JP2015192627A - Closed type culture system and culture water purification method - Google Patents

Closed type culture system and culture water purification method Download PDF

Info

Publication number
JP2015192627A
JP2015192627A JP2014072331A JP2014072331A JP2015192627A JP 2015192627 A JP2015192627 A JP 2015192627A JP 2014072331 A JP2014072331 A JP 2014072331A JP 2014072331 A JP2014072331 A JP 2014072331A JP 2015192627 A JP2015192627 A JP 2015192627A
Authority
JP
Japan
Prior art keywords
water
aquaculture
activated carbon
orp
ozone treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014072331A
Other languages
Japanese (ja)
Inventor
俊浩 片倉
Toshihiro Katakura
俊浩 片倉
昌俊 冨士
Masatoshi Fuji
昌俊 冨士
貴子 櫻井
Takako Sakurai
貴子 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Corp
Original Assignee
Kitz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corp filed Critical Kitz Corp
Priority to JP2014072331A priority Critical patent/JP2015192627A/en
Publication of JP2015192627A publication Critical patent/JP2015192627A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a closed type culture system capable of reducing running cost by reducing used amount of water quality regulator (ORP regulator) and extending a use period of active carbon; and a purification method of culture water.SOLUTION: The closed type culture system 1 has a culture water tank 2 for culturing fish and shellfish and an ozone treatment part 4 for decomposing and removing ammonia contained in culture water 3 extracted from the culture water tank 2. The closed type culture system 1 includes an active carbon treatment part 5 which reduces oxidation-reduction potential (ORP) of the culture water 3 increased by the ozone treatment through treatment with active carbon.

Description

本発明は、養殖水を循環させながら浄化し、魚介類を養殖する閉鎖型養殖システムに関する。   The present invention relates to a closed-type aquaculture system that purifies and cultivates fishery products while circulating aquaculture water.

養殖場、蓄養場や水族館の養殖水では、魚介類から出た排泄物、残餌などが水中で微生物により分解され、水中にアンモニア性窒素(以下、単に「アンモニア」という。)が蓄積していく。このアンモニアは生物毒性が高いため、魚介類に深刻な呼吸障害を引き起こすため、長期間の飼育や高密度養殖などの場合には容易に養殖水中にアンモニアが蓄積し、大きな問題となっている。   In aquaculture farms, farms and aquarium aquaculture, excrements and residual food from fish and shellfish are decomposed by microorganisms in the water, and ammonia nitrogen (hereinafter simply referred to as “ammonia”) accumulates in the water. Go. Since this ammonia is highly biologically toxic, it causes serious respiratory disturbances in fish and shellfish. Therefore, in the case of long-term breeding or high-density aquaculture, ammonia easily accumulates in the aquaculture water, which is a big problem.

養殖水中のアンモニアを除去する最も簡単な方法は、養殖水槽に新鮮な海水を掛け流し、新鮮な海水とアンモニアを含む養殖水とを交換することである。しかしながら、その排水は環境負荷が高いこと、換水にコストが必要となることなどの点で問題が多い。養殖水を循環利用すればこれらの問題を生じないが、その場合には、養殖水に含まれるアンモニアを養殖施設内で分解除去しなければならない。   The simplest method for removing ammonia in the aquaculture water is to pour fresh seawater into the aquaculture tank and exchange the fresh seawater with the aquaculture water containing ammonia. However, the drainage has many problems in that the environmental load is high and the cost for water replacement is necessary. If the aquaculture water is recycled, these problems do not occur. In that case, the ammonia contained in the aquaculture water must be decomposed and removed in the aquaculture facility.

従来から、養殖水を循環しながら使用する水槽では、微生物を使った生物分解によりアンモニアを除去する生物処理法が行われてきた。生物処理法は、微生物の代謝を利用した方法であり、魚介類に害を与えないこと、高度な施設や運転技術が不要なことから、最も多く用いられている方法である。この方法では、好気性のアンモニア硝化細菌によりアンモニアを亜硝酸、硝酸へと変えた後、嫌気性の脱窒細菌により硝酸を亜硝酸、窒素へと変化させて空気中へと放出させるものである。   Conventionally, in water tanks that are used while circulating aquaculture water, a biological treatment method has been performed in which ammonia is removed by biodegradation using microorganisms. The biological treatment method is a method using the metabolism of microorganisms, and is the most frequently used method because it does not cause any harm to fish and shellfish and does not require advanced facilities and operation techniques. In this method, after changing ammonia into nitrous acid and nitric acid by an aerobic ammonia nitrifying bacterium, nitric acid is changed into nitrous acid and nitrogen by an anaerobic denitrifying bacterium and released into the air. .

しかしながら、この生物処理法には、水中のアンモニアを十分に分解できるアンモニア硝化菌を繁殖させるのに必要な期間が数週間から数か月と非常に長いこと、生物処理は負荷変動の影響を受けやすく、水温が低い場合にはアンモニア硝化菌の活性が著しく低下するため、生物が適切に活動できる環境を維持できるように負荷の状態に応じた決め細かい運転管理が必要となること、脱窒素処理は無酸素状態で行われるため、無酸素状態の養殖水が養殖槽に送られることを防ぐ曝気用ポンプの動力が大きくコスト高な処理であること、処理槽の目詰まりによる流速低下を解消するため、定期的に生物処理槽を洗浄する必要があること等の問題がある。   However, this biological treatment method requires a very long period of several weeks to several months to propagate ammonia nitrifying bacteria that can sufficiently decompose ammonia in water. It is easy, and when the water temperature is low, the activity of ammonia nitrifying bacteria is significantly reduced, so that detailed operation management according to the state of the load is necessary to maintain an environment in which organisms can act appropriately, denitrification treatment Is performed in an oxygen-free state, the aeration pump that prevents oxygen-free aquaculture water from being sent to the aquaculture tank is a large and expensive process, and the flow rate drop due to clogging of the treatment tank is eliminated. Therefore, there is a problem that it is necessary to periodically clean the biological treatment tank.

近年、これらの問題がなく、効率よく養殖水中のアンモニアを分解除去する方法として、オゾンを用いた方法が提案されている。海水又は海水と淡水の混合水からなる汽水(以下、単に「海水」という。)にオゾンを注入して溶解させると、海水中に存在する臭化物イオンがオゾンにより酸化され、次亜臭素酸イオン(BrO)や臭素酸イオン(BrO )などのオキシダントを生成する。オゾン溶解により生成された次亜臭素酸イオン(BrO−)はアンモニアと反応し、アンモニアを直接窒素ガスに変えて空気中に排出するため、養殖水中のアンモニアを除去することができる。この方法は、海水中に存在する臭素イオンをそのまま利用できるので簡便な方法である。 In recent years, a method using ozone has been proposed as a method for efficiently decomposing and removing ammonia in aquaculture water without these problems. When ozone is injected into seawater or brackish water composed of seawater and fresh water (hereinafter simply referred to as “seawater”) and dissolved, bromide ions present in the seawater are oxidized by ozone and hypobromite ions ( This produces oxidants such as BrO ) and bromate ions (BrO 3 ). Hypobromite ions (BrO-) generated by ozone dissolution react with ammonia, and ammonia is directly converted into nitrogen gas and discharged into the air, so that ammonia in the aquaculture water can be removed. This method is a simple method because bromine ions present in seawater can be used as they are.

また、オゾン、並びに次亜臭素酸イオン、臭素酸イオンなどのオキシダントは強力な殺菌力を持ち、ほとんど全ての細菌、ウイルス、寄生虫等の病原微生物を殺菌することができるため、水中の病原微生物の除去及び繁殖を防止することができる。しかしながら、オゾンやオキシダントは殺菌作用を持つ反面、人体や魚介類に対しても毒性を示すため、オゾン処理を終えた養殖水中に残留オゾンが残らないようにするとともに、生成したオキシダントを除去する必要がある。   In addition, ozone and oxidants such as hypobromite ions and bromate ions have a strong bactericidal power and can kill almost all pathogenic microorganisms such as bacteria, viruses and parasites. Removal and breeding can be prevented. However, ozone and oxidants have a bactericidal effect, but they are toxic to humans and seafood, so it is necessary to prevent residual ozone from remaining in the aquacultured water and to remove the generated oxidants. There is.

オゾン注入量と関係がある被処理水の酸化還元電位(以下、単に「ORP」という。)を測定することにより、オゾンによる被処理水中のアンモニアの分解状況を把握することができるとともに、オゾン注入量を制御して被処理水に残留オゾンが発生することを防止することができることが知られている。   By measuring the oxidation-reduction potential (hereinafter simply referred to as “ORP”) of the water to be treated, which is related to the amount of ozone injected, it is possible to grasp the decomposition status of ammonia in the water to be treated by ozone and It is known that residual ozone can be prevented from being generated in the water to be treated by controlling the amount.

また、養殖水中のアンモニアをオゾン処理したことにより生成されるオキシダント(酸化性生成物)を除去するための技術も提案されている。   In addition, a technique for removing oxidants (oxidative products) generated by ozone treatment of ammonia in aquaculture water has been proposed.

特許文献1には、アンモニアをほぼ完全に分解処理するため、オゾン接触塔の出口付近にオゾン処理した海水のORPを測定する酸化還元電位測定電極を設け、そのORPが450〜650mVの範囲に入るようにオゾン供給を制御することを特徴とする海水を用いた魚介類の飼育施設が開示されており、アンモニア濃度をゼロに近づけるためには、オゾン処理した海水のORPが550〜650mVの範囲となるようにオゾン注入量を制御することが好ましいと記載されている。   In Patent Document 1, in order to almost completely decompose ammonia, an oxidation-reduction potential measuring electrode for measuring ORP of ozone-treated seawater is provided near the exit of the ozone contact tower, and the ORP falls within the range of 450 to 650 mV. In order to bring the concentration of ammonia close to zero, the ORP of the ozone-treated seawater is in the range of 550 to 650 mV. It is described that it is preferable to control the ozone injection amount.

特許文献2には、養殖水を先ずオゾン処理により浄化と消毒を行い、次に少量の活性炭処理で残留酸化性生成物を除去した後、養殖水槽に戻すことにより、残留酸化性物質を除去することができる飼育装置が開示されている。   In Patent Document 2, the cultured water is first purified and disinfected by ozone treatment, then the residual oxidizing product is removed by a small amount of activated carbon treatment, and then the residual oxidizing substances are removed by returning to the cultivation water tank. A rearing device that can be used is disclosed.

特開平5−64533号公報Japanese Patent Laid-Open No. 5-64533 特開平3−219820号公報JP-A-3-21820

しかしながら、特許文献1に記載された飼育施設では、養殖水のORPを450〜600mVの範囲に保つようにオゾン注入量を制御するが、一般に魚介類による養殖水中のアンモニアの発生量は魚種や養殖環境によって大きく変化し、処理対象となる養殖水の水質の違いにより幅があるため、単に養殖水のORPを450〜600mVの範囲に保つようにオゾン注入量を制御するだけでは、様々な飼育環境や水質に対応して効果的にアンモニアを分解除去することができない。   However, in the breeding facility described in Patent Document 1, the amount of ozone injection is controlled so that the ORP of the aquaculture water is kept in the range of 450 to 600 mV. In general, the amount of ammonia generated in the aquaculture water by seafood is Since it varies greatly depending on the aquaculture environment and varies depending on the quality of the aquaculture water to be treated, a variety of aquaculture can be achieved simply by controlling the ozone injection amount so that the ORP of the aquaculture water is kept in the range of 450 to 600 mV. Ammonia cannot be effectively decomposed and removed in accordance with the environment and water quality.

また、オゾンによるアンモニアの分解除去は、養殖水のORPが450mVから550mVの範囲にある段階で行われるが、アンモニアを分解除去した後の養殖水のOPRは800mV程度にもなる。魚介類の生存に適する水中のORPは魚介類の種類によって異なり、海水魚では350〜400mV、淡水魚では200〜260mV、無脊椎動物では350〜400mVであり、自然界の海の平均値は350mV程度であることが広く知られているが、オゾン処理後の養殖水はORPが800mV程度あるため、魚介類の生存に適していない。   The decomposition and removal of ammonia by ozone is performed at a stage where the ORP of the culture water is in the range of 450 mV to 550 mV, but the OPR of the culture water after decomposing and removing ammonia is about 800 mV. The underwater ORP suitable for the survival of seafood varies depending on the type of seafood. It is 350-400 mV for saltwater fish, 200-260 mV for freshwater fish, 350-400 mV for invertebrates, and the average value of the natural sea is around 350 mV. Although it is widely known, the aquaculture water after the ozone treatment has an ORP of about 800 mV, and is not suitable for the survival of seafood.

特許文献2に記載された飼育装置では、活性炭処理を行うことによりオゾン注入で養殖水に生成して残留しているオキシダント(酸化性生成物)のほとんどを除去することができるとともに、一部の汚濁成分を除去することができること、及び活性炭処理後の養殖水のpH値を所定の値に調整することについては記載されているが、オゾン処理により上昇した養殖水のORPについては何ら触れられていない。前述のように、アンモニアを除去した後の養殖水のOPRは800mV程度にもなるため、この飼育装置でオゾン処理してアンモニアを分解除去した養殖水は、魚介類の養殖には適していない。   In the breeding apparatus described in Patent Document 2, most of the remaining oxidant (oxidative product) generated and remained in the culture water by ozone injection can be removed by performing activated carbon treatment. Although it is described that the pollutant component can be removed and the pH value of the aquaculture water after the activated carbon treatment is adjusted to a predetermined value, there is no mention of the ORP of the aquaculture water raised by the ozone treatment. Absent. As described above, since the OPR of the aquaculture water after removing ammonia is about 800 mV, the aquaculture water obtained by decomposing and removing ammonia by this breeding apparatus is not suitable for aquaculture.

また、オゾン処理後の養殖水のORPの上昇については、オゾン処理後の養殖水にORP調整剤を添加することで対応することができる。ORP調整剤としては、例えば、ビタミンCとその誘導体、ビタミンPとその誘導体、アミノ酸、ポリフェノール、フラボノイド、カテキン、ジカルボン酸、没食子酸、クエン酸などのヒドロキシ酸とその誘導体、またはそれらの混合物が適している。これらの酸化防止剤は水溶性であり、しかも毒性が懸念される工業用還元剤ではないため、魚介類にとっても悪影響はない。しかしながら、オゾン処理後の養殖水のORPの上昇に対処するため、ORP調整剤を添加することは、養殖のランニングコストを増加させる要因となる。   Moreover, about the raise of ORP of the culture water after ozone treatment, it can respond by adding an ORP regulator to the culture water after ozone treatment. Suitable ORP regulators include, for example, vitamin C and its derivatives, vitamin P and its derivatives, amino acids, polyphenols, flavonoids, catechins, dicarboxylic acids, gallic acid, citric acid and other hydroxy acids and their derivatives, or mixtures thereof ing. These antioxidants are water-soluble and are not industrial reducing agents for which toxicity is a concern, so there is no adverse effect on fish and shellfish. However, in order to cope with the increase in ORP of the aquaculture water after the ozone treatment, the addition of the ORP regulator is a factor that increases the running cost of the aquaculture.

本発明者等は、これらの問題点を解決し、養殖水に含まれるアンモニアをオゾンにより分解処理する方法を実用化すべく、様々な実験及び検討を行ってきた。その結果、オゾン処理後の養殖水を活性炭処理することで、残留オキシダントを除去することができるだけでなく、オゾン処理により上昇した養殖水のORPを大幅に低下させることができるとの知見を得た。すなわち、養殖水のオゾン処理では、養殖水中のアンモニアが分解除去されるに従って養殖水ORPが上昇し、魚介類の生息に適さない値となるが、オゾン処理後に活性炭処理を行うことにより、この上昇したORPを下げることができるのである。特に活性炭が十分に機能している間は、活性炭の処理だけでオゾン処理後の養殖水のORPを魚介類の生息に問題の無いレベルにまで低下させることができる事実を見出した。   The present inventors have conducted various experiments and studies in order to solve these problems and put a method of decomposing ammonia contained in aquaculture water with ozone into practical use. As a result, it was found that not only residual oxidants can be removed by treating activated water of the cultured water after the ozone treatment, but also the ORP of the cultured water increased by the ozone treatment can be greatly reduced. . That is, in the ozone treatment of the aquaculture water, the aquaculture water ORP rises as the ammonia in the aquaculture water is decomposed and removed, and becomes a value that is not suitable for fishery products. The reduced ORP can be lowered. In particular, while activated charcoal is functioning sufficiently, the present inventors have found that the ORP of cultured water after ozone treatment can be lowered to a level that does not cause any problems in the presence of seafood by simply treating the activated carbon.

これに加え、アンモニアをオゾン処理する前の養殖水のpHの値が、オゾン処理の際の臭素酸の発生量に大きく影響することを確認した。すなわち、オゾン処理前の養殖水のpHが所定の範囲であるとオゾン処理後の臭素酸の発生量が抑制される事実を見出した。   In addition to this, it was confirmed that the pH value of the aquaculture water before ozone treatment with ozone greatly affects the amount of bromic acid generated during the ozone treatment. That is, the present inventors have found that the amount of bromic acid generated after ozone treatment is suppressed when the pH of the aquaculture water before ozone treatment is within a predetermined range.

本発明は、これらの知見に基づいて、上述の問題を解決するために開発したものであり、その目的とするところは、水質調整剤(ORP調整剤)の使用量を削減するとともに、活性炭の使用期間を延長することにより、ランニングコストを低減させることができる閉鎖型養殖システム、及び養殖水の浄化方法を提供することである。   The present invention has been developed to solve the above-mentioned problems based on these findings. The object of the present invention is to reduce the amount of water quality regulator (ORP regulator) used and to reduce the amount of activated carbon. An object of the present invention is to provide a closed-type aquaculture system and a method for purifying aquaculture water that can reduce running costs by extending the period of use.

上記目的を達成するため、請求項1に係る発明は、魚介類を養殖する養殖水槽と、前記養殖水槽から抜き出した前記養殖水に含まれるアンモニアを分解除去するオゾン処理部とを有する閉鎖型養殖システムであって、前記養殖水槽から抜き出した前記養殖水をオゾン処理した後、活性炭により処理することによって前記オゾン処理により上昇した前記養殖水の酸化還元電位(ORP)を低下させる活性炭処理部を備えることを特徴とする閉鎖型養殖システムである。   In order to achieve the above object, the invention according to claim 1 is a closed-type aquaculture having an aquaculture tank for culturing seafood and an ozone treatment unit for decomposing and removing ammonia contained in the aquaculture water extracted from the aquaculture tank. The system includes an activated carbon treatment unit that reduces the redox potential (ORP) of the cultured water that has been raised by the ozone treatment by treating the cultured water extracted from the aquaculture tank with ozone and then treating with activated carbon. This is a closed-type aquaculture system.

請求項2に係る発明は、前記活性炭処理部の後、養殖水槽より前に前記養殖水の酸化還元電位(ORP)を計測するORP計を備えた閉鎖型養殖システムである。   The invention which concerns on Claim 2 is a closed type aquaculture system provided with the ORP meter which measures the oxidation reduction potential (ORP) of the said culture water before the culture tank after the said activated carbon treatment part.

請求項3に係る発明は、前記オゾン処理部の直後に前記養殖水の酸化還元電位(ORP)を計測するORP計を備えた閉鎖型養殖システムである。   The invention which concerns on Claim 3 is a closed type aquaculture system provided with the ORP meter which measures the oxidation reduction potential (ORP) of the said culture water immediately after the said ozone treatment part.

請求項4に係る発明は、オゾン処理が終了した前記養殖水の水質を計測し、前記養殖水の水質が許容範囲になるように水質調整を行ってから前記養殖水槽に還流させる水質調整部を備えた閉鎖型養殖システムである。   The invention which concerns on Claim 4 measures the water quality of the said aquaculture water which the ozone treatment was complete | finished, and after adjusting water quality so that the quality of the said aquaculture water may become an tolerance | permissible range, the water quality adjustment part made to return to the said aquaculture tank is provided. It is a closed aquaculture system.

請求項5に係る発明は、魚介類を養殖する養殖水槽と、前記養殖水槽から抜き出した前記養殖水に含まれるアンモニアを分解除去するオゾン処理部とを有する閉鎖型養殖システムにおいて、前記養殖水に含まれるアンモニアをオゾン処理により分解除去した後に活性炭処理することにより、前記オゾン処理により上昇した前記養殖水の酸化還元電位(ORP)を低下させる工程を有することを特徴とする養殖水の浄化方法である。   The invention which concerns on Claim 5 is a closed type aquaculture system which has the aquaculture tank which cultures seafood, and the ozone treatment part which decomposes | disassembles and removes the ammonia contained in the aquaculture water extracted from the aquaculture tank. A method for purifying aquaculture water comprising the step of reducing the oxidation-reduction potential (ORP) of the aquaculture water increased by the ozone treatment by decomposing and removing ammonia contained by the ozone treatment and then treating with activated carbon. is there.

請求項6に係る発明は、養殖水の前記オゾン処理に先立ち前記養殖水のpHを下げる工程を有する養殖水の浄化方法である。   The invention which concerns on Claim 6 is the purification method of culture water which has the process of lowering | hanging the pH of the said culture water prior to the said ozone treatment of culture water.

請求項1に係る発明によると、オゾン処理によりアンモニアを分解除去したことにより上昇した養殖水のORPを、活性炭処理するだけで魚介類の生育が可能なレベルまで大きく低下させることができるので、オゾン処理後に養殖水の水質を調整するために添加するORP調整剤の使用量を大幅に削減し、閉鎖型養殖システムの運転に要するランニングコストを低減させることができる。   According to the invention according to claim 1, since the ORP of the aquaculture water that has been raised by decomposing and removing ammonia by the ozone treatment can be greatly reduced to a level at which fish and shellfish can be grown only by the activated carbon treatment, The amount of the ORP regulator added to adjust the quality of the aquaculture water after the treatment can be greatly reduced, and the running cost required for the operation of the closed aquaculture system can be reduced.

請求項2に係る発明によると、活性炭処理後、養殖水槽に戻す前に養殖水の酸化還元電位(ORP)を計測するORP計を備えているため、まず、活性炭処理後の養殖水のORPが養殖水槽に戻しても問題ない程度に低いかどうかを判断することができる。このORP計で測定されたORP値が高すぎる場合、養殖水槽に戻す前に、ORP調整剤の添加等によりORP値を調整することができる。また、このようなORP計を備えていることで、活性炭の処理能力が十分に維持されているかどうかも判断することができる。活性炭は、オゾン処理後の養殖水を処理するほど活性が低下するが、活性炭の活性が低下すると、活性炭処理によって養殖水のORP値が低下する度合いも小さくなる傾向にある。したがって、活性炭処理後の養殖水のORP値を測定することで、活性炭の処理能力の低下を把握することが可能となり、活性炭の洗浄等の手入れや交換の時期を適切に判断することができる。   According to the invention which concerns on Claim 2, since it has the ORP meter which measures the oxidation reduction potential (ORP) of culture water after returning to an aquaculture tank after activated carbon treatment, first, ORP of culture water after activated carbon treatment is Whether it is low enough to return to the aquaculture tank can be judged. When the ORP value measured by this ORP meter is too high, the ORP value can be adjusted by adding an ORP adjusting agent or the like before returning to the aquaculture tank. In addition, by providing such an ORP meter, it is possible to determine whether or not the processing ability of activated carbon is sufficiently maintained. The activity of activated carbon decreases as the cultured water after the ozone treatment is processed. However, when the activity of the activated carbon decreases, the degree of decrease in the ORP value of the cultured water due to the activated carbon treatment tends to decrease. Therefore, by measuring the ORP value of the aquaculture water after the activated carbon treatment, it is possible to grasp the decline in the treatment capacity of the activated carbon, and it is possible to appropriately determine the time for maintenance or replacement of the activated carbon.

請求項3に係る発明によると、オゾン処理部の直後に養殖水の酸化還元電位(ORP)を計測するORP計を備えているため、オゾン処理による養殖水のORPの変化を鋭敏に検知して養殖水に含まれるアンモニアの分解状況を把握することができるので、アンモニアの分解除去が完了した時点を的確に把握してオゾン処理を終了させ、不必要なオゾン処理を防止することができる。   According to the invention which concerns on Claim 3, since the ORP meter which measures the oxidation-reduction potential (ORP) of culture water is provided immediately after an ozone treatment part, the change of ORP of culture water by ozone treatment is detected sharply. Since it is possible to grasp the decomposition state of ammonia contained in the aquaculture water, it is possible to accurately grasp the time point when the decomposition and removal of ammonia is completed, and to end the ozone treatment, thereby preventing unnecessary ozone treatment.

請求項4に係る発明によると、オゾン処理が終了した養殖水の水質を許容範囲になるように調整してから養殖水槽に還流させるので、養殖水槽内に水質を良好な状態に維持することができる。   According to the invention of claim 4, since the quality of the aquaculture water after the ozone treatment is adjusted to be within an acceptable range and then returned to the aquaculture tank, the water quality can be maintained in a good state in the aquaculture tank. it can.

請求項5に係る発明によると、単に活性炭処理するだけでオゾン処理により上昇した養殖水のORPを魚介類の生育が可能なレベルまで大きく低下させることができるので、オゾン処理後に養殖水の水質を調整するために添加するORP調整剤の使用量を大幅に削減することができる。   According to the invention according to claim 5, since the ORP of the cultured water that has been raised by the ozone treatment can be greatly reduced to a level at which fish and shellfish can be grown simply by the activated carbon treatment, the quality of the cultured water after the ozone treatment can be reduced. It is possible to greatly reduce the amount of ORP regulator added for adjustment.

請求項6に係る発明によると、オゾン処理に先立ち養殖水のpHを下げることにより、オゾン処理による臭素酸の発生量を抑制することができるので、オゾン処理後の養殖水に含まれる臭素酸を除去するための活性炭の使用期間を延長すること、及び消費量を削減することができる。   According to the invention which concerns on Claim 6, since the generation amount of bromic acid by ozone treatment can be suppressed by lowering the pH of the culture water prior to the ozone treatment, bromic acid contained in the culture water after ozone treatment can be reduced. The use period of the activated carbon for removal can be extended, and the consumption can be reduced.

本発明における閉鎖型養殖システムの一実施例を示す模式図である。It is a schematic diagram which shows one Example of the closed type aquaculture system in this invention. 本発明における閉鎖型養殖システムの他の実施例を示す模式図である。It is a schematic diagram which shows the other Example of the closed type aquaculture system in this invention. 本発明における閉鎖型養殖システムのさらに他の実施例を示す模式図である。It is a schematic diagram which shows the further another Example of the closed type aquaculture system in this invention. 活性炭処理の効果を確認する試験装置を示す模式図である。It is a schematic diagram which shows the test apparatus which confirms the effect of activated carbon treatment. 活性炭処理により養殖水のORPが低下することを示す試験結果である。It is a test result which shows that ORP of culture water falls by activated carbon treatment. 活性炭処理により養殖水のpHが上昇することを示す試験結果である。It is a test result which shows that pH of culture water rises by activated carbon treatment. 養殖水のpHの違いがオゾン処理結果に与える影響を確認する試験装置を示す模式図である。It is a schematic diagram which shows the test apparatus which confirms the influence which the difference in pH of culture water has on an ozone treatment result. 養殖水のpHの違いによるアンモニアのオゾン処理状況を示す試験結果である。It is a test result which shows the ozone treatment condition of ammonia by the difference in pH of culture water. 養殖水のpHの違いによりオゾン処理で生じる臭素酸の発生量が異なることを示す試験結果である。It is a test result which shows that the generation amount of the bromic acid produced by ozone treatment changes with the difference in pH of culture water. 活性炭の能力低下とORPの関係を確認する試験装置を示す模式図である。It is a schematic diagram which shows the test apparatus which confirms the relationship between the capability fall of activated carbon, and ORP.

以下に、本発明における閉鎖型養殖システム及び養殖水の浄化方法の実施形態を図面に基づいて詳細に説明する。
図1は、本発明の閉鎖型養殖システムの一実施形態を示す模式図である。閉鎖型養殖システム1は、魚介類を養殖する養殖水槽2と、養殖水槽2から抜き出した養殖水3をオゾン処理するオゾン処理部4と、オゾン処理後の養殖水3を活性炭処理する活性炭処理部5と、活性炭処理された養殖水3の水質を測定し、必要に応じて水質調整を行ってから養殖水槽に戻す水質調整槽6と、これらを結ぶ管路14と、管路14に設けられた送水ポンプ15と、図示しない制御部とから構成されている。
Hereinafter, embodiments of a closed-type aquaculture system and a culture water purification method according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the closed type aquaculture system of the present invention. The closed-type aquaculture system 1 includes an aquaculture tank 2 for culturing seafood, an ozone treatment section 4 for ozone treatment of the aquaculture water 3 extracted from the culture tank 2, and an activated carbon treatment section for activated carbon treatment of the culture water 3 after the ozone treatment. 5, water quality adjustment tank 6 that measures the water quality of cultured water 3 that has been treated with activated carbon, adjusts the water quality as needed, and returns to the culture water tank, pipe 14 that connects these, and pipe 14 The water pump 15 and a control unit (not shown) are included.

養殖水槽2とオゾン処理部4の間は管路14aで結ばれており、管路14aの途中には送水ポンプ15aが設けられている。オゾン処理部4と水質調整槽6の間は管路14bで結ばれており、管路14bの途中には送水ポンプ15bと活性炭処理部5が設けられている。水質調整部6と養殖水槽2の間は管路14cが設けられており、管路14cの途中には、送水ポンプ15cが設けられている。この様な構成により、養殖水槽2から養殖水3の一部を取り出し、浄化して養殖水槽2に還流させることができる。   The aquaculture tank 2 and the ozone treatment unit 4 are connected by a pipeline 14a, and a water pump 15a is provided in the middle of the pipeline 14a. The ozone treatment unit 4 and the water quality adjustment tank 6 are connected by a pipeline 14b, and a water pump 15b and the activated carbon treatment unit 5 are provided in the middle of the pipeline 14b. A pipe 14c is provided between the water quality adjusting unit 6 and the aquaculture tank 2, and a water supply pump 15c is provided in the middle of the pipe 14c. With such a configuration, a part of the aquaculture water 3 can be taken out from the aquaculture tank 2, purified, and returned to the aquaculture tank 2.

養殖水槽2は、内部に養殖水3(海水)を蓄えて魚介類の養殖を行う水槽であり、その底部には養殖水槽2とオゾン処理部4とを結ぶ管路14aが接続されている。この管路14aの途中には、制御部により作動を制御される送水ポンプ15aが設けられており、養殖水槽2内に蓄えた養殖水3の一部を取り出してオゾン処理部4に供給することができる。また、養殖水槽2内には養殖水3のORPを計測するORP計11a、pHを計測するpH計12a及び水温を計測する水温計13が備えられており、これらの計測データは制御部に送られる。本実施例では、養殖水槽2は内容量が2トンであるものを使用した。   The aquaculture tank 2 is an aquarium that stores aquaculture water 3 (seawater) and cultures seafood, and a pipe 14a that connects the aquaculture tank 2 and the ozone treatment unit 4 is connected to the bottom of the aquarium. A water supply pump 15 a whose operation is controlled by the control unit is provided in the middle of the pipe line 14 a, and a part of the aquaculture water 3 stored in the aquaculture tank 2 is taken out and supplied to the ozone treatment unit 4. Can do. The aquaculture tank 2 is provided with an ORP meter 11a for measuring the ORP of the aquaculture water 3, a pH meter 12a for measuring the pH, and a water temperature meter 13 for measuring the water temperature. These measurement data are sent to the control unit. It is done. In this example, the aquaculture tank 2 having an internal capacity of 2 tons was used.

オゾン処理部4は、養殖水槽2から抜き出した養殖水を貯留するオゾン処理槽7と、養殖水にオゾンを散気注入するための散気塔8と、散気塔8に供給するオゾンを発生させるオゾン発生部9と、オゾンを注入された養殖水に紫外線を照射して養殖水中に残留するオゾンを分解するUV反応槽10とから構成されている。また、オゾン処理槽7、散気塔8、UV反応槽10、オゾン処理槽7の間は、これらを一巡する管路14dにより連結されており、管路14dの途中には送水ポンプ15dが設けられている。   The ozone treatment unit 4 generates an ozone treatment tank 7 for storing the aquaculture water extracted from the aquaculture tank 2, a diffusion tower 8 for aeration injection of ozone into the aquaculture water, and ozone supplied to the diffusion tower 8 The ozone generation part 9 is made to irradiate the aquaculture water into which the ozone has been injected with ultraviolet rays to decompose the ozone remaining in the aquaculture water. In addition, the ozone treatment tank 7, the air diffusion tower 8, the UV reaction tank 10, and the ozone treatment tank 7 are connected by a pipeline 14d that circulates them, and a water pump 15d is provided in the middle of the pipeline 14d. It has been.

オゾン処理槽7の内部には、貯留した養殖水のORPを測定するORP計11bとpHを計測するpH計12bが備えられており、これらの計測データは制御部に送られる。本実施例では、オゾン処理槽7は内容量が0.5トンであるものを使用した。   Inside the ozone treatment tank 7, an ORP meter 11b for measuring the ORP of the stored aquaculture water and a pH meter 12b for measuring the pH are provided, and these measurement data are sent to the control unit. In this embodiment, the ozone treatment tank 7 having an internal capacity of 0.5 tons was used.

散気塔8は、送水ポンプ15dによりオゾン処理槽7から送水される養殖水にオゾン発生部9から供給されるオゾンを散気注入し、養殖水中のアンモニアとオゾンを反応させてアンモニアを分解除去する。   The air diffusion tower 8 diffuses and injects the ozone supplied from the ozone generator 9 into the aquaculture water fed from the ozone treatment tank 7 by the water pump 15d, reacts the ammonia in the aquaculture water with ozone, and decomposes and removes the ammonia. To do.

オゾン発生部9は、原料ガスである空気から酸素濃縮器(PSA:Pressure Swing Adsorption)により窒素を分離して純度90%以上の酸素ガスを生成し、この酸素ガスをオゾナイザで無声放電方式によりオゾンに変換して散気塔8に供給する。   The ozone generator 9 separates nitrogen from air, which is a raw material gas, by an oxygen concentrator (PSA: Pressure Swing Adsorption) to generate oxygen gas having a purity of 90% or more, and this oxygen gas is ozone-generated by a silent discharge method with an ozonizer. Into the diffuser tower 8.

UV反応槽10では、殺菌用UVランプにより養殖水に紫外線を照射し、養殖水中に含まれる雑菌やウイルスを殺滅するとともに、アンモニアと反応することなく養殖水に残っている残留オゾンを分解する。   In the UV reaction tank 10, the culture water is irradiated with ultraviolet rays by a UV lamp for sterilization to kill germs and viruses contained in the culture water and decompose residual ozone remaining in the culture water without reacting with ammonia. .

また、UV反応槽10直後の管路14dにはORP計11dが備えられており、オゾン処理された直後の養殖水のORPを計測している。UV反応槽10の直後にORP計11cを設けることにより、オゾン処理による養殖水のORP変化を敏感に検知し、ORPに基づいてオゾン処理のコントロールを迅速に行うことができる。   In addition, an ORP meter 11d is provided in the pipe line 14d immediately after the UV reaction tank 10, and the ORP of the aquaculture water immediately after the ozone treatment is measured. By providing the ORP meter 11c immediately after the UV reaction tank 10, the change in the ORP of the aquaculture water due to the ozone treatment can be detected sensitively, and the ozone treatment can be quickly controlled based on the ORP.

活性炭処理部5は、活性炭を収納した容器であり、オゾン処理後の養殖水を通過させることにより、活性炭により養殖水に含まれる残留酸化生成物を濾過除去するとともに、オゾン処理により上昇した養殖水のORPを低下させる活性炭処理を実施する。本実施例では、活性炭を内容量60リットルの筒型容器に約13.5kg(充填密度0.49g/ml)充填し、活性炭処理部5を構成した。また、この活性炭の原料はヤシガラであり、乾燥減量0.8%、pH5.9、ヨウ素吸着性能1120mg/g、粒度4.75〜2.63mm、以上のものを使用した。   The activated carbon treatment unit 5 is a container containing activated carbon, and by passing the culture water after ozone treatment, the activated water contained in the culture water is filtered and removed by activated carbon, and the culture water increased by the ozone treatment Activated carbon treatment is performed to reduce the ORP. In this example, activated carbon was filled in a cylindrical container having an internal capacity of 60 liters in an amount of about 13.5 kg (packing density 0.49 g / ml) to constitute the activated carbon treatment unit 5. Moreover, the raw material of this activated carbon is coconut husk, and used the above thing of loss on drying 0.8%, pH5.9, iodine adsorption performance 1120mg / g, particle size 4.75-2.63mm, or more.

水質調整槽6は、オゾン処理、活性炭処理が終了した養殖水を貯留するための容器であり、ORP計11c及びpH計12bを備えている。ORP計11c及びpH計12bの計測データは制御部に送られ、オゾン処理、活性炭処理が終了した養殖水の水質が許容範囲内にあるか否かが判定される。また、水質調整槽6には図示しない定量ポンプが備えられており、水質調整剤(水酸化ナトリウム(NaOH)、塩酸(Hcl)、アスコルビン酸等)を養殖水に添加し、オゾン処理、活性炭処理が終了した養殖水の水質を養殖水槽2での魚介類の養殖が可能な水質に調整する水質調整を行うことができる。本実施例では、水質調整槽6は、内容量がオゾン処理槽7と同じ0.5トンである。   The water quality adjustment tank 6 is a container for storing aquaculture water that has been subjected to ozone treatment and activated carbon treatment, and includes an ORP meter 11c and a pH meter 12b. The measurement data of the ORP meter 11c and the pH meter 12b is sent to the control unit, and it is determined whether or not the quality of the aquaculture water that has been subjected to the ozone treatment and the activated carbon treatment is within an allowable range. In addition, the water quality adjusting tank 6 is provided with a metering pump (not shown), and a water quality adjusting agent (sodium hydroxide (NaOH), hydrochloric acid (Hcl), ascorbic acid, etc.) is added to the aquaculture water, followed by ozone treatment and activated carbon treatment. The water quality can be adjusted so that the quality of the aquaculture water that has been completed is adjusted to a water quality that enables the cultivation of seafood in the aquaculture tank 2. In this embodiment, the water quality adjustment tank 6 has the same internal capacity as the ozone treatment tank 7 of 0.5 tons.

以上のように構成された閉鎖型養殖システム1の動作を以下に詳述する。
養殖水水槽2内の養殖水に含まれるアンモニアの濃度(g/L)を適宜な方法により計測し、この濃度が魚介類の成長や生死に影響を与えると考えられる値を超えた場合にはアンモニア濃度過剰と判断し、浄化処理を開始する。
The operation of the closed type aquaculture system 1 configured as described above will be described in detail below.
When the concentration (g / L) of ammonia contained in the aquaculture water in the aquaculture tank 2 is measured by an appropriate method, and this concentration exceeds a value that is thought to affect the growth and life and death of seafood It is determined that the ammonia concentration is excessive, and the purification process is started.

先ず、制御部は、養殖水槽2の底部から管路14aを介して養殖水3の一部(300L)を取り出し、ポンプ15aによりオゾン処理部4のオゾン処理槽7に移送する。オゾン処理槽7の内容量は0.5トンであるため、養殖水槽2から取り出した養殖水(300L)の全量を貯留することができる。なお、図中の矢印は、養殖水の流れる方向を示す。   First, a control part takes out a part (300L) of the aquaculture water 3 from the bottom part of the aquaculture water tank 2 via the pipe line 14a, and transfers it to the ozone treatment tank 7 of the ozone treatment part 4 with the pump 15a. Since the internal volume of the ozone treatment tank 7 is 0.5 ton, the entire amount of the aquaculture water (300 L) taken out from the aquaculture tank 2 can be stored. In addition, the arrow in a figure shows the direction through which culture water flows.

オゾン処理槽7に養殖水の貯留が完了すると、制御部は送水ポンプ15aの作動を停止し、送水ポンプ15d、オゾン発生部9、UV反応槽10の作動を開始する。送水ポンプ15dが作動すると、オゾン処理槽7内の養殖水は、管路14dを流れてオゾン処理槽7、散気塔8、UV反応槽10、オゾン処理槽7の間を矢印17で示す方向に循環する。この際、オゾン散気塔8ではオゾン発生部9から供給されたオゾンが養殖水に散気注入され、オゾンが養殖水に含まれるアンモニアを分解する。   When the storage of the aquaculture water in the ozone treatment tank 7 is completed, the control unit stops the operation of the water pump 15a and starts the operation of the water pump 15d, the ozone generation unit 9, and the UV reaction tank 10. When the water pump 15d is activated, the culture water in the ozone treatment tank 7 flows through the pipe line 14d and the direction indicated by the arrow 17 between the ozone treatment tank 7, the air diffusion tower 8, the UV reaction tank 10, and the ozone treatment tank 7. It circulates to. At this time, in the ozone diffuser tower 8, ozone supplied from the ozone generator 9 is diffused and injected into the culture water, and the ozone decomposes ammonia contained in the culture water.

散気塔8の次のUV反応槽10では、殺菌用UVランプが発する紫外線により養殖水に含まれる雑菌やウイルスを殺滅するとともに、アンモニアの分解に使用されずに養殖水に残っている残留オゾンを分解する。この後、養殖水は、オゾン処理直後のORPをORP計11dで計測された後、オゾン処理槽7へと戻る。   In the UV reaction tank 10 next to the air diffusion tower 8, the germs and viruses contained in the culture water are killed by the ultraviolet rays emitted from the UV lamp for sterilization, and the residue remaining in the culture water without being used for decomposing ammonia. Decomposes ozone. Thereafter, the aquaculture water returns to the ozone treatment tank 7 after the ORP immediately after the ozone treatment is measured by the ORP meter 11d.

オゾン処理槽7に貯留された養殖水は、オゾン処理部4内を循環しながら徐々にアンモニアの分解除去が行われるため、オゾン処理が完了するまでの間は、散気塔8、UV反応槽10を通過した直後であっても、養殖水中にはまだアンモニアが残っている。アンモニアが分解除去された養殖水のORPと、アンモニアが分解されずに残っている養殖水のORPは異なるため、オゾン処理直後の養殖水のORPをORP計11dで計測することにより、養殖水のORPの変化を鋭敏に検知し、オゾン処理を適切かつ迅速に制御することができる。   Since the aquaculture water stored in the ozone treatment tank 7 is gradually decomposed and removed while circulating in the ozone treatment section 4, the diffuser tower 8 and the UV reaction tank are used until the ozone treatment is completed. Even immediately after passing through 10, ammonia still remains in the aquaculture water. Since the ORP of the aquaculture water from which the ammonia has been decomposed and removed is different from the ORP of the aquaculture water remaining without being decomposed, the ORP meter 11d measures the ORP of the aquaculture water immediately after the ozone treatment. It is possible to detect the change of the ORP sensitively and control the ozone treatment appropriately and quickly.

このオゾン処理槽7内に貯留された養殖水の散気塔8、UV反応槽10、オゾン処理槽7と循環する流れは、管路14dのUV搬送槽10の直後に設置されたORP計11dの計測値が、アンモニアが十分に分解除去されたと判断することができる値になるまで継続される。なお、オゾンによるアンモニアの分解においては、過剰に反応が進むとかえって有害なオキシダント(臭素酸等)が発生する場合がある。したがって、本実施形態では、アンモニアが十分に分解除去された状態とは、多くのアンモニアが分解除去されたものの、過剰な反応による有害成分が生じない程度以上にはアンモニアが残存している状態を意味する。ORP計11dの計測値が、アンモニアが十分に分解除去されたと判断することができる値になると、制御部は送水ポンプ15d、オゾン発生部8、UV反応槽10の作動を停止し、オゾン処理槽7のORP計11bで内部に貯留されている養殖水のORPを計測し、アンモニアの分解除去を再確認した後、オゾン処理部4での処理を終了する。   The circulating water diffuser tower 8, the UV reaction tank 10, and the ozone treatment tank 7 stored in the ozone treatment tank 7 are circulated through an ORP meter 11 d installed immediately after the UV transfer tank 10 in the pipe line 14 d. This measurement value is continued until it becomes a value at which it can be determined that ammonia has been sufficiently decomposed and removed. In the decomposition of ammonia by ozone, harmful oxidants (such as bromic acid) may be generated if the reaction proceeds excessively. Therefore, in the present embodiment, the state in which ammonia has been sufficiently decomposed and removed is a state in which a large amount of ammonia has been decomposed and removed, but the ammonia remains to the extent that no harmful components due to excessive reaction occur. means. When the measured value of the ORP meter 11d reaches a value at which it can be determined that the ammonia has been sufficiently decomposed and removed, the control unit stops the operation of the water pump 15d, the ozone generation unit 8, and the UV reaction tank 10, and the ozone treatment tank Then, the ORP meter 11b measures the ORP of the aquaculture water stored therein, reconfirms the decomposition and removal of ammonia, and then terminates the processing in the ozone processing unit 4.

次に、制御部は送水ポンプ15bの作動を開始し、オゾン処理槽7に貯留されているオゾン処理によりアンモニアが分解除去された養殖水を管路14bを介して活性炭処理部5を経由して水質調整槽6へと移送する。この時、管路14bを流れる養殖水の流量は、後述するSV値が15となるように流量を調節する。(本実施例の養殖水の流量は、30L/min)   Next, the control unit starts the operation of the water pump 15b, and the aquaculture water from which ammonia is decomposed and removed by the ozone treatment stored in the ozone treatment tank 7 is passed through the activated carbon treatment unit 5 through the conduit 14b. Transfer to the water quality adjustment tank 6. At this time, the flow rate of the aquaculture water flowing through the pipeline 14b is adjusted so that the SV value described later becomes 15. (The flow rate of the aquaculture water in this example is 30 L / min)

管路14bの途中に設けられた活性炭処理部5の活性炭を通過した養殖水は、オゾン処理部4でのオゾン処理時に発生した残留オキシダントが濾過されて除去されるとともに、pHが上昇し、ORPは低下する。特に、活性炭が十分に機能している間は、活性炭を通過させる処理だけでオゾン処理により魚介類の生息ができない程に上昇した養殖水のORPを、魚介類の生息に問題が無いレベルにまで低下させることができる。   The aquaculture water that has passed through the activated carbon of the activated carbon treatment unit 5 provided in the middle of the pipe line 14b is filtered to remove residual oxidant generated during the ozone treatment in the ozone treatment unit 4, and the pH rises. Will decline. In particular, while the activated carbon is functioning sufficiently, the ORP of the aquaculture water that has risen to the extent that seafood cannot be inhabited by ozone treatment simply by passing the activated carbon to a level where there is no problem in the habitat of seafood. Can be reduced.

活性炭処理部5でオキシダントが濾過除去されるとともに、ORPが低下した養殖水は、水質調整槽6内に貯留される。この水質調整槽6の内容量は、オゾン処理槽7の内容量と同じ0.5トンであるため、オゾン処理槽6から移送した養殖水(300L)の全てを貯留することができる。養殖水の全量を水質調整槽6に貯留すると、水質調整槽6に備えられたORP計11cとpH計12bは、養殖水のORPとpHを計測し、データを制御部に送る。   While the oxidant is filtered and removed by the activated carbon treatment unit 5, the aquaculture water in which the ORP is lowered is stored in the water quality adjusting tank 6. Since the internal volume of this water quality adjustment tank 6 is 0.5 ton which is the same as the internal volume of the ozone treatment tank 7, all the culture water (300L) transferred from the ozone treatment tank 6 can be stored. When the total amount of the aquaculture water is stored in the water quality adjustment tank 6, the ORP meter 11c and the pH meter 12b provided in the water quality adjustment tank 6 measure the ORP and pH of the culture water and send the data to the control unit.

制御部は、ORP計11cとpH計12bからのデータに基づいて、水質調整槽7内に貯留されているオゾン処理及び活性炭処理が終了した養殖水の水質(ORP、pH)が許容範囲内にあるか否を判定する。例えば、養殖水槽2の水質と比較して、養殖水槽の水質を大きく変化させないレベルかどうかを判定する。水質が許容範囲内にあれば、制御部は送水ポンプ15cを作動させ、水質調整槽6内の養殖水の全量を管路14cを介して養殖水槽2に還流させる。また、水質が許容範囲内に無い場合には、制御部は図示しない定量ポンプから水質調整剤を養殖水に添加し、水質を許容範囲内に調整した後、送水ポンプ15cを作動させ、水質調整槽7内の養殖水の全量を管路14cを介して養殖水槽2に還流させる。   Based on the data from the ORP meter 11c and the pH meter 12b, the control unit has the water quality (ORP, pH) of the aquaculture water stored in the water quality adjusting tank 7 after the ozone treatment and the activated carbon treatment are within an allowable range. It is determined whether or not there is. For example, it is determined whether or not the water quality of the aquaculture tank is not greatly changed compared to the water quality of the aquaculture tank 2. If the water quality is within the allowable range, the control unit operates the water supply pump 15c to return the entire amount of the aquaculture water in the water quality adjustment tank 6 to the aquaculture tank 2 through the conduit 14c. If the water quality is not within the allowable range, the control unit adds a water quality adjusting agent to the aquaculture water from a metering pump (not shown), adjusts the water quality within the allowable range, and then operates the water pump 15c to adjust the water quality. The entire amount of the aquaculture water in the tank 7 is returned to the aquaculture tank 2 via the pipe line 14c.

水質調整槽6では、活性炭処理された養殖水のORPを計測しているので、養殖水のORPが十分に低下していない場合には、活性炭処理部5の活性炭の能力が低下したと判断し、新しい活性炭に交換する対応をとることができる。   In the water quality adjustment tank 6, since the ORP of the aquaculture water treated with activated carbon is measured, if the ORP of the aquaculture water is not sufficiently reduced, it is determined that the activated carbon capacity of the activated carbon treatment unit 5 has been reduced. It is possible to take measures to replace it with new activated carbon.

閉鎖型養殖システム1は、以上の動作を養殖水槽2内の養殖水3に含まれるアンモニア濃度が所定の濃度になるまで繰り返すことにより養殖水槽2内の養殖水3全体を浄化し、魚介類の生息に適した水質に維持することができる。   The closed-type aquaculture system 1 purifies the entire aquaculture water 3 in the aquaculture tank 2 by repeating the above operation until the ammonia concentration contained in the aquaculture water 3 in the aquaculture tank 2 reaches a predetermined concentration. Water quality suitable for habitat can be maintained.

この 閉鎖型養殖システム1は、オゾン処理工程と、オゾン処理後に行う活性炭処理工程が完全に分離されていることに特徴がある。すなわち、オゾン処理部4で実施されるオゾン処理工程では、養殖水槽2から抜き出してオゾン処理槽7に貯留された養殖水が、オゾン処理部4内を循環しながらオゾン処理され、オゾン処理槽7内の養殖水のORPを計測することにより、養殖水に含まれるアンモニアが十分に分解除去されたことを確認してから活性炭処理部5に移送されている。また、活性炭処理部5で活性炭処理された養殖水は、水質調整槽6内に貯留された後に活性炭処理後のORPとpHを計測し、水質が許容範囲内であればそのまま、許容範囲内になければ水質調整した後に、養殖水槽2に還流されている。この様に、重要な処理工程の度に確実に処理が行われたことを確認してから次の工程に移行しているため、養殖水の浄化処理を確実に行うことができる。   The closed-type aquaculture system 1 is characterized in that the ozone treatment process and the activated carbon treatment process performed after the ozone treatment are completely separated. That is, in the ozone treatment process performed in the ozone treatment unit 4, the aquaculture water extracted from the culture water tank 2 and stored in the ozone treatment tank 7 is ozone-treated while circulating in the ozone treatment unit 4. It is transferred to the activated carbon treatment unit 5 after confirming that the ammonia contained in the aquaculture water has been sufficiently decomposed and removed by measuring the ORP of the aquaculture water inside. The aquaculture water treated with activated carbon in the activated carbon treatment unit 5 is stored in the water quality adjustment tank 6 and then measured for the ORP and pH after the activated carbon treatment. If the water quality is within the acceptable range, it remains within the acceptable range. If not, the water quality is adjusted and then returned to the aquaculture tank 2. Thus, since it transfers to the following process, after confirming that the process was reliably performed for every important process process, the purification process of culture water can be performed reliably.

また、活性炭処理によりオゾン処理で上昇した養殖水のORPを低下させることができ、活性炭が十分に機能している間は、活性炭処理だけでORPを魚介類の生息に問題が無いレベルにまで大幅に低下させることができるので、養殖水のORPを低下させるために水質調整槽6で添加する水質調整剤(ORP調整剤)が通常は不要となる。また、活性炭処理した養殖水のORPの低下が不十分な場合には、活性炭の能力が低下してきていることを示しているので、水質調整剤(ORP調整剤)の添加、又は活性炭の交換が必要であると判断することができる。   Moreover, the ORP of the aquaculture water increased by ozone treatment can be reduced by the activated carbon treatment, and while the activated carbon is functioning sufficiently, the ORP is greatly reduced to a level where there is no problem in the habitat of seafood. Therefore, the water quality adjusting agent (ORP adjusting agent) added in the water quality adjusting tank 6 in order to reduce the ORP of the aquaculture water is usually unnecessary. In addition, when the ORP of the aquaculture water treated with activated carbon is insufficiently reduced, it indicates that the ability of the activated carbon is decreasing, so the addition of a water quality modifier (ORP regulator) or the replacement of activated carbon It can be determined that it is necessary.

次に他の実施形態について図2に基づいて説明する。なお、図1に示した実施形態と共通する部分については同一の符号を使用し、説明を省略する。
図2は、本発明の閉鎖型養殖システムの他の実施形態を示す模式図である。閉鎖型養殖システム21は、魚介類を養殖する養殖水槽2と、養殖水槽2から取り出した養殖水3をオゾン処理するオゾン処理部4と、オゾン処理後の養殖水3を活性炭処理する活性炭処理部5と、養殖水槽2に還流させる養殖水の水質を測定し、必要に応じて水質調整を行ってから養殖水槽2に戻す水質調整部22と、これらを結ぶ管路14と、管路14に設けられた送水ポンプ15と、図示しない制御部とから構成されている。
Next, another embodiment will be described with reference to FIG. In addition, about the part which is common in embodiment shown in FIG. 1, the same code | symbol is used and description is abbreviate | omitted.
FIG. 2 is a schematic diagram showing another embodiment of the closed type aquaculture system of the present invention. The closed type aquaculture system 21 includes an aquaculture tank 2 for culturing seafood, an ozone treatment unit 4 for ozone treatment of the aquaculture water 3 taken out from the culture tank 2, and an activated carbon treatment unit for activated carbon treatment of the culture water 3 after the ozone treatment. 5, the quality of the aquaculture water to be returned to the aquaculture tank 2 is measured, and if necessary, the water quality adjustment unit 22 that returns the water to the aquaculture tank 2 after adjusting the water quality, a pipeline 14 connecting them, and a pipeline 14 It is comprised from the provided water pump 15 and the control part which is not shown in figure.

閉鎖型養殖システム21では、養殖水槽2の底部から上方へ循環する管路14eを配置し、管路14eの途中には送水ポンプ15eを設けている。また管路14eの分岐部23から管路14fを分岐させ、合流部24で管路14fを管路14eに合流させている。管路14fには、オゾン処理部4と活性炭処理部5を設けるとともに、管路14fのオゾン処理部の直後にはORP計11eを、活性炭処理部5の直後にはORP計11fを設けている。   In the closed type aquaculture system 21, a pipeline 14e that circulates upward from the bottom of the aquaculture tank 2 is disposed, and a water pump 15e is provided in the middle of the pipeline 14e. Further, the pipe line 14f is branched from the branch part 23 of the pipe line 14e, and the pipe line 14f is joined to the pipe line 14e at the junction part 24. The pipeline 14f is provided with the ozone treatment unit 4 and the activated carbon treatment unit 5, and the ORP meter 11e is provided immediately after the ozone treatment unit of the pipeline 14f, and the ORP meter 11f is provided immediately after the activated carbon treatment unit 5. .

また、分岐部23直後の管路14eにはバルブ25が、分岐部23直後の管路14fにはバルブ26が設けられており、バルブ25、26の開度を適宜に調整することにより、分岐部23を経由して管路14fに流れ込む養殖水の流量を調節することができる。   Further, a valve 25 is provided in the pipe line 14e immediately after the branch part 23, and a valve 26 is provided in the pipe line 14f immediately after the branch part 23, and the branching is performed by appropriately adjusting the opening degree of the valves 25 and 26. The flow rate of the aquaculture water flowing into the pipeline 14f via the part 23 can be adjusted.

水質調節部22は、養殖水槽2に還流させる養殖水の水質が許容範囲内にあるか否かが判定する。水質調節部22には、例えばpH計12cと図示しない定量ポンプが備えられており、養殖水のpHが許容範囲内にない場合や、ORP計11fでORPが高すぎると判断された場合には、pH調整剤やORP調整剤を添加して養殖水の水質を許容範囲内に調節している。   The water quality control unit 22 determines whether or not the quality of the aquaculture water to be returned to the aquaculture tank 2 is within an allowable range. The water quality control unit 22 includes, for example, a pH meter 12c and a metering pump (not shown), and when the pH of the aquaculture water is not within the allowable range or when the ORP meter 11f determines that the ORP is too high. The quality of the aquaculture water is adjusted within an allowable range by adding a pH adjusting agent or an ORP adjusting agent.

以上のように構成された閉鎖型養殖システム21の動作を以下に詳述する。
養殖水水槽2内の養殖水に含まれるアンモニアの濃度(g/L)を適宜な方法により計測し、この濃度が魚介類の成長や生死に影響を与えると考えられる値を超えた場合にはアンモニア濃度過剰と判断し、オゾン処理を開始する。
The operation of the closed type aquaculture system 21 configured as described above will be described in detail below.
When the concentration (g / L) of ammonia contained in the aquaculture water in the aquaculture tank 2 is measured by an appropriate method, and this concentration exceeds a value that is thought to affect the growth and life and death of seafood It is judged that the ammonia concentration is excessive, and the ozone treatment is started.

先ず、制御部は、ポンプ15eを作動させ、養殖水槽2の底部から管路14eを介して養殖水3を連続的に取り出す。管路14eを流れる養殖水3は、管路14eの分岐部23で、そのまま管路14eを流れる流れと、管路14fを流れる流れに分岐される。管路14eを流れる流量及び管路14fを流れる流量の割合は、バルブ25、26の開度を適宜に調節することで設定することができる。   First, the control unit operates the pump 15e to continuously take out the aquaculture water 3 from the bottom of the aquaculture tank 2 through the conduit 14e. The aquaculture water 3 flowing through the pipeline 14e is branched into a flow flowing through the pipeline 14e and a flow flowing through the pipeline 14f at the branching portion 23 of the pipeline 14e. The ratio of the flow rate through the pipe line 14e and the flow rate through the pipe line 14f can be set by appropriately adjusting the opening degree of the valves 25 and 26.

管路14fの流入した養殖水はオゾン処理部4でオゾン処理され、アンモニアの分解除去が行われる。オゾン処理した直後の養殖水のORPをORP計11eで計測し、アンモニアの分解状況を確認し、アンモニアの分解が不十分な場合には、バルブ25、26の開度を調節して管路14fに流入する養殖水の流量を削減し、オゾン処理部4で完全にアンモニアの分解除去ができるようにする。   The aquaculture water that has flowed into the pipe line 14f is subjected to ozone treatment by the ozone treatment unit 4 to decompose and remove ammonia. The ORP of the aquaculture water immediately after the ozone treatment is measured with the ORP meter 11e, and the decomposition state of ammonia is confirmed. If the decomposition of ammonia is insufficient, the opening of the valves 25 and 26 is adjusted to adjust the line 14f. The flow rate of the aquaculture water flowing into the water is reduced so that the ozone treatment unit 4 can completely decompose and remove ammonia.

その後、養殖水は活性炭処理部5で、オゾン処理部4でのオゾン処理時に発生した残留オキシダントが濾過されて除去されるとともに、ORPは低下する。特に、活性炭が十分に機能している間は、活性炭を通過させる処理だけでオゾン処理により魚介類の生息ができない程に上昇した養殖水のORPを、魚介類の生息に問題が無いレベルにまで低下させることができる。   Thereafter, the aquaculture water is filtered by the activated carbon treatment unit 5 and the residual oxidant generated during the ozone treatment in the ozone treatment unit 4 is removed, and the ORP is lowered. In particular, while the activated carbon is functioning sufficiently, the ORP of the aquaculture water that has risen to the extent that seafood cannot be inhabited by ozone treatment simply by passing the activated carbon to a level where there is no problem in the habitat of seafood. Can be reduced.

活性炭処理部5での活性炭処理が終了した後、ORP計11fで養殖水のORPを計測するので、養殖水のORPが十分に低下していない場合には、処理する養殖水の流量が多過ぎるか、活性炭の能力が低下しているかのどちらかであるため、管路14fに流入させる流量を調節するか、新しい活性炭に交換する。   After the activated carbon treatment in the activated carbon treatment unit 5 is finished, the ORP of the aquaculture water is measured by the ORP meter 11f. Therefore, when the aquaculture water ORP is not sufficiently reduced, the flow rate of the aquaculture water to be treated is too large. Or the capacity of the activated carbon is reduced, so the flow rate to be introduced into the pipe line 14f is adjusted or replaced with new activated carbon.

この後、養殖水は、管路14fは合流点24で管路14eに合流し、オゾン処理されていない養殖水とオゾン処理された養殖水は混合され、水質調節部22内を流れる際にpH計12cでpHが測定され、pHが許容範囲内にない場合や、ORPが高すぎる場合には、図示しない定量ポンプによりpH調整剤やORP調整剤が添加された後に養殖水槽2に還流される。   Thereafter, the aquaculture water merges with the pipeline 14e at the junction 24f in the pipeline 14f, and the culture water that has not been subjected to ozone treatment and the aquaculture water that has undergone ozone treatment are mixed and pH when flowing through the water quality control unit 22. When the pH is measured by the total 12c and the pH is not within the allowable range, or when the ORP is too high, the pH adjusting agent or the ORP adjusting agent is added by a metering pump (not shown) and then returned to the aquaculture tank 2 .

閉鎖型養殖システム21は、以上の動作を養殖水槽2内の養殖水3に含まれるアンモニア濃度が所望の濃度になるまで継続することにより養殖水槽2内の養殖水3全体を浄化し、魚介類の生息に適した水質に維持することができる。   The closed-type aquaculture system 21 purifies the entire aquaculture water 3 in the aquaculture tank 2 by continuing the above operation until the ammonia concentration contained in the aquaculture water 3 in the aquaculture tank 2 reaches a desired concentration, and fishery products. The water quality suitable for the habitat of can be maintained.

この閉鎖型養殖システム21は、養殖水槽2から連続して養殖水を取り出してオゾン処理を行い、養殖水槽2に還流させているので、前述した閉鎖型養殖システム1と比較すると養殖水槽2内に貯留される養殖水の変化を少なくし、魚介類に与える影響を少なくすることができる利点がある。   Since this closed type aquaculture system 21 continuously takes out the aquaculture water from the aquaculture tank 2, performs ozone treatment, and recirculates it to the aquaculture tank 2. There is an advantage that changes in stored aquaculture water can be reduced and the influence on fishery products can be reduced.

次にさらに他の実施形態について図3に基づいて説明する。なお、図1に示した実施形態と共通する部分については同一の符号を使用し、説明を省略する。
図3は、本発明の閉鎖型養殖システムのさらに他の実施形態を示す模式図である。閉鎖型養殖システム21は、魚介類を養殖する養殖水槽2と、養殖水槽2から取り出した養殖水3をオゾン処理するオゾン処理部4と、オゾン処理後の養殖水3を活性炭処理する活性炭処理部5と、これらを結ぶ管路14と、管路14に設けられた送水ポンプ15と、図示しない制御部とから構成されている。すなわち、閉鎖型養殖システム31は、閉鎖型養殖システム1のように、養殖水槽2に還流させる養殖水の水質を最終的に調整する水質調整槽を設けていない。これは、養殖水を活性炭処理することにより、養殖水のORPが低下するとともに、pHが上昇するという効果を利用したためである。
Next, still another embodiment will be described with reference to FIG. In addition, about the part which is common in embodiment shown in FIG. 1, the same code | symbol is used and description is abbreviate | omitted.
FIG. 3 is a schematic view showing still another embodiment of the closed type aquaculture system of the present invention. The closed type aquaculture system 21 includes an aquaculture tank 2 for culturing seafood, an ozone treatment unit 4 for ozone treatment of the aquaculture water 3 taken out from the culture tank 2, and an activated carbon treatment unit for activated carbon treatment of the culture water 3 after the ozone treatment. 5, a pipe 14 connecting them, a water pump 15 provided in the pipe 14, and a control unit (not shown). That is, the closed-type aquaculture system 31 does not include a water quality adjustment tank that finally adjusts the quality of the aquaculture water to be returned to the aquaculture tank 2, unlike the closed-type aquaculture system 1. This is because the treatment of activated water with activated carbon used the effects of lowering the ORP of the cultured water and increasing the pH.

閉鎖型養殖システム31では、前述した閉鎖型養殖システム1と同様に、養殖水槽2とオゾン処理部4の間は管路14aで結ばれており、管路14aの途中には送水ポンプ15aが設けられている。オゾン処理部4では、閉鎖型養殖システム1と同様に、オゾン処理槽7、散気塔8、UV反応槽10、オゾン処理槽7の間は、これらを一巡する管路14dにより連結されており、管路14dの途中には送水ポンプ15dが設けられている。   In the closed-type aquaculture system 31, as in the above-described closed-type aquaculture system 1, the aquaculture tank 2 and the ozone treatment unit 4 are connected by a pipeline 14a, and a water pump 15a is provided in the middle of the pipeline 14a. It has been. In the ozone treatment unit 4, as in the closed culture system 1, the ozone treatment tank 7, the air diffusion tower 8, the UV reaction tank 10, and the ozone treatment tank 7 are connected by a pipeline 14 d that circulates them. A water pump 15d is provided in the middle of the pipeline 14d.

一方、閉鎖型養殖システム31のオゾン処理部7では、送水ポンプ15dと散気塔8の間で管路14dに分岐部32が設けられ、管路14gが分岐している。また、分岐部32と散気塔8の間にはバルブ33が設けられている。   On the other hand, in the ozone treatment part 7 of the closed type aquaculture system 31, a branch part 32 is provided in the pipe line 14d between the water pump 15d and the air diffusion tower 8, and the pipe line 14g is branched. Further, a valve 33 is provided between the branch portion 32 and the air diffusion tower 8.

管路14dから分岐した管路14gにはバルブ34とバルブ35が設けられ、その先端は養殖水槽2内に延設されている。管路14gのバルブ34とバルブ35の間には分岐部36が設けられ、管路14hが分岐している。   The pipe 14g branched from the pipe 14d is provided with a valve 34 and a valve 35, and the tip thereof extends into the aquaculture tank 2. A branch portion 36 is provided between the valve 34 and the valve 35 of the pipe line 14g, and the pipe line 14h is branched.

分岐部36で管路14gから分岐した管路14hはオゾン処理槽7に接続され、分岐部36とオゾン処理槽7の間には活性炭処理部5が、分岐部36の間にはバルブ37が設けられている。   A pipeline 14h branched from the pipeline 14g at the branching section 36 is connected to the ozone treatment tank 7, and an activated carbon treatment section 5 is provided between the branch section 36 and the ozone treatment tank 7, and a valve 37 is provided between the branch sections 36. Is provided.

以上のように構成された閉鎖型養殖システム31の動作を以下に詳述する。
養殖水水槽2内の養殖水に含まれるアンモニアの濃度(g/L)を適宜な方法により計測し、この濃度が魚介類の成長や生死に影響を与えると考えられる値を超えた場合にはアンモニア濃度過剰と判断し、オゾン処理を開始する。
The operation of the closed type aquaculture system 31 configured as described above will be described in detail below.
When the concentration (g / L) of ammonia contained in the aquaculture water in the aquaculture tank 2 is measured by an appropriate method, and this concentration exceeds a value that is thought to affect the growth and life and death of seafood It is judged that the ammonia concentration is excessive, and the ozone treatment is started.

先ず、制御部は、養殖水槽2の底部から管路14aを介して養殖水3の一部(300L)を取り出し、ポンプ15aによりオゾン処理部4のオゾン処理槽7に移送する。オゾン処理槽7に養殖水の貯留が完了すると、制御部は送水ポンプ15aの作動を停止し、移送された養殖水のpHを中性から弱酸性(pH6〜7程度)になるようにpH調整剤を添加して調整する。なお、魚介類の養殖に適した養殖水のpHは、通常、中性〜弱アルカリ性であり、本実施形態では養殖水槽2の養殖水3のpHは8付近である。したがって、本システムでは、オゾン処理に先立ち、養殖水のpHを下げる工程を行うことになる。   First, a control part takes out a part (300L) of the aquaculture water 3 from the bottom part of the aquaculture water tank 2 via the pipe line 14a, and transfers it to the ozone treatment tank 7 of the ozone treatment part 4 with the pump 15a. When the storage of the aquaculture water in the ozone treatment tank 7 is completed, the control unit stops the operation of the water pump 15a and adjusts the pH of the transferred aquaculture water from neutral to slightly acidic (about pH 6-7). Add agent to adjust. In addition, the pH of the aquaculture water suitable for aquaculture is normally neutral to weakly alkaline. In this embodiment, the pH of the aquaculture water 3 in the aquaculture tank 2 is around 8. Therefore, in this system, the process of lowering the pH of the aquaculture water is performed prior to the ozone treatment.

pH計12bでオゾン処理槽7内に貯留されている養殖水のpHが調整されたことを確認後、バルブ33を開位置に、バルブ34、35、37を閉位置にしてから送水ポンプ15d、オゾン発生部8、UV反応槽9の作動を開始する。   After confirming that the pH of the aquaculture water stored in the ozone treatment tank 7 has been adjusted by the pH meter 12b, the valve 33 is set to the open position, the valves 34, 35, and 37 are set to the closed position, and then the water supply pump 15d, The operation of the ozone generator 8 and the UV reaction tank 9 is started.

送水ポンプ15dが作動すると、オゾン処理槽7内の養殖水は、管路14dを流れてオゾン処理槽7、散気塔8、UV反応槽10、オゾン処理槽7の間を矢印37で示す方向に循環する。この際、オゾン散気塔8ではオゾン発生部9から供給されたオゾンが養殖水に散気注入され、オゾンが養殖水に含まれるアンモニアを分解する。   When the water pump 15d is activated, the culture water in the ozone treatment tank 7 flows through the pipeline 14d, and the direction indicated by the arrow 37 between the ozone treatment tank 7, the diffusion tower 8, the UV reaction tank 10, and the ozone treatment tank 7 is shown. It circulates to. At this time, in the ozone diffuser tower 8, ozone supplied from the ozone generator 9 is diffused and injected into the culture water, and the ozone decomposes ammonia contained in the culture water.

このオゾン処理は、管路14dのUV反応槽10の直後に設置されたORP計11dの計測値が、アンモニアが十分に分解除去されたと判断することができる値になるまで継続される。ORP計11dの計測値が、アンモニアが十分に分解除去されたと判断する値になると、制御部は送水ポンプ15d、オゾン発生部9、UV反応槽10の作動を停止し、オゾン処理槽7のORP計11bで内部に貯留されている養殖水のORPを計測してアンモニアの分解除去を再確認した後、オゾン処理部4での処理を終了する。   This ozone treatment is continued until the measured value of the ORP meter 11d installed immediately after the UV reaction tank 10 in the pipe line 14d reaches a value at which it can be determined that ammonia has been sufficiently decomposed and removed. When the measured value of the ORP meter 11d reaches a value at which it is determined that the ammonia has been sufficiently decomposed and removed, the control unit stops the operation of the water pump 15d, the ozone generation unit 9, and the UV reaction tank 10, and the ORP of the ozone treatment tank 7 After measuring the ORP of the aquaculture water stored inside by a total 11b and reconfirming the decomposition and removal of ammonia, the process in the ozone treatment unit 4 is terminated.

次に、制御部はバルブ33、35を閉位置に、バルブ34、36を開位置にしてから送水ポンプ15d作動を開始する。送水ポンプ15dが作動すると、オゾン処理槽7内に貯留された養殖水は、管路14dを流れ、分岐部32から管路14gに流入するとともに、分岐部36から管路14hに流入し、活性炭部5を通過した後にオゾン処理槽7に戻る流れを矢印38の方向に循環し、活性炭処理が継続される。なお、この時、オゾン処理槽7から管路14dを流れる養殖水の流量は、SV値が15となるように流量を調節する。(本実施例の養殖水の流量は、30L/min)   Next, the controller starts the operation of the water pump 15d after setting the valves 33 and 35 to the closed position and the valves 34 and 36 to the open position. When the water pump 15d is activated, the aquaculture water stored in the ozone treatment tank 7 flows through the pipe line 14d, flows into the pipe line 14g from the branch part 32, and flows into the pipe line 14h from the branch part 36. After passing through the part 5, the flow returning to the ozone treatment tank 7 is circulated in the direction of the arrow 38, and the activated carbon treatment is continued. At this time, the flow rate of the aquaculture water flowing from the ozone treatment tank 7 through the pipe line 14d is adjusted so that the SV value becomes 15. (The flow rate of the aquaculture water in this example is 30 L / min)

この活性炭部5で活性炭処理により、オゾン処理で上昇した養殖水のORPは低下するとともに、オゾン処理前のpH調整により低下させた養殖水のpHは上昇する。オゾン処理槽7のORP計11b及びpH計12bでこれらの値を計測し、養殖水の水質が魚介類の生息に適した水質となるまで活性炭処理を継続する。また、管路14hの活性炭処理部5とオゾン処理槽7の間に設けたORP計11gにより活性炭処理直後の養殖水のORPを計測しているので、ORPの低下状況から活性炭処理部5の活性炭の能力の低下を確認することができる。   By the activated carbon treatment in the activated carbon part 5, the ORP of the aquaculture water raised by the ozone treatment is lowered, and the pH of the aquaculture water lowered by the pH adjustment before the ozone treatment is raised. These values are measured by the ORP meter 11b and the pH meter 12b of the ozone treatment tank 7, and the activated carbon treatment is continued until the quality of the aquaculture water is suitable for the inhabiting of seafood. Moreover, since the ORP of the aquaculture water immediately after the activated carbon treatment is measured by the ORP meter 11g provided between the activated carbon treatment portion 5 and the ozone treatment tank 7 in the pipe line 14h, the activated carbon of the activated carbon treatment portion 5 is determined from the ORP reduction state. It is possible to confirm a decrease in the ability.

制御部は、ORP計11bとpH計12bからのデータに基づいて、水質調整槽7内に貯留されているオゾン処理、活性炭処理が終了した養殖水の水質(ORP、pH)が許容範囲内にあるか否を判定する。水質が許容範囲内に達すると、制御部はバルブ33、36を閉位置、バルブ34、35を開位置にするとともに、送水ポンプ15dを作動させてオゾン処理槽7内のオゾン処理と活性炭処理が終了した養殖水を管路14d、14gを介して養殖水槽2に還流させる。   Based on the data from the ORP meter 11b and the pH meter 12b, the control unit can maintain the quality of the aquaculture water (ORP, pH) stored in the water quality adjustment tank 7 after the treatment with ozone and activated carbon has been completed. It is determined whether or not there is. When the water quality reaches an allowable range, the control unit closes the valves 33 and 36 and opens the valves 34 and 35, and operates the water pump 15d to perform ozone treatment and activated carbon treatment in the ozone treatment tank 7. The finished aquaculture water is refluxed to the aquaculture tank 2 via the pipelines 14d and 14g.

閉鎖型養殖システム31は、以上の動作を養殖水槽2内の養殖水3に含まれるアンモニア濃度が基準の濃度以下になるまで繰り返すことにより養殖水槽2内の養殖水3全体を浄化し、魚介類の生息に適した水質に維持することができる。   The closed-type aquaculture system 31 purifies the entire aquaculture water 3 in the aquaculture tank 2 by repeating the above operations until the ammonia concentration contained in the aquaculture water 3 in the aquaculture tank 2 is below the reference concentration, and the fishery products The water quality suitable for the habitat of can be maintained.

この閉鎖型養殖システム31は、オゾン処理後の養殖水が活性炭処理部を複数回通過するように循環できる管路を有しているため、一回の活性炭処理ではORPを十分に低下させることができない場合でも、複数回の処理を行うことでORPを十分に低下させることが可能になる。また、活性炭が劣化している場合であっても、養殖水を循環させて何度も活性炭処理を行うことにより、最終的には養殖水のORPを下げるとともに、pHを上げる効果を達成することができる。さらに、オゾン処理前に養殖水のpHを6〜7程度に調整しているため、オゾン処理における臭素酸の発生を効果的に抑制し、活性炭処理における活性炭の劣化を抑えることができる。   Since this closed-type aquaculture system 31 has a conduit that can be circulated so that the aquaculture water after ozone treatment passes through the activated carbon treatment section a plurality of times, ORP can be sufficiently reduced by a single activated carbon treatment. Even if it is not possible, the ORP can be sufficiently reduced by performing the processing a plurality of times. In addition, even when activated carbon is deteriorated, the effect of raising the pH of the aquaculture water and lowering the ORP is finally achieved by circulating the aquaculture water and performing the activated carbon many times. Can do. Furthermore, since pH of culture water is adjusted to about 6-7 before ozone treatment, generation | occurrence | production of the bromic acid in ozone treatment can be suppressed effectively, and deterioration of the activated carbon in activated carbon treatment can be suppressed.

これに加え、閉鎖型養殖システム31では、水質調整槽6とオゾン処理槽7を兼用しているため、槽とpHセンサを一つずつ減らしてシステムを構成することができる効果もある。   In addition to this, the closed-type aquaculture system 31 also has an effect that the system can be configured by reducing the tank and the pH sensor one by one because the water quality adjustment tank 6 and the ozone treatment tank 7 are combined.

なお、以上の閉鎖型養殖システムの実施例の説明では、制御部が各構成部を自動的に運転する状況を説明したが、ORP計、pH計等の計測値を表示装置に表示させ、その表示に基づいて手動により閉鎖型養殖システムを運転することは当然に可能である。   In the above description of the embodiment of the closed type aquaculture system, the control unit has explained the situation in which each component is automatically operated. However, the measurement values of the ORP meter, the pH meter, etc. are displayed on the display device, It is of course possible to manually operate the closed aquaculture system based on the display.

次に、本発明における養殖水の処理方法について説明する。本発明者等は、オゾン処理により養殖水のORPが上昇し、魚介類に生息に適さなくなる問題を解決すべく実験、検討を行ってきたが、その結果、オゾン処理後の養殖水を活性炭処理することで、単に残留オキシダントを除去することができるだけでなく、オゾン処理の結果上昇した養殖水のORPを大幅に低下させることができるとの知見を得た。   Next, a method for treating cultured water in the present invention will be described. The present inventors have conducted experiments and studies to solve the problem that the ORP of the aquaculture water rises due to the ozone treatment and becomes unsuitable for the seafood. As a result, the aquaculture water after the ozone treatment is treated with the activated carbon. Thus, it was found that not only the residual oxidant can be removed, but also the ORP of the aquaculture water increased as a result of the ozone treatment can be greatly reduced.

これに加え、活性炭処理する養殖水の流量と活性炭の容量の関係が適切な範囲にあれば、活性炭処理のみでオゾン処理の結果上昇した養殖水のORPを、魚介類の生息に適した値にまで大幅に低下させることができることを確認した。すなわち、活性炭処理する養殖水の流量と活性炭の容量の関係を適切な範囲に設定した活性炭処理の工程を設けることにより、オゾン処理により上昇した養殖水のORPを十分に低下させることができることを見出した。ここで、活性炭処理する養殖水の流量と活性炭の容量の関係を明確にするため、活性炭処理する養殖水の流量を活性炭の容量で除した値をSV値(流量/活性炭容量)として定義する。   In addition to this, if the relationship between the flow rate of the aquaculture water to be treated with activated carbon and the capacity of the activated carbon is within an appropriate range, the ORP of the aquaculture water that has increased as a result of ozone treatment only with the activated carbon treatment will be adjusted to a value suitable for the habitat of seafood. It was confirmed that it can be greatly reduced. That is, it is found that the ORP of the aquaculture water increased by the ozone treatment can be sufficiently reduced by providing an activated carbon treatment step in which the relationship between the flow rate of the aquaculture water to be activated and the capacity of the activated carbon is set in an appropriate range. It was. Here, in order to clarify the relationship between the flow rate of the aquaculture water treated with activated carbon and the capacity of the activated carbon, a value obtained by dividing the flow rate of the aquaculture water treated with activated carbon by the capacity of the activated carbon is defined as an SV value (flow rate / activated carbon capacity).

〔実施例〕
以下、「活性炭処理によるOPR低下とpHの上昇効果及び活性炭処理におけるSV値とORP低下の関係」、「養殖水のpHの違いがオゾン処理後の臭素酸の発生量に与える影響」、並びに「ORPの計測結果に基づく活性炭の能力低下の判定」について、実験結果に基づいて説明する。
〔Example〕
Hereinafter, “OPR reduction and pH increase effect by activated carbon treatment, and relationship between SV value and ORP reduction in activated carbon treatment”, “Effect of pH difference in aquaculture water on generation amount of bromic acid after ozone treatment”, and “ The “determination of activated carbon capacity reduction based on ORP measurement results” will be described based on experimental results.

先ず、「活性炭処理によるOPR低下とpHの上昇効果及び活性炭処理におけるSV値とORP低下の関係」について説明する。図4において、活性炭処理によるOPR低下とpHの上昇効果を確認する実験で使用した試験装置を示している。試験装置51は、試験水槽52に試験水53を貯留し、送水ポンプ54により試験水53を散気塔55、オゾン発生部56、UV反応槽57で構成したオゾン処理部58に送水してオゾン処理を行った後、試験水槽52に還流するように構成した。また、バルブ59、60、61、62を適宜に操作することにより、オゾン処理後の試験水を活性炭処理部63で活性炭処理することができるようにしている。また活性炭処理後の試験水は、バルブ62を操作することによりバケツ64に取り出すことができる。   First, “OPR reduction and pH increase effect by activated carbon treatment, and relationship between SV value and ORP reduction in activated carbon treatment” will be described. FIG. 4 shows a test apparatus used in an experiment for confirming the effect of lowering the OPR and raising the pH by the activated carbon treatment. The test apparatus 51 stores the test water 53 in the test water tank 52 and supplies the test water 53 to the ozone treatment part 58 constituted by the air diffusion tower 55, the ozone generation part 56, and the UV reaction tank 57 by the water supply pump 54. After the treatment, the test water tank 52 was refluxed. Further, by appropriately operating the valves 59, 60, 61, and 62, the activated carbon treatment unit 63 can treat the test water after the ozone treatment with the activated carbon. Further, the test water after the activated carbon treatment can be taken out into the bucket 64 by operating the valve 62.

試験水53は、水量を100Lとし、水温を20〜25℃に設定した。また、アンモニア成分として塩化アンモニウム3.8g(アンモニア態窒素として1.0g)を投入して溶解させた。   The test water 53 was set to 100 L, and the water temperature was set to 20 to 25 ° C. Further, 3.8 g of ammonium chloride (1.0 g as ammonia nitrogen) was added as an ammonia component and dissolved.

オゾンは、オゾン発生部56で空気からPSAより窒素を分離して純度90%以上の酸素ガスを生成し、オゾナイザで無声放電方式によりオゾンに変換した後、散気塔55に供給した。なお、本実験でのオゾン発生量は、30.0〜33.0g/m(大気解放時濃度)である。 Ozone was separated from PSA by nitrogen in the ozone generator 56 to generate oxygen gas having a purity of 90% or more, converted into ozone by a silent discharge method with an ozonizer, and then supplied to the diffuser tower 55. In addition, the amount of ozone generation in this experiment is 30.0-33.0 g / m < 3 > (atmospheric release concentration).

実験時のSV値は、活性炭容量を20Lに固定し、試験水の流量を変化させることにより設定した。本実験は、SV値=15、30、50、75の4種類について行った。SV値が大きくなる程、1パスで処理する試験水の容量が大きくなり、活性炭の負担が大きくなる。   The SV value during the experiment was set by fixing the activated carbon capacity to 20 L and changing the flow rate of the test water. This experiment was performed for four types of SV values = 15, 30, 50, and 75. As the SV value increases, the capacity of test water to be treated in one pass increases, and the burden of activated carbon increases.

実験は次の手順で実施した。ステップ1として、バルブ59を開位置とし、バルブ60、61、63を閉位置とした後、送水ポンプ54を動作させ、試験水53をオゾン処理部58に移送し、オゾン処理して試験水槽52に戻す循環処理を15分間行った。この後、送水ポンプ54を停止するとともにオゾン処理部の作動を停止させ、試験水槽52内の試験水53を採取して、ORPを測定した。   The experiment was performed according to the following procedure. As Step 1, after setting the valve 59 to the open position and the valves 60, 61, 63 to the closed position, the water pump 54 is operated, the test water 53 is transferred to the ozone treatment unit 58, and the test water tank 52 is subjected to ozone treatment. Circulation treatment was performed for 15 minutes. Thereafter, the water pump 54 was stopped and the operation of the ozone treatment unit was stopped, the test water 53 in the test water tank 52 was collected, and ORP was measured.

ステップ2として、バルブ59、61を閉位置とし、バルブ60、62を開位置とした後、送水ポンプ54を動作させ、試験水53を活性炭処理部63を1パスさせ、バケツ64で受けて採水し、ORPを測定した。   In step 2, after setting the valves 59 and 61 to the closed position and the valves 60 and 62 to the open position, the water pump 54 is operated, and the test water 53 is passed through the activated carbon treatment unit 63 for one pass and collected by the bucket 64. Water and measure ORP.

ステップ3として、1パス処理した試験水を試験水槽52に戻し、バルブ59、62を閉位置とし、バルブ60、61を開位置とした後、送水ポンプ54を動作させ、試験水を活性炭処理部63を循環させた後試験水槽52に還流させ、ORP計65の計測値が300mVに達するまで継続させた。   As Step 3, the test water subjected to one pass treatment is returned to the test water tank 52, the valves 59 and 62 are set to the closed position, and the valves 60 and 61 are set to the open position. After circulating 63, it returned to the test water tank 52, and continued until the measured value of the ORP meter 65 reached 300 mV.

以上の手順を、SV値=15、30、50、75の条件で繰り返し、試験水のORPとpHを計測した。   The above procedure was repeated under the conditions of SV value = 15, 30, 50, 75, and the ORP and pH of the test water were measured.

図5に活性炭処理実施前と実施後の試験水のORPを、図6に活性炭処理実施前と実施後の試験水のpHの計測データを示す。図5からは、活性炭処理を行う前に600mV程度あった試験水のORPが、SV値=15、30の場合には300mV以下に、SV値=50の場合には略300mVに、SV値=75の場合には略400mVに低下することが分かる。なお、SV値が大きくなる程、活性炭表面を通過する試験水の容量が増加するため、試験水と活性炭の接触時間が少なくなり、ORPを低下させる効果が少なくなるので、SV値=75の場合にはORPの低下が少なくなると思われる。   FIG. 5 shows ORP of test water before and after the activated carbon treatment, and FIG. 6 shows measurement data of pH of the test water before and after the activated carbon treatment. From FIG. 5, the ORP of the test water, which was about 600 mV before the activated carbon treatment, is 300 mV or less when the SV value = 15, 30, is approximately 300 mV when the SV value = 50, and the SV value = In the case of 75, it turns out that it falls to about 400 mV. In addition, since the capacity of the test water that passes through the activated carbon surface increases as the SV value increases, the contact time between the test water and the activated carbon decreases, and the effect of lowering the ORP decreases. Therefore, when the SV value = 75 It seems that the decrease in ORP is less.

これらのデータは、前記したように自然界の海のORPの平均値は350mV程度であるから、SV値が50程度までであれば、オゾン処理でORPが上昇した養殖水であっても、活性炭処理のみで魚介類の生育に適した範囲にORPを低下させる効果があること示している。すなわち、オゾン処理後の養殖水を適切な範囲のSV値で活性炭処理する工程を設けることで、オゾン処理により上昇した養殖水のORPを単に活性炭処理するだけで、魚介類の生息が可能な範囲に大きく低下させることができる。従って、オゾン処理後の養殖水を適切な範囲のSV値で活性炭処理する工程を設けることにより、活性炭の能力が十分な場合には水質調整槽での水質調整剤の使用が不要となり、活性炭の能力が低下した場合であっても水質調整剤の使用量を削減することができる。   As described above, since the average value of the ORP in the natural sea is about 350 mV, as described above, if the SV value is up to about 50, the activated carbon treatment is performed even for the aquaculture water in which the ORP is increased by the ozone treatment. It shows that there is an effect of reducing ORP in a range suitable for the growth of seafood alone. In other words, by providing a process for activated carbon treatment of the cultured water after ozone treatment with an SV value in an appropriate range, it is possible to inhabit the seafood simply by treating the ORP of the cultured water raised by ozone treatment with activated carbon. Can be greatly reduced. Therefore, by providing a process for activated carbon treatment of the aquaculture water after ozone treatment with an SV value in an appropriate range, when the activated carbon capacity is sufficient, the use of a water quality adjusting agent in the water quality adjustment tank becomes unnecessary. Even when the capacity is lowered, the amount of water quality regulator used can be reduced.

また、原料の種類が異なる活性炭を使用して同様の実験を行ったが、その試験結果は表1に示す様に略同一であり、活性炭の原料の種類による顕著な差異は認められなかった。   Moreover, although the same experiment was performed using the activated carbon from which the kind of raw material differs, the test result is substantially the same as shown in Table 1, and the remarkable difference by the kind of activated carbon raw material was not recognized.

Figure 2015192627
Figure 2015192627

図6からは、活性炭処理の前後では、供試した全てのSA値で試験水のpHが0.1程度上昇することが分かる。図から明らかなように、試験条件として設定した全てのSA値においてpHの上昇がみられるだけでなく、pHの増加分はどのSV値においても略同様であった。   From FIG. 6, it can be seen that before and after the activated carbon treatment, the pH of the test water rises by about 0.1 for all the SA values tested. As is clear from the figure, not only the increase in pH was observed for all the SA values set as test conditions, but the increase in pH was substantially the same for all SV values.

本発明者等は、活性炭処理により養殖水のORPが低下する現象、及びpHが上昇する現象と併せて、養殖水のpHの違いによりアンモニアのオゾン処理後に発生する臭素酸の発生量が異なる現象を確認した。すなわち、オゾン処理前の養殖水のpHが低いほど、アンモニアのオゾン処理において臭素酸の発生量が少なくなる。このため、アンモニアを分解するためのオゾン処理に先立ち、養殖水のpHを低下させ工程を設けることにより、オゾン処理において発生する臭素酸の量を減少させ、その後の活性炭処理における活性炭の消費を削減することが可能となる。以下、「養殖水のpHの違いがオゾン処理後の臭素酸の発生量に与える影響」を実験結果に基づいて説明する。   The present inventors have developed a phenomenon in which the amount of bromic acid generated after ozone treatment of ammonia differs depending on the pH of the aquaculture water, together with the phenomenon that the ORP of the aquaculture water decreases due to the activated carbon treatment and the phenomenon that the pH rises. It was confirmed. That is, the lower the pH of the aquaculture water before the ozone treatment, the smaller the amount of bromic acid generated in the ammonia ozone treatment. Therefore, prior to the ozone treatment for decomposing ammonia, by reducing the pH of the aquaculture water and providing a process, the amount of bromic acid generated in the ozone treatment is reduced and the consumption of activated carbon in the subsequent activated carbon treatment is reduced. It becomes possible to do. Hereinafter, “the influence of the pH of the aquaculture water on the amount of bromic acid generated after the ozone treatment” will be described based on the experimental results.

図7において、本試験で使用した試験装置を示している。試験装置71は、試験水槽72に試験水73を貯留し、送水ポンプ74により試験水73を散気塔75、オゾン発生部76、UV反応槽77で構成したオゾン処理部78に送水してオゾン処理を行った後、試験水槽72に還流するように構成した。   FIG. 7 shows a test apparatus used in this test. The test apparatus 71 stores the test water 73 in the test water tank 72, and supplies the test water 73 to the ozone treatment part 78 constituted by the air diffusion tower 75, the ozone generation part 76, and the UV reaction tank 77 by the water supply pump 74. After the treatment, the test water tank 72 was refluxed.

試験水53は、水量を100Lとし、水温を20℃に設定した。また、アンモニア成分として塩化アンモニウム19.23g(アンモニア態窒素として5.0g)を投入して溶解させた。また、塩化アンモニウムを溶解させた後、試験水にpH調整剤を添加し、pHが6、7、8である3種の試験水を準備した。   The test water 53 was set to 100 L, and the water temperature was set to 20 ° C. Further, 19.23 g of ammonium chloride (5.0 g as ammonia nitrogen) was added as an ammonia component and dissolved. Moreover, after dissolving ammonium chloride, a pH adjuster was added to the test water to prepare three types of test water having pHs of 6, 7, and 8.

オゾンは、オゾン発生部76に市販用純度99%の酸素ボンベ酸素ガスを供給し、オゾナイザで無声放電方式によりオゾンに変換した後、散気塔75に供給した。なお、本実験でのオゾン発生量は、30.0〜33.0g/m(大気解放時濃度)である。 Ozone was supplied to the diffuser tower 75 after supplying commercially available oxygen cylinder oxygen gas having a purity of 99% to the ozone generator 76, converted into ozone by a silent discharge method with an ozonizer. In addition, the amount of ozone generation in this experiment is 30.0-33.0 g / m < 3 > (atmospheric release concentration).

実験は次の手順で実施した。先ず、送水ポンプ74を動作させ、試験水73をオゾン処理部78に送水し、オゾン処理して試験水槽72に戻す循環処理を8時間行った。その間、2時間毎に試験水槽72から試験水73を採水し、試験水73に含まれるアンモニア態窒素と臭素酸の計測を行った。   The experiment was performed according to the following procedure. First, the water supply pump 74 was operated, the test water 73 was supplied to the ozone treatment unit 78, and the circulation treatment for returning to the test water tank 72 after ozone treatment was performed for 8 hours. Meanwhile, test water 73 was sampled from the test water tank 72 every 2 hours, and ammonia nitrogen and bromic acid contained in the test water 73 were measured.

以上の手順を、pH6、7、8に調整した3種類の試験水について行い、各々データを取得した。図8にオゾン処理時間の経過に対する試験水に含まれるアンモニア態窒素の減少状況、図9にオゾン処理時間の経過に対する試験水に含まれる臭素酸の増加状況を示す。   The above procedure was performed for three types of test water adjusted to pH 6, 7, and 8, and data was acquired for each. FIG. 8 shows a decrease state of ammonia nitrogen contained in the test water with respect to the passage of the ozone treatment time, and FIG. 9 shows an increase state of bromic acid contained in the test water with respect to the passage of the ozone treatment time.

図8からは、試験水がpH8の場合とpH6、pH7の場合とでは、アンモニア分解速度に差があり、pHが低い方がアンモニアの分解速度が速い傾向があることが分かる。また、試験水のpHによらず、オゾン処理により試験水に含まれるアンモニアを分解除去することができることを示している。また、図9からは、試験水がpH8の場合とpH6、pH7の場合とでは、臭素酸の発生量に違いがあり、pHが低い方が臭素の発生量が少ないことが分かる。   From FIG. 8, it can be seen that there is a difference in the ammonia decomposition rate between the case where the test water is pH 8, pH 6, and pH 7, and the lower the pH, the higher the ammonia decomposition rate tends to be. Moreover, it shows that ammonia contained in the test water can be decomposed and removed by ozone treatment regardless of the pH of the test water. Further, FIG. 9 shows that there is a difference in the amount of bromic acid generated when the test water is pH 8, pH 6, and pH 7, and the lower the pH, the smaller the amount of bromine generated.

以上より、アンモニア分解能力及び臭素酸発生量を考慮すると、中性や弱酸性(pH6〜7)で処理することが望ましいことが分かる。すなわち、試験水のpHをこの程度に低下させた後にオゾン処理を行うと、無調整で処理した場合に比べ、アンモニアの分解速度が速くなるだけでなく、オゾン処理における臭素酸の発生量を削減し、その後の活性炭処理における活性炭の能力低下を抑制できる効果がある。   From the above, it can be seen that the treatment with neutrality or weak acidity (pH 6 to 7) is desirable in consideration of the ammonia decomposition ability and the amount of bromic acid generated. That is, ozone treatment after reducing the pH of the test water to this level not only increases the rate of ammonia decomposition, but also reduces the amount of bromic acid generated in ozone treatment compared to the case of treatment without adjustment. And there exists an effect which can suppress the capability fall of the activated carbon in subsequent activated carbon treatment.

また、前述したように、活性炭処理には試験水のpHを上昇させる効果があるので、オゾン処理に先立って養殖水のpHを低下させてオゾン処理における臭素酸の発生を抑制すれば、オゾン処理後に臭素酸等のオキシダントを除去する活性炭処理での活性炭の使用量を削減したり試用期間を延長したりすることができるだけでなく、単に活性炭処理するだけで養殖水のpHを上昇させることができる。従って、オゾン処理に先立って養殖水のpHを低下させる工程を設けることにより、オゾン処理時間を短縮できるとともに、活性炭処理での活性炭の消費量を削減等することができ、また、水質調整槽での水質調整剤の使用量を削減することができる。   In addition, as described above, the activated carbon treatment has the effect of increasing the pH of the test water. Therefore, if the pH of the aquaculture water is lowered prior to the ozone treatment to suppress the generation of bromic acid in the ozone treatment, the ozone treatment is performed. Not only can the amount of activated carbon used in the activated carbon treatment to remove oxidants such as bromic acid later be used and the trial period can be extended, but also the pH of the aquaculture water can be raised simply by the activated carbon treatment. . Therefore, by providing a process for lowering the pH of the aquaculture water prior to the ozone treatment, the ozone treatment time can be shortened and the consumption of activated carbon in the activated carbon treatment can be reduced. The amount of water quality regulator used can be reduced.

以上の知見に加え、本発明者らは、「ORPの計測結果に基づく活性炭の能力低下の判定」が可能であることを、以下の実験により確認した。   In addition to the above knowledge, the present inventors confirmed by the following experiment that "determination of the capability fall of activated carbon based on the measurement result of ORP" is possible.

まず、図10に示すオゾン処理装置81を用いて、試験水をオゾン処理した。オゾン処理装置81は、試験水槽82に試験水83を貯留し、送水ポンプ84により試験水83を散気塔85、オゾン発生部86で構成したオゾン処理部88に送水してオゾン処理を行った後、試験水槽82に還流するように構成した。   First, the test water was subjected to ozone treatment using an ozone treatment device 81 shown in FIG. The ozone treatment device 81 stores the test water 83 in the test water tank 82, and supplies the test water 83 to the ozone treatment unit 88 constituted by the diffusion tower 85 and the ozone generation unit 86 by the water feed pump 84 to perform the ozone treatment. After that, it was configured to return to the test water tank 82.

試験水83は、水量を40Lとし、水温を20〜25℃に設定した。また、アンモニア成分として塩化アンモニウム0.2g(アンモニア態窒素として0.052g)を投入して溶解させた。   The test water 83 had a water volume of 40 L and a water temperature of 20 to 25 ° C. Further, 0.2 g of ammonium chloride (0.052 g as ammonia nitrogen) was added as an ammonia component and dissolved.

オゾンは、オゾン発生部86で空気からPSAより窒素を分離して純度90%以上の酸素ガスを生成し、オゾナイザで無声放電方式によりオゾンに変換した後、散気塔85に供給した。なお、本実験でのオゾン発生量は、30.0〜33.0g/m3(大気解放時濃度)である。   Ozone was separated from PSA by nitrogen in the ozone generation unit 86 to generate oxygen gas having a purity of 90% or more, converted into ozone by a silent discharge method with an ozonizer, and then supplied to the diffuser tower 85. In addition, the ozone generation amount in this experiment is 30.0-33.0 g / m3 (atmospheric release concentration).

オゾン処理は、先ず、送水ポンプ84を動作させ、試験水83をオゾン処理部88に送水し、オゾン処理して試験水槽84に戻す循環処理を約30分間行った。この処理後の試験水を採水した。次に、上記オゾン処理後の試験水について、ORPを測定した後に活性炭により処理する試験を行った。活性炭処理は、容器内にオゾン処理後の試験水を入れ、そこに活性炭を浸漬し、撹拌した後、ろ過することにより行った。そして、活性炭処理後の試験水のORPを測定した。   In the ozone treatment, first, the water supply pump 84 was operated, the test water 83 was supplied to the ozone treatment unit 88, and the circulation treatment for returning to the test water tank 84 after ozone treatment was performed for about 30 minutes. The test water after this treatment was collected. Next, the test water after the ozone treatment was subjected to a test of treating with activated carbon after measuring the ORP. The activated carbon treatment was performed by placing test water after ozone treatment in a container, immersing the activated carbon in the vessel, stirring, and then filtering. And ORP of the test water after activated carbon treatment was measured.

本試験では、活性炭の種類、活性炭の使用量、処理水の量、並びに、試験水への活性炭の浸漬・撹拌時間を変えながら試験を行った。活性炭としては、活性炭A(新品)、活性炭B(中古品)、及び、活性炭C(活性炭Bを更に次亜塩素酸で処理したもの)をそれぞれ用いた。すなわち、活性炭Cの劣化が最も進んでいることになる。   In this test, the test was performed while changing the type of activated carbon, the amount of activated carbon used, the amount of treated water, and the time of immersion and stirring of the activated carbon in the test water. As the activated carbon, activated carbon A (new article), activated carbon B (used article), and activated carbon C (activated carbon B further treated with hypochlorous acid) were used. That is, the deterioration of the activated carbon C is most advanced.

まず、活性炭A、B及びCについて、採水ビンに活性炭を25g(乾燥重量)、試験水を50mL混入させ、浸漬・撹拌時間を1.0分、1.8分、3.5分又は10.7分とした試験を行った。これらの条件は、水に接する時間としてそれぞれSV値=50、30、15又は5に相当する。なお、活性炭処理前の試験水のORP値は、いずれも528mVであった。得られた結果を表2に示す。   First, for activated carbon A, B and C, 25 g (dry weight) of activated carbon and 50 mL of test water are mixed in a water sampling bottle, and the immersion / stirring time is 1.0 min, 1.8 min, 3.5 min or 10 The test was conducted for 7 minutes. These conditions correspond to SV values = 50, 30, 15, or 5 as the time of contact with water, respectively. The ORP value of the test water before the activated carbon treatment was 528 mV for all. The obtained results are shown in Table 2.

Figure 2015192627
Figure 2015192627

また、活性炭A及びBについて、採水バケツに活性炭を体積で60mL、試験水を800mL混入させて、5分間(SV=10程度)又は7分間(SV=7程度)浸漬・撹拌する試験を行った。なお、活性炭処理前の試験水のORPは、513mVであった。得られた結果を表3に示す。   For activated carbon A and B, a test is performed in which 60 mL of activated carbon and 800 mL of test water are mixed in a water sampling bucket and immersed and stirred for 5 minutes (about SV = 10) or 7 minutes (about SV = 7). It was. In addition, ORP of the test water before activated carbon treatment was 513 mV. The obtained results are shown in Table 3.

Figure 2015192627
Figure 2015192627

表2からは、活性炭の負荷が相当SV値が50の場合以外では、活性炭が劣化するほど、活性炭処理により試験水のORPが低下する度合いが小さくなることが分かり、また、表3からは、活性炭や試験水の量等な条件を変えても同様の結果となることが分かる。このことから、活性炭処理によりORP値が低下する度合いは、活性炭の劣化状態を間接的に示すと言える。したがって、活性炭処理後に養殖水のORPを測定することによって、活性炭の能力の低下状況を判定することができ、適切な手入れ又は交換の時期を確認することが可能となる。   From Table 2, it can be seen that unless the activated carbon load has an equivalent SV value of 50, the degree to which the ORP of the test water decreases due to the activated carbon treatment decreases as the activated carbon deteriorates. It can be seen that the same result can be obtained by changing conditions such as the amount of activated carbon and test water. From this, it can be said that the degree to which the ORP value is reduced by the activated carbon treatment indirectly indicates the deterioration state of the activated carbon. Therefore, by measuring the ORP of the aquaculture water after the activated carbon treatment, it is possible to determine the state of decrease in the ability of the activated carbon, and it is possible to confirm the appropriate maintenance or replacement time.

閉鎖型養殖システムにおいては、オゾン処理により上昇した養殖水のORPを十分に低下させることなく養殖水槽に戻してしまうと、養殖水槽内で飼育している魚介類を死滅させてしまう危険性がある。このため、オゾン処理により上昇した養殖水のORPを低下させる主要な手段である活性炭の劣化状況を定量的かつ客観的に判定することが可能であることには、極めて重要な意義がある。   In a closed aquaculture system, if the ORP of the aquaculture water raised by the ozone treatment is returned to the aquaculture tank without sufficiently reducing it, there is a risk of killing the fish and shellfish bred in the aquaculture tank . For this reason, it is extremely important to be able to quantitatively and objectively determine the deterioration state of the activated carbon, which is a main means for reducing the ORP of the aquaculture water that has been raised by the ozone treatment.

以上説明したように、本発明による閉鎖型養殖システム及び養殖水の浄化方法は、オゾン処理後の養殖水を活性炭処理することにより、オゾン処理により上昇した養殖水のORPが大きく低下する現象、また、好適な場合は、オゾン処理に先立って養殖水のpHを低下させるとオゾン処理で生成される臭素酸の量を抑制する現象に基づいているため、従来の閉鎖型養殖システムに比べ、水質調整剤(ORP調整剤、pH調整剤)の使用量を削減することができるとともに、活性炭処理部の活性炭の使用期間を延長したり使用量を削減したりすることができるので、閉鎖型養殖システムのランニングコストを低減させることができる。   As described above, the closed-type aquaculture system and the method for purifying aquaculture water according to the present invention have the phenomenon that the ORP of the aquaculture water increased by the ozone treatment is greatly reduced by treating the aquaculture water after the ozone treatment with activated carbon. In the preferred case, it is based on the phenomenon that reducing the pH of the aquaculture water prior to the ozone treatment suppresses the amount of bromic acid produced by the ozone treatment, so water quality adjustment compared to conventional closed aquaculture systems As well as being able to reduce the amount of agent used (ORP adjuster, pH adjuster), it is possible to extend the use period or reduce the amount of use of the activated carbon in the activated carbon treatment section, Running cost can be reduced.

また、活性炭処理後の養殖水ORPを計測することにより、活性炭処理部の活性炭の能力の低下状況を把握して交換時期を確認することができるので、安定して魚介類の養殖が可能となるので、その価値は非常に大きいものがある。   In addition, by measuring the culture water ORP after the activated carbon treatment, it is possible to grasp the decline in the activated carbon capacity of the activated carbon treatment unit and confirm the replacement time, so it is possible to stably fish seafood. So its value is very big.

1 閉鎖型養殖システム
2 養殖水槽
3 養殖水
4 オゾン処理部
5 活性炭処理部
6 水質調整槽
7 オゾン処理槽
8 散気塔
11 ORP計
12 pH計
14 管路
15 送水ポンプ
DESCRIPTION OF SYMBOLS 1 Closed-type aquaculture system 2 Aquaculture tank 3 Aquaculture water 4 Ozone treatment part 5 Activated carbon treatment part 6 Water quality adjustment tank 7 Ozone treatment tank 8 Aeration tower 11 ORP meter 12 pH meter 14 Pipe line 15 Water supply pump

Claims (6)

魚介類を養殖する養殖水槽と、前記養殖水槽から抜き出した前記養殖水に含まれるアンモニアを分解除去するオゾン処理部とを有する閉鎖型養殖システムであって、
前記養殖水槽から抜き出した前記養殖水をオゾン処理した後、活性炭により処理することによって前記オゾン処理により上昇した前記養殖水の酸化還元電位(ORP)を低下させる活性炭処理部を備えることを特徴とする閉鎖型養殖システム。
A closed aquaculture system having an aquaculture tank for culturing seafood, and an ozone treatment unit for decomposing and removing ammonia contained in the aquaculture water extracted from the aquaculture tank,
It comprises an activated carbon treatment unit that lowers the redox potential (ORP) of the aquaculture water that has been raised by the ozone treatment by treating the aquaculture water extracted from the aquaculture tank with ozone and then treating with activated carbon. Closed aquaculture system.
前記活性炭処理部の後で、前記養殖水槽よりも前に前記養殖水の酸化還元電位(ORP)を計測するORP計を備えた請求項1に記載の閉鎖型養殖システム。   The closed-type aquaculture system according to claim 1, further comprising an ORP meter that measures an oxidation-reduction potential (ORP) of the aquaculture water after the activated carbon treatment unit and before the aquaculture tank. 前記オゾン処理部の直後に前記養殖水の酸化還元電位(ORP)を計測するORP計を備えた請求項1又は請求項2に記載の閉鎖型養殖システム。   The closed-type aquaculture system according to claim 1, further comprising an ORP meter that measures an oxidation-reduction potential (ORP) of the aquaculture water immediately after the ozone treatment unit. オゾン処理が終了した前記養殖水の水質を計測し、前記養殖水の水質が許容範囲になるように水質調整を行ってから前記養殖水槽に還流させる水質調整部を備えた請求項1乃至請求項3の何れか1項に記載の閉鎖型養殖システム。   The water quality adjustment part which measures the water quality of the said culture water which the ozone treatment was complete | finished, adjusts the water quality so that the quality of the said culture water becomes an allowable range, and is made to return to the said culture water tank is provided. 4. The closed type aquaculture system according to any one of 3 above. 魚介類を養殖する養殖水槽と、前記養殖水槽から抜き出した前記養殖水に含まれるアンモニアを分解除去するオゾン処理部とを有する閉鎖型養殖システムにおいて、前記養殖水に含まれるアンモニアをオゾン処理により分解除去した後に活性炭処理することにより、前記オゾン処理により上昇した前記養殖水の酸化還元電位(ORP)を低下させる工程を有することを特徴とする養殖水の浄化方法。   In a closed-type aquaculture system having an aquaculture tank for culturing seafood and an ozone treatment unit for decomposing and removing ammonia contained in the aquaculture water extracted from the aquaculture tank, the ammonia contained in the aquaculture water is decomposed by ozone treatment. A method for purifying aquaculture water, comprising a step of reducing the oxidation-reduction potential (ORP) of the aquaculture water increased by the ozone treatment by performing an activated carbon treatment after the removal. 養殖水の前記オゾン処理に先立ち前記養殖水のpHを下げる工程を有する請求項5に記載の養殖水の浄化方法。   The method for purifying aquaculture water according to claim 5, further comprising a step of lowering the pH of the aquaculture water prior to the ozone treatment of the aquaculture water.
JP2014072331A 2014-03-31 2014-03-31 Closed type culture system and culture water purification method Pending JP2015192627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072331A JP2015192627A (en) 2014-03-31 2014-03-31 Closed type culture system and culture water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072331A JP2015192627A (en) 2014-03-31 2014-03-31 Closed type culture system and culture water purification method

Publications (1)

Publication Number Publication Date
JP2015192627A true JP2015192627A (en) 2015-11-05

Family

ID=54432297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072331A Pending JP2015192627A (en) 2014-03-31 2014-03-31 Closed type culture system and culture water purification method

Country Status (1)

Country Link
JP (1) JP2015192627A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018051492A (en) * 2016-09-29 2018-04-05 鋒霈環境科技股▲ふん▼有限公司 Device for treating waste water containing ammonia
CN111567475A (en) * 2020-06-30 2020-08-25 潘俊朝 High-yield aquaculture system
JP2021029185A (en) * 2019-08-27 2021-03-01 株式会社イーダブルニュートリション・ジャパン Passive immunization method of shellfish

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219820A (en) * 1989-11-29 1991-09-27 Mitsubishi Electric Corp Breeding apparatus
JPH0564533A (en) * 1991-09-05 1993-03-19 Fuji Electric Co Ltd Rearing facility for fish and shellfish using seawater
JPH0646719A (en) * 1992-08-03 1994-02-22 Harima Chem Inc Culturing apparatus for fishery
JPH06182369A (en) * 1992-12-16 1994-07-05 Toshiba Corp Water treatment device
JPH0731996A (en) * 1993-07-21 1995-02-03 Nippon Steel Corp Waste water treating method
JPH07195089A (en) * 1993-12-29 1995-08-01 Japan Organo Co Ltd Treatment and treating device of ammoniac nitrogen-containing waste water
JP2001239279A (en) * 2000-03-03 2001-09-04 Hitachi Zosen Corp Method of removing ammonium-nitrogen in water
US20120055881A1 (en) * 2010-09-07 2012-03-08 Jim Constant Water purification system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219820A (en) * 1989-11-29 1991-09-27 Mitsubishi Electric Corp Breeding apparatus
JPH0564533A (en) * 1991-09-05 1993-03-19 Fuji Electric Co Ltd Rearing facility for fish and shellfish using seawater
JPH0646719A (en) * 1992-08-03 1994-02-22 Harima Chem Inc Culturing apparatus for fishery
JPH06182369A (en) * 1992-12-16 1994-07-05 Toshiba Corp Water treatment device
JPH0731996A (en) * 1993-07-21 1995-02-03 Nippon Steel Corp Waste water treating method
JPH07195089A (en) * 1993-12-29 1995-08-01 Japan Organo Co Ltd Treatment and treating device of ammoniac nitrogen-containing waste water
JP2001239279A (en) * 2000-03-03 2001-09-04 Hitachi Zosen Corp Method of removing ammonium-nitrogen in water
US20120055881A1 (en) * 2010-09-07 2012-03-08 Jim Constant Water purification system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018051492A (en) * 2016-09-29 2018-04-05 鋒霈環境科技股▲ふん▼有限公司 Device for treating waste water containing ammonia
JP2021029185A (en) * 2019-08-27 2021-03-01 株式会社イーダブルニュートリション・ジャパン Passive immunization method of shellfish
JP7318865B2 (en) 2019-08-27 2023-08-01 株式会社イーダブルニュートリション・ジャパン Shellfish passive immunization method
CN111567475A (en) * 2020-06-30 2020-08-25 潘俊朝 High-yield aquaculture system

Similar Documents

Publication Publication Date Title
CN101193824B (en) Ballast water treatment apparatus and method
JP5822972B2 (en) Circulation type aquaculture method and circulation type aquaculture apparatus
AU773613B2 (en) Method for improving conditions in closed circuit fish farming
JP6131342B2 (en) Method for producing sterilized cultured water and method for culturing flowing water-sterilized water fish using the same
US11040901B2 (en) Removing nitrate from water
WO2017110296A1 (en) Denitrification device and aquatic organism rearing system
KR101498990B1 (en) Continuous Flow Sterile Water Fish Aquaculture System
de Jesus Gregersen et al. UV irradiation and micro filtration effects on micro particle development and microbial water quality in recirculation aquaculture systems
JP4602446B2 (en) Automatic denitrification system for closed waters
JP2015192627A (en) Closed type culture system and culture water purification method
JP2015019647A (en) Removal method and removal device for ammonia contained in culture water
JP6742128B2 (en) Closed circulation type land aquaculture system coexisting with ozone treatment and biological filtration treatment and its control method
WO2016031827A1 (en) Closed rearing method and closed rearing apparatus
JP2017176146A (en) Ammonia treatment method in closed circulation type land-based aquaculture and closed circulation type land-based aquaculture apparatus
JP2013063036A (en) Method for raising aquatic animals, and method for removing nitrate-nitrogen
JP2003047969A (en) Method for sterilizing nursery water with ozone gas
JP2003274796A (en) Closed circulation type fish farming system
JPWO2012124039A1 (en) Ballast water disinfectant and ballast water treatment device
JP2002034385A (en) Overland culture method by circulating culture water and apparatus therefor
JP6529706B1 (en) Ballast water treatment method
JP2004160349A (en) Water cleaning apparatus for fish and shellfish
JPH03219820A (en) Breeding apparatus
JP2017063670A (en) Closed type culture system, and control method for the same
KR200314696Y1 (en) Water Treatment System For Breeding or Storing Of Fish, Shellfish, etc.
JP2017063667A (en) Circulation type culture method, and circulation type culture device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180717