JP2015211489A - 電動回転機 - Google Patents

電動回転機 Download PDF

Info

Publication number
JP2015211489A
JP2015211489A JP2014090144A JP2014090144A JP2015211489A JP 2015211489 A JP2015211489 A JP 2015211489A JP 2014090144 A JP2014090144 A JP 2014090144A JP 2014090144 A JP2014090144 A JP 2014090144A JP 2015211489 A JP2015211489 A JP 2015211489A
Authority
JP
Japan
Prior art keywords
pole
rotor
coil
pole coil
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014090144A
Other languages
English (en)
Other versions
JP6326938B2 (ja
Inventor
真大 青山
Masahiro Aoyama
真大 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2014090144A priority Critical patent/JP6326938B2/ja
Priority to DE112015001950.2T priority patent/DE112015001950B4/de
Priority to PCT/JP2015/061995 priority patent/WO2015163285A1/ja
Priority to CN201580002688.XA priority patent/CN105745826B/zh
Publication of JP2015211489A publication Critical patent/JP2015211489A/ja
Application granted granted Critical
Publication of JP6326938B2 publication Critical patent/JP6326938B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils, waves
    • H02K15/066Windings consisting of complete sections, e.g. coils, waves inserted perpendicularly to the axis of the slots or inter-polar channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/325Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles

Abstract

【課題】異なる機能のコイルを配置可能なロータ構造を実現して、効率よく回転駆動する電動回転機を提供すること。【解決手段】ステータ11の駆動コイル14で発生する磁束をロータ21のロータティース22に鎖交させて回転させるリラクタンスモータ10であって、ロータは、シャフト101のキー溝109に、ロータ母材部111のキー突部119やリング形状部121のキー突部129を嵌め合い固定して、ロータ母材部と一体のコア材部112を電磁石極コイル28を備えるロータティースとし、リング形状部と一体の突出片部123にコア材25を保持させて誘導子極コイル27とする簡易構造で回転方向に並列させることにより、鎖交する磁束の空間高調波成分により誘導子極コイルで誘導電流を発生させ、それを界磁電流として電磁石極コイルに供給して主回転力を補助する電磁力を発生させる。【選択図】図5

Description

本発明は、電動回転機に関し、詳しくは、ステータ内にロータを回転自在に収容する構造の電動回転機に関する。
電動回転機は、特許文献1に記載のように、ステータ内にロータを回転自在に収容する構造の場合に、そのロータの回転軸に位置するシャフトにコア材を相対回転不能に固定するとともに、そのコア材に回転力発生用の界磁コイルを巻き付けるタイプがある。
このステータ内で回転するロータ構造では、界磁コイルを巻き付ける構造が電磁鋼板を積層することで作製しており、特殊な構造を採用することが難しかった。
特開平11−69675号公報
そこで、本発明は、異なる機能のコイルを配置可能なロータ構造を実現して、効率よく回転駆動させることのできる電動回転機を提供することを目的とする。
本発明の第1の態様は、ステータに対して回転自在に対面するロータに設けられ、前記ステータに向かって突出して前記ロータを前記ステータに対して回転させる回転力を発生させる補助電流を受ける複数の突極と、前記ロータの前記突極の回転方向の間に配置され、前記突極に前記回転力を発生させる前記補助電流を発生する複数の補極と、前記ロータの回転軸に軸心を一致させて一体回転するように設けられているシャフトと、前記ロータの前記突極と前記補極のうちの少なくとも前記補極を前記シャフトに一体になるように位置決めする固定部材と、を備えて、前記シャフトは、前記ロータの回転軸方向に延在するキー溝またはキー畝が外周面に複数形成されているのに対して、前記固定部材は、前記シャフトの外周側に位置する断面リング形状部と、前記断面リング形状部の径方向外側の複数箇所に位置して前記補極を固定する固定部と、前記リング形状部の径方向内側の複数箇所に位置して前記シャフトの前記キー溝に相対回転不能に嵌め合い固定するキー突部または前記シャフトの前記キー畝を相対回転不能に嵌め合い固定させるキー窪み部と、を有して、前記補極を前記シャフトの外周面側に相対回転不能に位置決め固定することを特徴とするものである。
本発明の第2の態様としては、前記補極は、前記ステータ側から鎖交する磁束の空間高調波による誘導電流を前記補助電流として発生する誘導子極コイルを備え、前記突極は、前記誘導子極コイルで発生した誘導電流を前記補助電流として供給されて電磁石として機能する電磁石極コイルを備え、前記誘導子極コイルと前記電磁石極コイルの間に、前記誘導電流を整流して前記補助電流とする整流素子を設けることが好ましい。
本発明の第3の態様としては、前記断面リング形状部は、前記シャフトの回転軸に沿う離隔位置に配置される2つで1組のリング形状部で構成され、前記固定部は、前記リング形状部のそれぞれから径方向外方に突出する突出片部に形成され、前記補極は、コイル用のコア材を覆うボビンに前記誘導子極コイルを取り付けて前記コア材の周りに保持する構造を備えており、当該補極は、前記誘導子極コイルを取り付けた前記ボビン内に前記突出片部を貫通させて、前記コア材を前記突出片部の端部に固定した状態にし、該コア材を前記ボビンで覆って該ボビンを前記突出片部の端部に固定することで、前記回転部材に相対回転不能に位置決め固定することが好ましい。
このように、上記の第1の態様によれば、突極などロータ側の部材と一体回転するシャフトの外周面のキー溝またはキー畝に、固定部材の断面リング形状部の内側のキー突部またはキー窪みをそれぞれ嵌め合い固定するだけで、その断面リング形状部の外側の固定部に固定する補極を、突極と回転方向に交互に並列させる状態で相対回転不能に位置決め固定することができる。したがって、ロータのシャフト周りに突極と共に補極も容易に位置決め固定して、突極と補極とをそれぞれロータ周りで機能させることができ、補極に補助電流を発生させて、その補助電流で突極から発生する回転力をロータに加えて効率よく回転させることができる。
上記の第2の態様によれば、誘導子極コイルの補極で発生する誘導電流は電磁石極コイルの突極との間に配置されている整流素子により整流して、その電磁石極コイルに供給することができる。したがって、誘導電流を有効利用して、電磁石極コイルを効果的に機能させることができる。
上記の第3の態様によれば、補極は、回転軸方向に離隔する突極の両側のリング形状部から径方向外方に突出する突出片部に取付固定することができ、その突出片部間をコア材の配置スペースとして有効利用することができる。また、誘導子極コイルを取り付けたボビンに予め突出片部を貫通させて仮取付するとともに、コア材を突出片部の端部に固定した後に、そのコア材を覆うようにボビンを固定するだけで、誘導子極コイルをロータに位置決め固定することができる。
図1は、本発明に係るリラクタンスモータの一実施形態を示す図であり、その概略構成を示す一部拡大径方向断面図である。 図2は、誘導子極コイルと電磁石極コイルとをダイオードを介して接続する回路構成を分かり易く説明する簡易モデルの回路図である。 図3は、空間高調波により発生する磁束特性を比較する図であり、(a)は本実施形態での磁束線と磁束ベクトルを図示する概念図、(b)は誘導子極コイルと電磁石極コイルを異なる配置にした場合での磁束線と磁束ベクトルを図示する概念図である。 図4は、補極の有無に応じて空間高調波により発生する誘導電流の特性を比較するグラフである。 図5は、本実施形態での組立構造を示す分解斜視図である。 図6は、突極構造体の構造を示す一部分解斜視図である。 図7は、補極構造体の構造を示す一部分解斜視図である。 図8は、補極構造体の一補極だけを示す図であり、(a)は分解斜視図、(b)は組立斜視図である。 図9は、その他の態様を示す図であり、(a)は凹凸を逆にした場合の一例を示す概念図、(b)は周方向の幅を均等にした場合の一例を示す概念図である。 図10は、空間高調波により発生するトルクを比較する図であり、(a)は本実施形態でのトルク特性を図示するグラフ、(b)は誘導子極コイルと電磁石極コイルを異なる配置にした場合でのトルク特性を図示するグラフである。
以下、図面を参照して、本発明の実施形態について詳細に説明する。図1〜図10は本発明に係る電動回転機の一実施形態であるリラクタンスモータの一例を説明するための図である。ここで、図1は、リラクタンスモータの径方向断面図であり、軸心を中心とする機械角180度分を図示しており、周方向に同様な構造が並列するように作製されている。
図1において、リラクタンスモータ(電動回転機)10は、後述するように、外部からロータ21にエネルギ入力する必要のない構造に作製されており、例えば、ハイブリッド自動車や電気自動車に搭載するのに好適な性能を有している。
(リラクタンスモータ10の基本構造)
まず、リラクタンスモータ10は、概略円筒形状に形成されたステータ(固定子)11と、このステータ11内に回転自在に収納されて軸心に一致する回転軸としてシャフト101(図5を参照)が固設されるロータ(回転子)21と、を備えている。
ステータ11には、ロータ21のロータティース(対面部材)22の外周面22aにエアギャップGを介して内周面12a側を対面させるように、径方向に延長される突極形状に形成されている複数本のステータティース(対面部材)12が周方向に均等配置されている。ステータティース12には、隣接する側面間に形成される空間のスロット13を利用して、相毎の3相巻線をそれぞれ個々に集中巻きすることにより駆動コイル14が形成されている。ステータティース12は、駆動コイル14に駆動電流を入力することにより、内部に対面収納されているロータ21を回転させる磁束を発生する電磁石として機能する。
ロータ21には、ステータティース12と同様に径方向に延長される突極形状に形成されている複数本のロータティース22が周方向に均等配置されている。ロータティース22は、ステータティース12と全周方向の本数を異ならせて、相対回転時に外周面22aがステータティース12の内周面12aに適宜近接対面するように形成されている。
これにより、リラクタンスモータ10は、ステータ11のスロット13内の駆動コイル14に通電することにより発生する磁束を、ステータティース12の内周面12aから対面するロータティース22の外周面22aに鎖交させることができ、その磁束が通過する磁路を最短にしようとするリラクタンストルク(主回転力)によりロータ21を相対回転させることができる。この結果、リラクタンスモータ10は、ステータ11内で相対回転するロータ21と一体回転するシャフト101から通電入力する電気的エネルギを機械的エネルギとして出力することができる。
このリラクタンスモータ10では、ステータティース12の内周面12aからロータティース22の外周面22aに鎖交する磁束には空間高調波成分が重畳している。このため、ロータ21側でも、ステータ11側から鎖交する磁束の空間高調波成分の磁束密度の変化を利用して、内蔵するコイルに誘導電流(補助電流)を発生させ電磁力を得ることができる。
詳細には、ステータ11の駆動コイル14には基本周波数の駆動電力を供給してロータ21(ロータティース22)をその基本周波数で変動する主磁束で回転させることから、ロータ21側にコイルを単に配置しても鎖交する磁束に変化はなく誘導電流が生じることはない。
その一方で、磁束に重畳する空間高調波成分は基本周波数と異なる周期で時間的に変化しつつロータティース22に外周面22a側から鎖交する。このことから、別途入力することなく、基本周波数の磁束に重畳する空間高調波成分はロータティース22の外周面22aの近傍にコイルを設置すれば効率よく誘導電流を発生させることができる。この結果、鉄損の原因となる空間高調波磁束は自己励磁するためのエネルギとして回収することができる。
ところで、リラクタンスモータとしては、図示することは省略するが、ロータティース22の隣接する側面間に形成される空間をスロット23として利用して、そのロータティース22に巻線を巻き付けて径方向2段の集中巻を形成することにより、外周面22a側に誘導子極コイルを形成し、その軸心側に電磁石極コイルを配置することが考えられる。
この構造では、誘導子極コイルは、ステータティース12の内周面12aからロータティース22の外周面22aに鎖交する磁束の空間高調波成分(磁束密度の変化)により誘導電流を発生させて電磁石極コイルに供給することができる。このため、電磁石極コイルは、その誘導子極コイルから受け取った誘導電流を界磁電流として自己励磁することにより、磁束(電磁力)を発生させることができる。要するに、ロータティース22自体に誘導子極コイルと電磁石極コイルを、誘導電流を界磁電流として利用可能な独立回路内に組み込むだけで、主回転力を発生する駆動コイル14の磁束とは別に鎖交する磁束が通過磁路を最短にしようとするリラクタンストルク(補助回転力)を得て、ロータ21の相対回転を補助することができ、また、損失要因となっていた磁束の空間高調波成分をエネルギとして回収して利用することができる。
ここで、このようにロータティース22にコイルを巻くことは、野中作太郎著「自励形単相同期電動機」電気学会雑誌78巻842号、1958年11月、P.18−26にも記載されている。この文献に記載のリラクタンスモータは、基本周波数よりも高い周波数の磁束がロータ側コイルに鎖交することで誘導電流を発生させるものであり、その誘導電流を整流素子(ダイオード)で半波整流して戻すことにより、そのロータ側コイルを自己励磁式の電磁石として機能させるようになっている。
しかしながら、この文献に記載の自己励磁技術には、次のような課題がある。
1.ロータ側のコイルとしては、誘導電流を発生させるコイルおよび整流した誘導電流を界磁電流として流すコイルとして兼用するので、磁気的な干渉が生じて効率よく誘導電流を発生させることができず、また、起磁力も非常に小さくなってしまう。
2.基本周波数よりも高い高次の磁束の高周波成分は、ロータ21(ロータティース22)に鎖交するにしても外周面22a付近に分布するのに留まるため、軸心側にコイルを配置してしまうと非常に小さな誘導電流しか発生しない。なお、ロータ側コイルは、ロータティース22の外周面22a付近に設置するにしても、現実的には無理がある。例えば、線径の細い導線の極少量を巻いてコイルとしても、導体抵抗が高くなって、その結果、銅損が増加して効率のよい電磁石として機能させるのは難しい。また、ロータ表面では、ステータ側に接触してしまう懸念も生じてしまう。
3.ステータ11側のコイルとしては、分布巻にしてしまうと、高次の高調波が磁束に重畳する傾向にあり、上述するように、高次の磁束の高周波成分ではより小さな誘導電流しか期待できない。要するに、コイルの巻き方としては、分布巻は不適当である。
4.この文献では、基本周波数の2倍の高調波磁束でロータ側コイルを励磁するように説明するが、2次の高調波磁束で発生する誘導電流は整流合成したときに谷ができてしまう。また、誘導電流は磁束の時間変化が大きいほど大電流となるので、高くなり過ぎない3次程度の高調波磁束の方が有利である。
そこで、リラクタンスモータ10は、ロータ21側において、コア材25に集中巻線した誘導子極コイル27の全体をロータティース22間のスロット23内に収容して回転方向に並列配置するとともに、ロータティース22の全体に1段の集中巻を形成することにより電磁石極コイル28が配置されている。
誘導子極コイル27は、電磁鋼(磁性体)からなるコア材25を採用することにより、透磁率を高めて磁束を高密度に鎖交可能にしており、ステータティース12の内周面12aに極力小さなエアギャップGを介して対面させることで、より多くの空間高調波磁束を鎖交させるようになっている。この誘導子極コイル27は、ステータティース12の内周面12aからロータティース22の外周面22aに鎖交する磁束の3次の空間高調波成分を有効利用するように磁界解析を行って厳密に空間高調波磁路を確認することにより、効率よく誘導電流を発生させることができるように設置している。なお、誘導子極コイル27は、電磁石極コイル28との間に必要十分な空隙を確保するようにロータティース22の間に位置するように配置されている。
このように、集中巻構造を採用することにより、誘導子極コイル27や電磁石極コイル28では、複数スロットに亘って周方向に巻線をする必要がなく、全体的に小型化することができる。また、誘導子極コイル27では、1次側での銅損損失を低減しつつ、低次である3次の空間高調波磁束の鎖交による誘導電流を効率よく発生させて、回収可能な損失エネルギを増加させることができる。
また、誘導子極コイル27には、3次の空間高調波磁束を利用することにより、上述の文献(電気学会雑誌)で説明する2次の空間高調波磁束を利用する場合よりも、効果的に誘導電流を発生させることができる。具体的には、誘導電流は2次よりも3次の空間高調波磁束を利用する方が磁束の時間変化を大きくして大電流にすることができ、効率よく回収することができる。なお、この文献では、ロータの軸心側深部に巻線したコイルが図示されており、空間高調波の鎖交領域が考慮されておらず、有効利用できる構造になっていない。
そして、誘導子極コイル27は、後述する構造により、ロータティース22の外周面22aの間で磁気的に独立する形態でスロット23内に配置されている。
また、電磁石極コイル28は、ロータティース22の全長にわたって巻線することにより全体を有効利用して磁束を発生させる。
このように、誘導子極コイル27および電磁石極コイル28は、磁束経路が干渉し合わないように分割されているので、磁気的干渉を低減することができ、効率よく誘導電流を発生させることができるとともに、効果的に電磁石として機能させて磁束を発生させることができる。
さらに、誘導子極コイル27は、ロータ21の径方向に対して同一の周回巻線となる集中巻に形成されて、ロータ21の周方向に配列されて並列接続されている。また、電磁石極コイル28は、ロータ21の径方向に対して隣同士が逆向きの周回巻線となる集中巻に形成されて、ロータ21の周方向の外周側と軸心側とを交互に接続する全直列接続にされている。
電磁石極コイル28は、図2に示すように、全直列接続されている両端部が、並列接続されている誘導子極コイル27の両端部にそれぞれダイオード29A、29Bを介して接続されている。すなわち、電磁石極コイル28は、巻線の巻き方向毎のコイル28A1〜28An(n:極数/2)とコイル28B1〜28Bnが全直列接続されており、その電磁石極コイル28A1〜28An、28B1〜28Bnに対応するように直列接続されている誘電子極コイル27A1〜27An、27B1〜27Bnの両端部に並列接続されている。
ダイオード29A、29Bは、誘導子極コイル27や電磁石極コイル28を多極化させる場合でも、そのうちの電磁石極コイル28を全直列させることで使用数を抑えている。このダイオード29A、29Bは、大量使用を回避するために、一般的なHブリッジ型の全波整流回路を形成するのではなく、それぞれ180度位相差になるように結線して、一方の誘導電流を反転させて半波整流出力する中性点クランプ型の半波整流回路(整流素子)を形成している。
これにより、リラクタンスモータ10では、誘導子極コイル27が透磁率の高い電磁鋼のコア材25に、電磁石極コイル28との干渉なく(誘導電流の減少なく)、ステータティース12の内周面12aからロータティース22の外周面22aに鎖交する磁束の空間高調波成分を通過させることにより、誘導電流を効率よく発生させて回収することができる。誘導子極コイル27の個々に発生させる誘導電流は、ダイオード29A、29Bで整流させた後に合流させて、直列接続させている電磁石極コイル28の個々に流し有効利用することができ、その電磁石極コイル28を効果的に自己励磁させて大きな磁束(電磁力)を発生させることができる。
この結果、リラクタンスモータ10は、磁束同士を互いに干渉して弱め合ってしまうことなく、励磁用と電磁石用とで分割して独立させる誘導子極コイル27および電磁石極コイル28で、有効かつ平滑化させて利用することができ、効率よくエネルギとして回収して出力することができる。すなわち、電磁石極コイル28がロータティース22と共に突極を構成して、誘電子極コイル27がコア材25と共に補極を構成している。
また、誘導子極コイル27および電磁石極コイル28は、ロータ21の周方向に複数配置して多極化しているので、上述の文献(電気学会雑誌)に記載のような2極モータの場合よりも、ロータティース22の1歯当たりの鎖交する磁束量を周方向に分散化させることができ、個々のロータティース22に作用する電磁力(リラクタンストルク)も周方向に分散化させて電磁振動を抑えることができ、静寂化させることができる。
具体的に、誘導子極コイル27および電磁石極コイル28は、駆動コイル14も含めて、銅導体よりなる電線材を採用して巻線形成されており、銅導体の採用により電気伝導率を高くして損失を低減することにより、効率よく誘導電流を発生させて界磁電流として利用することができる。このコイル27、28、14の電線材として銅導体を採用する場合には、平角導線を採用するのが好ましく、これにより、コイル抵抗に起因する銅損や発熱損失を低減することができる。さらに、コイル27、28、14の形態としては、短辺側を内径面側になるように縦に巻いたエッジワイズコイルとすることにより、分布容量(浮遊容量)を小さくして周波数特性を向上させることができ、また、電線材の周囲長が長いため表皮効果による抵抗増加を抑えて効率が低下してしまうことを抑制することができる。この結果、コイル27、28、14では、少ない銅導体量で、より多くの損失エネルギを回収可能になっている。なお、コイル27、28、14の電線材は、銅導体に限るものではなく、他の目的を持って選択してもよく、例えば、比重が銅の1/3のアルミバー導体を採用して軽量化を図ってもよい。
また、ステータ11は、ステータティース12の内周面12a側を正逆双方の周方向に突出させた鍔形状部12bを有するオープンタイプのスロット13に形成することにより、空間高調波磁束を効率よく誘導子極コイル27内に鎖交させるようにしている。なお、この鍔形状部12bを設けるオープンタイプにすることで、急峻なサージ電圧を発生させてしまうことを抑制することができる。
このように、リラクタンスモータ10は、ロータ21側に誘導子極コイル27と電磁石極コイル28を設置することで、3次空間高調波磁束をステータ11側のステータティース12から効果的に鎖交させて効率よくリラクタンストルクを発生させることができる。例えば、3次空間高調波磁束の磁路を磁界解析して磁束密度分布をベクトル表示すると、誘電子極コイル27を電磁石極コイル28の間に周方向に並列させるか否かで磁束線MLや磁束ベクトルVに差があることが分かる。
詳細には、ロータティース22に巻線を巻き付けて径方向2段の集中巻を形成することにより、外周面22a側に誘導子極コイル27´を形成し、その軸心側に電磁石極コイル28´を配置する場合には、図3(b)に示すような特性になる。磁束ベクトルVは、ロータ21側ではロータティース22の外周面22a付近に集中していることを確認できる。また、3次空間高調波磁束線MLは、ロータティース22間のスロット23内を通過してステータティース12側に戻っていることが分かる。
これに対して、リラクタンスモータ10では、その3次空間高調波磁束線MLが通る電磁石極コイル28を設置するロータティース22の間のスロット23内に、誘導子極コイル27を配置して効果的に3次空間高調波磁束が鎖交するようにしている。
このため、リラクタンスモータ10では、図3(a)に示すように、電磁石極コイル28と並列させて誘電子極コイル27を設置することで、その誘電子極コイル27内に磁束ベクトルVを効果的に誘導して誘導電流を発生させて電磁石極コイル28に供給することができる。
これにより、リラクタンスモータ10では、3次空間高調波磁束(磁束ベクトルV)をロータティース22の外周面22a側に高密度に発生させて、誘導子極コイル27を含めて、ステータティース12の間の全体で鎖交させることができ、周方向の広範囲にリラクタンストルクを効果的に発生させて駆動コイル14による駆動力を補助することができる。
この結果、3次空間高調波磁束は、磁気飽和近くになってエアギャップG間を介して鎖交することが抑えられることはなく、より多くを誘導子極コイル27に鎖交させて大容量の誘導電流を発生させることができる。
ここで、誘導子極コイル27は、周囲との間の磁気抵抗が小さいと、例えば、ロータティース22に磁束が大量に流れ込んで突極比を低下させてしまうことになり、リラクタンストルクを著しく減少させてしまう。また、ロータティース22に磁束が大量に流れ込むと、ステータ11とロータ21との相対的な位置関係によっては、負(逆回転)方向へのトルクが働いたり、磁気的干渉が生じてトルク低下の要因となってしまうことがある。
このため、誘導子極コイル27は、ロータティース22に磁気的に結合することによる不都合を回避するために、後述するように、そのロータティース22間に空隙やアルミニウムや樹脂などの非磁性材料で磁気的に独立させてスロット23内に配置している。
このことから、リラクタンスモータ10(With Sub-Poles)は、図4に示すように、誘導子極コイル27を電磁石極コイル28間に並列させていない場合(Without Sub-Poles)に比べて、ロータ21の回転を開始するのに伴って、鎖交する3次空間高調波磁束が増加して、誘導子極コイル27に誘導電流を効率よく発生させることにより損失エネルギを回収できている。また、このリラクタンスモータ10では、発生させる誘導電流の波形を誘導子極コイル27を電磁石極コイル28間に並列させることで安定させることができ、定常トルクを向上させるとともに、トルクリプルを低減させて、トルク特性を高品質に向上させることができる。
そして、リラクタンスモータ10は、3f次の空間高調波磁束(f=1、2、3・・・)を主に利用する構造として、ロータ21側の突極(ロータティース22)の数P:ステータ11側のスロット13の数Sが2:3になる構造に作製されている。例えば、3次の空間高調波磁束は、駆動コイル14に入力する基本周波数よりも周波数が高いために短周期で脈動する。このため、ロータ21は、ロータティース22間の誘導子極コイル27に鎖交する磁束強度が変化することにより、効率的に誘導電流を発生させて、基本周波数の磁束に重畳する空間高調波成分の損失エネルギを効率よく回収して回転することができる。
また、このように、リラクタンスモータ10は、ロータ21側とステータ11側の間での相対的な磁気的作用の品質を決定する構造として、ロータティース突極数Pとステータスロット数Sの比としてP/S=2/3を採用するのは、電磁振動を低減して電磁騒音の小さな回転を実現するためである。
詳細には、上記と同様に磁束密度分布の磁界解析をすると、ロータティース突極数Pとステータスロット数Sの比に応じて、機械角360度内の周方向に磁束密度分布も分散化されるため、ステータ11に働く電磁力分布にも偏在が認められることになる。
これに対して、リラクタンスモータ10では、ロータティース突極数P/ステータスロット数S=2/3となる構造を採用することにより、機械角360度の全周に亘って均等な密度分布となる磁束を鎖交させることができ、ロータ21をステータ11内で高品質に回転させることができる。
これにより、リラクタンスモータ10では、空間高調波磁束を損失とすることなく利用して、回転動作させることができ、損失エネルギを効率よく回収して、電磁振動を大幅に低減し静寂性高く回転させることができる。
このように、リラクタンスモータ10は、ステータ11の駆動コイル14以外に電力供給することなく、ロータ21側に配置する誘導子極コイル27に誘導電流を効率よく発生させて電磁石極コイル28に界磁電流として供給し自己励磁電磁石として機能させることができ、駆動コイル14への電力供給による主回転力を補助する補助回転力を得て高効率回転させることができる。
(リラクタンスモータ10の組立構造)
そして、このリラクタンスモータ10は、図5に示すように、ロータティース22と電磁石極コイル28を備える突極構造体110と、コア材25と誘電子極コイル27を備える補極構造体120と、をシャフト101に一体回転するように(相対回転不能に)同軸に取り付けてロータ21を構築し、そのロータ21を相対回転自在にステータ11内に収容する組立構造になっている。
まず、シャフト101は、突極構造体110と補極構造体120を位置決め固定する構造を外周面101aに形成されている取付大径部101Aと、ベアリング102を取り付けてステータ11側の不図示のハウジングに回転自在に支持させる取付大径部101Aの両端側の支持中径部101Bと、一方の支持中径部101Bの外側に延長されてロータ側レゾルバ103を取付固定する取付小径部101Cと、この取付小径部101Cの反対側の支持中径部101Bの外側に延長されて外部機器に連結されて回転力を出力する出力回転軸101Dと、を備えるように一体形成されている。
詳細には、シャフト101の取付大径部101Aは、ロータ21の回転軸と同一方向に延長されているキー溝109が複数本形成されており、このキー溝109は、取付小径部101C側が支持中径部101B側まで連続しないように閉じていて、出力回転軸101D側は支持中径部101B側まで連続して開放(開口)されている。このため、このシャフト101の取付大径部101Aには、そのキー溝109に、後述するキー突部119、129を開放端側から進入させて嵌め合い固定することができる構造を備えている。
支持中径部101Bは、取付大径部101Aのキー溝109の閉塞側にはそのままベアリング102を取り付ける一方、そのキー溝109の開放側にはドーナツ型のエンドプレート105を取り付けて嵌め合い固定したキー突部119、129が離脱してしまうことを制限した上で、ベアリング102を取り付けるようになっている。
取付小径部101Cは、ステータ11側のハウジングに位置決め固定されているステータ側レゾルバ104内に位置するようにロータ側レゾルバ103をベアリング102の外側に取り付けてストッパねじ106で固定するようになっている。
出力回転軸101Dは、ベアリング102の外側に突出する円柱形状に形成されて、外部機器を相対回転不能に連結させることができるように回転軸方向に溝を形成する平目ローレット加工が外周面に施されている。この滑り止めは、一面側を平面にする断面D字形状にして、相対回転不能にネジ止め固定するようにしてもよい。
(突極構造体110の組立構造)
そして、突極構造体110は、図6に示すように、シャフト101の取付大径部101Aを収容可能な内径を有する短尺な円筒形状(断面リング形状)のロータ母材部111と、このロータ母材部111の回転軸に交差して径方向外方への延長線に一致するようにロータ母材部111の外周面から外方に突出してコイルのコア材として機能するコア材部112と、ロータ母材部111の内周面から内方に向かって突出してシャフト101の取付大径部101Aの外周面のキー溝109に嵌り込む断面形状に形成されているキー突部119と、が同一の部材を加工して一体形成されており、外方に突出するコア材部112に電磁石極コイル28が一体回転するように取り付けられている。
電磁石極コイル28は、コア材部112の回転軸方向に離隔する両端面とロータ母材部111の外周面に隣接する両側面とを覆うように形成されている突極ボビン115に電線材を巻き付けて、そのコア材部112に被せるだけで取り付けることができるようになっている。この電磁石極コイル28は、突極ボビン115に電線材を巻き付けた状態にしてニカワ等で形状を固めた状態にして、予め準備しておくことにより迅速かつ容易に組付作業を完了することができる。
また、突極ボビン115には、回転軸側に延長されてコア材部112の回転軸方向の一端面側に対面する固定片116と、コア材部112からロータ母材部111の回転軸方向の両端面側に対面する固定片117と、コア材部112の回転軸からの離隔側で鍔形状に形成されて電磁石極コイル28の電線材が遠心力で離脱してしまうことを制限する鍔部118と、が一体形成されている。この突極ボビン115は、固定片116がコア材部112側から電線材の巻付空間分だけ離隔する位置に形成されており、この固定片116の中央部には電磁石極コイル28の一端部の電線材を位置決め固定する切欠116aが形成されている。また、固定片117には、ロータ母材部111のリベット孔Hに差し込んでリベット受けRに先端部を固定するリベットピンPを貫通させる貫通孔117aが形成されている。
(突極構造体110の組立手順)
このような構造を採用することで、突極構造体110は、次のようにして、シャフト101に取付可能な状態に容易かつ迅速に組み立てておくことができる。
まず、突極構造体110は、電線材を巻き付けておいた突極ボビン115内にコア材部112を差し込んで被せた状態にする。この後に、突極ボビン115の固定片117の貫通孔117aとロータ母材部111のリベット孔Hとを位置決めしつつリベットピンPを差し込んでその先端部をリベット受けRにカシメるなどしてリベット締めする。これにより、突極構造体110は、電磁石極コイル28をロータ母材部111周りに複数取り付けた状態にして準備しておくことができる。
(補極構造体120の組立構造)
また、補極構造体120は、図7に示すように、シャフト101の取付大径部101Aを収容可能な内径を有する薄板のリング形状(断面リング形状)で2枚1組のリング形状部121と、このリング形状部121の回転軸に交差して径方向外方への延長線に一致するようにリング形状部121の外周面から外方に突出してコア材25が固定される突出片部123と、リング形状部121の内周面から内方に向かって突出してシャフト101の取付大径部101Aの外周面のキー溝109に嵌り込む断面形状に形成されているキー突部129と、が同一の部材を加工して一体形成されており、突出片部123に両端側を固定されているコア材25に誘電子極コイル27が一体回転するように取り付けられている。すなわち、断面リング形状部を構成するリング形状部121と、固定部を構成する突出片部123とで固定部材を構成している。
ここで、このリング形状部121と突出片部123とキー突部129とを一体に加工する材料としては、鎖交する磁束が流れ込んで有効利用することを妨げてしまわないように、ロータ母材部111やコア材部112側から磁気的に独立させるように非磁性の材料を選択するのが有効であり、例えば、所望の強度を有する真鍮あるいはアルミニウム合金が好ましい。
誘電子極コイル27は、図8(a)および図8(b)に示すように、コア材25の回転軸からの離隔側を除く外面側を覆うように形成されている補極ボビン125に電線材を巻き付けて、そのコア材25に被せるだけで取り付けることができるようになっている。この誘電子極コイル27は、補極ボビン125に電線材を巻き付けた状態にしてニカワ等で形状を固めた状態にして、予め準備しておくことにより迅速かつ容易に組付作業を完了することができる。ここで、誘電子極コイル27は、電磁石極コイル28の間に形成される空間内に収容することから、補極ボビン125の回転軸側を薄く形成して外側を厚く形成する段差形状に形成されている。
また、補極ボビン125には、回転軸側に延長されてコア材25の回転軸方向の一端面側に対面する固定片126と、回転軸側が先細形状になるように形成されているコア材25の先細側全体を覆うカバー部127と、このカバー部127の反対側の回転軸からの離隔側で鍔形状に形成されて誘電子極コイル27の電線材が遠心力で離脱してしまうことを制限する鍔部128と、が一体形成されている。この補極ボビン125は、固定片126がコア材25側からの電線材の巻付空間分だけ離隔する位置に形成されており、この固定片126の中央部には誘電子極コイル27の一端部の電線材を位置決め固定する切欠126aが形成されている。
さらに、図7に戻って、突出片部123には、コア材25と補極ボビン125の両端部のリベット孔Hに差し込んでリベット受けRに先端部を固定するリベットピンPを貫通させる貫通孔123a、123bが形成されている。
補極ボビン125は、コア材25を端部側の貫通孔123aを利用してリベットピンPで位置決め固定された状態の突出片部123を含めて内部に収容して(外面を覆って)誘電子極コイル27の取付箇所となるように概略直方体に形成されている。また、補極ボビン125の回転軸側のカバー部127は、コア材25を覆う程度の長さに形成されることにより、突出片部123の差込孔125hを確保する形状に作製されており、その突出片部123の回転軸側の貫通孔123bを利用して差し込む不図示のリベットピンPを差し込んで位置決め固定するリベット孔Hが対応する位置に形成されている。
(リラクタンスモータ10の組立手順)
このような構造を採用することで、補極構造体120は、突極構造体110と共に、次のようにして容易かつ迅速にシャフト101に取り付けて、リラクタンスモータ10を組み立てることができる。
まず、補極構造体120は、一方のリング形状部121の内周面のキー突部129を、シャフト101の取付大径部101Aのキー溝109に開放端側から嵌め込んで閉塞端側まで移動させて相対回転不能に取り付けた状態にする。
この後に、突極構造体110は、続けて、同様に、シャフト101の取付大径部101Aのキー溝109にロータ母材部111内周面のキー突部119を嵌め込んで補極構造体120のリング形状部121に隣接する位置まで移動させる。この状態で、突極構造体110は、電磁石極コイル28をシャフト101の取付大径部101Aに相対回転不能に取り付けることができる。
次いで、補極構造体120は、もう一方のリング形状部121の内周面のキー突部129を、同様に、シャフト101の取付大径部101Aのキー溝109に開放端側から嵌め込んで突極構造体110のロータ母材部111に隣接する位置まで移動させて相対回転不能に取り付けた状態にする。
この後に、電線材を巻き付けておいた補極ボビン125の両端側に突出片部123を差し込んで突極構造体110の電磁石極コイル28(コア材部112)の間の奥まで進入させて回転軸側に一時的に位置させた状態にする。続けて、コア材25を突出片部123の端部側に、端面を外側に向けて先細側を回転軸側に位置させる姿勢にし、電磁石極コイル28間に位置する状態で突出片部123端部の貫通孔123aとコア材25のリベット孔Hとを位置決めしつつリベットピンPを差し込んでその先端部をリベット受けRにカシメるなどしてリベット締めする。これにより、補極構造体120のコア材25を電磁石極コイル28の間に複数取り付けた状態にして準備しておくことができる。
次いで、電磁石極コイル28の間の奥まで進入させた補極ボビン125を引き戻してカバー部127内にコア材25を先細側から位置させた後に、突出片部123の端部よりも回転軸側の貫通孔123bと補極ボビン125の先細側のリベット孔Hとを位置決めしつつリベットピンPを差し込んでその先端部をリベット受けRにカシメるなどしてリベット締めする。これにより、補極構造体120は、突極構造体110の回転軸方向の両端側にリング形状部121を位置決め固定して、電磁石極コイル28の間に誘電子極コイル27を、簡易な構造で容易かつ迅速に配置することができる。
そして、図5に戻って、リラクタンスモータ10は、シャフト101の取付大径部101Aのキー溝109の開放端側の支持中径部101Bにエンドプレート105を取り付けて突極構造体110と補極構造体120を相対回転不能に位置決め固定する。次いで、シャフト101の支持中径部101Bの双方にベアリング102を取り付けた後に、エンドプレート105の反対側の取付小径部101Cにロータ側レゾルバ103をストッパねじ106で取付固定し、ロータ21を組み立てる。このまま、駆動コイル14を備えるステータ11のステータティース12内にロータ21を相対回転可能に収容して、シャフト101の取付小径部101Cのロータ側レゾルバ103をステータ11側のステータ側レゾルバ104内に回転速度を検出可能に位置させるように組み付ける。
したがって、リラクタンスモータ10は、電磁石極コイル28を配置するロータティース22の間を有効利用して誘電子極コイル27を設置することができる。その誘電子極コイル27や電磁石極コイル28は、シャフト101の外周面のキー溝109に、ロータ母材部111内周面のキー突部119やリング形状部121内周面のキー突部129を嵌め合い固定するだけの簡易かつ軽量な構造で容易に組み付けて一体回転するように位置決めすることができる。この結果、リラクタンスモータ10は、ステータ11側に電力供給するだけで、ロータ21を小さな回転負荷、かつ、高品質な高トルクで高効率回転させることができる。
ここで、本実施形態では、シャフト101外周面にキー溝109を形成して、突極構造体110のロータ母材部111内周面にキー突部119を形成するとともに、補極構造体120のリング形状部121内周面のキー突部129を形成して、嵌め合い固定する場合を一例として説明しているが、これに限るものではない。例えば、図9(a)に示すように、凹凸を逆にして、シャフト101外周面に畝形状のキー畝209を形成して、突極構造体110のロータ母材部111内周面や補極構造体120のリング形状部121内周面に、そのキー畝209を嵌め合い固定することができるキー窪み部219、229を形成してもよいことは言うまでもない。また、図9(b)に示すように、溝幅と突部幅とが均等なキー溝209´とキー突部219´、229´にして周方向に連続するようにしてもよいことは言うまでもない。
このような構造を採用するリラクタンスモータ10に対して、図3(b)に示すように、ロータティース22に巻線を巻き付けて径方向2段の集中巻を形成して外周面22a側に誘導子極コイル27´を形成し、その軸心側に電磁石極コイル28´を配置する場合には、図10(b)に示すようなトルク特性となる。すなわち、図10(b)のトルク特性では、駆動コイル14によるリラクタンス分に加えて、誘導子極コイル27´の誘導電流による電磁石極コイル28´の電磁力で発生させるトルクは、60N・m未満に留まってリラクタンス分との総合トルクでも80N・m強に過ぎないことが分かる。
これに対して、同様なロータ21の径寸法でも、電磁石極コイル28に誘電子極コイル27を並列させた構造のリラクタンスモータ10(図3(a)を参照)では、図10(a)に示すようなトルク特性となる。すなわち、図10(a)のトルク特性では、誘電子極コイル27のコア材25の存在により駆動コイル14によるリラクタンス分が多少減少するが、誘導子極コイル27で効果的に発生させる誘導電流を電磁石極コイル28に供給することにより110N・m程度の大きな電磁力トルクを発生させて、リラクタンス分との総合トルクでも120N・m弱の十分大きなトルクを得ることができていることが分かる。
さらに、本実施形態の他の態様としては、リラクタンスモータ10のように径方向にエアギャップGを形成するラジアルギャップ構造に限らずに、回転軸方向にギャップを形成するアキシャルギャップ構造に作製してもよい。この場合にも、ステータ側とロータ側とで対面する軸方向端面に駆動コイルと共に誘電子極コイルや電磁石極コイルを配置すればよい。また、ラジアルギャップ側に電磁石極コイルを配置するとともに、アキシャルギャップ側に誘電子極コイルを配置するなど振り分ける構造を採用してもよい。
扁平の大径モータ構造に作製する場合には、インナーステータとアウターステータとの間に回転自在にロータを収容するダブルギャップ型モータ構造を採用してもよい。この場合には、インナーステータ側に損失エネルギを回収する誘電子極コイルを配置するとともに、アウターステータ側にトルクを発生する電磁石極コイルを配置することで、大幅にトルクを増大させることができる。
リラクタンスモータ10のようなラジアルギャップ構造の場合には、ステータ11やロータ21(ロータ母材部111やコア材部112)を電磁鋼板の積層構造で作製するばかりでなく、例えば、鉄粉などの磁性を有する粒子の表面を絶縁被覆処理した軟磁性複合粉材(SoftMagnetic Composites)をさらに鉄粉圧縮成形および熱処理製造した圧粉磁心、所謂、SMCコアを採用してもよい。このSMCコアは、成形が容易であることからアキシャルギャップ構造に好適である。
さらに、リラクタンスモータ10は、車載用に限定されるものではなく、例えば、風力発電や、工作機械などの駆動源として好適に採用することができる。
本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、各請求項により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
10 リラクタンスモータ
11 ステータ
12 ステータティース
13、23 スロット
14 駆動コイル
21 ロータ
22 ロータティース
25 コア材
27、27A1〜27An、27B1〜27Bn 誘導子極コイル
28、28A1〜28An、28B1〜28Bn 電磁石極コイル
29、29A、29B ダイオード
101 シャフト
101A 取付大径部
101B 支持中径部
101C 取付小径部
101D 出力回転軸
109、209´ キー溝
110 突極構造体
111 ロータ母材部
112 コア材部
115 突極ボビン
118、128 鍔部
119、129、219´、229´ キー突部
120 補極構造体
121 リング形状部
123 突出片部
125 補極ボビン
127 カバー部
209 キー畝
219、229 キー窪み部

Claims (3)

  1. ステータに対して回転自在に対面するロータに設けられ、前記ステータに向かって突出して前記ロータを前記ステータに対して回転させる回転力を発生させる補助電流を受ける複数の突極と、
    前記ロータの前記突極の回転方向の間に配置され、前記突極に前記回転力を発生させる前記補助電流を発生する複数の補極と、
    前記ロータの回転軸に軸心を一致させて一体回転するように設けられているシャフトと、
    前記ロータの前記突極と前記補極のうちの少なくとも前記補極を前記シャフトに一体になるように位置決めする固定部材と、を備えて、
    前記シャフトは、前記ロータの回転軸方向に延在するキー溝またはキー畝が外周面に複数形成されているのに対して、
    前記固定部材は、前記シャフトの外周側に位置する断面リング形状部と、前記断面リング形状部の径方向外側の複数箇所に位置して前記補極を固定する固定部と、前記リング形状部の径方向内側の複数箇所に位置して前記シャフトの前記キー溝に相対回転不能に嵌め合い固定するキー突部または前記シャフトの前記キー畝を相対回転不能に嵌め合い固定させるキー窪み部と、を有して、前記補極を前記シャフトの外周面側に相対回転不能に位置決め固定することを特徴とする電動回転機。
  2. 前記補極は、前記ステータ側から鎖交する磁束の空間高調波による誘導電流を前記補助電流として発生する誘導子極コイルを備え、
    前記突極は、前記誘導子極コイルで発生した誘導電流を前記補助電流として供給されて電磁石として機能する電磁石極コイルを備え、
    前記誘導子極コイルと前記電磁石極コイルの間に、前記誘導電流を整流して前記補助電流とする整流素子が設けられていることを特徴とする請求項1に記載の電動回転機。
  3. 前記断面リング形状部は、前記シャフトの回転軸に沿う離隔位置に配置される2つで1組のリング形状部で構成され、
    前記固定部は、前記リング形状部のそれぞれから径方向外方に突出する突出片部に形成され、
    前記補極は、コイル用のコア材を覆うボビンに前記誘導子極コイルを取り付けて前記コア材の周りに保持する構造を備えており、
    当該補極は、前記誘導子極コイルを取り付けた前記ボビン内に前記突出片部を貫通させて、前記コア材を前記突出片部の端部に固定した状態にし、該コア材を前記ボビンで覆って該ボビンを前記突出片部の端部に固定することで、前記回転部材に相対回転不能に位置決め固定することを特徴とする請求項2に記載の電動回転機。
JP2014090144A 2014-04-24 2014-04-24 電動回転機 Active JP6326938B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014090144A JP6326938B2 (ja) 2014-04-24 2014-04-24 電動回転機
DE112015001950.2T DE112015001950B4 (de) 2014-04-24 2015-04-20 Rotierende elektrische Maschine
PCT/JP2015/061995 WO2015163285A1 (ja) 2014-04-24 2015-04-20 電動回転機
CN201580002688.XA CN105745826B (zh) 2014-04-24 2015-04-20 电动旋转机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014090144A JP6326938B2 (ja) 2014-04-24 2014-04-24 電動回転機

Publications (2)

Publication Number Publication Date
JP2015211489A true JP2015211489A (ja) 2015-11-24
JP6326938B2 JP6326938B2 (ja) 2018-05-23

Family

ID=54332451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014090144A Active JP6326938B2 (ja) 2014-04-24 2014-04-24 電動回転機

Country Status (4)

Country Link
JP (1) JP6326938B2 (ja)
CN (1) CN105745826B (ja)
DE (1) DE112015001950B4 (ja)
WO (1) WO2015163285A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169280A (ja) * 2016-03-14 2017-09-21 スズキ株式会社 回転電機
JP2017169284A (ja) * 2016-03-14 2017-09-21 スズキ株式会社 回転電機
JP2017169281A (ja) * 2016-03-14 2017-09-21 スズキ株式会社 回転電機
JP2017169285A (ja) * 2016-03-14 2017-09-21 スズキ株式会社 回転電機
TWI627818B (zh) * 2017-01-26 2018-06-21 王文民 繞組變磁路發電機

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058280B1 (fr) * 2016-11-03 2020-07-31 Valeo Equip Electr Moteur Stator de machine electrique tournante muni d'un interconnecteur a configuration amelioree
CN111987817B (zh) * 2019-05-24 2023-11-24 北京金风科创风电设备有限公司 电机及电机的装配方法
DE102020116421A1 (de) 2020-06-22 2021-12-23 Bayerische Motoren Werke Aktiengesellschaft Reluktanzdominierter elektromechanischer Energiewandler mit variabler Rotorfeldverstärkung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354733A (ja) * 2001-03-19 2002-12-06 Denso Corp 直流モータ
JP2012170256A (ja) * 2011-02-15 2012-09-06 Toyota Motor Corp 回転電機駆動システム
JP2012222940A (ja) * 2011-04-07 2012-11-12 Toyota Motor Corp 回転電機及び回転電機駆動システム
JP2013038862A (ja) * 2011-08-04 2013-02-21 Toyota Central R&D Labs Inc 回転電機のロータ及び回転電機
WO2013157101A1 (ja) * 2012-04-18 2013-10-24 三菱電機株式会社 ステータ、モータ、送風機及びステータの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169675A (ja) 1997-08-26 1999-03-09 Denso Corp 回転電機の巻線界磁型ロータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354733A (ja) * 2001-03-19 2002-12-06 Denso Corp 直流モータ
JP2012170256A (ja) * 2011-02-15 2012-09-06 Toyota Motor Corp 回転電機駆動システム
JP2012222940A (ja) * 2011-04-07 2012-11-12 Toyota Motor Corp 回転電機及び回転電機駆動システム
JP2013038862A (ja) * 2011-08-04 2013-02-21 Toyota Central R&D Labs Inc 回転電機のロータ及び回転電機
WO2013157101A1 (ja) * 2012-04-18 2013-10-24 三菱電機株式会社 ステータ、モータ、送風機及びステータの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017169280A (ja) * 2016-03-14 2017-09-21 スズキ株式会社 回転電機
JP2017169284A (ja) * 2016-03-14 2017-09-21 スズキ株式会社 回転電機
JP2017169281A (ja) * 2016-03-14 2017-09-21 スズキ株式会社 回転電機
JP2017169285A (ja) * 2016-03-14 2017-09-21 スズキ株式会社 回転電機
TWI627818B (zh) * 2017-01-26 2018-06-21 王文民 繞組變磁路發電機

Also Published As

Publication number Publication date
CN105745826A (zh) 2016-07-06
JP6326938B2 (ja) 2018-05-23
WO2015163285A1 (ja) 2015-10-29
DE112015001950T5 (de) 2017-01-19
CN105745826B (zh) 2018-12-28
DE112015001950B4 (de) 2024-01-18

Similar Documents

Publication Publication Date Title
JP6326938B2 (ja) 電動回転機
JP6142601B2 (ja) リラクタンスモータ
JP6332011B2 (ja) アキシャルギャップ型の回転電機
JP6638202B2 (ja) アキシャルギャップ型の回転電機
JP6303311B2 (ja) シンクロナスリラクタンスモータ
JP6464856B2 (ja) アキシャルギャップ型の回転電機
JP6115360B2 (ja) リラクタンスモータ
JP6672638B2 (ja) モータ
JP6331949B2 (ja) モータ
JP6569396B2 (ja) 回転電機
JP2016178834A (ja) 回転電機
WO2018051938A1 (ja) 回転電機
JP6308076B2 (ja) 回転電機
CN106487176B (zh) 旋转电机
WO2021090387A1 (ja) 回転子および回転電機
JP2016178832A (ja) アキシャルギャップ型の回転電機
JP6344144B2 (ja) リラクタンスモータ
JP2012125021A (ja) アキシャルギャップ型回転機
JP6589282B2 (ja) 回転電機
JP2017184532A (ja) 回転電機
JP6766574B2 (ja) 回転電機
JP2016178829A (ja) アキシャルギャップ型の回転電機
JP2016046876A (ja) 回転電機
JP2017184467A (ja) 回転電機
JP2009100570A (ja) 誘導電動機、回転子、及び回転子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R151 Written notification of patent or utility model registration

Ref document number: 6326938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151