JP2015190369A - エンジンの排気処理装置 - Google Patents

エンジンの排気処理装置 Download PDF

Info

Publication number
JP2015190369A
JP2015190369A JP2014067584A JP2014067584A JP2015190369A JP 2015190369 A JP2015190369 A JP 2015190369A JP 2014067584 A JP2014067584 A JP 2014067584A JP 2014067584 A JP2014067584 A JP 2014067584A JP 2015190369 A JP2015190369 A JP 2015190369A
Authority
JP
Japan
Prior art keywords
gas
combustion catalyst
combustion
catalyst
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014067584A
Other languages
English (en)
Other versions
JP6270583B2 (ja
Inventor
新井 克明
Katsuaki Arai
克明 新井
一成 辻野
Kazunari Tsujino
一成 辻野
崇之 大西
Takayuki Onishi
崇之 大西
智也 秋朝
Tomoya Akitomo
智也 秋朝
穂積 石田
Hozumi Ishida
穂積 石田
秀隆 森永
Hidetaka Morinaga
秀隆 森永
隆太郎 小村
Ryutaro Komura
隆太郎 小村
能和 竹本
Norikazu Takemoto
能和 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2014067584A priority Critical patent/JP6270583B2/ja
Publication of JP2015190369A publication Critical patent/JP2015190369A/ja
Application granted granted Critical
Publication of JP6270583B2 publication Critical patent/JP6270583B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

【課題】燃焼触媒の暖機を確実に行うことができるエンジンの排気処理装置を提供する。【解決手段】燃焼触媒燃焼用ガス5が生成される前に制御装置4により可燃性ガス生成器1で燃焼触媒暖気用ガス8が生成され、この燃焼触媒暖機用ガス8がエンジン排気経路6を通過する排気7に混入されて、燃焼触媒2上流の着火装置9で着火され、火炎燃焼で昇温された排気7で燃焼触媒2が暖機されるように構成され、燃焼触媒2の暖機終了条件が成立した場合には、燃焼触媒燃焼用ガス5が生成されるように構成され、燃焼触媒暖気用ガス8が生成される場合は、燃焼触媒燃焼用ガス5が生成される場合よりも可燃性ガス生成器1のガス生成触媒10の目標反応温度が高く設定されることにより、燃焼触媒暖気用ガス8の着火性が燃焼触媒燃焼用ガス5よりも高められるように構成されている。【選択図】図1

Description

本発明は、エンジンの排気処理装置に関し、詳しくは、燃焼触媒の暖機を確実に行うことができるエンジンの排気処理装置に関する。
従来、エンジンの排気処理装置として、可燃性ガス生成器と燃焼触媒と排気処理部と制御装置を備え、制御装置の制御により可燃性ガス生成器で燃焼触媒燃焼用ガスが生成され、この燃焼触媒燃焼用ガスがエンジン排気経路を通過する排気に混入されて、燃焼触媒で触媒燃焼され、この触媒燃焼で昇温された排気が排気処理部に供給されるように構成されたものがある(例えば、特許文献1参照)。
この種の排気処理装置によれば、排気温度が低い場合でも、可燃性ガスの触媒燃焼で排気を昇温させ、排気処理部での排気処理を促進できる利点がある。
しかし、この種の排気処理装置では、燃焼触媒の暖気が不十分である場合には、燃焼触媒が活性化せず、触媒燃焼が起こらない。
特開2012−188972号公報(図2参照)
《問題点》 排気処理部での排気処理の促進が不十分になることがある。
この種の排気処理装置では、燃焼触媒の暖機が不十分である場合には、燃焼触媒が活性化せず、触媒燃焼が起こらず、排気処理部での排気処理の促進が不十分になることがある。
本発明の課題は、燃焼触媒の暖機を確実に行うことができるエンジンの排気処理装置を提供することにある。
請求項1に係る発明の発明特定事項は、次の通りである。
図1に例示するように、可燃性ガス生成器(1)と燃焼触媒(2)と排気処理部(3)と制御装置(4)を備え、
図1、図2に例示するように、制御装置(4)の制御により可燃性ガス生成器(1)で燃焼触媒燃焼用ガス(5)が生成(S10)され、この燃焼触媒燃焼用ガス(5)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)で触媒燃焼され、この触媒燃焼で昇温された排気(7)が排気処理部(3)に供給されるように構成された、エンジンの排気処理装置において、
図1,図2に例示するように、燃焼触媒燃焼用ガス(5)が生成(S10)される前に制御装置(4)により可燃性ガス生成器(1)で燃焼触媒暖気用ガス(8)が生成(S6)され、この燃焼触媒暖機用ガス(8)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)上流の着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)が暖機されるように構成され、
燃焼触媒(2)の暖機終了条件が成立した場合には、燃焼触媒燃焼用ガス(5)が生成(S10)されるように構成され、
図1,図2に例示するように、燃焼触媒暖気用ガス(8)が生成(S6)される場合は、燃焼触媒燃焼用ガス(5)が生成(S10)される場合よりも可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、燃焼触媒暖気用ガス(8)の着火性が燃焼触媒燃焼用ガス(5)よりも高められるように構成されている、ことを特徴とするエンジンの排気処理装置。
(請求項1に係る発明)
請求項1に係る発明は、次の効果を奏する。
《効果》 燃焼触媒の暖機を確実に行うことができる。
燃焼触媒暖気用ガス(8)の着火性が燃焼触媒燃焼用ガス(5)よりも高められるように構成されているので、燃焼触媒暖気用ガス(8)の着火の失敗が抑制され、燃焼触媒(2)の暖機を確実に行うことができる。
(請求項2に係る発明)
請求項2に係る発明は、請求項1に係る発明の効果に加え、次の効果を奏する。
《効果》 燃焼触媒の暖機を確実に行うことができる。
図1,図2に例示するように、燃焼触媒暖機用ガス(8)が生成(S6)される前に、着火装置(9)が予熱されるように構成されているので、燃焼触媒暖気用ガス(8)の着火の失敗が抑制され、燃焼触媒(2)の暖機を確実に行うことができる。
(請求項3に係る発明)
請求項3に係る発明は、請求項1または請求項2に係る発明の効果に加え、次の効果を奏する。
《効果》 燃焼触媒にPMが堆積しても、燃焼触媒の機能を回復させることができる。
図1,図2に例示するように、火炎燃焼で昇温された排気(7)で燃焼触媒(2)に堆積したPMが焼却除去されて、燃焼触媒(2)が再生されるように構成されているので、燃焼触媒(2)にPMが堆積しても、燃焼触媒(2)の機能を回復させることができる。
(請求項4に係る発明)
請求項4に係る発明は、請求項3に係る発明の効果に加え、次の効果を奏する。
《効果》 燃焼触媒の機能の回復を確実に行うことができる。
図1,図2に例示するように、再着火用ガス(15)の着火性が燃焼触媒再生用ガス(13)よりも高められるように構成されているので、再着火用ガス(15)の着火の失敗が抑制され、燃焼触媒(2)の再生処理により燃焼触媒(2)の機能の回復を確実に行うことができる。
本発明の実施形態に係るエンジンの排気処理装置の模式図である。 図1の排気処理装置による処理のフローチャートである。 図1の排気処理装置によるDPF再生と燃焼触媒再生のタイムチャートである。
図1〜図3は本発明の実施形態に係るエンジンの排気処理装置を説明する図であり、この実施形態では、ディーゼルエンジンの排気処理装置について説明する。
この排気処理装置の概要は、次の通りである。
図1に示すように、排気処理装置は、可燃性ガス生成器(1)と燃焼触媒(2)と排気処理部(3)と制御装置(4)を備えている。
図1,図2に示すように、排気処理装置は、制御装置(4)の制御により可燃性ガス生成器(1)で燃焼触媒燃焼用ガス(5)が生成(S10)され、この燃焼触媒燃焼用ガス(5)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)で触媒燃焼され、この触媒燃焼で昇温された排気(7)が排気処理部(3)に供給されるように構成されている。
図1に示すように、可燃性ガス生成器(1)は、ガス生成触媒(10)の触媒反応により空燃混合気(16)から燃焼触媒燃焼用ガス(5)等の可燃性ガスを生成するものである。
可燃性ガス生成器(1)内にはガス生成触媒(10)が収容され、その上部には空燃混合室(25)が設けられている。ガス生成触媒(10)の上部中央部には下向きに凹設された混合気入口(21)が設けられている。空燃混合室(25)には、液体燃料(17)と空気(18)とが供給され、これらが混合され、空燃混合気(16)となり、混合気入口(21)からガス生成触媒(10)に供給される。混合気入口(21)には、ガス生成開始用触媒(22)が収容され、これにヒータ(11)が差し込まれている。ガス生成触媒(10)にはその温度センサ(26)が差し込まれている。
ガス生成触媒(10)は、鉄クロム線を織ったもので、鉄クロム線にはロジウム触媒成分が担持されている。ガス生成開始用触媒(22)は、アルミナ繊維のマットで、表面にロジウム触媒成分が担持されている。ガス生成開始用触媒(22)は、可燃性ガス生成触媒(10)に比べ、液体燃料(17)の保持性が高い。
液体燃料(17)には軽油が用いられている。
燃焼触媒(2)は、DOCである。DOCはディーゼル酸化触媒の略称である。
排気処理部(3)は、DPFである。DPFはディーゼル・パティキュレート・フィルタの略称であり、排気(7)中のPMを捕捉する。
排気処理部(3)には、DPFの他、排気浄化触媒(SCR触媒やNOx吸蔵触媒等)を用いることもできる。SCR触媒は選択還元触媒の略称、NOxは窒素酸化物の略称である。
制御装置(4)は、エンジンECUであり、マイコンである。ECUは、電子制御ユニットの略称である。
排気処理装置の特徴は、次の通りである。
図1,図2に示すように、燃焼触媒燃焼用ガス(5)が生成(S10)される前に制御装置(4)により可燃性ガス生成器(1)で燃焼触媒暖気用ガス(8)が生成(S6)され、この燃焼触媒暖機用ガス(8)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)上流の着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)が暖機されるように構成されている。
燃焼触媒(2)の暖機終了条件が成立した場合には、燃焼触媒燃焼用ガス(5)が生成(S10)されるように構成されている。
着火装置(9)は、グロープラグである。
燃焼触媒燃焼用ガス(5)の他、後述する燃焼触媒暖気用ガス(8)、燃焼触媒再生用ガス(13)、再着火用ガス(15)には、着火装置(9)の上流側で、二次空気(27)が混入される。
燃焼触媒(2)の暖機終了条件が成立する場合は、次の通りである。
図1,図2に示すように、燃焼触媒(2)暖機終了条件の成立が、第1条件と第2条件のいずれかが成立した場合とされ、第1条件は、燃焼触媒(2)の入口温度(T0)が燃焼触媒(2)の活性化必要温度(t0)以上で、かつ、燃焼触媒(2)の出口温度(T1)が燃焼触媒(2)の入口温度(T0)を超える燃焼触媒(2)の活性化確認温度(t1)以上となっている場合とされ、第2条件は、エンジン回転数が低いほど高く設定された燃焼触媒(2)の暖機確認温度(t1´)を燃焼触媒(2)の出口温度(T1)が所定時間継続して超えている場合とされている。
このため、燃焼触媒(2)の入口温度(T0)と出口温度(T1)により、燃焼触媒(2)の活性化を直接に確認できる第1条件と、エンジン回転数に応じた燃焼触媒(2)の出口温度(T1)により、燃焼触媒(2)の活性化温度の確保が保障される第2条件により、燃焼触媒(2)の活性化が図られ、暖機燃焼触媒(2)の暖機を確実に行うことができる。
図1に示すように、燃焼触媒(2)の入口温度(T0)は、燃焼触媒(2)の入口の排気温度センサ(19)により検出される。燃焼触媒(2)の入口温度(T1)は、燃焼触媒(2)の出口の排気温度センサ(20)により検出される。活性化必要温度(t0)は燃焼触媒(2)が活性化して燃焼触媒燃焼用ガス(5)を触媒燃焼させることができる下限温度である。活性化確認温度(t1)は、燃焼触媒(2)が活性化した場合の出口の下限温度で、燃焼触媒(2)の入口温度(T1)に活性化上昇温度(α)を加算した温度である。活性化上昇温度(α)は、燃焼触媒(2)の活性化時に、燃焼触媒暖機用ガス(8)の触媒燃焼で見込まれる排気の上昇温度である。
暖機確認温度(t1´)は、触媒燃焼(2)の入口温度(T1)に拘わらず、燃焼触媒(2)が活性化した場合の燃焼触媒(2)出口の下限温度で、エンジン回転数が低いほど高くなるように設定されている。エンジン回転数が低くなると、単位時間当たりの燃料噴射量が減少し、排気(7)の温度が低くなり、燃焼触媒(2)に蓄積された熱が奪われるため、暖機確認温度(t1´)を高く設定し、熱の収奪があっても、燃焼触媒(2)の温度を活性化温度に維持できるよう保障するためである。エンジン回転数に応じた暖機確認温度(t1´)は、実験により求められ、マップ化されている。暖機確認温度(t1´)は、活性化必要温度(t0)よりも高い温度に設定されている。
図1,図2に示すように、燃焼触媒暖気用ガス(8)が生成(S6)される場合は、燃焼触媒燃焼用ガス(5)が生成(S10)される場合よりも可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、燃焼触媒暖気用ガス(8)の着火性が燃焼触媒燃焼用ガス(5)よりも高められるように構成されている。
可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されると、可燃性ガスが熱分解により低分子化し、着火性が高まる。
ガス生成触媒(10)の反応温度を高くするには、空燃混合気(16)の混合比を空気リッチにすればよい。
図1,図2に示すように、可燃性ガス生成器(1)がヒータ(11)を備え、ガス生成触媒(10)で燃焼触媒暖機用ガス(8)が生成(S6)される前に、制御装置(4)によりヒータ(11)の発熱でガス生成触媒(10)が暖機されるように構成されている。
図2に示すように、ヒータ(11)への通電が開始(S2)されてから所定時間経過後に、ヒータ(11)への通電が終了(S4)されるのに対し、その終了(S4)前に、制御装置(4)により着火装置(9)への通電が開始(S3)されることにより、燃焼触媒暖機用ガス(8)が生成(S6)される前に、着火装置(9)が予熱されるように構成されている。
図1に示すように、燃焼触媒(2)のPM堆積量推定装置(12)を備えている。
図1、図2に示すように、燃焼触媒(2)のPM堆積量推定値に基づく所定の燃焼触媒再生要求条件が満たされた場合には、制御装置(4)により可燃性ガス生成器(1)で燃焼触媒再生用ガス(13)が生成(S13)され、この燃焼触媒再生用ガス(13)がエンジン排気経路(6)を通過する排気(7)に混入されて、着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)に堆積したPMが焼却除去されて、燃焼触媒(2)が再生されるように構成されている。
図1に示すように、着火装置(9)の着火状態検出装置(14)を備えている。
図1,図2に示すように、燃焼触媒再生用ガス(13)が着火されていないことが着火状態検出装置(14)で検出された場合には、制御装置(4)により可燃性ガス生成器(1)で再着火用ガス(15)が生成(S17)され、燃焼触媒再着火用ガス(15)が生成される場合は、燃焼触媒再生用ガス(13)が生成(S13)される場合よりも、可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、再着火用ガス(15)の着火性が燃焼触媒再生用ガス(13)よりも高められるように構成されている。
可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されると、可燃性ガスが熱分解により低分子化し、着火性が高まる。
ガス生成触媒(10)の反応温度を高くするには、空燃混合気(16)の混合比を空気リッチにすればよい。
この排気処理装置の処理の流れは、次の通りである。
ステップ(S1)では、再生要求条件が成立したか否かが判定され、判定が肯定された場合には、ステップ(S2)に移行する。判定が否定された場合には、ステップ(S1)の判定を繰り返す。
再生要求条件の成立は、図3に示すように、PM堆積総量推定値が再生必要値に至った場合とされている。この再生要求条件の成立時には、再生要求の対象がDPFか燃焼触媒(2)かは判別されず、この判別は、後のステップ(S9)で行われる。
PM堆積総量推定値は、燃焼触媒(2)の上流側の排気圧に基づいてPM堆積量推定装置(12)が推定する。排気圧は、排気圧センサ(23)で検出する。PM堆積量推定装置(12)は、制御装置(4)の演算処理部である。
ステップ(S2)では、ガス生成触媒(10)のヒータ(11)への通電が開始され、ステップ(S3)に移行する。
ステップ(S3)では、着火装置(9)の通電が開始され、ステップ(S4)に移行する。
ステップ(S4)では、ステップ(S2)での通電の開始から所定時間の経過したことに基づいて、ガス生成触媒(10)のヒータ(11)への通電が終了され、ステップ(S5)に移行する。
ステップ(S5)では、ガス生成触媒温度(T3)がガス生成必要温度(t3)以上か否かが判定され、判定が肯定された場合には、暖気終了として、ステップ(S6)に移行する。判定が否定された場合には、ステップ(S2)に戻る。
なお、ステップ(S3)で着火装置(9)の通電が開始された後、燃焼触媒暖機用ガス(8)の着火が着火状態検出装置(14)で検出された場合には、着火装置(9)の通電は終了してもよく、着火装置(9)の発熱がなくなっても、燃焼触媒暖機用ガス(8)の火炎燃焼は継続し、後述するステップ(S10)で生成される着火性の低い燃焼触媒燃焼用ガス(5)に接触すると、燃焼火炎は吹き消される。
ステップ(S6)では、燃焼触媒暖機用ガス(8)が生成され、ステップ(S7)に移行する。
ステップ(S7)では、燃焼触媒(2)の暖機終了条件の第1条件、すなわち燃焼触媒(2)の入口温度(T0)が活性化必要温度(t0)以上で、かつ、燃焼触媒(2)の出口温度(T1)が活性化確認温度(t1)以上となっている否かが判定され、判定が肯定された場合には、ステップ(S9)に移行する。
ステップ(S7)での判定が否定された場合には、ステップ(S8)に移行し、燃焼触媒(2)の暖機終了条件の第2条件、すなわち燃焼触媒(2)の出口温度(T1)が暖機確認温度(t1´)を所定時間継続して超えたているか否かが判定され、判定が肯定された場合には、ステップ(S9)に移行する。判定が否定された場合には、ステップ(S6)に戻る。
ステップ(S9)では、燃焼触媒(2)の再生要求条件が成立したか否かが判定され、判定が肯定された場合には、ステップ(S10)に移行し、排気処理装置(3)であるDPFの再生が開始される。判定が否定された場合には、ステップ(S13)に移行し、燃焼触媒(2)の再生が開始される。
図3に示すように、燃焼触媒(2)の再生要求条件は、前回の再生終了から今回の再生要求条件の成立までのインターバル(24)が所定時間未満である場合に成立する。
DPFに堆積するPMは、1回のDPF再生処理や1回の燃焼触媒再生処理でほぼ全量が除去されるが、燃焼触媒(2)に堆積したPMは複数回のDPF再生処理でも除去されず、次第に累積されるため、前記インターバル(24)が所定時間未満になる場合には、燃焼触媒(2)の再生に必要な所定量のPMが堆積していると推定することができるためである。
ステップ(S10)では、燃焼触媒燃焼用ガス(5)が生成され、ステップ(S11)に移行する。ステップ(S11)では、DPF再生終了条件が成立したか否かが判定され、判定が肯定された場合には、ステップ(S12)に移行する。
DPF再生終了条件は、DPF入口温度(燃焼触媒出口温度)が所定温度以上で所定時間経過した場合に成立する。
ステップ(S12)では、DPFの再生が終了し、処理が終了する。
DPFの再生の終了は、燃焼触媒燃焼用ガス(5)の生成を停止することにより行われる。
ステップ(S13)では、燃焼触媒再生用ガス(13)が生成され、ステップ(S14)に移行する。
ステップ(S14)では、燃焼触媒再生用ガス(13)が着火状態か否かが判定され、判定が肯定された場合には、ステップ(S15)に移行する。ステップ(S14)での判定が否定された場合には、ステップ(S16)に移行する。
ステップ(S16)では、着火装置(9)の通電が再開され、ステップ(S17)に移行する。
ステップ(S17)では、再着火用ガス(15)が生成され、ステップ(S14)に戻る。
ステップ(S16)では、燃焼触媒(2)の再生終了条件が成立したか否かが判定され、判定が肯定された場合には、ステップ(S18)に移行する。
燃焼触媒(2)の再生終了条件は、燃焼触媒(2)の入口温度が所定温度以上で所定時間経過した場合に成立する。
ステップ(S18)では、燃焼触媒(2)の再生が終了され、処理が終了する。
燃焼触媒(2)の再生終了は、燃焼触媒再生用ガス(13)の生成を停止することにより行われる。
なお、ステップ(S16)で着火装置(9)の通電が再開された後、再着火用ガス(15)の着火が着火状態検出装置(14)で検出された場合には、着火装置(9)の通電は終了してもよく、着火装置(9)の発熱がなくなっても、再着火用ガス(15)の燃焼火炎は燃焼触媒再生用ガス(13)に引き継がれて火炎燃焼は継続する。
(1) 可燃性ガス生成器
(2) 燃焼触媒
(3) 排気処理部
(4) 制御装置
(5) 燃焼触媒燃焼用ガス
(6) エンジン排気経路
(7) 排気
(8) 燃焼触媒暖気用ガス
(9) 着火装置
(10) ガス生成触媒
(11) ヒータ
(12) PM堆積量推定装置
(13) 燃焼触媒再生用ガス
(14) 着火状態検出装置
(15) 再着火用ガス
(S2) ヒータへの通電が開始
(S3) 着火装置への通電が開始
(S4) ヒータへの通電が終了
(S6) 燃焼触媒暖気用ガスが生成
(S10) 燃焼触媒燃焼用ガスが生成
(S13) 燃焼触媒再生用ガスが生成
(S18) 燃焼触媒再着火用ガスが生成

Claims (4)

  1. 可燃性ガス生成器(1)と燃焼触媒(2)と排気処理部(3)と制御装置(4)を備え、
    制御装置(4)の制御により可燃性ガス生成器(1)で燃焼触媒燃焼用ガス(5)が生成(S10)され、この燃焼触媒燃焼用ガス(5)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)で触媒燃焼され、この触媒燃焼で昇温された排気(7)が排気処理部(3)に供給されるように構成された、エンジンの排気処理装置において、
    燃焼触媒燃焼用ガス(5)が生成(S10)される前に制御装置(4)により可燃性ガス生成器(1)で燃焼触媒暖気用ガス(8)が生成(S6)され、この燃焼触媒暖機用ガス(8)がエンジン排気経路(6)を通過する排気(7)に混入されて、燃焼触媒(2)上流の着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)が暖機されるように構成され、
    燃焼触媒(2)の暖機終了条件が成立した場合には、燃焼触媒燃焼用ガス(5)が生成(S10)されるように構成され、
    燃焼触媒暖気用ガス(8)が生成(S6)される場合は、燃焼触媒燃焼用ガス(5)が生成(S10)される場合よりも可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、燃焼触媒暖気用ガス(8)の着火性が燃焼触媒燃焼用ガス(5)よりも高められるように構成されている、ことを特徴とするエンジンの排気処理装置。
  2. 請求項1に記載されたエンジンの排気処理装置において、
    可燃性ガス生成器(1)がヒータ(11)を備え、ガス生成触媒(10)で燃焼触媒暖機用ガス(8)が生成(S6)される前に、制御装置(4)によりヒータ(11)の発熱でガス生成触媒(10)が暖機されるように構成され、
    ヒータ(11)への通電が開始(S2)されてから所定時間経過後に、ヒータ(11)への通電が終了(S4)されるのに対し、その終了(S4)前に、制御装置(4)により着火装置(9)への通電が開始(S3)されることにより、燃焼触媒暖機用ガス(8)が生成(S6)される前に、着火装置(9)が予熱されるように構成されている、ことを特徴とするエンジンの排気処理装置。
  3. 請求項1または請求項2に記載されたエンジンの排気処理装置において、
    燃焼触媒(2)のPM堆積量推定装置(12)を備え、
    燃焼触媒(2)のPM堆積量推定値に基づく所定の燃焼触媒再生要求条件が満たされた場合には、制御装置(4)により可燃性ガス生成器(1)で燃焼触媒再生用ガス(13)が生成(S13)され、この燃焼触媒再生用ガス(13)がエンジン排気経路(6)を通過する排気(7)に混入されて、着火装置(9)で着火され、火炎燃焼で昇温された排気(7)で燃焼触媒(2)に堆積したPMが焼却除去されて、燃焼触媒(2)が再生されるように構成されている、ことを特徴とするエンジンの排気処理装置。
  4. 請求項3に記載されたエンジンの排気処理装置において、
    着火装置(9)の着火状態検出装置(14)を備え、
    燃焼触媒再生用ガス(13)が着火されていないことが着火状態検出装置(14)で検出された場合には、制御装置(4)により可燃性ガス生成器(1)で再着火用ガス(15)が生成(S17)され、再着火用ガス(15)が生成される場合は、燃焼触媒再生用ガス(13)が生成(S13)される場合よりも、可燃性ガス生成器(1)のガス生成触媒(10)の目標反応温度が高く設定されることにより、再着火用ガス(15)の着火性が燃焼触媒再生用ガス(13)よりも高められるように構成されている、ことを特徴とするエンジンの排気処理装置。

JP2014067584A 2014-03-28 2014-03-28 エンジンの排気処理装置 Active JP6270583B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067584A JP6270583B2 (ja) 2014-03-28 2014-03-28 エンジンの排気処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067584A JP6270583B2 (ja) 2014-03-28 2014-03-28 エンジンの排気処理装置

Publications (2)

Publication Number Publication Date
JP2015190369A true JP2015190369A (ja) 2015-11-02
JP6270583B2 JP6270583B2 (ja) 2018-01-31

Family

ID=54425082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067584A Active JP6270583B2 (ja) 2014-03-28 2014-03-28 エンジンの排気処理装置

Country Status (1)

Country Link
JP (1) JP6270583B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120986A (ja) * 2003-10-20 2005-05-12 Toyota Motor Corp 内燃機関の排気浄化システム
JP2005127257A (ja) * 2003-10-24 2005-05-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010059886A (ja) * 2008-09-04 2010-03-18 Toyota Motor Corp 内燃機関の排気浄化装置
JP2013189955A (ja) * 2012-03-15 2013-09-26 Kubota Corp エンジンの排気処理装置
JP2014001664A (ja) * 2012-06-18 2014-01-09 Hino Motors Ltd 排気浄化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120986A (ja) * 2003-10-20 2005-05-12 Toyota Motor Corp 内燃機関の排気浄化システム
JP2005127257A (ja) * 2003-10-24 2005-05-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010059886A (ja) * 2008-09-04 2010-03-18 Toyota Motor Corp 内燃機関の排気浄化装置
JP2013189955A (ja) * 2012-03-15 2013-09-26 Kubota Corp エンジンの排気処理装置
JP2014001664A (ja) * 2012-06-18 2014-01-09 Hino Motors Ltd 排気浄化装置

Also Published As

Publication number Publication date
JP6270583B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6214479B2 (ja) エンジンの排気処理装置
JP2004324587A (ja) 内燃機関の排気浄化装置
US8407989B2 (en) Regeneration strategy for engine exhaust
US9103253B2 (en) Thermal enhancer and hydrocarbon doser
JP2013087770A (ja) 煤煙フィルター再生システム、及びその方法
JP2006112401A (ja) 触媒昇温装置
KR101888219B1 (ko) 엔진의 배기처리장치
JP5750389B2 (ja) エンジンの排気処理装置
JP6175398B2 (ja) エンジンの排気処理装置
JP5750390B2 (ja) エンジンの排気処理装置
JP6349535B2 (ja) 排気ガス昇温装置を備えた排気ガス浄化装置
JP2010156277A (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP2015161293A (ja) 内燃機関の排気浄化装置
JP6270583B2 (ja) エンジンの排気処理装置
JP6326392B2 (ja) エンジンの排気処理装置
JP5959464B2 (ja) エンジンの排気処理装置
JP2019120203A (ja) バーナー
WO2006095146A1 (en) Process and apparatus for the regeneration of a particulate filter
JP2013092075A (ja) 内燃機関の排気浄化装置
JP2014055522A (ja) ディーゼルエンジンの排気処理装置及び可燃性ガス生成触媒
JP5959465B2 (ja) エンジンの排気処理装置
JP6811368B2 (ja) 排気温度昇温装置
JP2015031211A (ja) 内燃機関の制御装置
JP2017190725A (ja) 内燃機関の排ガス浄化装置
JP2022053082A (ja) NOxセンサ昇温装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6270583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150