JP3887329B2 - Seafood farming equipment - Google Patents
Seafood farming equipment Download PDFInfo
- Publication number
- JP3887329B2 JP3887329B2 JP2003048303A JP2003048303A JP3887329B2 JP 3887329 B2 JP3887329 B2 JP 3887329B2 JP 2003048303 A JP2003048303 A JP 2003048303A JP 2003048303 A JP2003048303 A JP 2003048303A JP 3887329 B2 JP3887329 B2 JP 3887329B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- tank
- temperature
- ammonia
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Farming Of Fish And Shellfish (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、魚介類を飼育水槽で養殖したり一時的に蓄養したりするようにした養殖装置に関するものである。
【0002】
【従来の技術】
ヒラメなどの魚介類を飼育水槽で養殖するにあたって、従来は、海水などの自然水を飼育水槽に汲み上げ、飼育水槽の水はそのまま海などに排水する掛け流し方式(流水式)で水の供給を行なうのが一般的であった。このように自然水を飼育水槽に汲み上げてそのまま排水する掛け流し方式の養殖では、養殖に伴って発生するアンモニアなどを処理することが不要であり、また水中に酸素供給するような必要もないので、採算性の点で有利である。しかし、自然水を汲み上げて飼育水槽に供給するだけであるので、飼育水槽の水温は季節に依存しており、水温の低い冬期は魚介類の成長が鈍り、また水温が高い夏期は生理的に給餌効率が低下して成長が鈍るという問題がある。成長最適温度は、例えばヒラメで20〜24℃、クエやオコゼで20〜27℃である。
【0003】
そこで、飼育水槽の水を浄化しながら循環させる完全閉鎖循環方式で魚介類を飼育するシステムが種々提案されている(例えば特許文献1、特許文献2参照)。このような閉鎖循環方式の養殖装置では、飼育水槽の水を循環させる循環経路に、水中の固形物を除去する固形物除去槽、水中のアンモニアを除去するアンモニア除去槽、水中に酸素を供給する酸素供給装置の他に、温度調整器を設けることによって、水の温度調整を行なうことができる。従って、冬期は水を加温して水温を高めることによって成長が鈍ることを防ぐと共に、夏期は水を冷やして水温を低下させることによって給餌効率が低下することを防ぎ、魚介類の成長速度を促進することが可能になるものである。
【0004】
【特許文献1】
特開2000−312542号公報
【特許文献2】
特開2002−10724号公報
【0005】
【発明が解決しようとする課題】
しかし、水温の調整は冬期と夏期だけでよく、それ以外の期間では水温調整のメリットは特にない。従って水温調整が不要な期間も閉鎖循環方式で飼育水槽の水を循環させるときには、酸素供給を常時行なわなければならないので、電気料金が嵩むなどの採算面で問題が大きい。また、掛け流し方式は自然水をそのまま使用するので上記のように採算面では有利であるが、自然水には病原菌が含まれているおそれがあり、病原菌が飼育水槽に入ると、飼育水槽の魚介類が全滅するおそれがある。
【0006】
本発明は上記の点に鑑みてなされたものであり、水温調整が必要な期間は閉鎖循環方式で水を浄化しながら飼育水槽に供給すると共に水温調整が不要な期間は自然水を掛け流し方式で飼育水槽に供給することができ、採算面で有利に飼育を行なうことができると共に、自然水の病原菌が飼育水槽に入ることを防ぐことができる魚介類の飼育装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明の請求項1に係る魚介類の飼育装置は、魚介類を飼育する飼育水槽1と、水中の固形物を除去する固形物除去槽2と、水中のアンモニアを除去するアンモニア除去槽3と、水を殺菌する殺菌槽4と、水温を調整する温度調整器5と、水に酸素を供給する酸素供給装置6と、循環ポンプ7とを備えた魚介類の養殖装置において、飼育水槽1の水を循環ポンプ7の働きで固形物除去槽2、アンモニア除去槽3、殺菌槽4、温度調整器5、酸素供給装置6に通して循環させる閉鎖循環経路8と、自然水を殺菌槽4に通して飼育水槽1に供給すると共に飼育水槽1の水を排出する掛け流し経路9との、二つの切り換え自在な経路を備え、自然水の水温に応じて閉鎖循環経路8と掛け流し経路9の切り換えが行なわれるようにして成ることを特徴とするものである。
【0008】
また請求項2の発明は、請求項1において、生物ろ過槽10によってアンモニア除去槽3を形成し、生物ろ過槽10内でアンモニアを含む水を循環させるポンプ11を備えて成ることを特徴とするものである。
【0009】
また請求項3の発明は、請求項1において、水を電気分解して発生する活性塩素種でアンモニアを除去すると共に水を殺菌する電気分解槽12によって、アンモニア除去槽3と殺菌槽4とを形成して成ることを特徴とするものである。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0012】
図1及び図2は本発明の実施の形態の一例を示すものであり、魚介類を飼育する飼育水槽1に閉鎖循環経路8の両端が接続してある。この閉鎖循環経路8に上流から下流への水の流れ方向に沿って、固形物除去槽2、生物ろ過槽10、殺菌槽4、循環ポンプ7、酸素供給装置6、温度調整器5がこの順に接続してある。固形物除去槽2は沈殿槽やフィルター装置などで形成されるものであり、残餌、魚介類の糞、浮遊物質(SS)などの固形物を物理的に分離除去するようにしたものである。殺菌槽4は紫外線照射、電解、オゾンなどの殺菌手段を備えて形成されているものである。酸素供給装置6は酸素発生装置、液化酸素設備、送風装置などで形成することができる。温度調整器5は熱交換器やヒーターなどを備えて形成してある。またこれらの他に、泡沫分離装置やpH調節装置などを閉鎖循環経路8に接続することもできる。
【0013】
図1及び図2の実施の形態では生物ろ過槽10によってアンモニア除去槽3が形成されるものである。生物ろ過槽10内は水の流れ方向に沿って複数の室に仕切ってあり、例えば第一室10aは硝化菌の働きでアンモニアを硝化して無害化する硝化槽、第二室10bはアンモニアが硝化されて生成された硝酸を脱窒菌の働きで窒素に還元すると共に窒素ガスとして放出する脱窒槽、第三室10cは貯溜槽として形成してある。この第三室10cにはポンプ11が設けてあり、第三室10cの水を返送路16を通して第一室10aに返送することができるようにしてある。
【0014】
上記のように飼育水槽1に閉鎖循環経路8を設けることによって閉鎖循環方式の養殖装置を形成することができるが、本発明ではこの閉鎖循環経路8の一部を利用して掛け流し経路9を形成するようにしてある。
【0015】
すなわち、飼育水槽1と固形物除去槽2の間の閉鎖循環経路8に汲み上げ路17が分岐接続してあり、この汲み上げ路17は海洋の海水や河川・湖沼の淡水など自然水を汲み上げるポンプ(図示は省略)に接続してある。汲み上げ路17には開閉バルブ18が設けてあり、また汲み上げ路17には温度センサーなどを具備して形成される水温検出部19が設けてある。この水温検出部19は制御回路を設けて形成した運転切換制御盤20に電気的に接続してある。飼育水槽1と固形物除去槽2の間の閉鎖循環経路8には汲み上げ路17の分岐箇所よりも上流側に開閉バルブ21が設けてある。
【0016】
また固形物除去槽2と殺菌槽4との間にバイパス路23が接続してあり、このバイパス路23を通すことによって、固形物除去槽2から生物ろ過槽10を通過させずに殺菌槽4に水を流すことができるようにしてある。さらに殺菌槽4の下流において、殺菌槽4と循環ポンプ7との間の閉鎖循環経路8に給水路24が分岐接続してあり、給水路24の先端は飼育水槽1に接続してある。この給水路24には開閉バルブ25が設けてある。また殺菌槽4と循環ポンプ7との間の閉鎖循環経路8には給水路24の分岐箇所より下流側において開閉バルブ26が設けてある。さらに、飼育水槽1と固形物除去槽2の間の閉鎖循環経路8には、開閉バルブ21よりも上流側の位置において排水路27が分岐接続してあり、排水路27には開閉バルブ28が設けてある。
【0017】
上記の各開閉バルブ18,21,25,26,28はそれぞれ電磁バルブなどで形成されるものであり、運転切換制御盤20に電気的に接続してある。さらに循環ポンプ7も運転切換制御盤20に電気的に接続してある。そして、汲み上げ路17、固形物除去槽2、バイパス路23、殺菌槽4、給水路24、飼育水槽1、排水路27の順に水が流れる掛け流し流路9が、閉鎖循環経路8の一部を利用して形成されるものである。
【0018】
上記のように形成される養殖装置にあって、閉鎖循環方式で運転する場合には、図1に示すように、開閉バルブ18,25,28を閉じると共に、開閉バルブ21,26を開き、循環ポンプ7を作動させることによって、飼育水槽1の水を閉鎖循環経路8を通して循環させる。またこのときバイパス路23は閉じられるようになっている(尚、図において、開いている開閉バルブを白抜きで、閉じている開閉バルブを黒塗りで示し、水が通過する経路を実線で、水が通過しない経路を破線で示している)。すなわち飼育水槽1の水は開閉バルブ21を通過して固形物除去槽2に入り、水中の固形物が除去され、次に生物ろ過槽10に入って水中のアンモニアや有機物が生物学的に除去される。さらに水は殺菌槽4に入って殺菌される。このように浄化・殺菌された水は、開閉バルブ26を通過して閉鎖循環経路8を流れ、酸素供給装置6で酸素を供給された後、温度調整器5で水温が最適温度に調整される。そして水は飼育水槽1に返送されるものであり、このようにして閉鎖循環方式で運転することができるものである。
【0019】
次に、掛け流し方式で運転する場合には、図2に示すように、開閉バルブ21,26を閉じると共に、開閉バルブ18,25,28を開き、循環ポンプ7の作動を停止させると共に汲み上げ路17の汲み上げポンプを作動させる。またこのとき、固形物除去槽2と生物ろ過槽10の間の経路は閉じ、バイパス路23で固形物除去槽2と殺菌槽4が接続されるようになっている。そして汲み上げ路17を通して汲み上げられた自然水は、固形物除去槽2に入って固形物が除去された後、バイパス路23を通過して殺菌槽4に入り、水中の病原菌などが殺菌される。このように殺菌された水は給水路24を通って飼育水槽1に給水されるものであり、飼育水槽1内の余剰の水は排水路27から排出される。このようにして飼育水槽1に自然水を汲み上げて供給すると共に飼育水槽1から水を排出する掛け流し方式で運転することができるものであり、自然水には酸素が充分に含まれているので、酸素供給装置6から酸素を供給するような必要はないものである。しかも、自然水は殺菌槽4で殺菌されているので、病原菌などが飼育水槽1に持ち込まれることを防ぐことができるものである。
【0020】
ここで、掛け流し方式で運転する際には、生物ろ過槽10にはアンモニア等を含む水が流入しないので、閉鎖循環方式で運転していた際にアンモニア等を餌として活性を維持していた硝化菌などの菌の活性が低下し、次に掛け流し方式の運転から閉鎖循環方式の運転に切り換えるときに立ち上がりがスムーズに行なえない。そこで、掛け流し方式で運転する際には、生物ろ過槽10に設けたポンプ11を作動させ、生物ろ過槽10内で水を循環させながら、生物ろ過槽10内にアンモニア等を含む水を添加することによって、硝化菌などの菌の活性を維持するようにしてある。アンモニア等を含む水の添加は手動で行なうようにしても自動的に行なわれるようにしてもどちらでもよい。
【0021】
図3及び図4は本発明の他の実施の形態の一例を示すものであり、このものでは、上記のような生物ろ過槽10及び殺菌槽4を用いる代わりに、電気分解槽12を用いるようにしている。この電気分解槽12は水中のアンモニアを除去するアンモニア除去槽3と、水を殺菌する殺菌槽4の両方の機能を備えるものであり、閉鎖循環経路8において固形物除去槽2の下流側に接続してある。電気分解槽12より下流側において閉鎖循環経路8にはさらに後処理槽30が接続してある。そして電気分解槽12と後処理槽30の間の閉鎖循環経路8に給水路24が分岐接続してあり、給水路24の先端は飼育水槽1に接続してある。この給水路24には開閉バルブ25が設けてある。その他の構成は図1及び図2のものと同じである。
【0022】
上記のように形成される養殖装置では、主として海水を用いて養殖を行なうものであり、閉鎖循環方式で運転する場合には、図3に示すように、開閉バルブ18,25,28を閉じると共に、開閉バルブ21,26を開き、循環ポンプ7を作動させことによって、飼育水槽1の水を閉鎖循環経路8を通して循環させる。すなわち飼育水槽1の水は開閉バルブ21を通過して固形物除去槽2に入り、水中の固形物が除去され、次に電気分解槽12に流入する。
【0023】
電気分解槽12内には直流電流が印加される一対の電極(図示省略)が配置してあり、電気分解槽12に海水が流入すると電気分解され、陽極の電極の付近に次のような反応で、次亜塩素酸等の活性塩素種が生成される。
【0024】
陽極: Cl−+2OH− → ClO−+H2O
そしてこのように生成した次亜塩素酸等の活性塩素種は、海水中に含まれるアンモニアと反応して次のような反応でクロラミンを生成し、さらにこのクロラミン同士が反応して窒素を遊離し、塩素イオンに戻るという一連の反応が起こり、この遊離された窒素が窒素ガスとしてシステム外へ排出されることによって、海水中のアンモニアなどの窒素成分が除去されるものである。
【0025】
クロラミン生成: NH4 ++ClO− → NH2Cl+H2O
窒素遊離 : 2NH2Cl+2OH− → N2+2Cl−+2H2O
海水の電解分解で発生する上記の次亜塩素酸は漂白剤として知られているように脱色作用があり、また殺菌剤でもあることから、電気分解槽12内で同時に殺菌も行なうことができるものである。
【0026】
このように、電気分解槽12でアンモニアが除去され、さらに殺菌がされた海水は後処理槽30を通過する。後処理槽30はチオ硫酸ナトリウムなどの塩素中和剤で塩素を中和したり、活性炭で塩素を吸着除去する塩素除去槽として形成されるものであり、電気分解槽12で反応に消費されずに余った活性塩素種が除去され、活性塩素種の濃度を魚毒性が発揮される濃度以下に抑える処理がなされる。このように浄化・殺菌された水は、開閉バルブ26を通過して閉鎖循環経路8を流れ、酸素供給装置6で酸素を供給された後、温度調整器5で水温が最適温度に調整される。そして水は飼育水槽1に返送されるものであり、このようにして閉鎖循環方式で運転することができるものである。
【0027】
次に、掛け流し方式で運転する場合には、図4に示すように、開閉バルブ21,26を閉じると共に、開閉バルブ18,25,28を開き、循環ポンプ7の作動を停止させると共に汲み上げ路17の汲み上げポンプを作動させる。そして汲み上げ路17を通して汲み上げられた自然水は、固形物除去槽2に入って固形物が除去された後、電気分解槽12に入り、水中の病原菌などが殺菌される。このように殺菌された水は給水路24を通って飼育水槽1に給水されるものであり、飼育水槽1内の余剰の水は排水路27から排出される。このようにして飼育水槽1に自然水を汲み上げて供給すると共に飼育水槽1から水を排出する掛け流し方式で運転することができるものであり、自然水には酸素が充分に含まれているので、酸素供給装置6から酸素を供給するような必要はない。しかも、自然水は電気分解槽12で殺菌されているので、病原菌などが飼育水槽1に持ち込まれることを防ぐことができるものである。尚、掛け流し方式で運転する場合は、電気分解槽12でアンモニアの除去を行なう必要はなく、殺菌を行なうことができればよいだけであるので、電気分解槽12での電気分解は低電圧で行なわれ、残留塩素量は少ない。このために、電気分解槽12からの水を後処理槽30に通す必要なく飼育水槽1に直接返送することが可能である。
【0028】
またここで、アンモニア除去槽3を図1のような生物ろ過槽10で形成する場合、水を生物ろ過槽10に通して水中のアンモニア除去を開始する際に、生物ろ過槽10内の硝化菌などの菌を活性化するための立ち上げが必要であるが、電気分解槽12は電気化学的な処理でアンモニアの除去を行なうことができるので、立ち上げのための時間が不要になるものである。
【0029】
図5及び図6は本発明の他の実施の形態の一例を示すものであり、生物ろ過槽10と電気分解槽12を併用するようにしたものである。このものでは、生物ろ過槽10を図3及び図4の固形物除去槽2と電気分解槽12の間において閉鎖循環経路8に接続してあり、また固形物除去槽2と電気分解槽12の間にバイパス路23が接続してあり、このバイパス路23を通すことによって、固形物除去槽2から生物ろ過槽10を通過させずに電気分解槽12に水を流すことができるようにしてある。
【0030】
そして閉鎖循環方式で運転する場合には、図5に示すように、開閉バルブ18,25,28を閉じると共に、開閉バルブ21,26を開き、循環ポンプ7を作動させ、飼育水槽1の水を固形物除去槽2、生物ろ過槽10、電気分解槽12、後処理槽30、酸素供給装置6、温度調整器5の順に通過させて飼育水槽1に返送することによって行なうことができるものである。また掛け流し方式で運転する場合には、図6に示すように、開閉バルブ21,26を閉じると共に、開閉バルブ18,25,28を開き、循環ポンプ7の作動を停止させると共に汲み上げ路17の汲み上げポンプを作動させ、汲み上げ路17を通して汲み上げられた自然水を、固形物除去槽2、電気分解槽12を通して飼育水槽1に給水し、飼育水槽1内の余剰の水を排水路27から排出させることによって行なうことができるものである。
【0031】
上記の各実施の形態において、飼育水槽1の水を閉鎖循環経路8を通して循環させる閉鎖循環方式で運転する場合と、掛け流し経路9を通して自然水を飼育水槽1に供給する掛け流し方式で運転する場合の切り換えは、汲み上げ路17に設けた水温検出部19によって検出される自然水の水温に応じて行なうようにする。成長最適温度は例えばヒラメでは20〜24℃であるので、自然水の温度がこの温度範囲内になったときに、閉鎖循環方式から掛け流し方式に運転を切り換え、自然水の温度がこの温度範囲を下回るようになったときや、この温度範囲を上回るようになったときに、掛け流し方式から閉鎖循環方式に運転を切り換え、温度調整器5で水温を上記の範囲に調整しながら循環させるようにするものである。例えば、自然水の水温が20℃以下になれば閉鎖循環方式の運転に切り換えて水の加温を行ない、自然水の水温がヒステリシスを3℃見込んで23℃以上になれば掛け流し方式の運転に切り換えるものであり、また自然水の水温が25℃以上になれば閉鎖循環方式の運転に切り換えて水の冷却を行ない、自然水の水温がヒステリシスを3℃見込んで22℃以下になれば掛け流し方式の運転に切り換えるものである。勿論、閉鎖循環方式と掛け流し方式の運転の切り換えの温度は魚種に応じて設定されるものであり、また閉鎖循環方式に切り換えた直後の水温調整は、切り換え前の水温を参考にして養殖する魚介類に負担がかからないレベルに設定するのがよい。
【0032】
また、上記のように汲み上げ路17に設けた水温検出部19によって検出される自然水の水温に応じて閉鎖循環方式と掛け流し方式の運転の切り換えを行なうにあたって、運転の切り換えを自動的に行なわせることができる。すなわち、水温検出部19で検出された水温データは運転切換制御盤20に入力されており、入力された水温があらかじめ設定された水温の範囲内であれば、運転切換制御盤20からの制御で開閉バルブ21,26を閉じると共に開閉バルブ18,25,28を開いて汲み上げ路17の汲み上げポンプを作動させ、掛け流し方式に運転を自動的に切り換えるものであり、入力された水温があらかじめ設定された水温から外れると、運転切換制御盤20からの制御で開閉バルブ18,25,28を閉じると共に開閉バルブ21,26を開いて循環ポンプ7を作動させ、閉鎖循環方式に運転を切り換えるものである。自然水の水温の検出の箇所は上記のような汲み上げ路17に限られるものではないのはいうまでもない。またこのように運転の切り換えを自動的に行なわせるようにする他、手動で切り換えを行なうようにしてもよい。さらに上記のように自然水の水温に応じて運転の切り換えを行なう他、気温の変動に応じて運転の切り換えを行なうようにしてもよい。
【0033】
尚、上記の各実施の形態では、掛け流し経路9に固形物除去槽2が含まれるようにしたが、自然水が事前にろ過設備などで清澄に処理されたものであれば、汲み上げ路17を殺菌槽4あるいは電気分解槽12に接続するようにして、掛け流し方式で運転する際に自然水を固形物除去槽2に通さずに殺菌槽4あるいは電気分解槽12に直接導くようにしてもよい。
【0034】
【発明の効果】
上記のように本発明の請求項1にかかる魚介類の養殖装置は、魚介類を飼育する飼育水槽と、水中の固形物を除去する固形物除去槽と、水中のアンモニアを除去するアンモニア除去槽と、水を殺菌する殺菌槽と、水温を調整する温度調整器と、水に酸素を供給する酸素供給装置と、循環ポンプとを備えた魚介類の養殖装置において、飼育水槽の水を循環ポンプの働きで固形物除去槽、アンモニア除去槽、殺菌槽、温度調整器、酸素供給装置に通して循環させる閉鎖循環経路と、自然水を殺菌槽に通して飼育水槽に供給すると共に飼育水槽の水を排出する掛け流し経路との、二つの切り換え自在な経路を備えるので、自然水の水温が魚介類の成長最適温度であるときには掛け流し経路を通して自然水を飼育水槽に供給し、自然水の水温が魚介類の成長最適温度から外れるときには閉鎖循環経路を通して飼育水槽の水を循環させると共に温度調整器で水温を成長最適温度に保つというように、運転を切り換えて行なうことができ、採算面で有利に飼育を行なうことができるものであり、また掛け流し経路を通して自然水を汲み上げるときには殺菌槽で殺菌した後に飼育水槽に供給することができ、自然水中の病原菌が飼育水槽に入ることを防ぐことができるものである。
また、自然水の水温に応じて閉鎖循環経路と掛け流し経路の切り換えが行なわれるようにしたので、自然水の水温が魚介類の成長最適温度であるときには掛け流し経路を通して自然水を飼育水槽に供給し、自然水の水温が魚介類の成長最適温度から外れるときには閉鎖循環経路を通して飼育水槽の水を循環させると共に温度調整器で水温を成長最適温度に保つというように、最適な水温で魚介類の養殖を行なうことができるものである。
【0035】
また請求項2の発明は、請求項1において、生物ろ過槽によってアンモニア除去槽を形成し、生物ろ過槽内でアンモニアを含む水を循環させるポンプを備えるので、掛け流し方式で運転をして生物ろ過槽が使用されない間も、生物ろ過槽内の硝化細菌などの菌の活性化を保つことができ、掛け流し方式から閉鎖循環方式への運転の切り換えをスムーズに行なうことができるものである。
【0036】
また請求項3の発明は、請求項1において、水を電気分解して発生する活性塩素種でアンモニアを除去すると共に水を殺菌する電気分解槽によって、アンモニア除去槽と殺菌槽とを形成するようにしたので、電気分解槽でアンモニア除去槽と殺菌槽を併用してシステムを簡易化することができると共に、電気分解槽は電気化学的な処理でアンモニアを除去できて立ち上げのための時間が不要になるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例において、閉鎖循環方式で運転する状態を示す概略図である。
【図2】本発明の実施の形態の一例において、掛け流し方式で運転する状態を示す概略図である。
【図3】本発明の他の実施の形態の一例において、閉鎖循環方式で運転する状態を示す概略図である。
【図4】本発明の他の実施の形態の一例において、掛け流し方式で運転する状態を示す概略図である。
【図5】本発明のさらに他の実施の形態の一例において、閉鎖循環方式で運転する状態を示す概略図である。
【図6】本発明のさらに他の実施の形態の一例において、掛け流し方式で運転する状態を示す概略図である。
【符号の説明】
1 飼育水槽
2 固形物除去槽
3 アンモニア除去槽
4 殺菌槽
5 温度調整器
6 酸素供給装置
7 循環ポンプ
8 閉鎖循環経路
9 掛け流し経路
10 生物ろ過槽
11 ポンプ
12 電気分解槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aquaculture device for cultivating seafood in a breeding aquarium or temporarily cultivating it.
[0002]
[Prior art]
In the case of culturing seafood such as flounder in a breeding aquarium, conventionally, water is pumped into the breeding aquarium, and the water in the breeding tank is drained directly into the sea. It was common to do. In such a flow-through type aquaculture where natural water is pumped into a breeding aquarium and drained as it is, it is not necessary to treat ammonia generated by the aquaculture, and there is no need to supply oxygen into the water. This is advantageous in terms of profitability. However, since natural water is only pumped and supplied to the breeding tank, the temperature of the breeding tank depends on the season, and the growth of seafood is slow in the winter when the water temperature is low, and physiologically in the summer when the water temperature is high. There is a problem that feeding efficiency decreases and growth slows down. The optimum growth temperature is, for example, 20-24 ° C. for flounder, and 20-27 ° C. for queeze or okoze.
[0003]
Various systems have been proposed for rearing fish and shellfish in a completely closed circulation system that circulates while purifying the water in the rearing tank (see, for example,
[0004]
[Patent Document 1]
JP 2000-31542 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-10724
[Problems to be solved by the invention]
However, adjustment of the water temperature is sufficient only in winter and summer, and there is no particular merit of adjusting the water temperature in other periods. Therefore, when water in the breeding aquarium is circulated in a closed circulation system even during periods when water temperature adjustment is not required, oxygen supply must be performed at all times. In addition, since the flushing method uses natural water as it is, it is advantageous in terms of profitability as described above. However, natural water may contain pathogenic bacteria, and if pathogenic bacteria enter the breeding aquarium, There is a risk that seafood will be annihilated.
[0006]
The present invention has been made in view of the above points, and in a period where water temperature adjustment is necessary, it is supplied to the breeding tank while purifying water in a closed circulation system, and a system in which natural water is poured during periods when water temperature adjustment is not required. The purpose of the present invention is to provide a seafood breeding device that can be fed to a breeding aquarium, can be advantageously bred in terms of profitability, and can prevent natural water pathogens from entering the breeding tank. To do.
[0007]
[Means for Solving the Problems]
The fish and shellfish breeding apparatus according to
[0008]
The invention of
[0009]
Further, the invention of
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0012]
1 and 2 show an example of an embodiment of the present invention, and both ends of a closed
[0013]
In the embodiment of FIGS. 1 and 2, the
[0014]
As described above, by providing the closed
[0015]
That is, a
[0016]
Further, a
[0017]
Each of the above open /
[0018]
In the aquaculture apparatus formed as described above, when operating in a closed circulation system, as shown in FIG. 1, the on-off
[0019]
Next, in the case of operating in the flow-through system, as shown in FIG. 2, the on-off
[0020]
Here, when operating in the pouring method, water containing ammonia or the like does not flow into the
[0021]
3 and 4 show an example of another embodiment of the present invention. In this embodiment, instead of using the
[0022]
The aquaculture device formed as described above mainly cultivates using seawater, and when operating in a closed circulation system, as shown in FIG. 3, the on-off
[0023]
A pair of electrodes (not shown) to which a direct current is applied are arranged in the electrolysis tank 12, and when seawater flows into the electrolysis tank 12, it is electrolyzed, and the following reaction occurs near the anode electrode. Thus, active chlorine species such as hypochlorous acid are generated.
[0024]
Anode: Cl − + 2OH − → ClO − + H 2 O
The generated active chlorine species such as hypochlorous acid react with ammonia contained in seawater to produce chloramine by the following reaction, and further, these chloramines react to liberate nitrogen. Then, a series of reactions of returning to chloride ions occurs, and the released nitrogen is discharged out of the system as nitrogen gas, whereby nitrogen components such as ammonia in seawater are removed.
[0025]
Chloramine formation: NH 4 + + ClO − → NH 2 Cl + H 2 O
Nitrogen liberation: 2NH 2 Cl + 2OH − → N 2 + 2Cl − + 2H 2 O
The above-mentioned hypochlorous acid generated by the electrolysis of seawater has a decolorizing action as known as a bleaching agent and is also a disinfectant, so that it can be sterilized simultaneously in the electrolysis tank 12. It is.
[0026]
Thus, the seawater from which ammonia has been removed and further sterilized in the electrolysis tank 12 passes through the
[0027]
Next, in the case of operating in the flow-through method, as shown in FIG. 4, the on-off
[0028]
Here, when the
[0029]
5 and 6 show an example of another embodiment of the present invention, in which a
[0030]
When operating in a closed circulation system, as shown in FIG. 5, the open /
[0031]
In each of the above-described embodiments, the operation is performed in a closed circulation system in which the water in the
[0032]
In addition, the operation is automatically switched when the operation of the closed circulation system and the flowing-through system is switched according to the water temperature of the natural water detected by the
[0033]
In each of the above-described embodiments, the pouring
[0034]
【The invention's effect】
As described above, the fish culture apparatus according to
In addition, since the closed circulation route and the flushing route are switched according to the temperature of the natural water, when the natural water temperature is the optimum temperature for the growth of seafood, the natural water is supplied to the breeding tank through the flushing route. When the temperature of natural water deviates from the optimal temperature for growth of seafood, the water in the breeding aquarium is circulated through a closed circulation route, and the water temperature is maintained at the optimal temperature for growth using a temperature regulator. Can be cultured.
[0035]
Further, the invention of
[0036]
According to a third aspect of the present invention, in the first aspect, an ammonia removal tank and a sterilization tank are formed by an electrolysis tank that removes ammonia and sterilizes water with active chlorine species generated by electrolyzing water. As a result, the system can be simplified by using both an ammonia removal tank and a sterilization tank in the electrolysis tank, and the electrolysis tank can remove ammonia by electrochemical treatment, and the startup time can be reduced. It becomes unnecessary.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a state of operation in a closed circulation system in an example of an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a state in which the operation is performed in a flowing manner in an example of an embodiment of the present invention.
FIG. 3 is a schematic diagram showing a state of operation in a closed circulation system in an example of another embodiment of the present invention.
FIG. 4 is a schematic view showing a state in which operation is performed in a pouring method in an example of another embodiment of the present invention.
FIG. 5 is a schematic view showing a state of operating in a closed circulation system in an example of still another embodiment of the present invention.
FIG. 6 is a schematic view showing a state in which the operation is performed in a pouring method in an example of still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003048303A JP3887329B2 (en) | 2003-02-25 | 2003-02-25 | Seafood farming equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003048303A JP3887329B2 (en) | 2003-02-25 | 2003-02-25 | Seafood farming equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004254574A JP2004254574A (en) | 2004-09-16 |
JP3887329B2 true JP3887329B2 (en) | 2007-02-28 |
Family
ID=33114290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003048303A Expired - Lifetime JP3887329B2 (en) | 2003-02-25 | 2003-02-25 | Seafood farming equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3887329B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101675718B1 (en) * | 2016-03-23 | 2016-11-11 | 박희원 | Recirculating aquaculture system with secondary closed-circuit |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5296071B2 (en) * | 2008-06-16 | 2013-09-25 | シープラス株式会社 | Closed circulation culture apparatus and method for seafood |
JP5577479B2 (en) * | 2010-04-07 | 2014-08-27 | 国立大学法人三重大学 | Small aquatic animal experiment breeding tank system |
KR101852010B1 (en) * | 2017-04-10 | 2018-04-25 | 이나율 | Manufacturing method of marine life culture water and marine life culture water thereby the same that |
NO343947B1 (en) * | 2017-12-20 | 2019-07-22 | Soelvpilen As | Fish farm and method for operation |
KR102190368B1 (en) * | 2018-08-28 | 2020-12-11 | (주)제이와이씨 | System for converting cooling and heating using seawater heat pump |
KR102087317B1 (en) * | 2019-08-22 | 2020-03-10 | 주식회사 아하 | High concentration dissolved oxygen generation module for aquaculture farms and dissolved oxygen supply system using the same |
WO2022249488A1 (en) * | 2021-05-28 | 2022-12-01 | 中国電力株式会社 | Water discharge method, water treatment method, residual chlorine reduction method, and water treatment facility |
JPWO2022249487A1 (en) * | 2021-05-28 | 2022-12-01 | ||
CN116138208B (en) * | 2022-09-07 | 2024-08-16 | 湖南申泰水产科技有限公司 | Internal circulation aquaculture purifying equipment and use method thereof |
WO2024055114A1 (en) * | 2022-09-13 | 2024-03-21 | Current Water Technologies Inc. | A low-power system and method for removal of ammonia and disinfection of sea water for improved fish health and value |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08238041A (en) * | 1995-03-03 | 1996-09-17 | Tadanobu Wakabayashi | Filtration apparatus |
JP2000069879A (en) * | 1998-09-01 | 2000-03-07 | Kaiyo Seibutsu Saibai Center:Kk | Water tank system for culturing marine animal |
JP3769680B2 (en) * | 1999-04-30 | 2006-04-26 | 財団法人電力中央研究所 | Circulation filtration aquaculture equipment for seafood |
JP2002010724A (en) * | 2000-06-29 | 2002-01-15 | Babcock Hitachi Kk | Method for decomposing ammonia in sea water and device therefor |
-
2003
- 2003-02-25 JP JP2003048303A patent/JP3887329B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101675718B1 (en) * | 2016-03-23 | 2016-11-11 | 박희원 | Recirculating aquaculture system with secondary closed-circuit |
Also Published As
Publication number | Publication date |
---|---|
JP2004254574A (en) | 2004-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3887329B2 (en) | Seafood farming equipment | |
JP2003164880A (en) | Water treatment method, water treatment plant and hydroponic system using the same | |
JP3887214B2 (en) | Circulating aquaculture equipment | |
JP3840190B2 (en) | Seafood culture method | |
JP6742128B2 (en) | Closed circulation type land aquaculture system coexisting with ozone treatment and biological filtration treatment and its control method | |
JP5935076B2 (en) | Water treatment equipment | |
JP3840250B2 (en) | Closed circulation culture system and pH adjusting device | |
JP3887256B2 (en) | Closed circulation aquaculture system | |
JP4107450B2 (en) | Method for treating or preventing seafood diseases | |
JPH0646719A (en) | Culturing apparatus for fishery | |
JP6529706B1 (en) | Ballast water treatment method | |
JP2635432B2 (en) | Breeding equipment | |
JP2004160349A (en) | Water cleaning apparatus for fish and shellfish | |
WO2024029555A1 (en) | System for denitrification, sterilization, and decoloring treatment of rearing water, and method for denitrification, sterilization, and decoloring treatment of rearing water | |
JP7481781B1 (en) | Circulating water treatment system for cultivating aquatic organisms and method for cultivating aquatic organisms | |
JP2000197421A (en) | Liquid feeding apparatus for plant cultivation and liquid feeding method | |
JP2007000118A (en) | Sterilizing device of fish-rearing water | |
JP7481782B1 (en) | Electrolysis device for aquatic organism cultivation, circulating water treatment system for aquatic organism cultivation, and electrolysis method for aquatic organism cultivation | |
JP3840189B2 (en) | Seafood farming equipment | |
JP2005245326A (en) | Closed circulating culture system | |
JP2001314851A (en) | Water circulating and sterilizing apparatus | |
JP4771396B2 (en) | Method and apparatus for sterilizing and purifying bath water | |
JP3586454B2 (en) | Seawater circulation device for aquaculture | |
JP2004243166A (en) | Sterilization method of bath tub hot water and sterilization apparatus thereof | |
JPH11123383A (en) | Water cleaning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20050207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S801 | Written request for registration of abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311801 |
|
ABAN | Cancellation of abandonment | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |