JP2015214081A - 3次元造形装置及び3次元造形装置における造形成方法 - Google Patents

3次元造形装置及び3次元造形装置における造形成方法 Download PDF

Info

Publication number
JP2015214081A
JP2015214081A JP2014098066A JP2014098066A JP2015214081A JP 2015214081 A JP2015214081 A JP 2015214081A JP 2014098066 A JP2014098066 A JP 2014098066A JP 2014098066 A JP2014098066 A JP 2014098066A JP 2015214081 A JP2015214081 A JP 2015214081A
Authority
JP
Japan
Prior art keywords
layer
discharge
ejection
modeling
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014098066A
Other languages
English (en)
Inventor
正治 大谷
Masaharu Otani
正治 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014098066A priority Critical patent/JP2015214081A/ja
Publication of JP2015214081A publication Critical patent/JP2015214081A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】3次元造形装置において、品質を低下させることなく、全体の造形処理にかかる時間を短くする。【解決手段】 CADモデルから作成した3次元オブジェクトを基に、粉末積層法を用いて3次元造形物を生成する3次元造形装置であって、粉末を積層する複数層のうち、接合面となる前後層における記録液の吐出位置情報を比較し、前後層における記録液の吐出位置の変化量を算出する算出手段と、算出した前記変化量を比較する比較手段と、前記前後層の前記吐出位置の変化量が所定の閾値を超えないとき、前層の当該吐出位置においては記録液の吐出を行わず、後層における当該吐出位置において記録液の吐出を行うよう記録液の吐出制御を行う制御部200と、を有する。【選択図】 図5

Description

本発明は、3次元造形装置に関し、特に、CADモデルから作成した3次元オブジェクトを基に3次元造形物を生成する3次元造形装置及び3次元造形装置における造形成方法に関する。
従来から、例えば粉末積層法を利用する3次元造形装置が知られている。この3次元造形装置においては、1層毎に粉末を積層し、積層した粉末に対して、記録ヘッド、例えばインクジェット(IJ)ヘッドによりバインダー液を塗布することを繰り返して3次元造形物を生成している。
この3次元造形装置では、一般に3次元造形プログラムを用いて、造形物を形成するための設定データを作成する。即ち、3次元CAD(computer aided design)プログラムで予め作成された造形物の3次元データを、3次元造形プログラムで読み込み、この3次元データのオブジェクトを造形プレート上に配置してオブジェクトの位置及び姿勢を決定する。次に、3次元データのオブジェクトを3次元造形装置用データフォーマットへ変換して3次元造形装置に送信する。これによって、3次元造形装置では造形物生成を行う。
ところで、従来の粉末積層法を利用する3次元造形装置では、複数層の造形処理(一層毎に積層とバインダー液塗布)が必要となるため、全層の造形を完了させるまでの時間が長くなる問題がある。
従来の3次元造形装置の一例として、特許文献1(特開2003-145630号公報)には、表面の彩色が精細な立体物を造形する3次元造形装置が記載されている。この3次元造形装置では、断面体ごとに上下に重なり合う断面体との差分による演算処理を行い、その差分情報を用いて3次元データを変換し彩色が粗くなる部分を補正している。しかし、全層の造形を完了させるまでの時間が長くなる問題に対する解決策は示されていない。
本発明は、前記従来の問題を解決すべくなされたものであって、その目的は、3次元造形装置において、品質を低下させることなく、全体の造形処理に掛かる時間を短縮することである。
本発明は、CADモデルから作成した3次元オブジェクトを基に、粉末積層法を用いて3次元造形物を生成する3次元造形装置であって、粉末を積層する複数層のうち、接合面となる前後層における記録液の吐出位置情報を比較し、前後層における記録液の吐出位置の変化量を算出する算出手段と、算出した前記変化量を比較する比較手段と、前記前後層の前記吐出位置の変化量が所定の閾値を超えないとき、前層の当該吐出位置においては記録液の吐出を行わず、後層における当該吐出位置において記録液の吐出を行うよう記録液の吐出制御を行う制御部と、を有することを特徴とする3次元造形装置である。
本発明によれば、3次元造形装置において、通常の造形処理と比べて品質を低下させることなく全体の造形処理に掛かる時間を短縮することができる。
本発明の1実施形態に係る3次元造形装置を上方からみた斜視図である。 図1に示す3次元造形装置における粉末積層部の拡大図である。 主走査Mdと粉末積層部を備えた3次元造形装置の要部を示す図であり、図3Aはその側面図、図3Bはその平面図である。 3次元造形装置における印刷工程を模式的に示す図である。 図4A(3)の工程をさらに詳細に示す図である。 主走査Md内に搭載された各種制御部と周辺デバイスの構成を示す機能ブロック図である。 本実施形態に係る3次元造形装置で生成する3次元造形物に用いる各層のデータを模式的に示す図である。 本3次元造形装置によって造形する、ある3次元造形物を示した図である。 図7の造形物(a)のスライスデータに基づく記録ヘッドの吐出位置を示した図であり、X−Y平面に対し造形物(a)をスライスした時の各層データと、それに対するバインダー液の吐出位置を示す。 図7の造形物(a)のスライスデータに基づく吐出制御を示した図である。 図7の造形物(a)の各層の吐出有無切り替えによる造形処理の手順を示すフロー図である。 図7の造形物(b)のスライスデータに対する吐出位置を示し、X−Y平面に対し造形物(b)をスライスした時の各層データとそれに対する吐出位置を示す図である。 図7の造形物(b)のスライスデータに対する吐出制御を示し、図11で示した吐出位置に対する吐出制御の方法を示した図である。 図7の造形物(b)の各層の吐出有無切り替えによる造形処理の手順を示すフロー図である。 図7の造形物(c)のスライスデータに対する吐出位置を示し、X−Y平面に対し造形物(c)をスライスした時の各層データとそれに対する吐出位置を示す図である。 図7の造形物(c)のスライスデータに対する吐出制御を示し、図14で示した吐出位置に対する吐出制御の方法を示した図である。 図7の造形物(c)の各層の吐出有無切り替えによる造形処理の手順を示すフロー図である。
本発明は、CADモデルから作成した3次元オブジェクトを基に、粉末積層法を用いて3次元造形物を生成する3次元造形装置であって、(i)粉末の積載量、記録液の吐出量、各層毎の記録ヘッドによる吐出の要否を前後の層の吐出位置情報によって切り替える、(ii)各層の吐出の要否を自動またはユーザ設定により切り替える。
また、本発明は、造形対象となる層の前後の層の吐出位置情報を基に精密に印刷する必要があるか否かを判断し、造形するモード(造形モード)を随時切替えながら造形処理をすることで、品質を低下させることなく全体の造形処理にかかる時間を短縮することができる。
本発明をその1実施形態について添付図面を参照して説明する。
図1は、本発明の1実施形態に係る3次元造形装置を上方からみた斜視図である。
図2は、図1に示す3次元造形装置における粉末積層部の拡大図である。
本実施形態に係る3次元造形装置100は、リコータ110、造形媒体である粉末の供給槽120と、3次元造形が行われる造形槽130と、ヒータ140と、記録液であるバインダー液を吐出する記録ヘッド(吐出ヘッド或いは単にヘッドとも云う)を備えたキャリッジ150と、制御部200と、ヒータ140、キャリッジ150等を搭載した主走査Md(モジュール又は装置)160と、記録ヘッドの維持を行う維持部170と、バインダー液の供給部180等を備えている。
供給部180には、バインダー液を収容する図示しないカートリッジ(メインタンク)が装着され、記録ヘッド内に配置されたサブタンクにバインダー液を供給し、記録ヘッドから粉末槽内の所定の造形位置に対しバインダー液を吐出する(なお、メインタンクとサブタンクは一体となる構成であってもよい)。
維持部170は、記録ヘッドのノズル面の吐出性能を回復させる手段として用いる。主電源部(図示せず)は、3次元造形装置の電源ON/OFF制御を行う。3次元造形装置は後述のキャリッジ駆動用モータを備え、記録ヘッドの主走査方向の移動を行う。
また、粉末槽可動用ユニット・モータ(図示しない)を備え、粉末槽のZ方向(上下方向)とYの移動を可能とする。
ヘッド部(記録ヘッド及び記録ヘッド駆動部)にはエンコーダセンサ(図示せず)を備え、主走査方向の移動位置情報を制御部200に通知する。
図3は、主走査Md160と粉末積層部170aを備えた3次元造形装置の要部を示す図であり、図3Aはその側面図、図3Bはその平面図である。
3次元造形装置は、図3に示すように、リコータ110、供給槽120、造形槽130、主走査Md160を備える。
ここで、リコータ110は、供給槽120に収容された造形用の粉末を造形槽130に堆積(又は敷き詰め)させるリコータローラ112と、リコータローラ112をベルト112aにより回転駆動するモータM1を支持する支持フレーム114と、支持フレーム114の一端に設けたネジ環114aとから成っている。このネジ環114aはモータM2で回転駆動されるネジ杆116に螺合されている。したがって、リコータ110は、モータM2の回転により図中矢印A1で示すように左右に移動する。
供給槽120は、周囲を四角で囲む側壁120aと、側壁の内周内で図3Aにおいて適宜の機構によりモータM3で上下に移動可能な底壁である供給槽ステージ120bとから成り、内部に造形用媒体である粉末が収容されている。供給槽ステージ120bは、リコータロール112で粉末を造形層130に堆積する際に、モータM3による一回の移動で紛末一層分の厚みだけ上昇するように構成されている。
造形槽130は、供給槽120と同様の形状を有し、供給槽120と同様にモータM4で上下に移動可能な底壁である造形槽ステージ130bを備えている。
造形層ステージ120bも一層分の造形が終了する毎に、モータM4で一層分だけ上昇するように構成されている。
主走査Md160にはヒータ140とキャリッジ150が備えられており、図3Bに示すように、モータM5で回転駆動されるネジ杆174に螺合する螺合部172により、図中矢印A2で示すように左右に移動される。
なお、キャリッジ150は、図示しないモータ(M6)により、図中の矢印A3で示すように、図3Bでみて上下方向、つまりネジ杆174と同一平面内でそれと直交する方向に移動する。
次に、3次元造形装置における印刷工程について説明する。
図4A(1)〜4A(6)は、3次元造形装置における印刷工程を模式的に示す図である。また、図4B(1)〜4B(5)は、図4A(3)の工程をさらに詳細に示す図である。
即ち、図4A(1)に示す第1工程では、3次元造形装置100が、PCから1層分の画像データを受け取る。この状態では、図示のように、リコータローラ112、主走査Md160は退避位置にある。
次に、図4A(2)に示す第2の工程では、モータM1、M2を作動して、リコータローラ112を回転させつつ図中左側に移動させて、供給槽120中の粉末を造形槽130に堆積させる。
図4A(3)に示す第3工程では、主走査Md160を造形槽130上に移動させて、PCから受け取った画像データに基づき、造形槽130上の粉末層にバインダー液で印刷する。この第3工程の詳細については、図4B(i)〜4B(iv)により後述する。
図4A(4)に示す第4工程では、主走査Md160に搭載したヒータ140により、バインダー液で印刷した粉末層を加熱乾燥させる。
その後、図4A(5)に示す第5工程では、モータM4を駆動して主走査Md160を退避位置に移動させる。
以上の第1〜第4工程を積層する枚数分行って造形物が完成する。
図4Bは、第3工程の詳細を説明する図である。
即ち、図4B(1)は、第3工程のスタート前の状態、つまり3次元造形装置の待機状態を示す。
このスタート状態から、図4B(2)に示すように、主走査Md160を印刷開始位置まで図中左側つまりY軸に沿って矢印A4のように移動させる。その後、図4B(3)に示すように、主走査Md160を矢印A5に示すようにX軸に沿って記録ヘッド152を移動させつつバインダー液を吐出させる。次に、図4B(4)に示すように、主走査Md160を、矢印A6に示すように記録ヘッド152の1スキャン分だけ図中右側に移動させる。次に、主走査Md160の記録ヘッド152を矢印A7に示すようにX軸に沿って図中下方に向かってを移動させながら、バインダー液を吐出させる。
以上の各工程を、1断面画像全体を書き終わるまで繰り返す。
図5は、主走査Md160内に搭載された各種制御部と周辺デバイスの構成を示す機能ブロック図である。 制御部200は、印刷制御やモータ駆動制御、維持・供給制御などの印刷装置全体の制御を司るCPU(Central Processing Unit)201と、CPU201が実行するプログラム、その他の固定データを格納するROM(Read Only memory)202を備えている。また、画像データ等を一時格納するRAM(Random Access Memory)203と、装置の電源が遮断されている間もデータを保持するための書き換え可能な不揮発性メモリ(NV(Non Volatile)RAM)204を備えている。また、画像データに対する各種信号処理、並び替え等を行う画像処理やその他装置全体を制御するための入出力信号を処理するASIC(Application Specific Integrated Circuit)206を備えている。
また、制御部200は、ホスト側とのデータ及び信号の送受を行うためのホストI/F(インタフェース)205を備えている。制御部200は、記録ヘッド152を駆動するための駆動波形を生成するとともに、キャリッジ150に設けた記録ヘッド152の圧力発生手段を選択駆動させる画像データ及びそれに伴う各種データをヘッドドライバ218に出力する吐出制御部209を備えている。また、リコータローラ112の回転、リコータ110のY軸方向移動(図1)、供給層(又は粉末槽とも云う)120及び造形層130のZ軸方向の位置移動(図3A)、主走査Md160のY軸方向の移動(図1)、キャリッジ150のX軸方向移動(図3B)の各制御を実行するためのモータM1〜M6を制御するモータ制御部210〜215を備えている。
以上の構成において、制御部200には、リニアエンコーダ226からの検出パルスが入出力部(I/O)207に入力される。制御部200は、ホスト装置(パーソナルコンピュータ(PC)等の情報処理装置、外部装置等)300の情報処理装置などのドライバ310が生成した3次元造形物生成用データを、ケーブル或いはネットワークを介してホストI/F(インタフェース)205で受信する。制御部200のCPU201は、ホストI/F205に含まれる受信バッファ内の印刷データを読み出して解析し、ASIC206において必要な画像処理、データの並び替え処理等を行って吐出制御部(又は印刷制御部)209に転送する。また、吐出制御部209から所要のタイミングでヘッドドライバ218に画像データや駆動波形を出力する。
なお、画像出力するためのドットパターンデータの生成は、例えば、ROM202にフォントデータを格納して行っても、ホスト300側のヘッドドライバ310(プリンタドライバ)で画像データをビットマップデータに展開して3次元造形装置100の制御部200に転送するようにしてもよい。 吐出制御部209の駆動波形生成部(図示せず)は、ROM202に格納されてCPU201で読み出される駆動パルスのパターンデータを、D/A変換するD/A変換器及び増幅器等で構成される。また、吐出制御部209は、1つの駆動パルスあるいは複数の駆動パルスで構成される駆動波形を、ヘッドドライバ218に対して出力する。
ヘッドドライバ218は、シリアルに入力される記録ヘッド152の1行分に相当するデータ(ドットパターンデータ)に基づいて、吐出制御部209の駆動波形生成部から与えられる駆動波形を構成する駆動パルスを、記録ヘッド152の圧力発生手段(図示せず)に対して選択的に印加し、これによって記録ヘッド152を駆動する。 なお、このヘッドドライバ218自体は従来周知又は公知のものであり、例えば、クロック信号及び画像データであるシリアルデータを入力するシフトレジスタと、シフトレジスタのレジスト値をラッチ信号でラッチするラッチ回路と、ラッチ回路の出力値をレベル変化するレベル変換回路(レベルシフタ)と、このレベルシフタでオン/オフが制御されるアナログスイッチアレイ(スイッチ手段)等を含み、アナログスイッチアレイのオン/オフを制御することで駆動波形に含まれる所要の駆動パルスを選択的に記録ヘッド152の圧力発生手段に印加する。
図6は、本実施形態に係る3次元造形装置で生成する3次元造形物に用いる各層のデータを模式的に示す図である。
即ち、図6は、3次元CADで入力された形状データを変換した造形物の断面輪郭データであるSTL(Stereo Lithography)データと、変換したSTLデータをスライス処理して得られるn層のスライスされたデータを模式的に示している。
ここでは、n層にスライスされたデータで構成される造形物のある層をm層と定義し以下の説明を行う。
まず、リコータ110によって既に敷かれた造形槽130中の粉末層に着弾させる記録液であるバインダー液の滴サイズは、主走査Md160の記録ヘッド152からバインダー液を吐出する際の駆動波形により調整可能である。
また、吐出したバインダー液の滴が造形媒体(粉末)層に浸透して粉末を凝固できる厚み(Z方向)が3次元造形物の1層あたりの厚み(X[μm])より大である時には、その凝固できる厚みに応じて複数層に対する吐出を1度に行うことも可能である。つまり、例えば、ある層(m層)における吐出位置データが、後層(連続する層;m+α、但し、α=1、2・・・)において同一(吐出位置データの差が所定の閾値未満の場合を含む;以下同様)である場合は、その位置に対するバインダー液の吐出を複数層まとめて1回で行い、一方、m層における吐出位置データが後層(m+α)において異な場合(吐出位置データの差が所定の閾値以上の場合;以下同様)は、バインダー液の吐出を各層で行うようにする。
本実施形態では、このように造形物の形状等に応じて記録ヘッド152の吐出の「有」、「無」を切り替えることで、全体の造形物の作成時間を短くすることができる。また、ある層(m層)のデータ全てがその後層(m+α)のデータと同一である場合は、リコータローラ112で造形層130に敷き詰める粉末の量を複数層分に調整することもできる。
本実施形態は、例えば3次元造形物の各層の吐出位置の座標情報を持ち、ある層(m層)のけるバインダー液吐出位置と、そのZ軸方向(上下方向)の後層(m+α層)におけるそれとの変化量Aを算出する算出手段を備える。また吐出位置の許容変化量(距離;閾値)Dを予め定めておきメモリ(例えばNVRAM204)に保持しておき、前記変化量Aと閾値Dとを比較する。したがって、本実施形態では前記比較を行う比較手段も備える。これら算出手段、比較手段は、いずれもプログラムによりCPU201を含むコンピュータで実現する機能実現手段である。
本実施形態では、以下の表1に示すように、印刷モードとして、例えば印刷モードM1〜M4が、また変化量の閾値として、例えばD1〜D4を予め3次元造形装置に設定しておく。
Figure 2015214081
ここで、A(変化量)>D(閾値)の関係が成り立つ場合は、現在の層(m層)でバインダー液の吐出を行う。
一方A(変化量)≦D(閾値)の関係が成り立つ場合は、現在の層(m層)ではバインダー液の吐出は行わず、次以降の層でまとめて吐出するようにする。このように吐出(印刷)制御モードを切り替えることができる。なお、閾値の関係はD1>D2>D3>D4であり、全体の造形時間の関係はT1>T2>T3>T4である。
また、この時の全体の造形時間T1〜T4は造形に必要な各可動部の移動距離や処理時間から算出可能である。
3次元造形装置100がPC300から造形物のデータを受け付けたとき、3次元造形装置100は、まず各吐出制御モードにおける造形結果(例えば全体の造形時間T)を基に、使用する吐出制御モードを決定し以降の造形処理を行う。
なお、別の実施形態として、吐出制御モードをユーザがPCまたは本体機器に備えたUI(ユーザインタフェース)によって選択するようにしてもよい。
以下、図7に示す造形物(a)〜(c)を例に採り、本実施形態に関する3次元造形装置のn層分にスライスされた造形データに対する吐出制御方法について説明する。
図7は、本3次元造形装置によって造形するある3次元造形物を示した図である。
即ち、造形物(a)は立方体(底面以外は空洞)を示している。
造形物(b)は四角錐(XY平面とXZ平面に四角形を持つ形状、底面以外は空洞)を示している。
造形物(c)は四角錐(XY平面とYZ平面が四角形を持つ形状、底面以外は空洞)を示している。
次に、造形物(a)〜(c)の造形処理について説明する。
図8は、図7の造形物(a)のスライスデータに基づく記録ヘッド152の吐出位置を示した図であり、X−Y平面に対し造形物(a)をスライスした時の各層データと、それに対するバインダー液の吐出位置を示す。
図9は、図7の造形物(a)のスライスデータ基づく記録ヘッド152の吐出制御を示した図である。
図8において、1層目は、主走査Md160の吐出可能範囲を示す。m層目の吐出位置はm1、m2、m3、m4、m+α層目では、吐出位置は(m+α)1、(m+α)2、(m+α)3、(m+α)4、n層目は最終層における吐出位置を模式的に示している。
図9は、図8で示した吐出位置に対する記録ヘッドの吐出制御方法を示した図である。
図9において、造形物(a)の場合、図中の点1・2・3・4はある層(ここでは2、4層・・・)とその後層(3、5層・・・)を比較したところ全て同じ座標位置であるとする。そこで、一部の層(ここでは2、4層・・・)の点1・2・3・4におけるバインダー液の吐出を省略し、それによって、キャリッジ150の移動距離を短縮する。つまり、結果として全体の造形物の作成時間を短縮できることを示している。
なお、図中の実線で示すキャリッジ150の移動経路は、例えば図3における主走査Md160のY軸方向(図3)の移動とキャリッジ150のX軸方向の移動を組み合わせた移動経路を示している。この点は、後に説明する図12、図15においても同じである。
図9は、簡単な例として、記録ヘッドの吐出サイズ(大・小)を2種類とし、吐出(小)を各層1回ずつ行う代わりに吐出(大)を2層毎に1回行うものとし、2、4、6・・・2m(m≠n)層での吐出を省略する例を示している。
なお、記録ヘッドの吐出液滴のサイズ及び層を形成するために敷き詰める造形用粉末の量は、3次元造形装置によって異なるため、記録ヘッドの吐出液滴のサイズ及び層については、造形物の形状に合わせた最適な組み合わせとなるよう制御することが望ましい。
図10は、図7の造形物(a)の各層の吐出の有・無の切り替えによる造形処理の手順を示すフロー図である。
概略的には、堆積層に対する主走査Md160の記録ヘッド152によるバインダー液の吐出制御を行う。吐出の「要」、「否」判定後、吐出「否」と判定された層は制御部200にて記憶しておき、以降の層の吐出要否判定時に用いる。このようにして各層の吐出制御を繰り返し行った後、全ての層の造形が終了すると、制御部200は主走査Md、粉末積層部に対し処理の終了を通知し動作を終了する。
この造形処理について図10を参照して具体的に説明する。
即ち、制御部200は、PC300から造形用の各層データを受信すると(S101)、主走査Md160と粉末積層部(リコータ110;リコータローラ112、供給槽120、造形槽130)の制御を開始する。即ち粉末積層部の各モータM1〜M4を駆動し造形用粉末の堆積(又は敷き詰め)処理を行う(S102)。その後、制御部200は、現在の造形用粉末の層(m層)に対する吐出情報を取得し(S103)、その吐出情報を基に吐出の要否を判断する(S104)。ここで、制御部200が吐出「要」と判断すると(S104、Yes)、主走査Md160を造形層130に移動し(S105)、現在の層(m層)と後層(m+α層;但し、α=1、2・・・)の吐出位置との変化量を算出する(S106)。次に、算出した変化量が閾値を越えるか否か比較し(S107)、算出した変化量が閾値を越えないときは(S108、No)、吐出制御を「現在の層(m)では吐出しない」に変更する(S109)。
ステップS109で、「現在の層(m)では吐出しない」に変更したときは、後層(m+α層)におけるバインダー液の吐出量を、吐出量小→大に変更し(S110)、次に後層(m+α層)までの吐出要否を「否」に設定する(S111)。この場合、吐出「否」と判定された層を制御部200に記憶しておき、以降の層の吐出要否判定時に用いる。
次に、現在の層(m層)の吐出処理、即ち、ここでは、吐出要否が「否」に設定されているから吐出を行わずにこのステップの処理を終了し(S112)、主走査Md160を造形層130から退避させる(S113)。次にステップS114に進むが、この場合は全ての層の造形は終了していないから(S114、No)、ステップS102に戻り、再度各ステップの処理を行う。
ステップS108において、算出した変化量が閾値を超えたときは(S108、Yes)、現在の層の吐出処理を行い(S112)、主走査Md160を造形層130から退避させる(S113)。そこで全ての層の造形が終了していれば(S114、Yes)、この処理を終了する。
ステップS114で全ての造形が終了していなければ(S114、No)、ステップS102に戻って以降の処理を繰り返す。
図11は、図7の造形物(b)のスライスデータに対する記録ヘッド152の吐出位置を示し、X−Y平面に対し造形物(b)をスライスした時の各層データとそれに対する吐出位置を示す図である。
図12は、図7の造形物(b)のスライスデータに対する吐出制御を示し、図11で示した記録ヘッド152の吐出位置に対する吐出制御の方法を示した図である。
造形物(b)の場合、図12において、図中の点1・2は、ある層(ここでは2、4層・・・)とその後層(3、5層・・・)を比較したところ同じ座標位置であるとする。また、点3・4は異なり、吐出位置の差が所定の閾値Dよりも大きいとする。そこで、一部の層(ここでは2、4層・・・)の点1・2におけるバインダー液の吐出を省略し、点3、4のみ吐出を行う。それによって、キャリッジ150の移動距離を短縮する。つまり、結果として全体の造形物の作成時間を短縮できることを示している。
ここでは、簡単な例として、記録ヘッド152の吐出サイズ(大・小)が2種類であるとする。また、吐出(小)を各層1回ずつ行う代わりに吐出(大)を各層の2層ごとに1回行うものとし、2、4、・・・2m(m=1、2・・・、但し、m≠N)層では、点1・2(ライン)では吐出を省略した内容を図示している。この場合は、2層毎に一回吐出を行う点1・2(ライン)では大滴を使用し、その他は小滴を使用することを示している。
なお、記録ヘッドの吐出液滴のサイズ及び層を形成するために敷き詰める造形用粉末の量は、3次元造形装置によって異なるため、記録ヘッドの吐出液滴のサイズ及び層については、造形物の形状に合わせた最適な組み合わせとなるよう制御することが望ましい。
図13は、図7の造形物(b)の各層の吐出有無切り替えによる造形処理の手順を示すフロー図である。
概略的には、制御部200がPCから造形用の各層データを受信すると、主走査Mdと粉末積層部(リコータ110)の制御を開始する。リコータ110の各モータM1、M2を駆動し造形槽130への造形用粉末の堆積を行う。その後現在の層に対する吐出情報を基に制御部200は吐出要否を判断した後、その堆積層に対する主走査Md160のヘッド部(記録ヘッド駆動部)によるバインダー液の吐出制御を行う。さらに対象ラインの吐出要否を判定し対象層の吐出制御を行う。層・ラインの吐出要否判定後、吐出否と判定された層・ラインは制御部200にて記憶しておき、以降の層・ラインの吐出要否判定時に用いる。このようにして各層の吐出制御を繰り返し行った後、全ての層の造形が終了すると、制御部200は主走査Md160、粉末積層部に対し処理の終了を通知し動作を終了する。
次に、以上の造形処理の手順を図13に従って説明する。
まず、制御部200は、PC300から造形用の各層データを受信すると(S201)、主走査Md160と粉末積層部(リコータ110;リコータローラ112、供給槽120、造形槽130)の制御を開始する。即ち粉末積層部の各モータM1〜M4を駆動し造形用粉末の造形槽130内における堆積処理を行う(S202)。その後、制御部200は、現在の層(m層)に対する吐出情報を取得し(S203)、その吐出情報を基に吐出の「要」、「否」を判断する(S204)。ここで、制御部200は、吐出「要」と判断すると(S204、Yes)、主走査Md160を造形層130に移動し(S205)、現在の層(m層)と後層(m+α層)の対象ラインにおける吐出位置との変化量を算出する(S206)。次に、算出した変化量が閾値を越えるか否か比較し(S207)、算出した変化量が閾値を越えないときは(S208、No)、吐出制御(又は印刷制御)を「現在の層(m)の対象ライン(図示例では点1・2)では吐出しない」に変更する(S209)。次に、後層(m+α層)の対象ラインにおけるバインダー液の吐出量を、吐出量小→大に変更し(S210)、3次元造形装置において、次に後層(m+α層)の対象ラインまでの吐出要否を「否」に設定する(S211)。
次に、対象ラインの吐出要否が「要」か「否」か判定し(S212)、「要」でなければ(S212、No)、対象ラインにおけるバインダー液の吐出を省略する(S213)。「要」であれば(S212、Yes)、対象ラインにおけるバインダー液の吐出を行う(S214)。ここで、現在の層(m層)の全ラインの吐出が終了していなければ(S215、No)、次ラインの処理に移り(S216)、ステップ212からの処理を繰り返す。
ステップS215で、現在の層(m)の全ラインの吐出が終了していれば(S215、Yes)、主走査Md160を造形層130から退避させる(S217)。ここで、全ての層の造形が終了していれば(S218、Yes)、この処理を終了する。ステップS218で、まだ全ての層の造形が終了しなければ(S218、Yes)、次層の処理に移り(S219)、以上で説明したステップS202以降の処理を繰り返す。
なお、ステップS204で、現在の層(m層)の吐出要否情報が「要」でなければ(S204、No)、ステップS202に戻り、以降の処理を繰り返す。
また、ステップS208で、算出した変化量が閾値を超えたときは(S208、Yes)、ステップS209〜S211をスキップして、ステップS212に進み、以降の処理を行う。但し、この場合はステップS212では、常に対象ラインは吐出要(S212、Yes)となる。
図14は、図7の造形物(c)のスライスデータに対する吐出位置を示し、X−Y平面に対し造形物(c)をスライスした時の各層データとそれに対する吐出位置を示す図である。
図15は、図7の造形物(c)のスライスデータに対する吐出制御(又は印刷制御)を示し、図14で示した吐出位置に対する吐出制御の方法を示した図である。
造形物(c)の場合、図15中の点2・4は、ある層(m層)とその後層(m+α層)を比較したとき同じ座標位置であるとする。また、点1・3は、異なり、吐出位置の差が所定の閾値Dよりも大きいとする。そこで、一部の層の点2・4におけるバインダー液の吐出を省略し、点1・3のみ吐出を行う。それによって、キャリッジ150の移動距離を短縮する。つまり、結果として全体の造形物の作成時間を短縮することができることを示している。
ここでは簡単な例として、記録ヘッド152が2種類の吐出サイズ(大・小)を持ち、吐出(小)を各層1回ずつ行う代わりに吐出(大)を各層の2層ごとに1回行うものとし、2、4、6・・・2m(m≠N)層を省略した内容を図示しているが、
なお、記録ヘッドの吐出液滴のサイズ及び層を形成するために敷き詰める造形用粉末の量は、3次元造形装置によって異なるため、記録ヘッドの吐出液滴のサイズ及び層については、造形物の形状に合わせた最適な組み合わせとなるよう制御することが望ましい。
図16は、図7の造形物(c)の各層の吐出有無切り替えによる造形処理の手順を示すフロー図である。
概略的には、制御部200がPCから造形用の各層データを受信すると、主走査Md160と粉末積層部(リコータ110、リコータローラ112、供給槽120、造形槽130)の制御を開始する。粉末積層部の各モータM1〜M4を駆動し造形用粉末の堆積を行う。その後、制御部200は現在の層(m層)に対する吐出情報を基に吐出要否を判断した後、その堆積層に対する主走査Md160のヘッド部によるバインダー液の吐出制御を行う。さらに対象ライン・エリア(ライン中の最大移動幅)の吐出要否を判定し対象層の吐出制御を行う。層・ライン・エリアの吐出;要否判定後、吐出否と判定された層・ライン・エリアは制御部200にて記憶しておき、以降の層・ライン・エリアの吐出要否判定時に用いる。このようにして各層の吐出制御を繰り返し行った後、全ての層の造形が終了すると、制御部200は主走査Md、粉末積層部に対し処理の終了を通知し動作を終了する。
次に、以上の造形処理の手順を図16に従って説明する。
まず、制御部200はPC300から造形用の各層データを受信し(S301)、主走査Md160と粉末積層部(リコータ110;リコータローラ112)の制御を開始する。即ち粉末積層部の各モータM1〜M4を駆動し造形用粉末の堆積処理を行う(S302)。その後、制御部200は、現在の層(m層)に対する吐出情報を取得し(S303)、その吐出情報を基に吐出要否を判断する(S304)。ここで、制御部200は、吐出要と判断すると(S304、Yes)、主走査Md160を造形層130に移動し(S305)、現在の層(m層)と後層(m+α層)の対象ライン中の対象エリアにおける吐出位置との変化量を算出する(S306)。次に、算出した変化量が閾値を越えるか否か比較し(S307)、算出した変化量が閾値を越えないときは(S308、No)、吐出制御を「現在の層(m)の対象ライン中の対象エリアでは吐出しない」に変更する(S309)。次に、後層(m+α層)の対象ラインにおけるバインダー液の吐出量を、吐出量小→大に変更し(S310)、3次元造形装置100において、次に後層(m+α層)の対象ライン中の対象エリアまでの吐出要否を「否」に設定する(S311)。
次に、対象ライン中の対象エリアの吐出要否が「要」か否かを判定し(S312)、「要」でなければ(S312、No)、対象ライン中の対象エリアにおける記録ヘッド152の吐出を省略する(S313)。「要」であれば(S312、Yes)、対象ライン中の対象エリアにおける記録ヘッド152の吐出を行う(S314)。ここで、現在の層(m)の全ラインの吐出が終了していなければ(S315、No)、次ラインの処理に移り(S316)、ステップS312からの処理を繰り返す。
ステップS315で、現在の層(m)の全ラインの吐出が終了していれば(S315、Yes)、主走査Md160を造形層130から退避させる(S317)。ここで、全ての層の造形が終了していれば(S318、Yes)、この処理を終了する。
ステップS318で、まだ全ての層の造形が終了しなければ(S318、No)、次層の処理に移り(S319)、以上で説明したステップS302以降の処理を繰り返す。
なお、ステップS304で、現在の層(m層)の吐出要否情報が「要」でなければ(S304、No)、ステップS302に戻り、以降の処理を繰り返す。
また、ステップS308で、算出した変化量が閾値を超えたときは(S308、Yes)、ステップS309〜S311をスキップして、ステップS312に進み、以降の処理を行う。但し、この場合はステップS312では、常に対象ラインは吐出要(S312、Yes)となる。
100・・・三次元造形装置、110・・・リコータ、120・・・供給槽。130・・・造形槽、140・・・ヒータ、150・・・キャリッジ、152・・・記録ヘッド、160・・・主走査Md、200・・・制御部、201・・・CPU、202・・・ROM、203・・・RAM、204・・・NVRAM、205・・・ホストI/F、206・・・ASIC、207・・・I/O、208・・・供給部、209・・・吐出制御部、210〜215・・・モータ制御部。
特開2003−145630号公報

Claims (9)

  1. CADモデルから作成した3次元オブジェクトを基に、粉末積層法を用いて3次元造形物を生成する3次元造形装置であって、
    粉末を積層する複数層のうち、接合面となる前後層における記録液の吐出位置情報を比較し、前後層における記録液の吐出位置の変化量を算出する算出手段と、
    算出した前記変化量を比較する比較手段と、
    前記前後層の前記吐出位置の変化量が所定の閾値を超えないとき、前層の当該吐出位置においては記録液の吐出を行わず、後層における当該吐出位置において記録液の吐出を行うよう記録液の吐出制御を行う制御部と、
    を有することを特徴とする3次元造形装置。
  2. 請求項1に記載された3次元造形装置において、
    前記制御部は、前記前後層の吐出位置の変化量が所定の閾値を超えず後層において記録液の吐出を行うとき、記録液を吐出する記録ヘッドにおける記録液の滴の吐出量を、1層ごとに吐出する場合よりも増量することを特徴とする3次元造形装置。
  3. 請求項1に記載された3次元造形装置において、
    前記制御部は、前記吐出位置情報に基づき吐出対象層の吐出の要否を判定し、前記吐出対象層の吐出有無の切り替えを行うことを特徴とする3次元造形装置。
  4. 請求項3に記載された3次元造形装置において、
    前記制御部は、前記吐出の要否判定によって得られたある層の吐出の要否情報を基に、各層を形成するための紛末堆積処理における紛末の堆積量を変更することを特徴とする3次元造形装置。
  5. 請求項1に記載された3次元造形装置において、
    前記制御部は、前記吐出制御において、前記吐出位置情報に基づき造形層における造形対象ラインの吐出の要否を判定し、造形対象層における造形ラインの吐出の有無の切替、及び吐出の無から吐出有りに切り替えたときの造形対象層における造形ライン層での吐出量を変更することを特徴とする3次元造形装置。
  6. 請求項1に記載された3次元造形装置において、
    前記制御部は、前記吐出制御において、前記吐出位置情報に基づき造形対象層の対象ライン中の対象エリア内の吐出の要否を判定し、造形対象層における造形ラインと造形エリアにおける吐出の有無の切替、及び吐出無から吐出有りに切り替えたときの造形対象層における造形ラインと造形エリアでの吐出量を変更することを特徴とする3次元造形装置。
  7. 請求項1ないし6のいずれかに記載された3次元造形装置において、
    前記吐出制御の変更をユーザ設定又は記録液の前記吐出位置の変化量に基づき自動で切り替えることを特徴とする3次元造形装置。
  8. 請求項7に記載された3次元造形装置において、
    前記吐出制御の切替の判定に造形物の品質又は生成時間を用いることを特徴とする3次元造形装置。
  9. CADモデルから作成した3次元オブジェクトを基に、粉末積層法を用いて3次元造形物を生成する3次元造形装置における造形成方法であって、
    複数層の前後の記録液の吐出位置情報を比較し、接合面となる前後層における記録液の吐出位置の変化量を比較する比較工程と、
    前記前後層の吐出位置の変化量が所定の閾値を超えないとき、前層の当該吐出位置においては記録液の吐出を行わず、後層における当該吐出位置において記録液の吐出を行うよう記録液の吐出制御を行う制御工程を有することを特徴とする3次元造形装置における造形成方法。
JP2014098066A 2014-05-09 2014-05-09 3次元造形装置及び3次元造形装置における造形成方法 Pending JP2015214081A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014098066A JP2015214081A (ja) 2014-05-09 2014-05-09 3次元造形装置及び3次元造形装置における造形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014098066A JP2015214081A (ja) 2014-05-09 2014-05-09 3次元造形装置及び3次元造形装置における造形成方法

Publications (1)

Publication Number Publication Date
JP2015214081A true JP2015214081A (ja) 2015-12-03

Family

ID=54751458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014098066A Pending JP2015214081A (ja) 2014-05-09 2014-05-09 3次元造形装置及び3次元造形装置における造形成方法

Country Status (1)

Country Link
JP (1) JP2015214081A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228422A1 (zh) * 2019-05-16 2020-11-19 珠海赛纳三维科技有限公司 喷墨控制电路及3d打印设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020228422A1 (zh) * 2019-05-16 2020-11-19 珠海赛纳三维科技有限公司 喷墨控制电路及3d打印设备

Similar Documents

Publication Publication Date Title
JP6451234B2 (ja) 立体物造形装置、立体物造形装置の制御方法、立体物造形装置の制御プログラム
JP6500483B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
US20160129632A1 (en) Three-dimensional object formation apparatus
JP6618277B2 (ja) 情報処理装置および情報処理方法
JP6720530B2 (ja) 立体造形装置、情報処理装置、出力物の生産方法及び立体画像の製造方法
JP2012106437A (ja) 3次元造形装置、3次元造形方法及び造形物
US10220604B2 (en) Solid object shaping apparatus, control method for solid object shaping apparatus, and control program for solid object shaping apparatus
JP2015217538A (ja) 三次元造形装置、三次元造形方法、及びプログラム
JP6565177B2 (ja) 立体物造形装置、立体物造形システム、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
CN108237783B (zh) 印刷装置、印刷方法及记录介质
US20160129641A1 (en) Three-dimensional object formation apparatus, three-dimensional object formation system, control method of three-dimensional object formation apparatus, and control program of three-dimensional object formation apparatus
JP2016150550A (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2015214081A (ja) 3次元造形装置及び3次元造形装置における造形成方法
US20180250885A1 (en) Three-dimensional building apparatus and three-dimensional building method
JP6515508B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2018164986A (ja) 立体物造形装置、立体物造形方法、及び、立体物造形装置の制御プログラム
JP6565178B2 (ja) 立体物造形装置、立体物造形システム、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
JP2016150457A (ja) 立体物造形装置、立体物造形装置の制御装置、立体物造形装置の制御方法および立体物造形装置の制御プログラム
JP6515507B2 (ja) 立体物造形装置、立体物造形装置の制御方法、及び、立体物造形装置の制御プログラム
KR20190024587A (ko) 강화 보조벽을 사용하는 3d 인쇄 방법
JP7129256B2 (ja) 記録装置および制御方法
JP5923954B2 (ja) インクジェット記録装置
JP2009119751A (ja) インクジェット記録装置及びその装置に用いる記録制御方法
JP6930478B2 (ja) 液滴吐出装置およびドット位置調整方法
JP2018034421A (ja) 三次元造形装置、方法及びプログラム