JP4602446B2 - Automatic denitrification system for closed waters - Google Patents

Automatic denitrification system for closed waters Download PDF

Info

Publication number
JP4602446B2
JP4602446B2 JP2008258846A JP2008258846A JP4602446B2 JP 4602446 B2 JP4602446 B2 JP 4602446B2 JP 2008258846 A JP2008258846 A JP 2008258846A JP 2008258846 A JP2008258846 A JP 2008258846A JP 4602446 B2 JP4602446 B2 JP 4602446B2
Authority
JP
Japan
Prior art keywords
denitrification
water
circulation
circulation tank
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008258846A
Other languages
Japanese (ja)
Other versions
JP2010088307A (en
Inventor
洋一 辻
嘉一 小泉
Original Assignee
株式会社大洋水研
株式会社環境技術センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大洋水研, 株式会社環境技術センター filed Critical 株式会社大洋水研
Priority to JP2008258846A priority Critical patent/JP4602446B2/en
Publication of JP2010088307A publication Critical patent/JP2010088307A/en
Application granted granted Critical
Publication of JP4602446B2 publication Critical patent/JP4602446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Description

本発明は、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系水域内の硝酸を自動的に還元して窒素ガスにまで変換可能とする閉鎖系水域の自動脱窒システムに係り、より詳しくは、閉鎖系水域内の水の一部を脱窒循環槽に取り込み、この脱窒循環槽に取り込んだ水の中に硝酸が存在するときは硝酸が無くなるまで脱窒処理を繰り返し、硝酸が無くなった後に脱窒循環槽内の水を閉鎖系水域に戻し、これにより、換水によって対応すること無く、閉鎖系水域内の硝酸濃度を低い値で一定に保つことを可能とした閉鎖系水域の自動脱窒システムに関する。   The present invention relates to an automatic denitrification system for closed water areas that can automatically reduce nitric acid in closed water areas such as aquaculture, sacrifice, and ornamental fish display to convert it into nitrogen gas. Part of the water in the closed water system is taken into the denitrification circulation tank. If nitric acid is present in the water taken into the denitrification circulation tank, the denitrification treatment is repeated until the nitric acid is exhausted, and after the nitric acid is exhausted. The water in the denitrification circulation tank is returned to the closed system water area, which makes it possible to keep the nitric acid concentration in the closed system water area constant at a low value without dealing with water exchange. About the system.

周知のように、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系水域で魚介類を飼育する場合には、魚介類から出る老廃物や餌の残渣に由来して発生するアンモニア態窒素は毒性が強いため、飼育している魚介類の死滅等を防止するためには、このアンモニア態窒素の蓄積は許されない。そのため、これらの閉鎖系水域では一般的に、生物濾過と呼ばれる好気性細菌による処理で毒性の弱い硝酸態窒素にまで酸化(「硝化」)している。   As is well known, when raising seafood in closed waters such as aquaculture, sacrifice, and ornamental fish display, ammonia nitrogen generated from waste products and food residues from seafood is toxic. Since it is strong, the accumulation of ammonia nitrogen is not allowed in order to prevent the killing of the fish and shellfish reared. For this reason, these closed waters are generally oxidized ("nitrified") to nitrate nitrogen which is less toxic by treatment with aerobic bacteria called biofiltration.

そして、その具体的な方法としては、例えば、濾過装置本体内に濾過材としての珊瑚砂を入れるとともに、この珊瑚砂に好気バクテリアを付着させて濾過装置を構成し、ポンプによって、水槽内の水を、濾過装置内を通過させつつ循環させる方法が一般的である。   And as the concrete method, for example, while putting the cinnabar sand as a filtering material in the filter device body, aerobic bacteria are attached to the cinnabar sand to constitute the filter device, and by the pump, In general, water is circulated while passing through the filtration device.

そうすると、水槽水に含まれるアンモニア等の有毒物質は、濾過装置を通過する過程で、好気バクテリアによって硝化されて毒性の弱い硝酸態窒素にまで変化していく。   Then, toxic substances such as ammonia contained in the aquarium water are nitrified by aerobic bacteria in the process of passing through the filtration device, and change into nitrate nitrogen having low toxicity.

ところで、硝酸態窒素は毒性が弱いが、過剰に蓄積されて濃度が高くなると弊害が生じるため、濃度についてはある程度の許容範囲が定められている。一方、硝酸は硝化の最終物質であり、閉鎖系水域に蓄積されていくため、硝酸態窒素の濃度が許容範囲を超えた場合には、換水しなければならないとされている。   By the way, although nitrate nitrogen is weakly toxic, adverse effects occur when the concentration is excessively increased and the concentration becomes high, and therefore, a certain allowable range is set for the concentration. On the other hand, nitric acid is the final substance of nitrification, and it accumulates in closed waters. Therefore, if the concentration of nitrate nitrogen exceeds the allowable range, the water must be changed.

しかしながら、例えば、水産養殖、生け簀、大型の観賞魚ディスプレイ等の場合には、換水作業に要する手間、時間、コスト等が大きいという問題点が指摘できる。   However, for example, in the case of aquaculture, ginger, large-sized ornamental fish display, etc., it can be pointed out that the labor, time, cost, etc. required for the water replacement work are large.

そこで、本発明は、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系な水域で魚介類を飼育する場合において、硝酸濃度の上昇を完全に抑え、換水によって対応すること無く、閉鎖系水域内の硝酸濃度を低い値で一定に保つことを可能にする閉鎖系水域の自動脱窒システムを提供することを課題としている。   Therefore, the present invention, when raising seafood in closed water areas such as aquaculture, ginger, ornamental fish display, etc., completely suppresses the increase in nitric acid concentration, without responding to the change of water, An object of the present invention is to provide an automatic denitrification system in a closed water system that makes it possible to keep the nitric acid concentration constant at a low value.

本発明の閉鎖系水域の自動脱窒システムは、
閉鎖系水域の自動脱窒システムであって、
閉鎖系水域内の水を取り込むための脱窒循環槽と、
該脱窒循環槽内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒塔と、
閉鎖系水域内の水を前記脱窒循環槽に取り込むための水張り手段と、
前記脱窒塔を通過させつつ前記脱窒循環槽内の水を循環するための循環手段と、
前記脱窒循環槽内の水を前記閉鎖系水域に戻すための押出手段と、
前記脱窒循環槽内に配設された、前記脱窒循環槽内の水に含まれる硝酸濃度を検知するための硝酸濃度検知手段と、
前記脱窒循環槽内に配設された、前記脱窒循環槽内の水位を検知するための水位検知手段と、
前記脱窒循環槽内に配設されたヒーターと、
システム全体の作動を制御するための制御手段と、を具備するとともに、
前記脱窒塔は、嫌気性細菌を着床させるための細菌着床部と、前記嫌気性細菌の栄養分としての生分解ポリマーと、を内部に充填し、硝酸を含んだ水を通過させることにより、水に含まれる硝酸を還元して窒素ガスにまで変換可能とし、
前記水張り手段によって前記脱窒循環槽内に閉鎖系水域の水を取り込み、
前記循環手段によって前記脱窒循環槽内の水を前記脱窒塔との間で循環することで、前記脱窒循環槽内の水に含まれる硝酸を還元して窒素ガスにまで変換し、
前記押出手段によって、硝酸が含まれていない前記脱窒循環槽内の水を閉鎖系水域に戻す、ことを可能とした、ことを特徴としている。
The automatic denitrification system for closed water areas of the present invention is
An automatic denitrification system for closed water areas,
A denitrification circulation tank for taking in water in a closed water body,
A denitrification tower for reducing nitric acid contained in water taken into the denitrification circulation tank and converting it into nitrogen gas;
Water filling means for taking water in a closed system water area into the denitrification circulation tank;
A circulation means for circulating water in the denitrification circulation tank while passing through the denitrification tower;
Extrusion means for returning the water in the denitrification circulation tank to the closed water area;
Nitric acid concentration detection means for detecting the concentration of nitric acid contained in the water in the denitrification circulation tank, disposed in the denitrification circulation tank,
A water level detecting means for detecting a water level in the denitrification circulation tank, disposed in the denitrification circulation tank;
A heater disposed in the denitrification circulation tank;
Control means for controlling the operation of the entire system ,
The denitrification tower is filled with a bacteria implantation part for implanting anaerobic bacteria and a biodegradable polymer as a nutrient of the anaerobic bacteria, and by passing water containing nitric acid. Nitric acid contained in water can be reduced and converted to nitrogen gas,
Incorporating water in a closed water area into the denitrification circulation tank by the water filling means,
By circulating the water in the denitrification circulation tank with the denitrification tower by the circulation means, the nitric acid contained in the water in the denitrification circulation tank is reduced and converted to nitrogen gas,
It is possible to return the water in the denitrification circulation tank not containing nitric acid to the closed water body by the extrusion means.

嫌気的な条件の下で嫌気性細菌(「脱窒菌」)が硝酸呼吸をすると、硝酸が還元されて窒素ガスにまで変換されるが(これを「脱窒」という。)、本発明の閉鎖系水域の自動脱窒システムでは、閉鎖系水域内の水を取り込むための脱窒循環槽と、この脱窒循環槽内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒塔とを有するとともに、閉鎖系水域内の水を脱窒循環槽に取り込むための水張り手段と、脱窒塔を介して脱窒循環槽内の水を循環するための循環手段と、脱窒循環槽内の水を閉鎖系水域に戻すための押出手段とを有しており、脱窒塔は、嫌気性細菌を着床させるための細菌着床部と、嫌気性細菌の栄養分としての生分解ポリマーを内部に充填し、硝酸を含んだ水を通過させることにより、硝酸を還元して窒素ガスにまで変換可能とし、この構成において、閉鎖系水域内の水の一部を脱窒循環槽に取り込む水張工程と、脱窒循環槽内の水の硝酸を還元して窒素ガスにまで変換する循環工程と、脱窒循環槽内の水に硝酸が含まれていないときに、この硝酸が含まれていない脱窒循環槽内の水を閉鎖系水域に戻す押出工程を行うこととしている。そのため、本発明によれば、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系な水域で魚介類を飼育する場合において、硝酸濃度の上昇を完全に抑え、換水によって対応すること無く、閉鎖系水域内の硝酸濃度を低い値で一定に保つことが可能である。   When anaerobic bacteria (“denitrifying bacteria”) respirate nitrate under anaerobic conditions, nitrate is reduced and converted to nitrogen gas (this is called “denitrification”), but the closure of the present invention. In the automatic denitrification system of the system water area, the denitrification circulation tank for taking in the water in the closed system water area and the nitric acid contained in the water taken into the denitrification circulation tank are reduced and converted to nitrogen gas A denitrification tower, water filling means for taking the water in the closed system water area into the denitrification circulation tank, and circulation means for circulating the water in the denitrification circulation tank through the denitrification tower, The denitrification tower has an extrusion means for returning the water in the denitrification circulation tank to the closed system water area, and the denitrification tower has a bacteria implantation part for implanting the anaerobic bacteria, and nutrients for the anaerobic bacteria. Nitric acid is reduced by filling the inside with biodegradable polymer and passing water containing nitric acid. Nitrogen gas can be converted to nitrogen gas, and in this configuration, a water filling step for taking a part of the water in the closed water area into the denitrification circulation tank, and the nitric acid in the denitrification circulation tank is reduced to nitrogen gas. A circulation process to be converted and an extrusion process to return the water in the denitrification circulation tank not containing nitric acid to the closed system water area when nitric acid is not contained in the water in the denitrification circulation tank . Therefore, according to the present invention, when raising seafood in closed water areas such as aquaculture, ginger, ornamental fish display, etc., the increase in nitric acid concentration is completely suppressed, and the closed water area does not respond by changing water. It is possible to keep the nitric acid concentration in the inside constant at a low value.

そして、このとき、本発明では、脱窒塔内に嫌気性細菌である脱窒菌の栄養分としての生分解ポリマーを充填しているために、脱窒塔内において脱窒菌を確実に繁殖させることが可能である。   At this time, in the present invention, the denitrification tower is filled with a biodegradable polymer as a nutrient of the denitrification bacteria, which is an anaerobic bacterium, so that the denitrification bacteria can be reliably propagated in the denitrification tower. Is possible.

また、本発明の閉鎖系水域の自動脱窒システムでは、閉鎖系水域内の水の一部を脱窒循環槽に移動する水張工程と、脱窒循環槽内の水を循環する循環工程とを別々の工程としてバッチ処理しているために、循環工程においては、脱窒塔内に外部から酸素が入り込むことがないとともに、好気性細菌の酸素呼吸によって残存酸素はすぐに枯渇し嫌気化するため、脱窒塔内の嫌気性細菌の脱窒活性を速やかに高めることが可能である。   Moreover, in the automatic denitrification system for closed system water areas of the present invention, a water filling process for moving a part of the water in the closed system water area to the denitrification circulation tank, and a circulation process for circulating the water in the denitrification circulation tank; In the circulation process, oxygen is not introduced from the outside into the denitrification tower, and residual oxygen is immediately depleted and anaerobic by oxygen respiration of aerobic bacteria. Therefore, it is possible to quickly increase the denitrification activity of anaerobic bacteria in the denitrification tower.

本発明の閉鎖系水域の自動脱窒システムでは、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系な水域内の水を取り込むための脱窒循環槽と、この脱窒循環槽内に取り込んだ閉鎖系水域の水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒塔を有するとともに、閉鎖系水域内の水を脱窒循環槽に取り込むための水張り手段と、脱窒塔を介して脱窒循環槽内に取り込んだ水を循環するための循環手段と、脱窒循環槽内の水を閉鎖系水域に戻すための押出手段とを有している。   In the automatic denitrification system for closed water areas according to the present invention, a denitrification circulation tank for taking in water in closed water areas such as aquaculture, sacrifice, and ornamental fish display, and a closure taken into this denitrification circulation tank A denitrification tower for reducing nitric acid contained in water in the system water area to convert it into nitrogen gas, and a water filling means for taking the water in the closed system water area into the denitrification circulation tank, and a denitrification tower A circulation means for circulating the water taken into the denitrification circulation tank, and an extrusion means for returning the water in the denitrification circulation tank to the closed water area.

そして、前記脱窒循環槽内には、脱窒循環槽内の水に含まれる硝酸濃度を検知するための硝酸濃度検知手段と、脱窒循環槽内の水位を検知するための水位検知手段と、脱窒循環槽内の水温を一定以上に維持するためのヒーターとが配設されており、これらの硝酸濃度検知手段、ヒーター、水位検知手段は制御手段に接続されている。   And in the denitrification circulation tank, nitric acid concentration detection means for detecting the concentration of nitric acid contained in the water in the denitrification circulation tank, and water level detection means for detecting the water level in the denitrification circulation tank, A heater for maintaining the water temperature in the denitrification circulation tank above a certain level is provided, and these nitric acid concentration detection means, heater and water level detection means are connected to the control means.

また、脱窒塔は、嫌気性細菌を着床させるための細菌着床部と、嫌気性細菌の栄養分としての生分解ポリマーとを内部に充填しており、硝酸を含んだ水を通過させることにより、硝酸を還元して窒素ガスにまで変換する機能を有する。   In addition, the denitrification tower is filled with a bacteria implantation part for implanting anaerobic bacteria and a biodegradable polymer as nutrients for anaerobic bacteria, and allows water containing nitric acid to pass through. Therefore, it has a function of reducing nitric acid and converting it to nitrogen gas.

そして、本発明の閉鎖系水域の自動脱窒システムはこのような構成において、水張り手段によって脱窒循環槽内に閉鎖系水域の水を取り込んで水張りを行い、水張りの後に、脱窒循環槽内の水に硝酸が存在しているときは、脱窒循環槽内の水を前記脱窒塔との間で循環し、これによって、前窒循環槽内の水に含まれる硝酸を還元して窒素ガスにまで変換し、脱窒循環槽内の水に硝酸が含まれていないときは、押出手段によって、脱窒循環槽内の水を閉鎖系水域に戻すこととしている。   And in such a configuration, the automatic denitrification system for a closed water area of the present invention takes the water of the closed water area into the denitrification circulation tank by water filling means and performs water filling, and after the water filling, the inside of the denitrification circulation tank When the nitric acid is present in the water, the water in the denitrification circulation tank is circulated with the denitrification tower, thereby reducing the nitric acid contained in the water in the prenitrification circulation tank to reduce nitrogen. When the gas is converted to gas and the nitric acid is not contained in the water in the denitrification circulation tank, the water in the denitrification circulation tank is returned to the closed system water area by the extrusion means.

ここで、前記水張り手段、循環手段、及び押出手段の作動を制御手段により自動制御し、これにより、自動的に水張工程、循環工程、及び押出工程を実行するとよく、それにより、最小限度の労力で各工程を行うことが可能である。   Here, the operation of the water filling means, the circulation means, and the extrusion means is automatically controlled by the control means, whereby the water filling step, the circulation step, and the extrusion step may be automatically executed, thereby minimizing the minimum amount. Each process can be performed with effort.

そして、自動制御の例としては、例えば、水位検知手段が脱窒循環槽内の水位の低下を検知したときに、水張り手段によって脱窒循環槽内に閉鎖系水域の水を取り込み、硝酸濃度検知手段が脱窒循環槽内の水に硝酸を検知したときに、検知している硝酸濃度が0mg/Lになるまで、循環手段によって脱窒循環槽内の水を脱窒塔との間で循環し、硝酸濃度検知手段が硝酸濃度を検知しないときに、押出手段を介して脱窒循環槽内の水を閉鎖系水域に戻す方法が考えられ、これによれば、硝酸濃度検知手段による検知結果に応じて自動的に各工程を実行することが可能となる。   As an example of automatic control, for example, when the water level detection means detects a decrease in the water level in the denitrification circulation tank, the water filling means takes in water in the closed system water area into the denitrification circulation tank and detects the nitric acid concentration. When the means detects nitric acid in the water in the denitrification circulation tank, the water in the denitrification circulation tank is circulated between the denitrification tower by the circulation means until the detected nitric acid concentration reaches 0 mg / L. However, when the nitric acid concentration detection means does not detect the nitric acid concentration, a method of returning the water in the denitrification circulation tank to the closed system water area through the extrusion means is conceivable. According to this, the detection result by the nitric acid concentration detection means Each process can be automatically executed according to the above.

またそのほか、タイマー等を用いて、このタイマーにより設定した時間に基づいて、制御手段が、水張り手段、循環手段、及び押出手段の作動を自動制御することとしてもよい。   In addition, using a timer or the like, the control means may automatically control the operation of the water filling means, the circulation means, and the extrusion means based on the time set by the timer.

更に、水張り手段、循環手段、及び押出手段は、それぞれを独立した経路で構成してもよいが、その他、前記循環手段を、脱窒循環槽内の水を脱窒塔に供給するための、基端が脱窒循環槽に連通するとともに先端が脱窒塔に連通し、任意の箇所に循環ポンプが介在された第1循環用流路と、脱窒塔を通過して脱窒された水を脱窒循環槽に戻すための、基端が脱窒塔に連通するとともに先端が脱窒循環槽に連通した第2の循環用流路とで構成し、水張り手段は、基端が閉鎖系水域に連通し、先端が第1の三方弁を介して第1の循環用流路に連結した水張り用流路で構成し、押出手段は、先端が閉鎖系水域に連通し、基端が第2の三方弁を介して第2の循環用流路に連結した押出用流路で構成し、
脱窒循環槽内に閉鎖系水域の水を取り込むときは、第1の三方弁及びの第2の三方弁の切り替えにより、第1の循環用流路による脱窒循環槽と脱窒塔との連通を遮断して、水張り用流路と第1の循環用流路により閉鎖系水域と脱窒塔を連通し、第2の循環用流路により脱窒塔と脱窒循環槽を連通し、水張り用流路、第1の循環用流路の一部、脱窒塔、第2の循環用流路を介して、閉鎖系水域内の水を脱窒循環槽に取り込み、
脱窒循環槽内の水を循環させるときは、第1の三方弁及び第2の三方弁の切り替えにより、第1の循環用流路によって脱窒循環槽と脱窒塔を連通し、第2の循環用流路によって脱窒塔と脱窒循環槽を連通し、第1の循環用流路、脱窒塔、第2の循環用流路を介して脱窒循環槽内の水を循環し、
脱窒循環槽内の水を閉鎖系水域に戻すときには、第1の三方弁及び第2の三方弁の切り替えにより、第1の循環用流路によって脱窒循環槽と脱窒塔を連通し、第2の循環用流路による脱窒塔と脱窒循環槽との連通を遮断して第2の循環用流路と押出用流路とにより脱窒塔と閉鎖系水域を連通し、第1の循環用流路、脱窒塔、第2の循環用流路の一部、及び押出用流路を介して脱窒循環槽内の水を閉鎖系水域に押し出すようにしてもよく、これによりシステム全体の構成を簡素化してコストを抑えることができる。
Furthermore, the water filling means, the circulation means, and the extrusion means may each be constituted by independent paths, but in addition, the circulation means for supplying water in the denitrification circulation tank to the denitrification tower, Water that has been denitrified by passing through a denitrification tower, a first circulation channel in which a base end communicates with a denitrification circulation tank and a tip communicates with a denitrification tower, and a circulation pump is interposed at an arbitrary position. The base end communicates with the denitrification tower and the top end communicates with the second circulation channel that communicates with the denitrification circulation tank. The extrusion means comprises a water-filled flow path that communicates with the water area and has a distal end connected to the first circulation flow path via the first three-way valve. Comprising a flow path for extrusion connected to the second flow path for circulation through two three-way valves,
When water in a closed system water area is taken into the denitrification circulation tank, switching between the first three-way valve and the second three-way valve causes the denitrification circulation tank and the denitrification tower to be connected with the first circulation channel. The communication is cut off, the closed water area and the denitrification tower are communicated by the water-filling flow path and the first circulation flow path, and the denitrification tower and the denitrification circulation tank are communicated by the second circulation flow path. The water in the closed system water area is taken into the denitrification circulation tank via the water filling channel, a part of the first circulation channel, the denitrification tower, and the second circulation channel,
When circulating the water in the denitrification circulation tank, the first three-way valve and the second three-way valve are switched so that the denitrification circulation tank and the denitrification tower communicate with each other through the first circulation channel. The denitrification tower and the denitrification circulation tank are communicated with each other through the circulation path, and the water in the denitrification circulation tank is circulated through the first circulation path, the denitrification tower, and the second circulation path. ,
When returning the water in the denitrification circulation tank to the closed system water area, the denitrification circulation tank and the denitrification tower are communicated by the first circulation channel by switching between the first three-way valve and the second three-way valve, The communication between the denitrification tower and the denitrification circulation tank by the second circulation channel is cut off, and the denitrification tower and the closed water system are communicated by the second circulation channel and the extrusion channel, The denitrification tower, the denitrification tower, a part of the second circulation channel, and the extrusion channel, the water in the denitrification circulation tank may be pushed out to the closed system water area, It is possible to reduce the cost by simplifying the configuration of the entire system.

また、前記脱窒塔に充填する生分解ポリマーとしては、植物油由来のポリマーを用いるとよく、これにより、安全性の高い脱窒システムにすることが可能である。   Further, as the biodegradable polymer packed in the denitrification tower, a polymer derived from vegetable oil may be used, whereby a highly safe denitrification system can be obtained.

本発明の閉鎖系水域の自動脱窒システム(以下単に「自動脱窒システム」という。)の実施例について図面を参照して説明すると、図1は本実施例の自動脱窒システムの全体を説明するための図であり、図において1が本実施例の自動脱窒システムである。   An embodiment of an automatic denitrification system (hereinafter simply referred to as “automatic denitrification system”) according to the present invention will be described with reference to the drawings. FIG. 1 illustrates the entire automatic denitrification system of this embodiment. 1 is an automatic denitrification system of the present embodiment.

また、図1において2は、閉鎖系水域としての水槽であり、本実施例の自動脱窒システムは、この水槽2内の水に含まれる硝酸を自動で脱窒することを目的としている。   In FIG. 1, reference numeral 2 denotes a water tank as a closed system water area, and the automatic denitrification system of this embodiment is intended to automatically denitrify nitric acid contained in the water in the water tank 2.

ここで、前記水槽2について説明すると、この水槽2には、循環路302を介して、好気性細菌を用いた濾過装置301が連結されており、循環路302の任意の箇所には、水槽水を循環させるための濾過用ポンプ303が介在され、この濾過用ポンプ303の作用により、水槽水は、濾過装置301を通って循環される構成としている。なお、この好気性細菌を用いた濾過装置は従来周知であるために詳細な説明は省略する。また、図1において402はエアレーションであり、また401はエアレーションを発生させるためのエアストーンである。   Here, the water tank 2 will be described. A filtration device 301 using aerobic bacteria is connected to the water tank 2 through a circulation path 302. A filtration pump 303 for circulating the water is interposed, and the aquarium water is circulated through the filtration device 301 by the action of the filtration pump 303. In addition, since the filtration apparatus using this aerobic bacterium is conventionally well-known, detailed description is abbreviate | omitted. In FIG. 1, reference numeral 402 denotes aeration, and reference numeral 401 denotes an air stone for generating aeration.

次に、図において5は脱窒循環槽である。即ち、本実施例の自動脱窒システムでは、脱窒循環槽を有しており、この脱窒循環槽5内に、前記水槽2の水の一部を取り込むこととしている。   Next, 5 is a denitrification circulation tank in the figure. That is, the automatic denitrification system of this embodiment has a denitrification circulation tank, and a part of the water in the water tank 2 is taken into the denitrification circulation tank 5.

また、本実施例においてこの脱窒循環槽5内には、脱窒循環槽5内に取り込んだ水に含まれる硝酸濃度を検知するための硝酸濃度検知手段6と、脱窒循環槽5内に取り込んだ水の水位を検知するための水位検知手段7が配設されており、更に、脱窒循環槽5内の水の温度を一定以上に維持するためのヒーター8が配設されている。そして、本実施例においては、前記硝酸濃度検知手段6としては硝酸イオンメーターを用いており、前記水位検知手段7としてはフロートスイッチを用いている。   In the present embodiment, the denitrification circulation tank 5 includes a nitric acid concentration detection means 6 for detecting the concentration of nitric acid contained in the water taken into the denitrification circulation tank 5, and a denitrification circulation tank 5. A water level detecting means 7 for detecting the water level of the taken-in water is provided, and further, a heater 8 for maintaining the temperature of the water in the denitrification circulation tank 5 at a certain level or more is provided. In this embodiment, a nitrate ion meter is used as the nitric acid concentration detecting means 6 and a float switch is used as the water level detecting means 7.

次に、図において9は脱窒塔である。即ち、本実施例では脱窒塔9を有しており、この脱窒塔9において、前記脱窒循環槽5内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換することとしている。   Next, 9 is a denitrification tower in the figure. That is, in this embodiment, the denitrification tower 9 is provided. In this denitrification tower 9, nitric acid contained in the water taken into the denitrification circulation tank 5 is reduced and converted to nitrogen gas. Yes.

即ち、嫌気的な条件の下で、嫌気性細菌である脱窒菌が硝酸呼吸をし、それにより硝酸を還元して窒素ガスにする作用を脱窒というが、本実施例の自動脱窒システムでは、前記脱窒塔9を介して前記脱窒循環槽5内の水を循環し、これにより、脱窒によって、前記脱窒循環槽5内に取り込んだ水に含まれる硝酸を無くすることとしている。   That is, under anaerobic conditions, denitrifying bacteria, which are anaerobic bacteria, respire nitrate, thereby denitrifying the action of reducing nitric acid to nitrogen gas. In the automatic denitrification system of this embodiment, The water in the denitrification circulation tank 5 is circulated through the denitrification tower 9, thereby eliminating nitric acid contained in the water taken into the denitrification circulation tank 5 by denitrification. .

ここで、前記脱窒塔9について説明すると、図2は本実施例における脱窒塔9の構成を説明するための図であり、本実施例において前記脱窒塔9は、筒状とした容器(「カラム」)901内に、嫌気性細菌としての脱窒菌を着床させるための細菌着床部902と、脱窒菌の栄養分としての生分解ポリマー903とを交互にサンドイッチ状に充填して構成されており、前記細菌着床部902としては、脱窒菌を効率的に着床させることが可能な珊瑚砂を用いている。   Here, the denitrification tower 9 will be described. FIG. 2 is a diagram for explaining the configuration of the denitrification tower 9 in the present embodiment. In the present embodiment, the denitrification tower 9 is a cylindrical container. (“Column”) 901 is configured by alternately filling a bacteria implantation unit 902 for implanting denitrifying bacteria as anaerobic bacteria and a biodegradable polymer 903 as a nutrient of the denitrifying bacteria in a sandwich shape. In addition, cinnabar sand capable of efficiently depositing denitrifying bacteria is used as the bacterial implantation part 902.

そして、この構成において、硝酸を含んだ水がこの脱窒塔9内を通過することで、脱窒菌による作用で、水に含まれる硝酸を還元して窒素ガスにまで変換することを可能としている。   And in this structure, when the water containing nitric acid passes through the inside of the denitrification tower 9, it is possible to reduce the nitric acid contained in the water and convert it into nitrogen gas by the action of the denitrifying bacteria. .

また、本実施例においては、前記生分解ポリマーとしては、植物油由来のポリマーを用いており、これにより安全性を確保している。即ち、天然原料を使用しているために、食材である養殖魚に懸念すべき化学物質が捕り込まれず、対人的な危険性も極めて低く、魚自体への化学物質による影響も極めて低く、閉鎖系水域の水が閉鎖系の外に流出した際に環境に対する負荷が極めて低いという利点がある。   In the present example, as the biodegradable polymer, a polymer derived from vegetable oil is used, thereby ensuring safety. In other words, because of the use of natural raw materials, the chemicals that should be a concern for the farmed fish are not trapped, the risk to humans is extremely low, and the impact of chemicals on the fish itself is extremely low, closing There is an advantage that the load on the environment is extremely low when water in the system water area flows out of the closed system.

なお、本実施例において前記植物油由来の生分解ポリマーとしては、イタリアのノバモント社製の商品名マタービーKF−01U/130を使用しており、これにより、硫化水素の発生も防止している。   In addition, in this example, as the biodegradable polymer derived from vegetable oil, the trade name Matterby KF-01U / 130 manufactured by Novamont of Italy is used, thereby preventing generation of hydrogen sulfide.

即ち、例えば海水を嫌気条件化におくと、嫌気性細菌である硫酸還元菌によって硫酸が還元されるために猛毒の硫化水素が発生することがあり、かかる場合には、水槽内の魚介類が死滅に至る場合も考えられる。しかしながら、本発明者による実験の結果、前記マタービーKF−01U/130を生分解ポリマーとして使用した場合には硫化水素の発生が見られなかった。従って、生分解ポリマーとして前記マタービーKF−01U/130を使用している本実施例の自動脱窒システムでは、海水を循環した場合でも、猛毒な硫化水素が発生することもない。   That is, for example, when seawater is subjected to anaerobic conditions, sulfuric acid is reduced by the anaerobic bacterium, sulfate-reducing bacteria, so that highly toxic hydrogen sulfide may be generated. It may be killed. However, as a result of experiments by the inventor, no hydrogen sulfide was generated when the above-mentioned Matterby KF-01U / 130 was used as a biodegradable polymer. Therefore, in the automatic denitrification system of this embodiment using the Matterby KF-01U / 130 as a biodegradable polymer, even when seawater is circulated, no toxic hydrogen sulfide is generated.

なお、脱窒菌は水温が25℃を下回ると極端に活性が低下して脱窒するスピードが遅くなるため、本実施例においては、冬場の水温対策として、前記ヒーター8を脱窒循環槽5内に配設し、システム内の水温を25℃以上に保てるようにしている。   In addition, since the denitrifying bacteria have extremely low activity when the water temperature falls below 25 ° C., the speed of denitrification slows down. Therefore, in this embodiment, the heater 8 is placed in the denitrification circulation tank 5 as a countermeasure for the water temperature in winter. The water temperature in the system can be kept at 25 ° C. or higher.

次に、図において11は循環手段である。即ち、本実施例においては、循環手段11によって、前記脱窒循環槽5内の水を前記脱窒塔9との間で循環させ、この循環によって確実に脱窒することとしている。   In the figure, reference numeral 11 denotes a circulation means. That is, in this embodiment, the circulation means 11 circulates the water in the denitrification circulation tank 5 between the denitrification tower 9 and reliably denitrifies by this circulation.

ここで、本実施例において前記循環手段11は、第1の循環用流路1101を有しており、この第1の循環用流路1101は、基端が前記脱窒循環槽5に連通して、他端が前記脱窒塔9に連通し、更に、途中に循環用ポンプ1102が介在されている。そしてこの構成により、循環用ポンプ1102を作動させることで、第1の循環用流路1101を介して前記脱窒循環槽5内の水を前記脱窒塔9に供給することを可能としている。   Here, in this embodiment, the circulation means 11 has a first circulation channel 1101, and the first circulation channel 1101 communicates with the denitrification circulation tank 5 at the base end. The other end communicates with the denitrification tower 9, and a circulation pump 1102 is interposed in the middle. With this configuration, by operating the circulation pump 1102, the water in the denitrification circulation tank 5 can be supplied to the denitrification tower 9 through the first circulation channel 1101.

また、前記循環手段11は、第2の循環用流路1103を有しており、この第2の循環用流路1103は、一端が前記脱窒塔9に連通して他端が前記脱窒循環槽5に連通しており、前記循環用ポンプ1102を作動させることで、前記脱窒循環槽5内の水を前記脱窒塔9に供給するとともに、前記脱窒塔9内を通過して脱窒された水を前記脱窒循環槽5内に戻すことを可能としている。   The circulation means 11 has a second circulation channel 1103, one end of which communicates with the denitrification tower 9 and the other end of the denitrification channel 1103. The water in the denitrification circulation tank 5 is supplied to the denitrification tower 9 by passing through the denitrification tower 9 by operating the circulation pump 1102. The denitrified water can be returned to the denitrification circulation tank 5.

従って本実施例によれば、循環用ポンプ1102を作動させることのみで、前記脱窒循環槽5内の水を、前記脱窒塔9を通過させつつ循環し、これによりに前記脱窒循環槽5内の水を脱窒することができるため、換水によって対応すること無く、水槽内の硝酸濃度の上昇を完全に抑え、硝酸濃度を低い値で一定に保つことが可能である。   Therefore, according to the present embodiment, the water in the denitrification circulation tank 5 is circulated while passing through the denitrification tower 9 only by operating the circulation pump 1102, and thereby the denitrification circulation tank. Since the water in 5 can be denitrified, it is possible to completely suppress the increase in the concentration of nitric acid in the water tank and keep the nitric acid concentration constant at a low value without dealing with the water exchange.

次に、図において10は、前記水槽2内の水を前記脱窒循環槽5に取り込んで脱窒循環槽5の水張りを行なうための水張り手段であり、本実施例においてこの水張り手段10は、基端が前記水槽2に連通した水張り用流路1101としている。そして、この水張り用流路1101の先端は、第1の三方弁14aを介して、前記第1の循環用流路1101に連結している。   Next, in the figure, reference numeral 10 denotes water filling means for taking the water in the water tank 2 into the denitrification circulation tank 5 and filling the denitrification circulation tank 5, and in this embodiment, the water filling means 10 is: The base end is a water filling channel 1101 communicating with the water tank 2. The tip of the water filling channel 1101 is connected to the first circulation channel 1101 via the first three-way valve 14a.

また、図において12は、前記脱窒循環槽5内の水を水槽2に戻すための押出手段であり、本実施例においてこの押出手段12は、先端が前記水槽2に連通した押出用流路1201としている。そして、この押出用流路1201の基端は、第2の三方弁14bを介して前記第2の循環用流路1103に連結している。   In the figure, 12 is an extruding means for returning the water in the denitrification circulation tank 5 to the water tank 2, and in this embodiment, the extruding means 12 is an extrusion channel whose tip communicates with the water tank 2. 1201. The proximal end of the extrusion flow channel 1201 is connected to the second circulation flow channel 1103 via the second three-way valve 14b.

そして、この構成により、前記水槽2内の水を脱窒循環槽5に取り込んで脱窒循環槽5の水張りを行うときには、前記第1の三方弁14a及び第2の三方弁14bの切り替えにより、第1の循環用流路1101による脱窒循環槽5と脱窒塔9との連通を遮断して、前記水張り用流路1001と、第1の循環用流路1101における水張り用流路1001との連結箇所よりも先端側の部分により、前記水槽2と脱窒塔9を連通し、また、前記第2の循環用流路1103により前記脱窒塔9と脱窒循環槽5を連通する。   And, by taking the water in the water tank 2 into the denitrification circulation tank 5 and filling the denitrification circulation tank 5 with this configuration, by switching between the first three-way valve 14a and the second three-way valve 14b, The communication between the denitrification circulation tank 5 and the denitrification tower 9 by the first circulation channel 1101 is blocked, and the water filling channel 1001 and the water filling channel 1001 in the first circulation channel 1101 The denitrification tower 9 and the denitrification tower 9 are communicated with each other by a portion on the tip side of the connection portion, and the denitrification tower 9 and the denitrification circulation tank 5 are communicated with each other through the second circulation channel 1103.

そうすると、この状態で前記循環用ポンプ1102を作動させると、水槽2内の水は、水張り用流路1001、第1の循環用流路1101における水張り用流路1001との連結箇所よりも先端側の部分、脱窒塔9、第2の循環用流路1103を順番に通過して、脱窒循環槽5に取り込まれ、これにより脱窒循環槽5の水張りを行うことができる。   Then, when the circulation pump 1102 is operated in this state, the water in the water tank 2 is more distal than the connection portion between the water filling channel 1001 and the water filling channel 1001 in the first circulation channel 1101. This portion, the denitrification tower 9 and the second circulation channel 1103 are sequentially passed through and taken into the denitrification circulation tank 5, whereby the denitrification circulation tank 5 can be filled with water.

一方、脱窒循環槽5内の水を水槽2に戻すときには、前記第1の三方弁14a及び第2の三方弁14bの切り替えにより、第2の循環用流路1103による脱窒塔9と脱窒循環槽5との連通を遮断して、第2の循環用流路1103における押出用流路1201との連結箇所よりも基端側の部分と、前記押出用流路1201とにより、前記脱窒塔9と水槽2とを連通し、また、前記第1の循環用流路1101により前記脱窒循環槽5と脱窒塔9を連通する。   On the other hand, when the water in the denitrification circulation tank 5 is returned to the water tank 2, the denitrification tower 9 and the denitrification tower 9 by the second circulation channel 1103 are removed by switching the first three-way valve 14a and the second three-way valve 14b. The communication with the nitrogen circulation tank 5 is cut off, and the portion of the second circulation channel 1103 closer to the extrusion channel 1201 than the connection point with the extrusion channel 1201 and the extrusion channel 1201 are used to remove the detachment. The nitriding tower 9 and the water tank 2 are communicated, and the denitrification circulation tank 5 and the denitrifying tower 9 are communicated by the first circulation channel 1101.

そうすると、この状態で前記循環用ポンプ1102を作動させると、脱窒循環槽5内の水は、第1の循環用流路1101、脱窒塔9、第2の循環用流路1103における押出用流路1201との連結箇所よりも基端側の部分、押出用流路1201を順番に通過して、水槽2に戻され、これにより脱窒循環槽5の水の押出を行うことができる。   Then, when the circulation pump 1102 is operated in this state, the water in the denitrification circulation tank 5 is used for extrusion in the first circulation channel 1101, the denitrification tower 9, and the second circulation channel 1103. The portion of the base end side with respect to the connection point with the flow path 1201 and the flow path for extrusion 1201 are sequentially passed back to the water tank 2, whereby water in the denitrification circulation tank 5 can be extruded.

次に、図において13は、制御手段を収納した制御盤であり、本実施例の自動脱窒システム1では、前記制御手段において、前記水張り、循環、押出の各工程を行なうとともに、システム全体の作動を制御している。   Next, in the figure, reference numeral 13 denotes a control panel containing control means. In the automatic denitrification system 1 of this embodiment, the control means performs the water filling, circulation, and extrusion steps, and the entire system. The operation is controlled.

ここで、本実施例の自動脱窒システム1の制御系について図3のブロック図を参照して説明すると、本実施例の自動脱窒システム1では、制御手段15としてのマイコンを有し、この制御手段15には、前記硝酸イオンメーター6、ヒーター8、フロートスイッチ7、循環用ポンプ1102が接続されている。また、本実施例では前記第1及び第2の三方弁14a、14bとして電動三方弁を用いており、この、第1及び第2の三方弁14a、14bもまた制御手段15に接続し、更にその他、操作スイッチ16、電源等が制御手段15に接続されている。   Here, the control system of the automatic denitrification system 1 of the present embodiment will be described with reference to the block diagram of FIG. 3. The automatic denitrification system 1 of the present embodiment has a microcomputer as the control means 15. The control means 15 is connected to the nitrate ion meter 6, the heater 8, the float switch 7, and the circulation pump 1102. In the present embodiment, electric three-way valves are used as the first and second three-way valves 14a and 14b. The first and second three-way valves 14a and 14b are also connected to the control means 15, and In addition, an operation switch 16, a power source, and the like are connected to the control means 15.

そして、制御手段15は、前記第1及び第2の三方弁14a、14bと循環用ポンプ1102を制御し、フロートスイッチ7により脱窒循環槽5内の水位の低下を検知したときに前述した水張りを行い、硝酸イオンメーター6が脱窒循環槽5に取り込んだ水の中に硝酸濃度を検知したときに前述した循環を行い、硝酸イオンメーター6による硝酸濃度の検知が無くなったときに前述した押出を行い、更に、冬場には、ヒーター8を作動させて脱窒循環槽5内の水温が25℃以上に維持する。   Then, the control means 15 controls the first and second three-way valves 14a and 14b and the circulation pump 1102, and when the float switch 7 detects a drop in the water level in the denitrification circulation tank 5, the water filling described above is performed. When the nitrate ion meter 6 detects the nitric acid concentration in the water taken into the denitrification circulation tank 5, the above-mentioned circulation is performed, and when the nitrate ion meter 6 no longer detects the nitric acid concentration, the extrusion described above is performed. Further, in winter, the heater 8 is operated to maintain the water temperature in the denitrification circulation tank 5 at 25 ° C. or higher.

次に、このように構成される本実施例の自動脱窒システム1を用いた自動脱窒方法について、図4のフローチャートを参照して説明すると、本実施例の自動脱窒方法ではまず、脱窒循環槽5への水張りを行う。即ち、ステップ1において、制御手段15は、前記第1及び第2の三方弁14a、14bと循環用ポンプ1102を制御して前述の水張りを行い、適量の、水槽2内の水を脱窒循環槽5に取り込む。   Next, an automatic denitrification method using the automatic denitrification system 1 of the present embodiment configured as described above will be described with reference to the flowchart of FIG. Water filling the nitrogen circulation tank 5 is performed. That is, in step 1, the control means 15 controls the first and second three-way valves 14a and 14b and the circulation pump 1102 to perform the above-mentioned water filling, and denitrifies and circulates an appropriate amount of water in the water tank 2. Take into tank 5.

次に、硝酸イオンメーター6が硝酸を検知すると、制御手段はステップ2において、硝酸濃度が0mg/Lになるまで、前記第1及び第2の三方弁14a、14bと循環用ポンプ1102を制御して前述の循環を行い、脱窒循環槽5内の水の脱窒を行う。   Next, when the nitrate ion meter 6 detects nitric acid, in step 2, the control means controls the first and second three-way valves 14a and 14b and the circulation pump 1102 until the nitric acid concentration becomes 0 mg / L. The above-described circulation is performed to denitrify the water in the denitrification circulation tank 5.

そして、脱窒循環槽5内の硝酸濃度が0mg/Lになった後、あるいは、ステップ1の水張りの後に硝酸イオンメーター6が硝酸を検知しなかったときは、制御手段15は、ステップ3において、前記第1及び第2の三方弁14a、14bと循環用ポンプ1102を制御して前述の押出を行い、脱窒循環槽5内の水を水槽2へ戻す。   Then, after the nitric acid concentration in the denitrification circulation tank 5 becomes 0 mg / L, or when the nitrate ion meter 6 does not detect nitric acid after the water filling in Step 1, the control means 15 The first and second three-way valves 14 a and 14 b and the circulation pump 1102 are controlled to perform the above-described extrusion, and the water in the denitrification circulation tank 5 is returned to the water tank 2.

そして、ステップ3の押出により脱窒循環槽5内の水位が低下した後に、前記ステップ1からステップ3を繰り返し行い、これにより、水槽2内の水の脱窒を自動的に行っていく。   And after the water level in the denitrification circulation tank 5 falls by extrusion of step 3, the said step 1 to step 3 is repeatedly performed, and, thereby, denitrification of the water in the water tank 2 is performed automatically.

このように、本実施例の自動脱窒システムによれば、水槽内の水の脱窒を行うことが可能であるため、水産養殖、生け簀、観賞魚ディスプレイ等の閉鎖系水域で魚介類を飼育する場合において、換水を行うことなく、閉鎖系水域内の硝酸濃度を低い値で一定に保つことが可能である。   As described above, according to the automatic denitrification system of the present embodiment, it is possible to denitrify water in the aquarium, so that seafood is raised in closed water areas such as aquaculture, sacrifice, and ornamental fish display. In this case, it is possible to keep the nitric acid concentration in the closed water area constant at a low value without performing water exchange.

また、脱窒を行うための脱窒塔内に、嫌気性細菌の栄養分としての生分解ポリマーを充填しているために、脱窒塔内において嫌気性細菌を確実に繁殖させることが可能である。   In addition, since the denitrification tower for performing denitrification is filled with a biodegradable polymer as an nutrient for anaerobic bacteria, it is possible to reliably propagate the anaerobic bacteria in the denitrification tower. .

更に、水槽内の水の一部を脱窒循環槽に移動する水張工程と、脱窒循環槽内の水を循環する循環工程とを別々の工程としてバッチ処理しているために、脱窒塔内の嫌気性細菌の脱窒活性を速やかに高めることが可能である。   Furthermore, since the water filling process for transferring a part of the water in the water tank to the denitrification circulation tank and the circulation process for circulating the water in the denitrification circulation tank are batch-processed as separate processes, denitrification is performed. It is possible to quickly increase the denitrification activity of anaerobic bacteria in the tower.

即ち、例えば残存酸素を豊富に含む海水を脱窒循環槽5に取り込んで水張りを行った場合には、脱窒循環槽5内に酸素が入り込んでしまう。このとき、一般的に脱窒菌は、酸素に少しでもふれると死滅してしまう編性嫌気性菌と異なり、通気性嫌気細菌であるために酸素が存在していても死滅することはないが、活動が弱くなってしまう。そのため、例えば、水張りと循環とを並行して行った場合には、脱窒循環槽5内に次々に酸素が供給されるため、脱窒菌の活性を高めることができず、有効な脱窒を行うことが困難になってしまう。   That is, for example, when seawater rich in residual oxygen is taken into the denitrification circulation tank 5 and water filling is performed, oxygen enters the denitrification circulation tank 5. At this time, in general, denitrifying bacteria are breathable anaerobic bacteria, unlike knitted anaerobic bacteria that die when exposed to even a small amount of oxygen. Activity becomes weak. Therefore, for example, when water filling and circulation are performed in parallel, oxygen is successively supplied into the denitrification circulation tank 5, so that the activity of the denitrifying bacteria cannot be increased and effective denitrification is performed. It becomes difficult to do.

しかしながら、本実施例では、水張工程と循環工程とを別々の工程としてバッチ処理しているため、循環工程においては、脱窒塔内に外部から酸素が入り込むことがないとともに、好気性細菌の酸素呼吸によって、水張りによって脱窒循環槽5内に取り込んだ水は、残存酸素がすぐに枯渇し嫌気化するため、脱窒塔内の嫌気性細菌の脱窒活性を速やかに高めることが可能である。   However, in this example, since the water filling step and the circulation step are batch-processed as separate steps, in the circulation step, oxygen does not enter the denitrification tower from the outside, and aerobic bacteria The water taken into the denitrification circulation tank 5 by oxygen breathing due to oxygen respiration is depleted of residual oxygen immediately and becomes anaerobic, so it is possible to quickly increase the denitrification activity of anaerobic bacteria in the denitrification tower. is there.

また、本実施例では、脱窒循環槽の水張り、脱窒循環槽内の水の脱窒循環、及び脱窒循環槽内の水の水槽への押出を制御手段の制御により自動的に行うため、最小限度の労力により、閉鎖系水域内の硝酸濃度を低い値で一定に保つことが可能である。   Further, in this embodiment, water filling of the denitrification circulation tank, denitrification circulation of water in the denitrification circulation tank, and extrusion of the water in the denitrification circulation tank to the water tank are automatically performed by control of the control means. It is possible to keep the nitric acid concentration in the closed water area constant at a low value with a minimum of effort.

なお、前述の自動脱窒システム1では、水張り手段10を、基端が前記水槽2に連通し、先端が第1の三方弁14aを介して前記第1の循環用流路1101に連結した水張り用流路1001により構成し、押出手段13は、先端が前記水槽2に連通して基端は第2の三方弁14bを介して前記第2の循環用流路1103に連結した押出用流路1201で構成して、水張り、押出の際に循環手段11の一部を利用してシステム全体の簡素化を可能とした場合を説明したが、必ずしもこのように構成する必要はなく、例えば図5及び図6に示すように、水張り手段10及び押出手段12を循環手段11とは別個に構成してもよい。   In the automatic denitrification system 1 described above, the water filling means 10 has a water filling means in which the base end communicates with the water tank 2 and the tip is connected to the first circulation channel 1101 via the first three-way valve 14a. The extrusion means 13 is composed of a flow path 1001 and the extrusion means 13 has a distal end communicating with the water tank 2 and a proximal end coupled to the second circulation flow path 1103 via a second three-way valve 14b. A case has been described in which the entire system is simplified by using a part of the circulation means 11 during water filling and extrusion, but is not necessarily configured in this manner. For example, FIG. As shown in FIG. 6, the water filling means 10 and the extrusion means 12 may be configured separately from the circulation means 11.

即ち、図5において、水張り手段10は、基端が水槽2に連通して先端が脱窒循環槽5に連通した水張り用流路1001と、この水張り用流路1001の任意の箇所に介在させた水張り用ポンプ1002で構成され、押出手段12は、基端が脱窒循環槽5に連通して先端が水槽2に連通した押出用流路1201と、この押出用流路1201の任意の箇所に介在させた押出用ポンプ1202で構成されている。そして、図6のブロック図に示すように、水張り用ポンプ1002と押出用ポンプ1202を制御手段15に接続し、制御手段15は、水張りを行う場合には水張り用ポンプ1002を作動させ、押出を行う場合には押出用ポンプを作動させることとしている。   That is, in FIG. 5, the water filling means 10 is interposed between a water filling channel 1001 having a base end communicating with the water tank 2 and a tip communicating with the denitrification circulation tank 5, and an arbitrary portion of the water filling channel 1001. The extrusion means 12 includes an extrusion flow path 1201 having a proximal end communicating with the denitrification circulation tank 5 and a distal end communicating with the water tank 2, and an arbitrary portion of the extrusion flow path 1201. It is comprised with the pump 1202 for extrusion interposed in. Then, as shown in the block diagram of FIG. 6, the water filling pump 1002 and the extrusion pump 1202 are connected to the control means 15, and the control means 15 operates the water filling pump 1002 to perform extrusion when water filling is performed. When performing, it is supposed to operate the pump for extrusion.

なお、図5に示す自動脱窒システム11は、水張り手段10及び押出手段12を循環手段11と別個に構成した点を特徴としており、その他の点は図1乃至図4に示した自動脱窒システム1と同様であるので、重複した説明は省略するとともに同一部品には同一符号を付した。   The automatic denitrification system 11 shown in FIG. 5 is characterized in that the water filling means 10 and the extrusion means 12 are configured separately from the circulation means 11, and the other points are the automatic denitrification systems shown in FIGS. Since it is the same as that of the system 1, the redundant description is omitted and the same components are denoted by the same reference numerals.

但し、必ずしも、図5に示す構成を採用する必要もなく、水張り手段10は、閉鎖系水域2内の水を脱窒循環槽5に取り込むことが可能であればよく、循環手段11は、脱窒塔9を通過させつつ脱窒循環槽5内の水を循環可能であればよく、及び、押出手段12は、脱窒循環槽5内の水を閉鎖系水域2に戻すことが可能であればよい。即ち、閉鎖系水域内の水を脱窒循環槽に取り込むための水張り手段と、脱窒塔を通過させつつ脱窒循環槽内の水を循環するための循環手段と、脱窒循環槽内の水を閉鎖系水域に戻すための押出手段を有していればよい。   However, it is not always necessary to adopt the configuration shown in FIG. 5, and the water filling means 10 only needs to be able to take the water in the closed water area 2 into the denitrification circulation tank 5, and the circulation means 11 can be removed. It is only necessary that the water in the denitrification circulation tank 5 can be circulated while passing through the nitrogen tower 9, and the extrusion means 12 can return the water in the denitrification circulation tank 5 to the closed system water area 2. That's fine. That is, a water filling means for taking water in the closed system water area into the denitrification circulation tank, a circulation means for circulating the water in the denitrification circulation tank while passing through the denitrification tower, and a denitrification circulation tank What is necessary is just to have the extrusion means for returning water to a closed system water area.

また、前述の実施例では、硝酸イオンメーター6による検知結果に基づいて、制御手段が、第1及び第2の三方弁14a、14bと循環用ポンプ1102を制御する方法を説明したが、その他、例えばタイマーにより、水張りを行い時間、循環を行う時間、押出を行う時間を予め設定しておき、この設定時間に基づいて、制御手段が第1及び第2の三方弁14a、14bと循環用ポンプ1102を制御する方法を採用してもよく、あるいは、手動により、第1及び第2の三方弁14a、14bと循環用ポンプ1102の作動を制御してもよい。   In the above-described embodiment, the method in which the control unit controls the first and second three-way valves 14a and 14b and the circulation pump 1102 based on the detection result by the nitrate ion meter 6 has been described. For example, with a timer, water filling time, circulation time, and extrusion time are set in advance, and based on the set time, the control means uses the first and second three-way valves 14a and 14b and the circulation pump. A method of controlling 1102 may be adopted, or the operations of the first and second three-way valves 14a and 14b and the circulation pump 1102 may be controlled manually.

本発明の自動脱窒システムによれば、換水を行うこと無く、閉鎖系水域内の硝酸濃度を低い値で一定に保つことを可能にしているため、硝酸濃度が高くなる可能性のある水域の全般に適用可能である。   According to the automatic denitrification system of the present invention, it is possible to keep the nitric acid concentration in the closed water area constant at a low value without performing water exchange. Applicable in general.

本発明の閉鎖的水域の自動脱窒システムの実施例のシステム全体を説明するための図である。It is a figure for demonstrating the whole system of the Example of the automatic denitrification system of the closed water area of this invention. 本発明の閉鎖的水域の自動脱窒システムの実施例における脱窒塔を説明するための図である。It is a figure for demonstrating the denitrification tower in the Example of the automatic denitrification system of the closed water area of this invention. 本発明の閉鎖的水域の自動脱窒システムの実施例の制御系を説明するための図である。It is a figure for demonstrating the control system of the Example of the automatic denitrification system of the closed water area of this invention. 本発明の閉鎖的水域の自動脱窒方法の実施例を説明するためのフローチャートである。It is a flowchart for demonstrating the Example of the automatic denitrification method of the closed water area of this invention. 本発明の閉鎖的水域の自動脱窒システムの他の形態のシステム全体を説明するための図である。It is a figure for demonstrating the whole system of the other form of the automatic denitrification system of the closed water area of this invention. 図5に示すシステムにおける制御系を説明するための図である。It is a figure for demonstrating the control system in the system shown in FIG.

符号の説明Explanation of symbols

1、11 自動脱窒システム
2 水槽
301 濾過装置
302 循環路
303 濾過用ポンプ
401 エアストーン
402 エアレーション
5 脱窒循環槽
6 硝酸イオンメーター
7 フロートスイッチ
8 ヒーター
9 脱窒塔
901 カラム
902 細菌着床部
903 生分解ポリマー
10 水張り手段
1001 水張り用流路
1002 水張り用ポンプ
11 循環手段
1101 第1の循環用流路
1102 循環用ポンプ
1103 第2の循環用流路
12 押出手段
1201 押出用流路
1202 押出用ポンプ
13 制御盤
14a 第1の三方弁
14b 第2の三方弁
15 制御手段
16 操作スイッチ
17 電源
DESCRIPTION OF SYMBOLS 1,11 Automatic denitrification system 2 Water tank 301 Filtration apparatus 302 Circulation path 303 Filtration pump 401 Air stone 402 Aeration 5 Denitrification circulation tank 6 Nitrate ion meter 7 Float switch 8 Heater 9 Denitrification tower 901 Column 902 Bacterial implantation part 903 Biodegradable polymer 10 Water filling means 1001 Water filling flow path 1002 Water filling pump 11 Circulation means 1101 First circulation flow path 1102 Circulation pump 1103 Second circulation flow path 12 Extrusion means 1201 Extrusion flow path 1202 Extrusion pump 13 Control panel 14a First three-way valve 14b Second three-way valve 15 Control means 16 Operation switch 17 Power supply

Claims (6)

閉鎖系水域の自動脱窒システムであって、
閉鎖系水域内(2)の水を取り込むための脱窒循環槽(5)と、
該脱窒循環槽(5)内に取り込んだ水に含まれる硝酸を還元して窒素ガスにまで変換するための脱窒塔(9)と、
閉鎖系水域(2)内の水を前記脱窒循環槽(5)に取り込むための水張り手段(10)と、
前記脱窒塔(9)を通過させつつ前記脱窒循環槽(5)内の水を循環するための循環手段(11)と、
前記脱窒循環槽(5)内の水を前記閉鎖系水域(2)に戻すための押出手段(12)と、
前記脱窒循環槽(5)内に配設された、前記脱窒循環槽(5)内の水に含まれる硝酸濃度を検知するための硝酸濃度検知手段(6)と、
前記脱窒循環槽(5)内に配設された、前記脱窒循環槽(5)内の水位を検知するための水位検知手段(7)と、
前記脱窒循環槽(5)内に配設されたヒーター(8)と、
システム全体の作動を制御するための制御手段(15)と、を具備するとともに、
前記脱窒塔(9)は、嫌気性細菌を着床させるための細菌着床部(902)と、前記嫌気性細菌の栄養分としての生分解ポリマー(903)と、を内部に充填し、硝酸を含んだ水を通過させることにより、水に含まれる硝酸を還元して窒素ガスにまで変換可能とし、
前記水張り手段(10)によって前記脱窒循環槽(5)内に閉鎖系水域(2)の水を取り込み、
前記循環手段(11)によって前記脱窒循環槽(5)内の水を前記脱窒塔(9)との間で循環することで、前記脱窒循環槽(5)内の水に含まれる硝酸を還元して窒素ガスにまで変換し、
前記押出手段(12)によって、硝酸が含まれていない前記脱窒循環槽(5)内の水を閉鎖系水域(2)に戻す、ことを可能とした閉鎖系水域の自動脱窒システム。
An automatic denitrification system for closed water areas,
A denitrification circulation tank (5) for taking in water in the closed water area (2);
A denitrification tower (9) for reducing nitric acid contained in water taken into the denitrification circulation tank (5) and converting it into nitrogen gas;
Water filling means (10) for taking water in the closed water area (2) into the denitrification circulation tank (5);
A circulation means (11) for circulating water in the denitrification circulation tank (5) while passing through the denitrification tower (9);
Extrusion means (12) for returning the water in the denitrification circulation tank (5) to the closed water area (2);
A nitric acid concentration detection means (6) disposed in the denitrification circulation tank (5) for detecting the concentration of nitric acid contained in the water in the denitrification circulation tank (5);
A water level detecting means (7) disposed in the denitrification circulation tank (5) for detecting the water level in the denitrification circulation tank (5);
A heater (8) disposed in the denitrification circulation tank (5);
Control means (15) for controlling the operation of the entire system ,
The denitrification tower (9) is filled with a bacteria implantation part (902) for implanting anaerobic bacteria and a biodegradable polymer (903) as a nutrient of the anaerobic bacteria. By passing water containing water, the nitric acid contained in the water can be reduced and converted to nitrogen gas,
The water in the closed system (2) is taken into the denitrification circulation tank (5) by the water filling means (10),
Nitric acid contained in the water in the denitrification circulation tank (5) by circulating the water in the denitrification circulation tank (5) between the circulation means (11) and the denitrification tower (9). Reduced to nitrogen gas,
An automatic denitrification system for a closed water system that enables the water in the denitrification circulation tank (5) not containing nitric acid to be returned to the closed water system (2) by the extrusion means (12).
前記水張り手段(10)、循環手段(11)、及び押出手段(12)の作動を前記制御手段(15)により自動制御することとしたことを特徴とする請求項1に記載の閉鎖系水域の自動脱窒システム。   The operation of the water filling means (10), the circulation means (11), and the pushing means (12) is automatically controlled by the control means (15). Automatic denitrification system. 前記制御手段(15)の制御により、
前記水位検知手段(7)が脱窒循環槽(5)内の水位の低下を検知したときに、前記水張り手段(10)によって前記脱窒循環槽(5)内に閉鎖系水域(2)の水を取り込み、
前記硝酸濃度検知手段(6)が前記脱窒循環槽(5)内の水に硝酸を検知したときに、検知している硝酸濃度が0mg/Lになるまで、前記循環手段(11)によって前記脱窒循環槽(5)内の水を前記脱窒塔(9)との間で循環し、
前記硝酸濃度検知手段(6)が硝酸濃度を検知しないときに、前記押出手段(12)を介して前記脱窒循環槽(5)内の水を閉鎖系水域(2)に戻す、ことを特徴とする請求項2に記載の閉鎖系水域の自動脱窒システム。
Under the control of the control means (15),
When the water level detection means (7) detects a decrease in the water level in the denitrification circulation tank (5), the water filling means (10) causes the denitrification circulation tank (5) to enter the closed system water area (2). Take in water,
When the nitric acid concentration detection means (6) detects nitric acid in the water in the denitrification circulation tank (5), the circulation means (11) causes the nitric acid concentration to be 0 mg / L. Circulating the water in the denitrification circulation tank (5) between the denitrification tower (9),
When the nitric acid concentration detection means (6) does not detect the nitric acid concentration, the water in the denitrification circulation tank (5) is returned to the closed water area (2) via the extrusion means (12). The automatic denitrification system for closed water areas according to claim 2.
前記制御手段(15)は、予め設定した時間に基づいて、前記水張り手段(10)、循環手段(11)、及び押出手段(12)の作動を自動制御することとしたことを特徴とする請求項2に記載の閉鎖系水域の自動脱窒システム。   The control means (15) automatically controls operations of the water filling means (10), the circulation means (11), and the extrusion means (12) based on a preset time. Item 3. An automatic denitrification system for closed water bodies according to Item 2. 前記循環手段(11)は、前記脱窒循環槽(5)内の水を前記脱窒塔(9)に供給するための、基端が前記脱窒循環槽(5)に連通するとともに先端が前記脱窒塔(9)に連通し、任意の箇所に循環ポンプ(1102)が介在された第1循環用流路(1101)と、前記脱窒塔(9)を通過して脱窒された水を前記脱窒循環槽(5)に戻すための、基端が前記脱窒塔(9)に連通するとともに先端が前記脱窒循環槽(5)に連通した第2の循環用流路(1103)と、を具備し、
前記水張り手段(10)は、基端が前記閉鎖系水域(2)に連通し、先端が第1の三方弁(14a)を介して前記第1の循環用流路(1101)に連結した水張り用流路(1001)を具備し、
前記押出手段(12)は、先端が前記閉鎖系水域(2)に連通し、基端が第2の三方弁(14b)を介して前記第2の循環用流路(1103)に連結した押出用流路(1201)を具備し、
前記脱窒循環槽(5)内に閉鎖系水域の水を取り込むときは、前記第1の三方弁(14a)及び第2の三方弁(14b)の切り替えにより、第1の循環用流路(1101)による脱窒循環槽(5)と脱窒塔(9)との連通を遮断して前記水張り用流路(1001)と前記第1の循環用流路(1101)により前記閉鎖系水域(2)と脱窒塔(9)を連通し、前記第2の循環用流路(1103)により前記脱窒塔(9)と脱窒循環槽(5)を連通し、水張り用流路(1001)、第1の循環用流路(1101)の一部、脱窒塔(9)、第2の循環用流路(1103)を介して閉鎖系水域(2)内の水を脱窒循環槽(5)に取り込み、
前記脱窒循環槽(5)内の水を循環させるときは、前記第1の三方弁(14a)及び第2の三方弁(14b)の切り替えにより、前記第1の循環用流路(1101)によって前記脱窒循環槽(5)と脱窒塔(9)を連通し、前記第2の循環用流路(1103)によって前記脱窒塔(9)と脱窒循環槽(5)を連通し、第1の循環用流路(1101)、脱窒塔(9)、第2の循環用流路(1103)を介して脱窒循環槽(5)内の水を循環し、
前記脱窒循環槽(5)内の水を閉鎖系水域(2)に戻すときには、前記第1の三方弁(14a)及び第2の三方弁(14b)の切り替えにより、前記第1の循環用流路(1101)によって前記脱窒循環槽(5)と脱窒塔(9)を連通し、
第2の循環用流路(1103)による脱窒塔(9)と脱窒循環槽(5)との連通を遮断して前記第2の循環用流路(1103)と前記押出用流路(1201)とにより前記脱窒塔(9)と閉鎖系水域(2)を連通し、第1の循環用流路(1101)、脱窒塔(9)、第2の循環用流路(1103)の一部、及び押出用流路(1201)を介して前記脱窒循環槽(5)内の水を閉鎖系水域(2)に押し出す、ことを特徴とする請求項1乃至請求項4のいずれかに記載の閉鎖系水域の自動脱窒システム。
The circulation means (11) has a proximal end communicating with the denitrification circulation tank (5) and a distal end for supplying water in the denitrification circulation tank (5) to the denitrification tower (9). The denitrification tower (9) was denitrified by passing through the denitrification tower (9) and the first circulation channel (1101) in which a circulation pump (1102) was interposed at an arbitrary position. A second circulation channel (with a proximal end communicating with the denitrification tower (9) and a distal end communicating with the denitrification circulation tank (5) for returning water to the denitrification circulation tank (5) 1103), and
The water filling means (10) has a base end communicating with the closed water area (2) and a tip connected to the first circulation channel (1101) via a first three-way valve (14a). A flow path (1001),
The extruding means (12) has an end communicating with the closed water body (2) and a base end connected to the second circulation channel (1103) via a second three-way valve (14b). Provided with a flow path (1201),
When water in the closed water system is taken into the denitrification circulation tank (5), a first circulation channel (by switching between the first three-way valve (14a) and the second three-way valve (14b)) 1101), the communication between the denitrification circulation tank (5) and the denitrification tower (9) is cut off, and the closed water area (1001) and the first circulation flow path (1101) 2) and the denitrification tower (9) are communicated, and the denitrification tower (9) and the denitrification circulation tank (5) are communicated by the second circulation channel (1103). ), A part of the first circulation channel (1101), the denitrification tower (9), and the second circulation channel (1103) to dewater the water in the closed water area (2). (5)
When circulating the water in the denitrification circulation tank (5), the first circulation channel (1101) is switched by switching the first three-way valve (14a) and the second three-way valve (14b). The denitrification circulation tank (5) and the denitrification tower (9) are communicated with each other, and the denitrification tower (9) and the denitrification circulation tank (5) are communicated with each other by the second circulation channel (1103). The water in the denitrification circulation tank (5) is circulated through the first circulation channel (1101), the denitrification tower (9), and the second circulation channel (1103),
When the water in the denitrification circulation tank (5) is returned to the closed system water area (2), the first three-way valve (14a) and the second three-way valve (14b) are switched to switch the first circulation. The denitrification circulation tank (5) and the denitrification tower (9) are communicated by a flow path (1101),
The communication between the denitrification tower (9) and the denitrification circulation tank (5) by the second circulation channel (1103) is blocked, and the second circulation channel (1103) and the extrusion channel ( 1201), the denitrification tower (9) and the closed water system (2) are communicated, and the first circulation channel (1101), the denitrification tower (9), and the second circulation channel (1103). The water in the denitrification circulation tank (5) is pushed out to the closed system water area (2) through a part of the flow path and the extrusion flow path (1201). An automatic denitrification system for closed waters as described in Crab.
前記脱窒塔(9)に充填した生分解ポリマー(903)が、植物油由来のポリマーであることを特徴とする請求項1乃至請求項5のいずれかに記載の閉鎖系水域の自動脱窒システム。   The automatic denitrification system for a closed water system according to any one of claims 1 to 5, wherein the biodegradable polymer (903) packed in the denitrification tower (9) is a polymer derived from vegetable oil. .
JP2008258846A 2008-10-03 2008-10-03 Automatic denitrification system for closed waters Expired - Fee Related JP4602446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258846A JP4602446B2 (en) 2008-10-03 2008-10-03 Automatic denitrification system for closed waters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258846A JP4602446B2 (en) 2008-10-03 2008-10-03 Automatic denitrification system for closed waters

Publications (2)

Publication Number Publication Date
JP2010088307A JP2010088307A (en) 2010-04-22
JP4602446B2 true JP4602446B2 (en) 2010-12-22

Family

ID=42251689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258846A Expired - Fee Related JP4602446B2 (en) 2008-10-03 2008-10-03 Automatic denitrification system for closed waters

Country Status (1)

Country Link
JP (1) JP4602446B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198532B2 (en) * 2010-10-01 2013-05-15 株式会社大洋水研 Automatic denitrification system for closed waters
JP4768886B1 (en) * 2011-03-02 2011-09-07 株式会社加藤建設 How to remove nitrogen in water
CN103250672B (en) * 2012-02-17 2015-08-12 罗国勤 Full automatic timing core pulling and filling system
AU2013389513A1 (en) * 2013-05-17 2015-12-03 Shunsuke Takada Apparatus and method for purifying water
CN105875477A (en) * 2016-05-31 2016-08-24 武汉百瑞生物技术有限公司 Circulating water culturing system and method for rearing early fry of hybrid snakehead based on this system
TWI696588B (en) 2017-12-07 2020-06-21 日商三菱化學股份有限公司 Water purification method, water purification device and use of purification device
TW202000604A (en) 2018-06-29 2020-01-01 日商三菱化學股份有限公司 Water purification device, aquaculture water purification system, water purification method, and production method for aquatic organism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123034A (en) * 1997-10-22 1999-05-11 Mitsubishi Heavy Ind Ltd Aquatic life-rearing system
JPH11196708A (en) * 1998-01-20 1999-07-27 Hitachi Metals Ltd Water treating system for raising ear shell
JP2002159245A (en) * 2000-11-27 2002-06-04 Matsushita Electric Works Ltd Purifying device of fish or shellfish-keeping device
JP2003158953A (en) * 2001-11-27 2003-06-03 Rikujo Yoshoku Kogaku Kenkyusho:Kk Circulating aquaculture system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123034A (en) * 1997-10-22 1999-05-11 Mitsubishi Heavy Ind Ltd Aquatic life-rearing system
JPH11196708A (en) * 1998-01-20 1999-07-27 Hitachi Metals Ltd Water treating system for raising ear shell
JP2002159245A (en) * 2000-11-27 2002-06-04 Matsushita Electric Works Ltd Purifying device of fish or shellfish-keeping device
JP2003158953A (en) * 2001-11-27 2003-06-03 Rikujo Yoshoku Kogaku Kenkyusho:Kk Circulating aquaculture system

Also Published As

Publication number Publication date
JP2010088307A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP4602446B2 (en) Automatic denitrification system for closed waters
CN110234609B (en) Removal of nitrate from water
WO2006017063B1 (en) Process control oxidation
CN106455527A (en) Circulating fish culture method and circulating fish culture device
Bögner et al. Hydrogen peroxide oxygenation and disinfection capacity in recirculating aquaculture systems
US6638434B2 (en) Method for automatically controlling the level of dissolved oxygen in water based on a pressure tank system equipped with sterilizer
CN107473474A (en) A kind of water treatment system and method
de Jesus Gregersen et al. UV irradiation and micro filtration effects on micro particle development and microbial water quality in recirculation aquaculture systems
JP2017079628A (en) Method for controlling oxygen concentration dissolved in breeding water
JP2009247255A (en) Method for cleaning breeding water and apparatus for cleaning breeding water
JP3887329B2 (en) Seafood farming equipment
JP6742128B2 (en) Closed circulation type land aquaculture system coexisting with ozone treatment and biological filtration treatment and its control method
JP5198532B2 (en) Automatic denitrification system for closed waters
JP5935076B2 (en) Water treatment equipment
Uemoto et al. Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station
JP6338150B2 (en) Ballast water treatment apparatus and ballast water treatment method
JP4611963B2 (en) Wastewater treatment equipment
JP6582792B2 (en) Water treatment system and method
JP2015192627A (en) Closed type culture system and culture water purification method
JP4094757B2 (en) Liquid supply apparatus and method for plant cultivation
JP7051598B2 (en) Aquatic organism breeding equipment
KR102133663B1 (en) Ballast water treatment device and ballast water treatment method
JP2635432B2 (en) Breeding equipment
JP2017077511A (en) Water treatment system and method
JP6529706B1 (en) Ballast water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100428

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees