柱61の周方向に連続することで、支柱材21は側面プレート14と背面プレート16を介して柱61を包囲した状態で柱61に接合される。この結果、柱61の鉛直せん断力が側面プレート14と背面プレート16を通じて支柱材21に伝達される状態になるため、鉛直せん断力の支柱材21への伝達効果が更に高まる。また柱61のコンクリートが鉛直せん断力伝達時に各プレートから受ける反力が軽減されるため、柱61のコンクリートに損傷が生じにくくなる。   When the back plate 16 is integrated with the side plate 14, the side plate 14 and the back plate 16 integrated with the support column 21 are continuous in the circumferential direction of the column 61, so that the support column 21 is connected to the side plate 14 and the back plate 16. The column 61 is joined to the column 61 in a state of surrounding the column 61 via the plate 16. As a result, since the vertical shearing force of the column 61 is transmitted to the support member 21 through the side plate 14 and the back plate 16, the effect of transmitting the vertical shearing force to the support member 21 is further enhanced. In addition, since the reaction force that the concrete of the column 61 receives from each plate when the vertical shear force is transmitted is reduced, the concrete of the column 61 is hardly damaged.

背面プレート16は側面プレート14、または境界面プレート7と同様に、例えば背面プレート16を厚さ方向に貫通し、背面プレート16にその面内方向に係合するせん断抵抗材9が柱61中に定着されることにより柱61に接合される(請求項)。この場合もせん断抵抗材9は背面プレート16の幅に応じ、1列、または複数列、配置される。 Similar to the side plate 14 or the boundary surface plate 7, the back plate 16 penetrates the back plate 16 in the thickness direction, and the shear resistance material 9 that engages the back plate 16 in the in-plane direction is provided in the column 61. By being fixed, it is joined to the pillar 61 (claim 4 ). Also in this case, the shear resistance members 9 are arranged in one or a plurality of rows according to the width of the back plate 16.

制震補強架構の支柱材に対向する柱の制震補強架構側の正面に境界面プレートを重ねて接合すると共に、境界面プレートを直接、もしくは間接的に支柱材に接合し、柱と支柱材間に充填されるコンクリート中に境界面プレートとその支柱材への接合部分を埋設するため、主構造体の柱のコンクリートからの鉛直せん断力を境界面プレートに伝達し、境界面プレートと充填コンクリートとの接合部分を通じて支柱材に伝達することができる。   The column facing the seismic reinforcement frame support material is joined with the boundary plate on the front side of the seismic reinforcement frame side, and the boundary plate is joined directly or indirectly to the column material. In order to embed the interface plate and its joints to the struts in the concrete filled between them, the vertical shear force from the concrete of the pillar of the main structure is transmitted to the interface plate, and the interface plate and the filled concrete It can be transmitted to the support material through the joint portion.

この結果、主構造体の層間変形時にも制震補強架構の最下層の支柱材を主構造体の柱に拘束した状態を維持することができるため、主構造体の構面内水平方向に隣接する支柱材間に架設されているブレースのダンパーを予定通りに伸縮させることができ、ダンパーに予定通りの減衰力を発生させることができる。   As a result, even when the main structure is deformed between layers, it is possible to maintain the state in which the bottom strut material of the seismic reinforcement frame is constrained by the pillar of the main structure. The brace damper installed between the supporting strut members can be expanded and contracted as planned, and the damper can generate the damping force as planned.

主構造体の柱が既存のコンクリート造躯体で、制震補強架構の支柱材が鉄骨造である場合に、柱の正面(表面)に境界面プレートを接合し、柱の正面と支柱材との間にコンクリートを充填し、支柱材を柱に接合した様子を示した水平断面図である。When the pillar of the main structure is an existing concrete structure and the strut material of the seismic retrofitting frame is a steel frame, a boundary plate is joined to the front (surface) of the pillar, and the front of the pillar and the strut material It is the horizontal sectional view which showed a mode that concrete was filled in between and the support | pillar material was joined to the pillar. (a)は図1に示す柱に支柱材を接合するときの柱の様子を示した水平断面図、(b)は(a)に示す柱の支柱材側の面にせん断力伝達部材と接合プレートが一体化した境界面プレートを柱の正面に接合し、接合プレートに、支柱材に一体化させた連結材を突き合わせるときの様子を示した水平断面図、(c)は(b)に示す接合プレートと連結材を添え板を用いて接合したときの様子を示した水平断面図、(d)は柱の背面に背面プレートを接合したときの様子を示した水平断面図である。(A) is a horizontal sectional view showing a state of a pillar when joining a pillar material to the pillar shown in FIG. 1, and (b) is a shear force transmission member and a joint on the pillar material side surface of the pillar shown in (a). A horizontal cross-sectional view showing a state in which the interface plate integrated with the plate is joined to the front of the column, and the connecting material integrated with the support material is abutted against the joining plate, (c) is (b) The horizontal cross-sectional view which showed the mode when the joining plate and connecting material which were shown were joined using an attachment board, (d) is the horizontal sectional view which showed the mode when a back surface plate was joined to the back surface of a pillar. 主構造体の構面内水平方向に隣接する支柱間に架設されるつなぎ梁が主構造体のスラブ等に接続スラブを介して接合されている様子を示した水平断面図である。It is the horizontal sectional view which showed a mode that the connection beam constructed between the support | pillars adjoining in the horizontal direction in the composition surface of a main structure is joined to the slab etc. of the main structure via the connection slab. 図1のx−x線断面図である。It is the xx sectional view taken on the line of FIG. 図1のy−y線断面図である。FIG. 2 is a cross-sectional view taken along line yy of FIG. 1. 図1のz−z線断面図である。FIG. 2 is a cross-sectional view taken along the line zz in FIG. 1. 境界面プレートを貫通するせん断抵抗材と柱のコンクリート及び境界面プレートとの関係を示した、せん断抵抗材の軸に垂直な方向の断面図である。It is sectional drawing of the direction perpendicular | vertical to the axis | shaft of a shear resistance material which showed the relationship between the shear resistance material which penetrates an interface plate, the concrete of a pillar, and an interface plate. 主構造体の構面外に制震補強架構が配置され、制震補強架構のつなぎ梁が主構造体のスラブ等に接合された様子を示した斜視図である。It is the perspective view which showed a mode that the damping control reinforcement frame was arrange | positioned out of the surface of a main structure, and the connection beam of the damping control frame was joined to the slab of the main structure, etc. 制震補強架構のつなぎ梁が主構造体の壁に接続スラブを介して接合されている状況を示した斜視図である。It is the perspective view which showed the condition where the connecting beam of the seismic reinforcement frame was joined to the wall of the main structure via the connection slab. 図8に示す制震補強架構を構成する支柱が3本の支柱材からなる場合に、主構造体に層間変形が生じ、制震補強架構の最下層より上の支柱材が水平方向に相対移動したときの様子を示した立面図である。When the struts that make up the seismic reinforcement frame shown in Fig. 8 consist of three strut members, interlayer deformation occurs in the main structure, and the strut members above the bottom layer of the seismic reinforcement frame move relative to each other in the horizontal direction. It is the elevation which showed the state when doing.

図1は図8に示すような柱・梁からなるフレームを有する主構造体6の構面外に、主構造体6を制震補強するための制震補強架構1が主構造体6から距離を置いて配置され、主構造体6に接合された制震補強架構付き構造物における主構造体6の柱61と制震補強架構1の一部である支柱2との接合部を示す。主構造体6は既存の場合と新設の場合があり、図面では鉄筋コンクリート造(鉄骨鉄筋コンクリート造を含む)の場合の例を示すが、鉄骨造の場合もある。   FIG. 1 shows that a seismic reinforcement frame 1 for damping and reinforcing the main structure 6 is located away from the main structure 6 outside the main structure 6 having a column / beam frame as shown in FIG. The joint part of the pillar 61 of the main structure 6 and the support | pillar 2 which is a part of the vibration suppression reinforcement frame 1 in the structure with the vibration suppression reinforcement frame which is arrange | positioned and is joined to the main structure 6 is shown. The main structure 6 may be an existing case or a new structure, and the drawing shows an example of a reinforced concrete structure (including a steel reinforced concrete structure), but there is also a case of a steel structure.

制震補強架構1は図8〜図10に示すように主構造体6の構面内水平方向に配列し、互いに間隔を隔てて立設される複数本の支柱2と、構面内水平方向に隣接する支柱2、2間に架設されるつなぎ梁3と、構面内水平方向に隣接する支柱2、2間に架設される、ブレース本体41にダンパー42を組み込んだダンパー一体型ブレース(以下、ブレース)4を基本的な構成要素として備える。   As shown in FIGS. 8 to 10, the seismic reinforcing frame 1 is arranged in the horizontal direction in the composition plane of the main structure 6, and a plurality of columns 2 that are erected at intervals from each other, and the horizontal direction in the composition plane A bracing beam 3 installed between the support columns 2 and 2 adjacent to each other, and a damper-integrated brace (hereinafter referred to as a damper) incorporated in the brace body 41 and installed between the support columns 2 and 2 adjacent in the horizontal direction in the composition plane. , Brace) 4 as a basic component.

制震補強架構1は図9に示すようにつなぎ梁3において主構造体6の梁やスラブ、壁62等の構造部材に両者間に跨り、双方に少なくとも水平せん断力の伝達が可能な状態に接続スラブ31を介して接合される。「少なくとも」とは、主構造体6と制震補強架構1との間の水平せん断力のみが伝達可能な場合と、水平せん断力の他、いずれかの回りの曲げモーメント、または鉛直荷重の伝達が可能な場合があることの意味である。   As shown in FIG. 9, the seismic reinforcement frame 1 spans the structural members such as the beams, slabs, and walls 62 of the main structure 6 in the connecting beam 3 so that at least horizontal shearing force can be transmitted to both. It is joined via the connection slab 31. “At least” means that only the horizontal shearing force between the main structure 6 and the seismic reinforcement frame 1 can be transmitted, the horizontal shearing force, the bending moment around one of them, or the transmission of the vertical load This means that there are cases where this is possible.

支柱2は図8、図10に示すように鉛直方向に複数本の支柱材21〜23に分離し、上下に分離した支柱材21、22(22、23)間に両者間の相対水平移動を許容する積層ゴム支承等の絶縁装置5が介在する。制震補強架構1は主構造体6の構面(フレームの構面内方向)に沿って付加的に設置されるため、主に鉄骨造で構築されるが、鉄筋コンクリート造の場合もある。   As shown in FIGS. 8 and 10, the support column 2 is divided into a plurality of support members 21 to 23 in the vertical direction, and a relative horizontal movement between the support members 21 and 22 (22, 23) separated vertically is performed. An insulating device 5 such as an allowable laminated rubber bearing is interposed. Since the seismic retrofit frame 1 is additionally installed along the construction surface of the main structure 6 (inside the frame construction surface), it is mainly constructed of a steel structure, but may be a reinforced concrete structure.

支柱2は最下層に位置する支柱材21とその上に位置する上部の支柱材22の、計2本の支柱材21、22からなる場合と、図10に示すように最下層の支柱材21とその上に位置する2本以上の上部の支柱材22、23の、計3本以上の支柱材21〜23からなる場合がある。全支柱材21〜23の内、最下層の支柱材21は図10に示すように制震補強架構1が主構造体6の層間変形に追従して変形するときにも相対移動せずに原位置に留まるため、図6に示すように主構造体6の柱61に接合される。上記した図1に示す接合部における柱61に接合された支柱2は最下層の支柱材21である。   The strut 2 is composed of a total of two strut members 21 and 22, that is, a strut member 21 located on the lowermost layer and an upper strut member 22 located thereon, and a lowermost strut member 21 as shown in FIG. And two or more upper support members 22 and 23 located thereabove, may be composed of a total of three or more support members 21 to 23 in total. Of all the strut members 21 to 23, the lowermost strut member 21 does not move relatively even when the seismic reinforcement frame 1 is deformed following the interlayer deformation of the main structure 6 as shown in FIG. In order to remain in position, it is joined to the column 61 of the main structure 6 as shown in FIG. The support 2 joined to the pillar 61 in the joint shown in FIG. 1 is the support material 21 in the lowermost layer.

絶縁装置5は図10に示すようにそれが跨る上下の支柱材21、22(22、23)間の水平方向の相対移動を許容しながら、相対移動後に支柱材21、22(22、23)を相対移動前の状態に復帰させる状態(復元可能)に接合される。絶縁装置5として積層ゴム支承が使用される場合は、積層ゴム支承が復元装置を兼ね、積層ゴム支承以外の支承が使用される場合は、ばね等の復元装置が伴われる。   As shown in FIG. 10, the insulating device 5 allows the relative movement in the horizontal direction between the upper and lower support members 21 and 22 (22 and 23) across which it is straddled, and after the relative movement, the support members 21 and 22 (22 and 23). Are joined to a state (recoverable) in which the state is restored to the state before the relative movement. When a laminated rubber bearing is used as the insulating device 5, the laminated rubber bearing also serves as a restoring device, and when a bearing other than the laminated rubber bearing is used, a restoring device such as a spring is accompanied.

ブレース4は支柱2、2とつなぎ梁3、3からなる制震補強架構1内に、水平と鉛直に対して傾斜して架設されるため、ブレース4の一端部は例えば図8に示すように構面内水平方向に隣接する支柱材21、21(22、22)の内、一方の支柱材21(22)、もしくはその支柱材21(22)寄りのつなぎ梁3に接続(連結)され、他端部は他方の支柱材21(22)の直下、または直上の支柱材21(22)、もしくはその支柱材22(21)寄りのつなぎ梁3に接続(連結)される。   Since the brace 4 is installed in an anti-seismic reinforcement frame 1 composed of the columns 2 and 2 and the connecting beams 3 and 3 so as to be inclined with respect to the horizontal and vertical directions, one end of the brace 4 is, for example, as shown in FIG. Of the strut members 21, 21 (22, 22) that are adjacent to each other in the horizontal direction in the construction surface, one strut member 21 (22) is connected (connected) to the connecting beam 3 near the strut member 21 (22), The other end portion is connected (coupled) to the strut member 21 (22) directly below or directly above the other strut member 21 (22) or to the connecting beam 3 near the strut member 22 (21).

図10に示すように1本の支柱2が3本以上の支柱材21〜23からなる場合は、ブレース4の架設層が2層以上に亘ることから、最下層のブレース4の一端部は支柱材が2本の場合と同じく最下層の支柱材21やつなぎ梁3に接続され、他端部は水平方向に隣接する最下層の支柱材21の直上の支柱材22やつなぎ梁3に接続される。その直上層のブレース4の一端部は最下層の支柱材21の直上の支柱材22やつなぎ梁3に接続され、他端はその支柱材22に隣接する支柱材22の直上の支柱材23やつなぎ梁3に接続される。   As shown in FIG. 10, when one support column 2 is composed of three or more support members 21 to 23, since the construction layer of the brace 4 extends to two or more layers, one end portion of the lowermost brace 4 is a support column. As in the case of two pieces, the lowermost support member 21 and the connecting beam 3 are connected to the lowermost layer, and the other end is connected to the supporter member 22 and the connecting beam 3 immediately above the lowermost support member 21 adjacent in the horizontal direction. The One end of the brace 4 immediately above the upper layer is connected to the column material 22 and the connecting beam 3 directly above the lowermost column material 21, and the other end is a column material 23 directly above the column material 22 adjacent to the column material 22. Connected to the connecting beam 3.

ブレース4は図8に示すように互いに軸方向に相対移動自在なブレース本体41と、一方のブレース本体41に内蔵され、他方のブレース本体41に接続されるダンパー42からなり、ブレース本体41の端部に一体化したブラケットにおいて、例えば制震補強架構1の支柱2やつなぎ梁3に接合されたベースプレート等に一体化したガセットプレートに連結される。ブレース4はブレース本体41がその両端間に作用する圧縮力と引張力によって相対移動するときにダンパー42が減衰力を発生することにより構造体2の揺れを抑制する。ダンパー42にはオイルダンパー(油圧シリンダ)等の粘性流体を用いたダンパーが使用される。   As shown in FIG. 8, the brace 4 includes a brace body 41 that is axially movable relative to each other and a damper 42 that is built in one brace body 41 and connected to the other brace body 41. In the bracket integrated with the part, for example, it is connected to a gusset plate integrated with a base plate or the like joined to the column 2 or the connecting beam 3 of the vibration control reinforcement frame 1. The brace 4 suppresses the shaking of the structure 2 by the damper 42 generating a damping force when the brace body 41 is relatively moved by the compressive force and the tensile force acting between both ends thereof. A damper using a viscous fluid such as an oil damper (hydraulic cylinder) is used as the damper 42.

図1に示すように制震補強架構1の複数本の支柱2の内、少なくともいずれかの支柱2の最下層の支柱材21に対向する主構造体6の柱61の制震補強架構1側の正面には境界面プレート7が重なって接合される。境界面プレート7は最下層の支柱材21に直接、もしくは間接的に接合される。「直接」とは、境界面プレート7が溶接、もしくはボルトを用いて支柱材21に接合されることを言い、「間接的に」とは例えば図1に示すように境界面プレート7と支柱材21のそれぞれに溶接等により一体化した接合プレート11と連結材211が互いにボルト13等により接合されることを言う。   As shown in FIG. 1, the seismic reinforcement frame 1 side of the column 61 of the main structure 6 that faces the column material 21 at the lowest layer of at least one of the columns 2 among the plurality of columns 2 of the vibration control frame 1. The boundary surface plate 7 is overlapped and joined to the front surface of. The interface plate 7 is joined directly or indirectly to the lowermost support member 21. “Directly” means that the boundary surface plate 7 is welded or joined to the column material 21 using bolts, and “indirectly” means that the boundary surface plate 7 and the column material, for example, as shown in FIG. It is said that the joining plate 11 and the connecting material 211 integrated with each of 21 by welding or the like are joined together by bolts 13 or the like.

柱61の制震補強架構1側の正面と最下層の支柱材21との間にはコンクリート(充填コンクリート)8が充填され、コンクリート8中に境界面プレート7とその支柱材21への接合部分が埋設されることで、柱61が支柱材21に接合される。このことから、支柱材21は柱61の正面との間に充填されるコンクリート8の充填領域を確保するために、図2−(c)に示すように柱61の正面との間に距離を置いて配置される。境界面プレート7と支柱材21との接合部分は直接接合の場合の両者の接合部分であり、図示するように間接的に接合される場合の接合プレート11と連結材211との接合部分である。   Concrete (filled concrete) 8 is filled between the front of the column 61 on the side of the seismic reinforcement frame 1 and the lowermost support material 21, and the boundary plate 7 and the joint portion to the support material 21 are filled in the concrete 8. As a result, the pillar 61 is joined to the support material 21. From this, in order to ensure the filling area | region of the concrete 8 with which the support | pillar material 21 is filled between the front of the pillar 61, as shown in FIG.2- (c), distance between the front of the pillar 61 is shown. Placed and placed. The joint portion between the boundary surface plate 7 and the support material 21 is a joint portion between the two in the case of direct joining, and is a joint portion between the joining plate 11 and the connecting material 211 in the case of being indirectly joined as illustrated. .

境界面プレート7は柱61には軸方向に間隔を置いて部分的に接合されることもあるが、柱61からの鉛直せん断力を軸方向に分散させ、支柱材21の軸方向に均等に伝達させながら、柱61の正面を軸方向の引張力に対して連続して補強する上では、図1のx−x線断面図である図4、及びy−y線断面図である図5に示すように柱61の軸方向に連続した形状に形成されることが適切である。このことから、境界面プレート7による柱61からの鉛直せん断力の伝達効果と柱61正面に対する補強効果が最大に発揮されるよう、図面では境界面プレート7に支柱材21の全長、もしくはほぼ全長に亘る長さを与え、長方形状に形成している。   The boundary surface plate 7 may be partially joined to the column 61 at an interval in the axial direction, but the vertical shearing force from the column 61 is dispersed in the axial direction so as to be even in the axial direction of the column material 21. In order to continuously reinforce the front of the column 61 against the tensile force in the axial direction while transmitting, FIG. 4 which is a sectional view taken along line xx of FIG. 1 and FIG. 5 which is a sectional view taken along line yy. As shown in FIG. 4, it is appropriate that the pillar 61 is formed in a shape that is continuous in the axial direction. For this reason, in the drawing, the full length, or almost the entire length, of the support material 21 is provided on the boundary surface plate 7 so that the effect of transmitting the vertical shearing force from the column 61 by the boundary surface plate 7 and the reinforcement effect on the front surface of the column 61 are maximized. Is formed in a rectangular shape.

図面ではまた、柱61の正面に直交する両側の側面から、境界面プレート7と同様に柱61の鉛直せん断力を支柱材21に伝達するための側面プレート14を支柱材21に接合しながら、柱61の側面に接合している。図面では支柱材21にH形鋼を使用し、弱軸方向を主構造体6の構面外方向(柱61と対向する方向)に向けていることから、側面プレート14は例えば支柱材21のフランジの柱61側の側面、またはフランジの厚さ方向のいずれかの面等に溶接等により一体化させられる。   In the drawing, the side plate 14 for transmitting the vertical shearing force of the column 61 to the column material 21 as well as the boundary surface plate 7 is joined to the column material 21 from the side surfaces orthogonal to the front surface of the column 61. It is joined to the side surface of the column 61. In the drawing, an H-shaped steel is used for the support material 21 and the weak axis direction is directed to the direction of the main structure 6 in the direction outside the surface of the main structure 6 (the direction facing the column 61). It is integrated by welding or the like to the side surface of the flange on the column 61 side or any surface in the thickness direction of the flange.

柱61の幅方向(構面内方向)には柱61の全幅に相当する幅を境界面プレート7に持たせることもできるが、図面では境界面プレート7を柱61に接合するための、構面外方向を向くせん断抵抗材9と、境界面プレート7に直交する方向を向いて柱61に重なる側面プレート14を柱61に接合するためのせん断抵抗材9との柱61内での衝突(干渉)を回避するために、境界面プレート7の幅を柱61の全幅に満たない大きさにしている。   In the width direction of the column 61 (in-plane direction), the boundary surface plate 7 can have a width corresponding to the entire width of the column 61. However, in the drawing, the structure for joining the boundary surface plate 7 to the column 61 is used. Collision in the column 61 between the shear resistance material 9 facing the out-of-plane direction and the shear resistance material 9 for joining the side plate 14 facing the direction orthogonal to the boundary surface plate 7 and overlapping the column 61 to the column 61 ( In order to avoid (interference), the width of the interface plate 7 is set to be less than the full width of the column 61.

図示するように側面プレート14も境界面プレート7と同様に、せん断抵抗材9を用いて柱61の側面に接合する場合、境界面プレート7と側面プレート14をそれぞれ貫通するせん断抵抗材9、9は図1に示すように柱61内で互いに直交して配置されるため、柱61内でのせん断抵抗材9、9同士の衝突が想定される。そこで、上記のように境界面プレート7の幅を柱61の全幅に満たない大きさに抑えることで、境界面プレート7を貫通するせん断抵抗材9が構面外方向を向く柱61の中心線寄りに配置されるようになるため、そのせん断抵抗材9と、側面プレート14を貫通するせん断抵抗材9との柱61内部での衝突(干渉)を回避することが可能になる。   As illustrated, when the side plate 14 is joined to the side surface of the column 61 using the shear resistance material 9 similarly to the boundary surface plate 7, the shear resistance materials 9 and 9 penetrating the boundary surface plate 7 and the side plate 14, respectively. 1 are arranged orthogonal to each other in the column 61, so that collision between the shear resistance members 9, 9 in the column 61 is assumed. Therefore, by suppressing the width of the boundary surface plate 7 to be less than the full width of the column 61 as described above, the center line of the column 61 in which the shear resistance material 9 penetrating the boundary surface plate 7 faces in the outward direction of the composition surface. Since the shear resistance material 9 and the shear resistance material 9 penetrating the side plate 14 can be prevented from colliding (interfering) inside the column 61.

境界面プレート7を貫通するせん断抵抗材9は軸方向を柱61の軸方向に直交する方向に向けて柱61のコンクリート中に埋設されることで、主に軸方向に直交する方向のせん断力を負担し、柱61からの鉛直せん断力を境界面プレート7に伝達する働きをする。このせん断抵抗材9の機能から、せん断抵抗材9は軸方向引張力(引き抜き力)のみを負担する場合のように柱61のコンクリートとの付着による割裂破壊を考慮する必要がない。このことに加え、複数本のせん断抵抗材9の集合により鉛直せん断力の伝達効果が発揮されるようにするために、図面では図4、図5に示すように境界面プレート7を貫通するせん断抵抗材9を柱61の軸方向にせん断抵抗材9の全長分程度の間隔を置いて配列させている。   The shear resistance material 9 penetrating the boundary surface plate 7 is embedded in the concrete of the column 61 with the axial direction oriented in a direction orthogonal to the axial direction of the column 61, so that the shear force mainly in the direction orthogonal to the axial direction The vertical shearing force from the column 61 is transmitted to the boundary surface plate 7. From the function of the shear resistance material 9, the shear resistance material 9 does not need to consider the split fracture due to the adhesion of the column 61 to the concrete as in the case where only the axial tensile force (pulling force) is borne. In addition to this, in order to exhibit the transmission effect of the vertical shear force by the assembly of the plurality of shear resistance members 9, in the drawings, as shown in FIG. 4 and FIG. The resistance members 9 are arranged in the axial direction of the columns 61 with an interval of about the entire length of the shear resistance member 9.

側面プレート14を貫通するせん断抵抗材9は境界面プレート7を貫通するせん断抵抗材9を補助する役目を持つことから、必ずしも境界面プレート7を貫通するせん断抵抗材9のような密度で配置される必要はないため、図6に示すように柱61の軸方向には、側面プレート14を貫通するせん断抵抗材9を部分的に配列させている。   Since the shear resistance material 9 penetrating the side plate 14 serves to assist the shear resistance material 9 penetrating the boundary surface plate 7, the shear resistance material 9 is not necessarily arranged at a density like the shear resistance material 9 penetrating the boundary surface plate 7. Therefore, as shown in FIG. 6, the shear resistance materials 9 penetrating the side plate 14 are partially arranged in the axial direction of the column 61.

せん断抵抗材9は図7に示すように本体である棒状の軸部91と、軸部91の先端部に形成、もしくは接続される定着部92と、軸部91のコンクリート表面側に形成、もしくは接続される頭部93の3部分を有する。せん断抵抗材9は柱61のコンクリート中に形成される削孔61a内に挿入される定着部92において削孔61a中に充填されるモルタル等の充填材61b中に定着され、頭部93において境界面プレート7に、または境界面プレート7と柱61のコンクリートに境界面プレート7の面内方向に係合する。   As shown in FIG. 7, the shear resistance material 9 is formed on the rod-shaped shaft portion 91 which is the main body, the fixing portion 92 formed or connected to the tip portion of the shaft portion 91, and the concrete surface side of the shaft portion 91, or It has 3 parts of the head 93 connected. The shear resistance material 9 is fixed in the filler 61b such as mortar filled in the drilling hole 61a in the fixing portion 92 inserted into the drilling hole 61a formed in the concrete of the column 61, and is bounded in the head 93. Engage with the face plate 7 or with the concrete of the face plate 7 and the column 61 in the in-plane direction of the face plate 7.

せん断抵抗材9は定着部92において充填材61b中に定着されることで、軸方向引張力に対する抵抗力を発揮し、頭部93において少なくとも境界面プレート7に面内方向に係合することで、境界面プレート7の面内方向のせん断力に対する抵抗力を発揮する。「少なくとも境界面プレート7に」とは、頭部93が境界面プレート7と削孔61a周囲のコンクリートに係合することもある意味である。図7では特に頭部93の削孔61a側に、削孔61aの内周面、またはコンクリートに境界面プレート7の面内方向に係合する挿入部94を連続して形成することで、頭部93に柱61のコンクリートからも直接、鉛直せん断力が伝達され、頭部93から境界面プレート7に伝達できるようにしている。   The shear resistance material 9 is fixed in the filler 61b at the fixing portion 92, thereby exerting a resistance force against the axial tensile force, and at the head 93 at least engaging the boundary surface plate 7 in the in-plane direction. The resistance to the shearing force in the in-plane direction of the boundary surface plate 7 is exhibited. “At least on the boundary surface plate 7” means that the head 93 may engage with the boundary surface plate 7 and the concrete around the hole 61 a. In FIG. 7, the head 93 is continuously formed with an insertion portion 94 continuously engaged with the inner peripheral surface of the hole 61a or the concrete in the in-plane direction of the boundary surface plate 7 on the side of the hole 61a. The vertical shearing force is directly transmitted from the concrete of the column 61 to the portion 93 so that it can be transmitted from the head 93 to the boundary surface plate 7.

図7ではせん断抵抗材9の軸部91と定着部92を硬化した充填材61b中に埋設した後、軸部91に軸方向の引張力を予め与えることができるように軸部91の頭部93から境界面プレート7の表面側へ突出する部分にナット95を螺合している。頭部93へのナット95の緊結により軸部91に軸方向引張力を付与した場合には、軸部91の軸方向に、境界面プレート7を柱61のコンクリート表面に密着させようとする復元力が生ずるため、境界面プレート7と柱61のコンクリートとの間に鉛直せん断力の伝達時に生じる摩擦力が増大し、境界面プレート7と柱61との一体性が強まる利点がある。   In FIG. 7, after the shaft portion 91 and the fixing portion 92 of the shear resistance material 9 are embedded in the cured filler 61 b, the head portion of the shaft portion 91 is provided so that an axial tensile force can be applied to the shaft portion 91 in advance. A nut 95 is screwed into a portion protruding from 93 to the surface side of the boundary surface plate 7. When an axial tensile force is applied to the shaft portion 91 by tightening the nut 95 to the head portion 93, restoration is performed so that the boundary surface plate 7 is brought into close contact with the concrete surface of the column 61 in the axial direction of the shaft portion 91. Since the force is generated, the frictional force generated when the vertical shearing force is transmitted between the boundary surface plate 7 and the concrete of the column 61 is increased, and there is an advantage that the integrity between the boundary surface plate 7 and the column 61 is increased.

柱61と支柱材21とは、両者の接合部がコンクリート8中に埋設され、接合部の表面に付着力と支圧力が生じることで、柱61の鉛直せん断力が支柱材21に伝達可能に互いに接合される。但し、接合部での付着力と支圧力のみでは鉛直せん断力の伝達が十分でないこともあるため、図面では境界面プレートの正面(支柱材21側の面)に、支柱材21との間で柱61の鉛直せん断力を伝達するための複数のせん断力伝達部材10を柱61の軸方向に間隔を置いて突設している。
The column 61 and the column material 21 are such that the joint portion between them is buried in the concrete 8 and an adhesive force and a supporting pressure are generated on the surface of the junction portion, so that the vertical shear force of the column 61 can be transmitted to the column material 21. Are joined together. However, since the vertical shear force may not be sufficiently transmitted only by the adhesion force and the supporting pressure at the joint portion, the front surface of the boundary surface plate 7 (the surface on the column material 21 side) is connected to the column material 21 in the drawing. A plurality of shearing force transmitting members 10 for transmitting the vertical shearing force of the column 61 are provided protruding at intervals in the axial direction of the column 61.

せん断力伝達部材10の形状(形態)は問われないが、図面では支圧力での鉛直せん断力の伝達を図るために柱61の軸方向(鉛直方向)に直交する方向を向く上下面を有する板(プレート)状にせん断力伝達部材10を形成している。   The shape (form) of the shearing force transmitting member 10 is not limited, but in the drawing, in order to transmit the vertical shearing force at the support pressure, the shearing force transmitting member 10 has upper and lower surfaces that face in a direction orthogonal to the axial direction (vertical direction) of the column 61. The shear force transmission member 10 is formed in a plate shape.

プレート状のせん断力伝達部材10の上下面を水平に向けてせん断力伝達部材10を使用することで、せん断力伝達部材10のコンクリートから受ける抵抗力が大きくなり過ぎるような場合には、板を水平に対して傾斜させるか、鉛直方向に向けた形にする場合もある。図面では境界面プレート7の支柱材21側の面に突設される各せん断力伝達部材10のせん断力伝達時の負担を軽減するために、柱61の軸方向にせん断抵抗材9の配列と同等程度の間隔を置いてせん断力伝達部材10を配列させている。   When the shear force transmitting member 10 is used with the upper and lower surfaces of the plate-like shear force transmitting member 10 oriented horizontally, the resistance force received from the concrete of the shear force transmitting member 10 becomes too large. In some cases, it is tilted with respect to the horizontal or oriented in the vertical direction. In the drawing, in order to reduce the load at the time of shear force transmission of each shear force transmission member 10 protruding from the surface of the boundary surface plate 7 on the column material 21 side, the arrangement of the shear resistance members 9 in the axial direction of the columns 61 and The shear force transmission members 10 are arranged at an equal interval.

境界面プレート7の正面にはまた、境界面プレート7を支柱材21に接合するための接合プレート11が支柱材21側へ突出した状態で溶接等により一体化させられる。図面では制震補強架構1が鉄骨造であり、支柱2(支柱材21)にH形鋼を使用していることに伴い、接合プレート11を鉛直方向に向けて境界面プレート7に溶接する一方、接合プレート11を支柱材21の柱61側の面に突設した鋼材の連結材211にボルト、もしくは溶接により接合している。   A joining plate 11 for joining the interface plate 7 to the support material 21 is also integrated with the front surface of the interface plate 7 by welding or the like in a state of protruding to the support material 21 side. In the drawing, the vibration-damping reinforcement frame 1 is a steel frame, and the welding plate 11 is welded to the interface plate 7 in the vertical direction in accordance with the use of the H-shaped steel for the column 2 (the column material 21). The joining plate 11 is joined to a steel connecting member 211 projecting from the pillar 61 side surface of the supporting column 21 by bolts or welding.

図面では支柱材21としてのH形鋼の強軸方向を主構造体6の構面内方向に向けて支柱材21を配置していることから、H形鋼のウェブの柱61側の面に連結材211を弱軸方向に向けて突設している。連結材211は支柱2(支柱材21)が鉄筋コンクリート造の場合にも突設される。   In the drawing, since the strut material 21 is arranged with the strong axis direction of the H-shaped steel as the strut material 21 directed in the in-plane direction of the main structure 6, the surface of the H-shaped steel web on the column 61 side is arranged. The connecting material 211 protrudes toward the weak axis direction. The connecting member 211 is also protruded when the column 2 (the column member 21) is reinforced concrete.

支柱材21にH形鋼を使用した場合、H形鋼のウェブには、その柱61側の面に突設された連結材211から柱61の鉛直せん断力が伝達されることから、鉛直せん断力がウェブから支柱材21の軸方向に分散して伝達されるようにするために、図面ではH形鋼のウェブの柱61側に補強プレート212を水平に向けて突設すると共に、柱61の反対側にウェブ自身を曲げに対して補強するための補強プレート212をウェブに重ねて接合している。   When the H-shaped steel is used for the support material 21, the vertical shear force of the column 61 is transmitted to the H-shaped steel web from the connecting material 211 protruding from the surface on the column 61 side. In order to transmit the force in a distributed manner from the web in the axial direction of the column member 21, in the drawing, a reinforcing plate 212 protrudes horizontally on the column 61 side of the H-shaped steel web, and the column 61 A reinforcing plate 212 for reinforcing the web itself against bending is overlapped and joined to the web on the opposite side.

接合プレート11と連結材211は直接、溶接等により接合されることもあるが、図面では現場での作業のし易さの面から、図2−(a)、(b)に示すように接合プレート11を連結材211に同一軸線上で突き合わせ、両者に跨る添え板12、12を双方の両面に重ねてボルト13により接合している。   Although the joining plate 11 and the connecting material 211 may be joined directly by welding or the like, in the drawing, from the viewpoint of ease of work in the field, joining is performed as shown in FIGS. The plate 11 is abutted against the connecting member 211 on the same axis, and the accessory plates 12, 12 straddling both are overlapped on both surfaces and joined by bolts 13.

支柱材21であるH形鋼の両フランジの幅方向一方の端部には、柱61と支柱材21との間に充填されるコンクリート8の充填時のせき板を兼ねる上記の側面プレート14が溶接やボルト等により接合される。側面プレート14は柱61と支柱材21の対向する方向(構面外方向)には少なくとも支柱材21のフランジから張り出して柱61の側面に重なる幅を持つ。この側面プレート14の柱61との重なり区間は少なくとも側面プレート14を柱61に接合するためのアンカー等の接合材である例えば上記のせん断抵抗材9を配置可能な程度の幅を持つ。   At one end in the width direction of both flanges of the H-shaped steel, which is the column material 21, the side plate 14 serving as a slab during filling of the concrete 8 filled between the column 61 and the column material 21 is provided. Joined by welding or bolts. The side plate 14 has a width that protrudes at least from the flange of the column material 21 and overlaps the side surface of the column 61 in the direction in which the column 61 and the column material 21 face each other (the direction outside the construction surface). The section of the side plate 14 overlapping the column 61 has a width that allows at least the above-described shear resistance material 9, which is a bonding material such as an anchor for joining the side plate 14 to the column 61, to be disposed.

側面プレート14のコンクリート8側の面の内、コンクリート8のせき板を兼ねる部分にはコンクリート8との一体性を確保し、コンクリート8との間で補助的に鉛直せん断力を伝達するためのスタッドボルト15が突設される。   Stud for securing the integrity with the concrete 8 in the portion of the side plate 14 on the side of the concrete 8 that also serves as the slab of the concrete 8 and transmitting the vertical shearing force to the concrete 8 in an auxiliary manner A bolt 15 is protruded.

図1は図1のz−z線断面図である図6に示すように柱61の軸方向に壁62が接続する区間に側面プレート14が位置する場合の水平断面を示している。ここに示すように柱61の軸方向に柱61に壁62が接続する区間では、側面プレート14の支柱材21からの張り出し長さは壁62の屋外側の表面に到達するまでの大きさになるが、その内、コンクリート8のせき板を兼ねる部分(区間)を除いた部分が柱61と重なる部分になる。この側面プレート14の柱61と重なる区間(範囲)内に上記のせん断抵抗材9が側面プレート9を貫通し、せき板を兼ねる部分にスタッドボルト15が突設される。柱61の軸方向に柱61に壁62が接続する区間にせん断抵抗材9が貫通可能な、柱61との十分な重なり幅(重なり代)を側面プレート14が確保できない場合には、壁62の支柱材21側の一部が除去される。   1 shows a horizontal cross section when the side plate 14 is located in a section where the wall 62 is connected in the axial direction of the column 61 as shown in FIG. As shown here, in the section in which the wall 62 is connected to the column 61 in the axial direction of the column 61, the length of the side plate 14 protruding from the column material 21 is the size until reaching the surface of the wall 62 on the outdoor side. However, a portion excluding a portion (section) that also serves as a slab of the concrete 8 is a portion that overlaps the column 61. The shear resistance material 9 penetrates the side plate 9 in a section (range) overlapping the column 61 of the side plate 14, and a stud bolt 15 is protruded at a portion that also serves as a dam plate. When the side plate 14 cannot secure a sufficient overlap width (overlap allowance) with the column 61 through which the shear resistance material 9 can penetrate in a section where the wall 62 is connected to the column 61 in the axial direction of the column 61, the wall 62 Part of the column material 21 side is removed.

図6に示すように上下に隣接する階の壁62、62間の壁62が不在の区間においては、図2−(d)、図3に示すように側面プレート14を柱61の屋内寄りの位置にまで到達させることができるため、側面プレート14の、柱61屋内寄りの位置にせん断抵抗材9を貫通させることもできる。図6は主構造体6の2階の下方から3階の中途までの区間に亘って配置された側面プレート14の立面形状を示している。ここに示すように側面プレート14が主構造体6の高さ方向に複数層に亘る場合、側面プレート14の柱61屋内寄りの端部の形状は柱61の接続する壁62の位置、または形状に応じて不連続に形成可能であるため、壁62の存在する区間と存在しない区間に対応し、柱61の屋内寄りに凸になる部分を形成可能になる。   As shown in FIG. 6, in the section where the wall 62 between the floors 62 adjacent to each other in the vertical direction is absent, the side plate 14 is placed closer to the inside of the column 61 as shown in FIGS. Since the position can reach the position, the shear resistance material 9 can be passed through the side plate 14 at a position closer to the inside of the column 61. FIG. 6 shows an elevational shape of the side plate 14 arranged over a section from the second floor of the main structure 6 to the middle of the third floor. As shown here, when the side plate 14 extends over a plurality of layers in the height direction of the main structure 6, the shape of the end of the side plate 14 near the pillar 61 indoors is the position or shape of the wall 62 to which the pillar 61 is connected. Therefore, it is possible to form a portion that protrudes toward the indoor side of the pillar 61 corresponding to a section where the wall 62 exists and a section where the wall 62 does not exist.

この場合、側面プレート14の柱61屋内寄りに凸になる部分が形成可能であることで、この柱61屋内寄りに凸になる部分では側面プレート14を図2−(d)に示すように主構造体6の構面外方向に複数箇所にせん断抵抗材9を並列させて配置することが可能になる。この結果、せん断抵抗材9による側面プレート14の柱61への接合箇所数を増すことができるため、せん断抵抗材9による柱61からの鉛直せん断力の支柱材21への伝達効果を高めることが可能になる。   In this case, since the portion of the side plate 14 that protrudes toward the indoor side of the pillar 61 can be formed, the side plate 14 is formed as shown in FIG. It becomes possible to arrange the shear resistance materials 9 in parallel at a plurality of locations in the direction of the surface of the structure 6. As a result, the number of joints of the side plate 14 to the column 61 by the shear resistance material 9 can be increased, so that the effect of transmitting the vertical shear force from the column 61 to the column material 21 by the shear resistance material 9 can be enhanced. It becomes possible.

上下に隣接する階の壁62、62間の壁62が不在の区間、または壁62の柱61寄りの部分を除去した場合の除去区間においては、図2−(d)、図6に示すように柱61の正面の反対側の面である背面に背面プレート16を重ねて接合することができるため、境界面プレート7と共に背面プレート16を通じても柱61からの鉛直せん断力の伝達効果を得ることができる。   As shown in FIGS. 2D and 6, in the section where the wall 62 between the upper and lower adjacent floor walls 62, 62 is absent, or in the removal section when the portion near the pillar 61 of the wall 62 is removed. Since the rear plate 16 can be overlapped and joined to the rear surface, which is the surface opposite to the front surface of the column 61, the transmission effect of the vertical shear force from the column 61 can be obtained through the rear plate 16 together with the boundary surface plate 7. Can do.

図面では特に背面プレート16をもせん断抵抗材9を用いて柱61の背面に接合していることから、側面プレート14と背面プレート16をそれぞれ貫通するせん断抵抗材9、9も図1に示すように柱61内で互いに直交して配置されることになる。図面ではまた、特に背面プレート16の幅方向両側に柱61の側面に重なり、側面プレート14に連続する側面プレート17、17を溶接等により一体化させ、この側面プレート17、17を側面プレート14、14に溶接し、柱61側面の幅方向に連続させている。   In the drawing, since the back plate 16 is also joined to the back surface of the column 61 using the shear resistance material 9, the shear resistance materials 9 and 9 penetrating the side plate 14 and the back plate 16 are also shown in FIG. Are arranged orthogonal to each other in the pillar 61. In the drawing, in particular, side plates 17 and 17 which overlap the side surfaces of the pillar 61 on both sides in the width direction of the back plate 16 and are continuous with the side plate 14 are integrated by welding or the like. 14 and is continued in the width direction of the side surface of the column 61.

図2−(a)〜(d)は図1に示す柱61と支柱材21の接合部を完成させるための施工手順例を示している。ここでは図2−(a)、(b)に示すように柱61の支柱材21側の面に、接合プレート11が予め接合された境界面プレート7をせん断抵抗材9により接合している。せん断抵抗材9は図7に示すように柱61のコンクリートに支柱材21側から穿設された削孔61a内にモルタルや接着剤等の充填材61bを充填した後に挿入させられる。   2- (a)-(d) has shown the example of the construction procedure for completing the junction part of the pillar 61 and the support | pillar material 21 which are shown in FIG. Here, as shown in FIGS. 2A and 2B, the boundary surface plate 7 in which the bonding plate 11 is bonded in advance is bonded to the surface of the column 61 on the column material 21 side by the shear resistance material 9. As shown in FIG. 7, the shear resistance material 9 is inserted after filling the concrete of the column 61 with a filler 61 b such as mortar or adhesive into a drilling hole 61 a drilled from the column material 21 side.

図2に示す例では図2−(b)、(c)に示すように側面プレート14の柱61への重ね合わせの前に、側面プレート14を柱61の側面に接合するせん断抵抗材9を柱61のコンクリート中に形成された削孔61a内に挿入し、充填材61bの充填により定着させている。せん断抵抗材9の頭部93は軸部91に予め一体化、もしくは螺合している場合と、側面プレート14の柱61への重ね合わせ後に一体化や螺合により接続される場合がある。図2では頭部93を軸部91に予め接続している。   In the example shown in FIG. 2, as shown in FIGS. 2B and 2C, the shear resistance material 9 that joins the side plate 14 to the side surface of the column 61 is provided before the side plate 14 is superimposed on the column 61. The pillar 61 is inserted into a drilling hole 61a formed in the concrete and fixed by filling with a filler 61b. The head portion 93 of the shear resistance material 9 may be integrated or screwed to the shaft portion 91 in advance, or may be connected by integration or screwing after the side plate 14 is superimposed on the column 61. In FIG. 2, the head portion 93 is connected to the shaft portion 91 in advance.

この場合、側面プレート14のせん断抵抗材9に対応した位置には図7に示すように頭部93が挿通可能な孔(開口)が形成されており、側面プレート14の柱61への重ね合わせ後、頭部93が挿通した孔(開口)の内周と頭部93の外周との間が溶接され、側面プレート14がせん断抵抗材9に一体化させられる。   In this case, a hole (opening) through which the head 93 can be inserted is formed at a position corresponding to the shear resistance material 9 of the side plate 14 as shown in FIG. Thereafter, the inner periphery of the hole (opening) through which the head portion 93 is inserted and the outer periphery of the head portion 93 are welded, and the side plate 14 is integrated with the shear resistance material 9.

図3は制震補強架構1の最下層の支柱材21が主構造体6の柱61に接合され、つなぎ梁3が図9に示すように主構造体6の壁62に接合された状況を示している。ここでは図9に示すようにつなぎ梁3と壁62との間に双方に接合される前記した接続スラブ31を構築し、接続スラブ31を通じて主構造体6の構面内方向の水平せん断力を制震補強架構1のつなぎ梁3に伝達するようにしている。   FIG. 3 shows a state in which the lowermost support member 21 of the seismic reinforcement frame 1 is joined to the column 61 of the main structure 6 and the connecting beam 3 is joined to the wall 62 of the main structure 6 as shown in FIG. Show. Here, as shown in FIG. 9, the above-described connecting slab 31 joined to both the connecting beam 3 and the wall 62 is constructed, and the horizontal shearing force in the in-plane direction of the main structure 6 is generated through the connecting slab 31. It is transmitted to the connecting beam 3 of the seismic retrofitting frame 1.

接続スラブ31と壁62及びつなぎ梁3との接合方法は前記のように両者間で水平せん断力が伝達可能であれば問われないが、図9では接続スラブ31と壁62との間、及び接続スラブ31とつなぎ梁3との間に跨ってそれぞれに埋設され、両者間でのせん断力の伝達が可能なせん断抵抗材18を用いて接合している。図3は図2−(d)に示す支柱材21と柱61との接合例の場合の、つなぎ梁3と壁62との接続スラブ31による接合状態を示している。図9に示すせん断抵抗材18はそれが接合する部材の双方に跨って定着される定着部とこれを貫通する棒状のアンカーから構成されている。   The connecting method of the connecting slab 31 and the wall 62 and the connecting beam 3 is not limited as long as the horizontal shearing force can be transmitted between the connecting slab 31 and the connecting beam 3 as described above. The connecting slab 31 and the connecting beam 3 are respectively embedded between the connecting slabs 31 and the connecting beams 3 and are joined using a shear resistance material 18 capable of transmitting a shearing force therebetween. FIG. 3 shows a joining state by the connecting slab 31 between the connecting beam 3 and the wall 62 in the case of the joining example of the support member 21 and the pillar 61 shown in FIG. The shear resistance material 18 shown in FIG. 9 is composed of a fixing portion fixed across both members to be joined and a rod-shaped anchor penetrating the fixing portion.

1……制震補強架構、
2……支柱、21、22、23……支柱材、211……連結材、212……補強プレート、
3……つなぎ梁、31……接続スラブ、
4……ダンパー一体型ブレース、41……ブレース本体、42……ダンパー、
5……絶縁装置、
6……主構造体、61……柱、61a……削孔、61b……充填材、62……壁、
7……境界面プレート、8……コンクリート、
9……せん断抵抗材、91……軸部、92……定着部、93……頭部、94……挿入部、95……ナット、
10……せん断力伝達部材、
11……接合プレート、12……添え板、13……ボルト、
14……側面プレート、15……スタッドボルト、
16……背面プレート、17……側面プレート
18……せん断抵抗材。
1 …… Aseismic reinforcement frame,
2..., Support column 21, 22, 23... Support material 211.
3 …… Connecting beam, 31 …… Connection slab,
4 …… Damper-integrated brace, 41 …… Brace body, 42 …… Damper,
5 …… Insulator,
6 ... main structure, 61 ... pillar, 61a ... drilling hole, 61b ... filler, 62 ... wall,
7 …… Boundary plate, 8 …… Concrete,
9: Shear resistance material, 91: Shaft part, 92: Fixing part, 93: Head part, 94: Insertion part, 95: Nut,
10: Shear force transmission member,
11 ... Joint plate, 12 ... Saddle plate, 13 ... Bolt,
14 …… Side plate, 15 …… Stud bolt,
16 ... Back plate, 17 ... Side plate 18 ... Shear resistance material.

Claims (6)

柱・梁からなるフレームを有する主構造体の構面外にその構面に平行に配列し、互いに間隔を隔てて立設される支柱と、構面内水平方向に隣接する支柱間に架設されるつなぎ梁と、構面内水平方向に隣接する支柱間に架設される、ブレース本体にダンパーを組み込んだダンパー一体型ブレースを備え、前記支柱が鉛直方向に複数本の支柱材に分離し、上下に分離した支柱材間に両者間の相対水平移動を許容する絶縁装置が介在した、前記主構造体を制震補強するための制震補強架構が前記主構造体の前記フレームから距離を置いた位置に配置され、前記主構造体に接合された制震補強架構付き構造物において、
前記制震補強架構の複数本の支柱の内、少なくともいずれかの支柱の最下層の前記支柱材に対向する前記主構造体の前記柱の前記制震補強架構側の正面に境界面プレートが重なって接合されると共に、この境界面プレートが直接、もしくは間接的に前記最下層の前記支柱材に接合され、前記柱の前記正面とこの正面との間に距離が確保された前記支柱材との間にコンクリートが充填され、このコンクリート中に前記境界面プレートとその前記支柱材への接合部分が埋設され
前記最下層の前記支柱材の幅方向両側に、前記支柱材から前記柱側へ張り出し、前記コンクリートの充填領域を仕切る側面プレートが一体化し、この側面プレートは前記柱の、前記正面に交差する側面に重なって前記柱に接合されていることを特徴とする制震補強架構柱の接合構造。
The main structure with a frame consisting of pillars and beams is arranged outside the surface of the main structure in parallel with the surface of the structure, and is installed between the struts standing upright apart from each other and the struts adjacent in the horizontal direction in the surface of the structure. It is equipped with a damper-integrated brace that is built between the connecting beam and the struts that are adjacent to each other in the horizontal direction in the construction plane. The struts are separated into a plurality of strut members in the vertical direction. An anti-seismic reinforcement frame for reinforcing and suppressing the main structure is placed at a distance from the frame of the main structure, with an insulating device that allows relative horizontal movement between the two strut members separated from each other. In the structure with a vibration control reinforcement frame arranged at a position and joined to the main structure,
A boundary surface plate overlaps the front surface of the pillar of the main structure opposite to the strut member of the bottom layer of at least one of the plurality of struts of the seismic reinforcement frame. And the boundary plate is directly or indirectly joined to the support material of the lowermost layer, and the support material of which the distance is secured between the front surface of the pillar and the front surface. The concrete is filled in between, and the interface plate and the joint portion to the support material are embedded in the concrete ,
Side plates that project from the column material to the column side and partition the concrete filling region are integrated on both sides in the width direction of the lowermost column material, and the side plate is a side surface of the column that intersects the front surface. A structure for connecting a seismic reinforcing frame column, wherein the structure is bonded to the column so as to overlap with the column .
前記側面プレートは前記柱の側面に、前記側面プレートを厚さ方向に貫通し、前記側面プレートにその面内方向に係合するせん断抵抗材が前記柱中に定着されて前記柱に接合されていることを特徴とする請求項に記載の制震補強架構柱の接合構造。 The side plate penetrates the side plate in the thickness direction on the side surface of the column, and a shear resistance material that engages the side plate in the in-plane direction is fixed in the column and joined to the column. The joint structure of a seismic reinforced frame column according to claim 1 , wherein 前記側面プレートの前記主構造体側の端部に、前記柱の前記正面の反対側の背面に重なって前記柱に接合される背面プレートが一体化していることを特徴とする請求項、もしくは請求項に記載の制震補強架構柱の接合構造。 The end portion of the main structure side of the side plate, according to claim 1 or claim back plate which is joined to the pillar overlaps the back of the opposite side of the front of the pillar, characterized in that the integrated Item 3. A joint structure for a seismic reinforcing column according to item 2 . 前記背面プレートは前記柱の背面に、前記背面プレートを厚さ方向に貫通し、前記背面プレートにその面内方向に係合するせん断抵抗材が前記柱中に定着されて前記柱に接合されていることを特徴とする請求項に記載の制震補強架構柱の接合構造。 The back plate penetrates the back plate in the thickness direction on the back surface of the column, and a shear resistance material that engages the back plate in the in-plane direction is fixed in the column and joined to the column. The joint structure of a seismic reinforcing frame column according to claim 3 , wherein: 前記境界面プレートの前記支柱材側の面に、前記支柱材との間で前記柱の軸方向のせん断力を伝達するための複数のせん断力伝達部材が前記柱の軸方向に間隔を置いて突設され、このせん断力伝達部材が前記コンクリート中に埋設されていることを特徴とする請求項1乃至請求項4のいずれかに記載の制震補強架構柱の接合構造。 A plurality of shear force transmission members for transmitting the axial shear force of the column to and from the column material are spaced apart in the axial direction of the column on the column member side surface of the boundary surface plate. The structure for connecting a seismic reinforcing frame according to any one of claims 1 to 4 , wherein the structure is projectingly provided and the shearing force transmitting member is embedded in the concrete. 前記境界面プレートは前記柱の前記支柱材側の面に、前記境界面プレートを厚さ方向に貫通し、前記境界面プレートにその面内方向に係合するせん断抵抗材が前記柱中に定着されて前記柱に接合されていることを特徴とする請求項1乃至請求項5のいずれかに記載の制震補強架構柱の接合構造。 The boundary surface plate penetrates the boundary surface plate in the thickness direction on the surface of the column on the column material side, and a shear resistance material engaged with the boundary surface plate in the in-plane direction is fixed in the column. The bonded structure for a seismic reinforcing frame according to any one of claims 1 to 5, wherein the bonded structure is bonded to the column.
JP2016105908A 2016-05-27 2016-05-27 Joint structure of seismic retrofitting frame Active JP6117974B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105908A JP6117974B1 (en) 2016-05-27 2016-05-27 Joint structure of seismic retrofitting frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105908A JP6117974B1 (en) 2016-05-27 2016-05-27 Joint structure of seismic retrofitting frame

Publications (2)

Publication Number Publication Date
JP6117974B1 true JP6117974B1 (en) 2017-04-19
JP2017210830A JP2017210830A (en) 2017-11-30

Family

ID=58666878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105908A Active JP6117974B1 (en) 2016-05-27 2016-05-27 Joint structure of seismic retrofitting frame

Country Status (1)

Country Link
JP (1) JP6117974B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6181894B1 (en) * 2017-06-09 2017-08-16 国立大学法人 東京大学 Axial force introducing device for seismic retrofitting frame

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7386367B1 (en) * 2023-04-12 2023-11-24 日鉄エンジニアリング株式会社 system of structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049874A (en) * 1999-08-09 2001-02-20 Kajima Corp Earthquake-resistant reinforcing construction method and structure of existing structure
JP2005213857A (en) * 2004-01-29 2005-08-11 Taisei Corp Earthquake-resistant reinforcing structure
JP2008088756A (en) * 2006-10-04 2008-04-17 Mitsubishi Heavy Ind Ltd Aseismatic repair method for existing building structure
JP2012031587A (en) * 2010-07-29 2012-02-16 Hitoshi Shiobara Device for restraining support post in earthquake control and reinforcement frame structure
JP2014136924A (en) * 2013-01-17 2014-07-28 Sanyo-Home Co Ltd Reinforcement structure of concrete column with wall

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049874A (en) * 1999-08-09 2001-02-20 Kajima Corp Earthquake-resistant reinforcing construction method and structure of existing structure
JP2005213857A (en) * 2004-01-29 2005-08-11 Taisei Corp Earthquake-resistant reinforcing structure
JP2008088756A (en) * 2006-10-04 2008-04-17 Mitsubishi Heavy Ind Ltd Aseismatic repair method for existing building structure
JP2012031587A (en) * 2010-07-29 2012-02-16 Hitoshi Shiobara Device for restraining support post in earthquake control and reinforcement frame structure
JP2014136924A (en) * 2013-01-17 2014-07-28 Sanyo-Home Co Ltd Reinforcement structure of concrete column with wall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6181894B1 (en) * 2017-06-09 2017-08-16 国立大学法人 東京大学 Axial force introducing device for seismic retrofitting frame
JP2018204398A (en) * 2017-06-09 2018-12-27 国立大学法人 東京大学 Axial force introduction device of vibration control reinforcement frame column

Also Published As

Publication number Publication date
JP2017210830A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP3169864U (en) Building structure
JP6117974B1 (en) Joint structure of seismic retrofitting frame
JP2009013782A (en) Aseismic response control reinforcing construction method, its aseismic response control reinforcing body and aseismic response control reinforcing structure
JP2012225411A (en) Anti-seismic device with built-in damper with deformation restriction function
JP4072687B2 (en) Seismic reinforcement structure for building structures
JP3559025B2 (en) Seismic retrofit method for existing building and brace mounting device used for it
KR102122028B1 (en) Column type vibration isolation apparatus
JP5429812B2 (en) Joining structure and method of shaft member and RC member
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP6412684B2 (en) Vibration control structure
JP6855365B2 (en) Underground structure of new building
JP3856783B2 (en) Seismic frame using damper integrated brace and oil damper used for it
JP5143301B1 (en) Seismic retrofitting structure
JP5318298B1 (en) Beam joint structure
JP6383533B2 (en) Seismic retrofit method for existing buildings
JP4405336B2 (en) Damping block wall structure
JP6479371B2 (en) Joint structure of seismic control frame
JP6439978B2 (en) Joining member
JP5314203B1 (en) Structure connection structure
JP6052460B2 (en) Seismic reinforcement structure and construction method
JP2020090812A (en) Vibration control structure
JP5192093B1 (en) Concrete beam shear reinforcement structure
JP6181894B1 (en) Axial force introducing device for seismic retrofitting frame
JP2012233374A (en) Seismic reinforcement structure
JP2012233374A5 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170323

R150 Certificate of patent or registration of utility model

Ref document number: 6117974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250