JP2015189964A - thermoplastic resin composition - Google Patents

thermoplastic resin composition Download PDF

Info

Publication number
JP2015189964A
JP2015189964A JP2014070743A JP2014070743A JP2015189964A JP 2015189964 A JP2015189964 A JP 2015189964A JP 2014070743 A JP2014070743 A JP 2014070743A JP 2014070743 A JP2014070743 A JP 2014070743A JP 2015189964 A JP2015189964 A JP 2015189964A
Authority
JP
Japan
Prior art keywords
weight
parts
ions
styrene
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014070743A
Other languages
Japanese (ja)
Inventor
文敏 武田
Fumitoshi Takeda
文敏 武田
和則 高橋
Kazunori Takahashi
和則 高橋
秋山 友良
Tomoyoshi Akiyama
友良 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2014070743A priority Critical patent/JP2015189964A/en
Publication of JP2015189964A publication Critical patent/JP2015189964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition in which poor appearance caused by burned resin is suppressed, and also residence heat stability upon molding is excellent.SOLUTION: Provided is a thermoplastic resin composition in which the content of iron ions is 20 ppm or lower, and further, the total content of potassium ions, sodium ions, magnesium ions, calcium ions and sulfate ions is 100 to 4,000 ppm.

Description

本発明は、焼け樹脂による外観不良が抑制され、かつ成型時の滞留熱安定性が優れた熱可塑性樹脂組成物に関するものである。 The present invention relates to a thermoplastic resin composition in which poor appearance due to a baked resin is suppressed, and the residence heat stability during molding is excellent.

ゴム状重合体に単量体をグラフト重合したグラフト共重合体(例えばABS樹脂、AES樹脂、ASA樹脂など)を含む熱可塑性樹脂組成物は、耐衝撃性及び加工性のバランスに優れた樹脂であり、自動車等の車両用内外装部品、各種の家電製品やOA機器のハウジング、その他雑貨分野等、幅広い分野に使用されている。 A thermoplastic resin composition containing a graft copolymer (for example, ABS resin, AES resin, ASA resin, etc.) obtained by graft polymerization of a monomer to a rubbery polymer is a resin having an excellent balance between impact resistance and processability. It is used in a wide range of fields such as interior and exterior parts for vehicles such as automobiles, housings for various home appliances and OA equipment, and other miscellaneous goods.

しかしながら、特にグラフト共重合体中のゴム質重合体が、パウダー化工程、造粒工程、成形工程などで加えられる熱により熱劣化が進行し、焼け樹脂の発生を引き起こす。この焼け樹脂が、成形品やフィルムの表面近傍に存在することで、外観不良を起こすという問題がある。そのため、熱履歴による焼け樹脂の発生が抑制され、成形品やフィルムに加工した際、良好な表面外観が得られる熱可塑性樹脂組成物が求められている。 However, the rubbery polymer in the graft copolymer, in particular, undergoes thermal degradation due to heat applied in the powdering process, granulation process, molding process, etc., and causes the generation of a burned resin. When this burnt resin is present in the vicinity of the surface of the molded product or film, there is a problem that an appearance defect is caused. Therefore, there is a demand for a thermoplastic resin composition that suppresses the generation of a burnt resin due to thermal history and can provide a good surface appearance when processed into a molded product or film.

焼け樹脂の発生を抑制させる方法として、特許文献1には、ゴム変性熱可塑性樹脂組成物のQ値の範囲を規定することで、流動性に優れ、押し出された溶融ストランドの脈動がなくなることで、樹脂の滞留による焼け、異物の発生が抑制されることが開示されている。しかしながら、この方法では、造粒工程での焼け樹脂の発生は抑制されるが、造粒工程以外での焼け樹脂の発生は抑制出来ないため、依然として十分に満足のいくものでない。 As a method for suppressing the generation of burnt resin, Patent Document 1 provides excellent fluidity and eliminates the pulsation of extruded molten strands by defining the range of the Q value of the rubber-modified thermoplastic resin composition. Further, it is disclosed that the occurrence of burning and foreign matters due to resin retention is suppressed. However, in this method, the generation of the burned resin in the granulation step is suppressed, but since the generation of the burnt resin other than the granulation step cannot be suppressed, it is still not fully satisfactory.

特開平10−17627号JP 10-17627 A

本発明は、焼け樹脂による外観不良が抑制され、かつ成型時の滞留熱安定性が優れた熱可塑性樹脂組成物に関するものである。 The present invention relates to a thermoplastic resin composition in which poor appearance due to a baked resin is suppressed, and the residence heat stability during molding is excellent.

本発明者らは、従来技術の問題点を解決するために鋭意検討した結果、熱可塑性樹脂組成物中の鉄イオン含有量が20ppm以下、さらにカリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン及び硫酸イオンの含有量の合計を100〜4000ppmにすることで、上記目的を達成できることを見出し、本発明に到達した。 As a result of intensive studies to solve the problems of the prior art, the present inventors have found that the iron ion content in the thermoplastic resin composition is 20 ppm or less, and further potassium ions, sodium ions, magnesium ions, calcium ions and sulfuric acid. The inventors have found that the above object can be achieved by setting the total content of ions to 100 to 4000 ppm, and have reached the present invention.

すなわち、本発明は、鉄イオン含有量が20ppm以下、さらにカリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン及び硫酸イオンの含有量の合計が100〜4000ppmであることを特徴とする熱可塑性樹脂組成物に関するものである。 That is, the present invention provides a thermoplastic resin composition characterized in that the iron ion content is 20 ppm or less, and the total content of potassium ions, sodium ions, magnesium ions, calcium ions and sulfate ions is 100 to 4000 ppm. It is about.

本発明により焼け樹脂による外観不良が抑制され、かつ成型時の滞留熱安定性に優れた熱可塑性樹脂組成物を得ることが出来る。 According to the present invention, it is possible to obtain a thermoplastic resin composition in which the appearance defect due to the burned resin is suppressed and the residence heat stability during molding is excellent.

以下、本発明を詳しく説明する。
本発明において焼け樹脂とは、熱可塑性樹脂組成物がパウダー化工程、造粒工程、成形工程などで加えられる熱による熱劣化により発生したものを示す。
The present invention will be described in detail below.
In the present invention, the baked resin refers to a thermoplastic resin composition that is generated due to thermal deterioration due to heat applied in a powdering process, a granulating process, a molding process, and the like.

本発明において成型時の滞留熱安定性とは、溶融樹脂がシリンダー内に長く滞留した後、成形した成形品の外観に与える影響を示す。通常、溶融樹脂がシリンダー内に長く滞留すれば、焼け樹脂の発生が増える傾向にあり、焼け樹脂により成形品の外観不良が発生する。 In the present invention, the retention thermal stability at the time of molding refers to the effect on the appearance of the molded product molded after the molten resin has retained in the cylinder for a long time. Usually, if the molten resin stays in the cylinder for a long time, the generation of the burned resin tends to increase, and the burnt resin causes poor appearance of the molded product.

本発明の熱可塑性樹脂組成物は、グラフト共重合体を含むことが好ましい。 The thermoplastic resin composition of the present invention preferably contains a graft copolymer.

本発明で使用するグラフト共重合体を構成するゴム状重合体としては、ポリブタジエンゴム、スチレン−ブタジエンゴム(SBR)、スチレン−ブタジエン−スチレン(SBS)ブロックコポリマー、スチレン−(エチレン−ブタジエン)−スチレン(SEBS)ブロックコポリマー、アクリロニトリル−ブタジエンゴム(NBR)、メチルメタクリレート−ブタジエンゴム等の共役ジエン系重合体、エチレン−プロピレンゴム、エチレン−プロピレン−非共役ジエン(エチリデンノルボルネン、ジシクロペンタジエン等)ゴム等のエチレン−プロピレン系ゴム、ポリブチルアクリレートゴム等のアクリル系ゴム、シリコーン系ゴム、更にはこれらのゴムから選ばれた一種以上の複合ゴムなどが挙げられ、一種又は二種以上用いることができる。特に、共役ジエン系重合体が好ましい。 Examples of the rubber-like polymer constituting the graft copolymer used in the present invention include polybutadiene rubber, styrene-butadiene rubber (SBR), styrene-butadiene-styrene (SBS) block copolymer, and styrene- (ethylene-butadiene) -styrene. (SEBS) block copolymer, conjugated diene polymer such as acrylonitrile-butadiene rubber (NBR), methyl methacrylate-butadiene rubber, ethylene-propylene rubber, ethylene-propylene-nonconjugated diene (such as ethylidene norbornene, dicyclopentadiene) rubber, etc. Acrylic rubbers such as ethylene-propylene rubbers, polybutyl acrylate rubbers, silicone rubbers, and one or more composite rubbers selected from these rubbers can be used. One or two or more rubbers can be used. . In particular, a conjugated diene polymer is preferable.

ゴム状重合体の重合方法については特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができるが、乳化重合法が特に好ましい。 The method for polymerizing the rubbery polymer is not particularly limited, and can be produced by emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof, but the emulsion polymerization method is particularly preferable.

ゴム状重合体を乳化重合法により得る際に用いる乳化剤としては、高級アルコールの硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、脂肪族スルホン酸塩、脂肪族カルボン酸塩、非イオン性界面活性剤の硫酸エステル塩等のアニオン性界面活性剤あるいはポリエチレングリコールのアルキルエステル型、アルキルフェニルエーテル型、アルキルエーテル型等のノニオン性界面活性剤が挙げられ、これらを1種又は2種以上使用することができる。特に、アルキルベンゼンスルホン酸塩、脂肪族カルボン酸塩が好ましい。 Emulsifiers used when obtaining rubbery polymers by emulsion polymerization include sulfate esters of higher alcohols, alkylbenzene sulfonates, alkyl diphenyl ether disulfonates, aliphatic sulfonates, aliphatic carboxylates, nonionic Nonionic surfactants such as anionic surfactants such as sulfate salts of surfactants or alkyl ester types, alkyl phenyl ether types, alkyl ether types of polyethylene glycol, etc. are used, and one or more of these are used. can do. In particular, alkylbenzene sulfonate and aliphatic carboxylate are preferable.

ゴム状重合体を乳化重合法により得る際に用いる重合開始剤としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の水溶性重合開始剤、クメンハイドロパーオキサイド、過酸化ベンゾイル、t−ブチルハイドロパーオキサイド、アセチルパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド等の油溶性重合開始剤を適宜用いることができる。これら開始剤と還元剤の組み合わせからなるレドックス系開始剤も用いることができ、還元剤としては、硫酸第一鉄7水塩、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、亜ニチオン酸塩、ニチオン酸塩、チオ硫酸塩、ホルムアルデヒドスルホン酸塩、ベンズアルデヒドスルホン酸塩、また、L−アスコルビン酸、酒石酸、クエン酸などのカルボン酸類、更にはラクトース、デキストロース、サッカロースなどの還元糖類、更にはジメチルアニリン、トリエタノールアミンなどのアミン類が挙げられる。また、レドックス系開始剤を用いる際、キレート剤として、ピロリン酸四ナトリウム、エチレンジアミン四酢酸二ナトリウム(二水和物)等が用いられる。 Polymerization initiators used for obtaining rubbery polymers by emulsion polymerization methods include water-soluble polymerization initiators such as potassium persulfate, sodium persulfate, and ammonium persulfate, cumene hydroperoxide, benzoyl peroxide, and t-butyl hydro gen. Oil-soluble polymerization initiators such as peroxide, acetyl peroxide, diisopropylbenzene hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide can be used as appropriate. Redox initiators composed of a combination of these initiators and reducing agents can also be used. Examples of reducing agents include ferrous sulfate heptahydrate, sulfite, bisulfite, pyrosulfite, nitrite, nithion. Acid salts, thiosulfates, formaldehyde sulfonates, benzaldehyde sulfonates, carboxylic acids such as L-ascorbic acid, tartaric acid, citric acid, reducing sugars such as lactose, dextrose, saccharose, and dimethylaniline Examples include amines such as triethanolamine. Moreover, when using a redox-type initiator, tetrasodium pyrophosphate, disodium ethylenediaminetetraacetate (dihydrate), etc. are used as a chelating agent.

ゴム状重合体を乳化重合法により得る際の重合方法には特に制限はないが、バッチ重合、セミバッチ重合、シード重合などを用いることが出来る。また、各種成分の添加方法についても特に制限されるものではなく、一括添加方法、分割添加方法、連続添加方法、パワーフィード法などを用いることができる。 There is no particular limitation on the polymerization method for obtaining the rubbery polymer by the emulsion polymerization method, but batch polymerization, semi-batch polymerization, seed polymerization and the like can be used. Moreover, the addition method of various components is not particularly limited, and a batch addition method, a divided addition method, a continuous addition method, a power feed method, or the like can be used.

ゴム状重合体を乳化重合法により得る際の重合温度は特に制限はないが、40〜80℃であることが好ましい。 The polymerization temperature for obtaining the rubbery polymer by the emulsion polymerization method is not particularly limited, but is preferably 40 to 80 ° C.

ゴム状重合体の重量平均粒子径に特に制限はないが、耐衝撃性、流動性及び発色性などの物性バランスから、150〜800nmが好ましく、200〜600nmがより好ましい。また、重量平均粒子径が50〜300nmのゴム状重合体に酸を添加し、凝集肥大化させることで調整することも出来る。 Although there is no restriction | limiting in particular in the weight average particle diameter of a rubber-like polymer, 150-800 nm is preferable and 200-600 nm is more preferable from physical property balances, such as impact resistance, fluidity | liquidity, and coloring property. Moreover, it can also adjust by adding an acid to the rubber-like polymer whose weight average particle diameter is 50-300 nm, and making it cohesive enlargement.

本発明で使用するグラフト共重合体は、上述のゴム状重合体の存在下に、芳香族ビニル系単量体、シアン化ビニル系単量体、及びこれらと共重合可能な他のビニル系単量体から選ばれた少なくとも一種の単量体をグラフト重合して得られる。 The graft copolymer used in the present invention includes an aromatic vinyl monomer, a vinyl cyanide monomer, and other vinyl monomers copolymerizable therewith in the presence of the rubbery polymer described above. It is obtained by graft polymerization of at least one monomer selected from a monomer.

グラフト重合に用いる芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、パラメチルスチレン、ブロムスチレン等が挙げられ、一種又は二種以上用いることができる。特にスチレン、α−メチルスチレンが好ましい。 Examples of the aromatic vinyl monomer used for the graft polymerization include styrene, α-methylstyrene, paramethylstyrene, bromostyrene, and the like, and one or more of them can be used. In particular, styrene and α-methylstyrene are preferable.

グラフト重合に用いるシアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、フマロニトリル等が挙げられ、一種又は二種以上用いることができる。特にアクリロニトリルが好ましい。 Examples of the vinyl cyanide monomer used for the graft polymerization include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile and the like, and one or more of them can be used. Particularly preferred is acrylonitrile.

グラフト重合に用いる共重合可能な他のビニル系単量体としては、(メタ)アクリル酸エステル系単量体、マレイミド系単量体、アミド系単量体等が挙げられ、一種又は二種以上用いることができる。(メタ)アクリル酸エステル系単量体としては(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、アクリル酸2−エチルヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸4−t−ブチルフェニル、(メタ)アクリル酸(ジ)ブロモフェニル、(メタ)アクリル酸クロルフェニル等が例示でき、マレイミド系単量体としてはN−フェニルマレイミド、N−シクロヘキシルマレイミド等が例示でき、アミド系単量体としてはアクリルアミド、メタクリルアミド等が例示できる。 Examples of other copolymerizable vinyl monomers used for graft polymerization include (meth) acrylic acid ester monomers, maleimide monomers, amide monomers, and the like, one or more Can be used. (Meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl acrylate, (meth) acrylic Acid phenyl, (meth) acrylic acid 4-t-butylphenyl, (meth) acrylic acid (di) bromophenyl, (meth) acrylic acid chlorophenyl, and the like. As the maleimide monomer, N-phenylmaleimide, Examples thereof include N-cyclohexylmaleimide, and examples of the amide monomer include acrylamide and methacrylamide.

ゴム状重合体にグラフト重合される、上述の単量体の組成比率に特に制限はないが、芳香族ビニル系単量体60〜90重量%、シアン化ビニル系単量体10〜40重量%及び共重合可能な他のビニル系単量体0〜30重量%の組成比率、芳香族ビニル系単量体30〜80重量%、(メタ)アクリル酸エステル系単量体20〜70重量%及び共重合可能な他のビニル系単量体0〜50重量%の組成比率、芳香族ビニル系単量体20〜70重量%、(メタ)アクリル酸エステル系単量体20〜70重量%、シアン化ビニル系単量体10〜60重量%及び共重合可能な他のビニル系単量体0〜30重量%の組成比率等であることが好ましい(グラフト重合に用いる単量体合計量を100重量部とする)。 There is no particular limitation on the composition ratio of the above-mentioned monomer graft-polymerized on the rubber-like polymer, but aromatic vinyl monomer 60 to 90% by weight, vinyl cyanide monomer 10 to 40% by weight And a composition ratio of 0 to 30% by weight of another copolymerizable vinyl monomer, 30 to 80% by weight of an aromatic vinyl monomer, 20 to 70% by weight of a (meth) acrylate monomer and Composition ratio of 0 to 50% by weight of other copolymerizable monomers, 20 to 70% by weight of aromatic vinyl monomer, 20 to 70% by weight of (meth) acrylate monomer, cyan The composition ratio is preferably 10 to 60% by weight of a vinyl fluoride monomer and 0 to 30% by weight of another copolymerizable vinyl monomer (the total amount of monomers used for graft polymerization is 100% by weight). Part).

グラフト共重合体中のゴム状重合体の含有量は、耐衝撃性、流動性及び発色性などの物性バランスから、20〜85重量部であることが好ましく、40〜70重量部であることがより好ましい(グラフト共重合体を100重量部とする)。ゴム状重合体の含有量が20重量部より少ないとグラフト共重合体のグラフト率が高くなり耐衝撃性に劣り、85重量部を超えるとグラフト共重合体のグラフト率が低くなり発色性に劣る。 The content of the rubber-like polymer in the graft copolymer is preferably 20 to 85 parts by weight, and preferably 40 to 70 parts by weight, from the balance of physical properties such as impact resistance, fluidity and color developability. More preferable (the graft copolymer is 100 parts by weight). If the content of the rubbery polymer is less than 20 parts by weight, the graft ratio of the graft copolymer is increased and the impact resistance is inferior, and if it exceeds 85 parts by weight, the graft ratio of the graft copolymer is decreased and the color development is inferior. .

グラフト共重合体の重合方法については特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合またはこれらの組み合わせにより製造することができるが、乳化重合法が特に好ましい。 The polymerization method of the graft copolymer is not particularly limited, and can be produced by emulsion polymerization, suspension polymerization, bulk polymerization, solution polymerization, or a combination thereof, but the emulsion polymerization method is particularly preferable.

グラフト共重合体を乳化重合法により得る際に用いる乳化剤、開始剤、重合方法及び重合温度としては、上述したゴム状重合体を乳化重合法により得る際と同様のものを用いることが出来る。 As the emulsifier, the initiator, the polymerization method and the polymerization temperature used when the graft copolymer is obtained by the emulsion polymerization method, those similar to those used when the rubber-like polymer described above is obtained by the emulsion polymerization method can be used.

グラフト共重合体のグラフト率(グラフト共重合体のアセトン可溶分量と不溶分量及びグラフト共重合体中のゴム状重合体の重量から求める)、及びアセトン可溶分の還元粘度(0.4g/100cc、N,Nジメチルホルムアミド溶液として30℃で測定)に特に制限はなく、要求性能によって任意の構造のものを使用することが出来るが、耐衝撃性、流動性及び発色性などの物性バランスの観点から、グラフト率は25〜150%であることが好ましく、還元粘度は0.2〜2.0dl/gであることが好ましい。 Graft rate of the graft copolymer (determined from the amount of acetone-soluble and insoluble components in the graft copolymer and the weight of the rubbery polymer in the graft copolymer), and the reduced viscosity of the acetone-soluble component (0.4 g / There is no particular limitation on the 100 cc, N, N dimethylformamide solution measured at 30 ° C., and any structure can be used depending on the required performance, but the balance of physical properties such as impact resistance, fluidity and color developability can be used. From the viewpoint, the graft ratio is preferably 25 to 150%, and the reduced viscosity is preferably 0.2 to 2.0 dl / g.

グラフト共重合体が乳化重合法により得られた場合、凝固、洗浄、脱水、乾燥工程を経ることでパウダーを得ることが出来る。凝固工程で用いる凝固剤としては、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、硫酸アルミニウムのような金属塩、塩酸、硫酸、酢酸、リン酸のような無機酸及び有機酸が挙げられ、1種単独又は2種以上を水溶液にして用いることが出来る。また、凝固剤を用いず、スプレードライヤーやアトマイザーなどによる回収、乾燥方法も用いることができる。 When the graft copolymer is obtained by an emulsion polymerization method, a powder can be obtained through steps of coagulation, washing, dehydration and drying. Examples of the coagulant used in the coagulation step include metal salts such as calcium chloride, magnesium chloride, magnesium sulfate, and aluminum sulfate, and inorganic acids and organic acids such as hydrochloric acid, sulfuric acid, acetic acid, and phosphoric acid. Two or more kinds can be used as an aqueous solution. Further, a recovery and drying method using a spray dryer or an atomizer can be used without using a coagulant.

本発明の熱可塑性樹脂組成物は、グラフト共重合体を1種または2種以上含み、さらに他の樹脂を含むことができる。例えば、ポリスチレン樹脂、スチレン− アクリロニトリル樹脂、α-メチルスチレン− アクリロニトリル樹脂、スチレン−メチルメタクリレート樹脂、スチレン− アクリロニトリル−メチルメタクリレート樹脂、N−フェニルマレイミド−スチレン樹脂、N−フェニルマレイミド− スチレン−アクリロニトリル樹脂等のスチレン系樹脂;ポリメチルメタクリレート樹脂等のアクリル系樹脂;ポリカーボネート系樹脂;ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂等のポリエステル系樹脂;ポリアミド系樹脂;ポリ乳酸樹脂等の生分解性樹脂;ポリプロピレン、ポリエチレン等のオレフィン系樹脂等が挙げられる。 The thermoplastic resin composition of the present invention contains one or more graft copolymers, and may further contain other resins. For example, polystyrene resin, styrene-acrylonitrile resin, α-methylstyrene-acrylonitrile resin, styrene-methyl methacrylate resin, styrene-acrylonitrile-methyl methacrylate resin, N-phenylmaleimide-styrene resin, N-phenylmaleimide-styrene-acrylonitrile resin, etc. Styrene resin; acrylic resin such as polymethyl methacrylate resin; polycarbonate resin; polyester resin such as polybutylene terephthalate resin and polyethylene terephthalate resin; polyamide resin; biodegradable resin such as polylactic acid resin; polypropylene and polyethylene And olefin-based resins.

本発明の熱可塑性樹脂組成物において、グラフト共重合体は、熱可塑性樹脂組成物中のゴム状重合体含有量が5〜50重量%になるように含有させることが物性バランスの観点から好ましく、10〜30重量%にすることがより好ましい。 In the thermoplastic resin composition of the present invention, the graft copolymer is preferably contained so that the rubber-like polymer content in the thermoplastic resin composition is 5 to 50% by weight from the viewpoint of the balance of physical properties, More preferably, the content is 10 to 30% by weight.

熱可塑性樹脂組成物中の鉄イオン含有量の低減方法としては、例えば、グラフト共重合体が乳化重合法により得られる場合、レドックス系開始剤の還元剤である硫酸第一鉄7水塩量の削減や他の還元剤への変更、重合後のラテックスにキレート剤を添加して金属錯体を形成して水溶性を高めることや、得られたスラリーを高速遠心脱水機にかける際、その水洗量を増やす方法や得られたパウダーを除鉄機に通す方法などで適宜調整することができる。 As a method for reducing the iron ion content in the thermoplastic resin composition, for example, when the graft copolymer is obtained by an emulsion polymerization method, the amount of ferrous sulfate heptahydrate which is a reducing agent of a redox initiator is used. Reduction, change to other reducing agents, add a chelating agent to the polymerized latex to form a metal complex to increase water solubility, and when the obtained slurry is subjected to a high-speed centrifugal dehydrator, the amount of water washed It can adjust suitably by the method of passing the obtained powder, or passing the obtained powder through an iron remover.

熱可塑性樹脂組成物中のナトリウムイオン及びカリウムイオン含有量の調整方法としては、例えば、グラフト共重合体が乳化重合法により得られる場合、乳化剤の使用量の変更、乳化剤由来の脂肪酸系金属塩を再度、脂肪酸に戻して溶剤洗浄する方法や、得られたスラリーを高速遠心脱水機にかける際、その水洗量を変更する方法などで適宜調整することができる。 As a method for adjusting the sodium ion and potassium ion content in the thermoplastic resin composition, for example, when the graft copolymer is obtained by an emulsion polymerization method, the use amount of the emulsifier is changed, and the fatty acid metal salt derived from the emulsifier is used. It can be appropriately adjusted by a method of returning to the fatty acid again and washing with a solvent, or a method of changing the amount of washing with water when the obtained slurry is subjected to a high-speed centrifugal dehydrator.

熱可塑性樹脂組成物中のマグネシウムイオン、カルシウムイオン及び硫酸イオン含有量の調整方法としては、例えば、グラフト共重合体が乳化重合法により得られる場合、ラテックスからパウダーを得る際の凝固剤量の変更、および得られたパウダーを高速遠心脱水機にかける際、その水洗量を変更する方法などで適宜調整することができる。 As a method for adjusting the content of magnesium ion, calcium ion and sulfate ion in the thermoplastic resin composition, for example, when the graft copolymer is obtained by an emulsion polymerization method, the amount of coagulant when changing the amount of powder from latex is changed. When the obtained powder is subjected to a high-speed centrifugal dehydrator, it can be appropriately adjusted by a method of changing the amount of washing.

本発明の熱可塑性樹脂組成物中の鉄イオン含有量を20ppm以下さらにカリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン及び硫酸イオンの含有量の合計は100〜4000ppmであり、鉄イオン含有量を10ppm以下さらにカリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン及び硫酸イオンの含有量の合計を100〜3000ppmであることがより好ましい。熱可塑性樹脂組成物中の鉄イオン含有量が20ppm以下さらにカリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン及び硫酸イオンの含有量の合計を100〜4000ppmにすることにより、焼け樹脂の発生が抑制され、成形品の外観が良好で、かつ成型時の滞留熱安定性に優れた熱可塑性樹脂組成物を得ることができる。 The iron ion content in the thermoplastic resin composition of the present invention is 20 ppm or less, and the total content of potassium ions, sodium ions, magnesium ions, calcium ions and sulfate ions is 100 to 4000 ppm, and the iron ion content is 10 ppm. In the following, it is more preferable that the total content of potassium ion, sodium ion, magnesium ion, calcium ion and sulfate ion is 100 to 3000 ppm. By making the total content of potassium ions, sodium ions, magnesium ions, calcium ions and sulfate ions 100 to 4000 ppm, the iron ion content in the thermoplastic resin composition is 20 ppm or less. Thus, a thermoplastic resin composition having a good appearance of the molded product and having excellent residence heat stability during molding can be obtained.

本発明の熱可塑性樹脂組成物は、本発明の目的を逸脱しない範囲であれば、ヒンダードアミン系の光安定剤、ヒンダードフェノール系、含硫黄有機化合物系、含リン有機化合物系等の酸化防止剤、フェノール系、アクリレート系等の熱安定剤、ベンゾエート系、ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系の紫外線吸収剤、有機ニッケル系、高級脂肪酸アミド類等の滑剤、リン酸エステル類等の可塑剤、ポリブロモフェニルエーテル、テトラブロモビスフェノール−A、臭素化エポキシオリゴマー、臭素化等の含ハロゲン系化合物、リン系化合物、三酸化アンチモン等の難燃剤・難燃助剤、臭気マスキング剤、カーボンブラック、酸化チタン、顔料、及び染料等を添加することもできる。更に、タルク、炭酸カルシウム、水酸化アルミニウム、ガラス繊維、ガラスフレーク、ガラスビーズ、炭素繊維、金属繊維等の補強剤や充填剤を添加することもできる。 The thermoplastic resin composition of the present invention is an antioxidant such as a hindered amine-based light stabilizer, a hindered phenol-based compound, a sulfur-containing organic compound-based compound, or a phosphorus-containing organic compound-based compound as long as it does not depart from the object of the present invention. , Heat stabilizers such as phenol-based and acrylate-based, benzoate-based, benzotriazole-based, benzophenone-based, salicylate-based UV absorbers, organic nickel-based, lubricants such as higher fatty acid amides, plasticizers such as phosphate esters, Flame retardants and flame retardants such as polybromophenyl ether, tetrabromobisphenol-A, brominated epoxy oligomers, halogenated compounds such as bromination, phosphorus compounds, antimony trioxide, odor masking agents, carbon black, oxidation Titanium, pigments, dyes, and the like can also be added. Furthermore, reinforcing agents and fillers such as talc, calcium carbonate, aluminum hydroxide, glass fiber, glass flake, glass bead, carbon fiber, and metal fiber can be added.

本発明の熱可塑性樹脂組成物は、上述の成分を混合することで得ることができる。混合するために、例えば、押出し機、ロール、バンバリーミキサー、ニーダー等の公知の混練装置を用いることができる。 The thermoplastic resin composition of the present invention can be obtained by mixing the above-described components. In order to mix, well-known kneading apparatuses, such as an extruder, a roll, a Banbury mixer, a kneader, can be used, for example.

以下に実施例を示して本発明を具体的に説明するが、本発明はこれらによって何ら制限されるものではない。なお、実施例中にて示す「部」及び「%」は重量に基づくものである。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” and “%” are based on weight.

小粒子径スチレン−ブタジエンゴムラテックスの製造
10リットルの耐圧容器の内部を窒素で置換後、1,3−ブタジエン95重量部、スチレン5重量部、n−ドデシルメルカプタン0.23重量部、過硫酸カリウム0.29重量部、不均化ロジン酸ナトリウム1.98重量部(固形分)、水酸化ナトリウム0.05重量部(固形分)、脱イオン水158重量部を仕込み、攪拌しつつ69℃で8時間反応させた。その後、不均化ロジン酸ナトリウム0.24重量部(固形分)、水酸化ナトリウム0.08重量部(固形分)及び脱イオン水7重量部を添加した。さらに温度を69℃に維持しながら5時間攪拌を継続して反応を終了した。その後、減圧して残存している1,3−ブタジエンを除去し、小粒子径スチレン−ブタジエンゴムラテックスを得た。得られた小粒子径スチレン−ブタジエンゴムラテックスを、四酸化オスミウム(OsO)で染色し、乾燥後に透過型電子顕微鏡で写真撮影した。画像解析処理装置(装置名:旭化成(株)製 IP−1000PC)を用いて800個のゴム粒子の面積を計測し、その円相当径(直径)を求め、重量平均粒子径を算出した結果、99nmであった。
Manufacture of small particle size styrene-butadiene rubber latex After replacing the inside of a 10 liter pressure vessel with nitrogen, 95 parts by weight of 1,3-butadiene, 5 parts by weight of styrene, 0.23 parts by weight of n-dodecyl mercaptan, potassium persulfate 0.29 parts by weight, disproportionated sodium rosinate 1.98 parts by weight (solid content), sodium hydroxide 0.05 parts by weight (solid content), 158 parts by weight of deionized water were charged at 69 ° C. with stirring. The reaction was allowed for 8 hours. Thereafter, 0.24 parts by weight (sodium content) of disproportionated sodium rosinate, 0.08 parts by weight (solid content) of sodium hydroxide and 7 parts by weight of deionized water were added. Further, stirring was continued for 5 hours while maintaining the temperature at 69 ° C. to complete the reaction. Thereafter, the remaining 1,3-butadiene was removed under reduced pressure to obtain a small particle size styrene-butadiene rubber latex. The obtained small particle size styrene-butadiene rubber latex was dyed with osmium tetroxide (OsO 4 ), dried and photographed with a transmission electron microscope. As a result of measuring the area of 800 rubber particles using an image analysis processing device (device name: IP-1000PC manufactured by Asahi Kasei Co., Ltd.), obtaining the equivalent circle diameter (diameter), and calculating the weight average particle diameter, It was 99 nm.

凝集肥大化スチレン−ブタジエンゴムラテックス(a−1)の製造
10リットルの耐圧容器に、脱イオン水177重量部、小粒子径スチレン−ブタジエンゴムラテックス100重量部(固形分)、ドデシルベンゼンスルホン酸ナトリウム0.022重量部(固形分)を添加して8分間攪拌混合した後、5%リン酸水溶液18重量部を8分間にわたり添加した。次いで10%水酸化カリウム水溶液9重量部を添加し、凝集肥大化スチレン−ブタジエンゴムラテックス(a−1)を得た。
上述の方法で、凝集肥大化スチレン−ブタジエンゴム(a−1)の重量平均粒子径を算出した結果、425nmであった。
Production of agglomerated styrene-butadiene rubber latex (a-1) In a 10 liter pressure vessel, 177 parts by weight of deionized water, 100 parts by weight of a small particle size styrene-butadiene rubber latex (solid content), sodium dodecylbenzenesulfonate After adding 0.022 parts by weight (solid content) and stirring and mixing for 8 minutes, 18 parts by weight of 5% aqueous phosphoric acid solution was added over 8 minutes. Subsequently, 9 weight part of 10% potassium hydroxide aqueous solution was added, and the agglomerated enlarged styrene-butadiene rubber latex (a-1) was obtained.
It was 425 nm as a result of calculating the weight average particle diameter of a cohesive enlarged styrene-butadiene rubber (a-1) with the above-mentioned method.

凝集肥大化スチレン−ブタジエンゴムラテックス(a−2)の製造
10リットルの耐圧容器に、脱イオン水192重量部、小粒子径スチレン−ブタジエンゴムラテックス100重量部(固形分)、ドデシルベンゼンスルホン酸ナトリウム0.052重量部(固形分)を添加して8分間攪拌混合した後、5%リン酸水溶液18重量部を7分間にわたり添加した。次いで10%水酸化カリウム水溶液9重量部を添加し、凝集肥大化スチレン−ブタジエンゴムラテックス(a−2)を得た。
上述の方法で、凝集肥大化スチレン−ブタジエンゴム(a−2)の重量平均粒子径を算出した結果、267nmであった。
Production of agglomerated styrene-butadiene rubber latex (a-2) In a 10-liter pressure vessel, 192 parts by weight of deionized water, 100 parts by weight of small particle size styrene-butadiene rubber latex (solid content), sodium dodecylbenzenesulfonate After adding 0.052 parts by weight (solid content) and stirring and mixing for 8 minutes, 18 parts by weight of 5% aqueous phosphoric acid solution was added over 7 minutes. Subsequently, 9 weight part of 10% potassium hydroxide aqueous solution was added, and the agglomerated enlarged styrene-butadiene rubber latex (a-2) was obtained.
It was 267 nm as a result of calculating the weight average particle diameter of the aggregation-enlarged styrene-butadiene rubber (a-2) by the above-mentioned method.

スチレン−ブタジエンゴムラテックス(a−3)の製造
10リットルの耐圧容器の内部を窒素で置換後、1,3−ブタジエン95重量部、スチレン5重量部、n−ドデシルメルカプタン0.25重量部、過硫酸カリウム0.33重量部、不均化ロジン酸ナトリウム0.25重量部(固形分)、水酸化ナトリウム0.12重量部(固形分)、脱イオン水67重量部を仕込み、攪拌しつつ65℃で反応させた。11時間目、22時間目、33時間目、44時間目にそれぞれ不均化ロジン酸ナトリウム0.33重量部(固形分)、水酸化ナトリウム0.11重量部(固形分)及び脱イオン水7.7重量部を添加し51時間反応させた。その後、不均化ロジン酸ナトリウム0.19重量部(固形分)、水酸化ナトリウム0.1重量部(固形分)及び脱イオン水4重量部を添加した。さらに温度を70℃に維持しながら8時間攪拌を継続して反応を終了した。その後、減圧して残存している1,3−ブタジエンを除去し、スチレン−ブタジエンゴムラテックス(a−3)を得た。上述の方法で、重量平均粒子径を算出した結果、435nmであった。
Production of Styrene-Butadiene Rubber Latex (a-3) After replacing the inside of a 10-liter pressure vessel with nitrogen, 95 parts by weight of 1,3-butadiene, 5 parts by weight of styrene, 0.25 parts by weight of n-dodecyl mercaptan, excess 653 parts by weight of potassium sulfate, 0.25 part by weight of disproportionated sodium rosinate (solid content), 0.12 part by weight of sodium hydroxide (solid content) and 67 parts by weight of deionized water were added and stirred while stirring. The reaction was carried out at ° C. Disproportionated sodium rosinate 0.33 parts by weight (solid content), sodium hydroxide 0.11 parts by weight (solid content) and deionized water 7 at 11 hours, 22 hours, 33 hours and 44 hours, respectively .7 parts by weight was added and reacted for 51 hours. Thereafter, 0.19 parts by weight (sodium content) of disproportionated sodium rosinate, 0.1 parts by weight (solid content) of sodium hydroxide and 4 parts by weight of deionized water were added. Further, stirring was continued for 8 hours while maintaining the temperature at 70 ° C. to complete the reaction. Thereafter, the remaining 1,3-butadiene was removed under reduced pressure to obtain a styrene-butadiene rubber latex (a-3). It was 435 nm as a result of calculating a weight average particle diameter with the above-mentioned method.

グラフト共重合体(A−1)の製造
ガラスリアクターに、凝集肥大化スチレン−ブタジエンゴムラテックス(a−1)50重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し62.5℃に到達したところで、アクリロニトリル0.5重量部、スチレン5.5重量部とラクトース0.2重量部、ピロリン酸四ナトリウム0.1重量部及び硫酸第1鉄7水塩0.007重量部を脱イオン水17重量部に溶解した水溶液を添加した。70℃に到達後、アクリロニトリル12.0重量部、スチレン32重量部、ターシャリードデシルメルカプタン0.07重量部の混合液及び脱イオン水20重量部にオレイン酸カリウム1.1重量部(固形分)、t-ブチルハイドロパーオキサイド0.13重量部(固形分)を溶解した乳化剤水溶液を4.5時間かけて連続的に滴下した。滴下後、3.3時間保持してグラフト共重合体ラテックス(A−1)を得た。その後、キレート剤であるエチレンジアミン四酢酸二ナトリウム(二水和物)0.1部添加後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、グラフト重合体(A−1)のパウダーを得た。
Production of graft copolymer (A-1) A glass reactor was charged with 50 parts by weight (solid content) of agglomerated and enlarged styrene-butadiene rubber latex (a-1), followed by nitrogen substitution. After nitrogen substitution, when the temperature inside the tank reached 62.5 ° C., 0.5 parts by weight of acrylonitrile, 5.5 parts by weight of styrene and 0.2 parts by weight of lactose, 0.1 part by weight of tetrasodium pyrophosphate and An aqueous solution in which 0.007 parts by weight of ferrous sulfate heptahydrate was dissolved in 17 parts by weight of deionized water was added. After reaching 70 ° C., 1.1 parts by weight of potassium oleate (solid content) in a mixture of 12.0 parts by weight of acrylonitrile, 32 parts by weight of styrene, 0.07 parts by weight of tarsia decyl mercaptan and 20 parts by weight of deionized water An aqueous emulsifier solution in which 0.13 parts by weight (solid content) of t-butyl hydroperoxide was dissolved was continuously added dropwise over 4.5 hours. After the dropping, the mixture was maintained for 3.3 hours to obtain a graft copolymer latex (A-1). Thereafter, 0.1 part of disodium ethylenediaminetetraacetate (dihydrate), which is a chelating agent, was added, followed by dehydration and drying with the number of coagulants, washing water amount and centrifugal dehydration shown in Table 1, and the graft polymer (A- The powder of 1) was obtained.

グラフト共重合体(A−2)の製造
ガラスリアクターに、凝集肥大化スチレン−ブタジエンゴムラテックス(a−1)40重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し66℃に到達したところで、アクリロニトリル1.0重量部、スチレン6.0重量部、を添加した。70℃に到達後、過硫酸ナトリウム0.23部添加し、アクリロニトリル17.0重量部、スチレン36重量部、および脱イオン水20重量部にオレイン酸カリウム0.82重量部(固形分)を溶解した乳化剤水溶液を3.3時間かけて連続的に滴下した。滴下後、4.2時間保持してグラフト共重合体ラテックス(A−2)を得た。その後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、さらに除鉄機を用いてパウダー中の鉄分を除去し、グラフト重合体(A−2)のパウダーを得た。
Production of graft copolymer (A-2) A glass reactor was charged with 40 parts by weight (solid content) of coagulated and enlarged styrene-butadiene rubber latex (a-1), followed by nitrogen substitution. After nitrogen substitution, when the temperature in the tank was raised to 66 ° C., 1.0 part by weight of acrylonitrile and 6.0 parts by weight of styrene were added. After reaching 70 ° C., 0.23 part of sodium persulfate was added, and 0.82 part by weight of potassium oleate (solid content) was dissolved in 17.0 parts by weight of acrylonitrile, 36 parts by weight of styrene, and 20 parts by weight of deionized water. The emulsifier aqueous solution was continuously added dropwise over 3.3 hours. After dripping, it was kept for 4.2 hours to obtain a graft copolymer latex (A-2). Thereafter, the solidifying agent shown in Table 1, the amount of washing water, and the number of centrifugal dehydration were dehydrated and dried, and the iron content in the powder was removed using an iron remover to obtain a graft polymer (A-2) powder. .

グラフト共重合体(A−3)の製造
ガラスリアクターに、凝集肥大化スチレン−ブタジエンゴムラテックス(a−1)60重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し60℃に到達したところで、スチレン3重量部とラクトース0.22重量部、ピロリン酸四ナトリウム0.11重量部及び硫酸第1鉄7水塩0.021重量部を脱イオン水14重量部に溶解した水溶液を添加した。69℃に到達後、アクリロニトリル12.0重量部、スチレン25重量部、ターシャリードデシルメルカプタン0.13重量部の混合液および脱イオン水17重量部にオレイン酸カリウム0.95重量部(固形分)、t-ブチルハイドロパーオキサイド0.22重量部(固形分)を溶解した乳化剤水溶液を3.7時間かけて連続的に滴下した。滴下後、2.9時間保持してグラフト共重合体ラテックス(A−3)を得た。その後、キレート剤であるエチレンジアミン四酢酸二ナトリウム(二水和物)0.05部添加後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、グラフト重合体(A−3)のパウダーを得た。
Production of graft copolymer (A-3) A glass reactor was charged with 60 parts by weight (solid content) of agglomerated and enlarged styrene-butadiene rubber latex (a-1), followed by nitrogen substitution. After nitrogen substitution, when the temperature inside the tank reached 60 ° C., 3 parts by weight of styrene, 0.22 parts by weight of lactose, 0.11 part by weight of tetrasodium pyrophosphate and 0.021 weight of ferrous sulfate heptahydrate An aqueous solution having a part dissolved in 14 parts by weight of deionized water was added. After reaching 69 ° C., 0.95 parts by weight of potassium oleate (solid content) in a mixture of 12.0 parts by weight of acrylonitrile, 25 parts by weight of styrene, 0.13 parts by weight of terrestrial decyl mercaptan and 17 parts by weight of deionized water An aqueous emulsifier solution in which 0.22 parts by weight (solid content) of t-butyl hydroperoxide was dissolved was continuously added dropwise over 3.7 hours. After dropping, the mixture was held for 2.9 hours to obtain a graft copolymer latex (A-3). Thereafter, 0.05 part of disodium ethylenediaminetetraacetate (dihydrate) as a chelating agent was added, followed by dehydration and drying with the coagulant, washing water amount, and centrifugal dehydration number shown in Table 1, and the graft polymer (A- The powder of 3) was obtained.

グラフト共重合体(A−4)の製造
ガラスリアクターに、凝集肥大化スチレン−ブタジエンゴムラテックス(a−1)50重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し63.5℃に到達したところで、スチレン5重量部とラクトース0.18重量部、ピロリン酸四ナトリウム0.05重量部及び硫酸第1鉄7水塩0.013重量部を脱イオン水15重量部に溶解した水溶液を添加した。70℃に到達後、アクリロニトリル15重量部、スチレン30重量部、ターシャリードデシルメルカプタン0.22重量部の混合液および脱イオン水15重量部にオレイン酸カリウム1.25重量部(固形分)、t-ブチルハイドロパーオキサイド0.32重量部(固形分)を溶解した乳化剤水溶液を4.25時間かけて連続的に滴下した。滴下後、3.2時間保持してグラフト共重合体ラテックス(A−4)を得た。その後、キレート剤であるエチレンジアミン四酢酸二ナトリウム(二水和物)0.1部添加後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、グラフト重合体(A−4)のパウダーを得た。
Production of graft copolymer (A-4) A glass reactor was charged with 50 parts by weight (solid content) of coagulated and enlarged styrene-butadiene rubber latex (a-1), and nitrogen substitution was performed. After nitrogen substitution, when the temperature in the tank was increased to 63.5 ° C., 5 parts by weight of styrene, 0.18 part by weight of lactose, 0.05 part by weight of tetrasodium pyrophosphate, and ferrous sulfate heptahydrate An aqueous solution having 013 parts by weight dissolved in 15 parts by weight of deionized water was added. After reaching 70 ° C., 1.25 parts by weight of potassium oleate (solid content) in a mixed solution of 15 parts by weight of acrylonitrile, 30 parts by weight of styrene, 0.22 parts by weight of tertiary decyl mercaptan and 15 parts by weight of deionized water, t -An aqueous emulsifier solution in which 0.32 parts by weight (solid content) of butyl hydroperoxide was dissolved was continuously added dropwise over 4.25 hours. After the dropping, the mixture was held for 3.2 hours to obtain a graft copolymer latex (A-4). Thereafter, 0.1 part of disodium ethylenediaminetetraacetate (dihydrate), which is a chelating agent, was added, followed by dehydration and drying with the number of coagulants, washing water amount and centrifugal dehydration shown in Table 1, and the graft polymer (A- The powder of 4) was obtained.

グラフト共重合体(A−5)の製造
ガラスリアクターに、凝集肥大化スチレン−ブタジエンゴムラテックス(a−2)50重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し60℃に到達したところで、スチレン6重量部とラクトース0.25重量部、ピロリン酸四ナトリウム0.09重量部及び硫酸第1鉄7水塩0.012重量部を脱イオン水16重量部に溶解した水溶液を添加した。70℃に到達後、アクリロニトリル15重量部、スチレン29重量部、ターシャリードデシルメルカプタン0.25重量部の混合液および脱イオン水16重量部にオレイン酸カリウム1.05重量部(固形分)、t-ブチルハイドロパーオキサイド0.39重量部(固形分)を溶解した乳化剤水溶液を4.0時間かけて連続的に滴下した。滴下後、4.0時間保持してグラフト共重合体ラテックス(A−5)を得た。その後、キレート剤であるエチレンジアミン四酢酸二ナトリウム(二水和物)0.001部添加後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、グラフト重合体(A−5)のパウダーを得た。
Production of graft copolymer (A-5) A glass reactor was charged with 50 parts by weight (solid content) of agglomerated and enlarged styrene-butadiene rubber latex (a-2) and purged with nitrogen. After nitrogen substitution, when the temperature inside the tank reached 60 ° C., 6 parts by weight of styrene, 0.25 parts by weight of lactose, 0.09 parts by weight of tetrasodium pyrophosphate and 0.012 parts by weight of ferrous sulfate heptahydrate An aqueous solution having a part dissolved in 16 parts by weight of deionized water was added. After reaching 70 ° C., 1.05 parts by weight (solid content) of potassium oleate in a mixed solution of 15 parts by weight of acrylonitrile, 29 parts by weight of styrene, 0.25 parts by weight of terrestrial decyl mercaptan and 16 parts by weight of deionized water, t -An aqueous emulsifier solution in which 0.39 parts by weight (solid content) of butyl hydroperoxide was dissolved was continuously added dropwise over 4.0 hours. After dripping, the copolymer was retained for 4.0 hours to obtain a graft copolymer latex (A-5). Thereafter, after adding 0.001 part of ethylenediaminetetraacetic acid disodium (dihydrate), which is a chelating agent, dehydration and drying were performed using the coagulant, washing water amount, and centrifugal dehydration number shown in Table 1, and the graft polymer (A- The powder of 5) was obtained.

グラフト共重合体(A−6)の製造
ガラスリアクターに、スチレン−ブタジエンゴムラテックス(a−3)50重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し66℃に到達したところで、スチレン5重量部とラクトース0.31重量部、ピロリン酸四ナトリウム0.14重量部及び硫酸第1鉄7水塩0.019重量部を脱イオン水17重量部に溶解した水溶液を添加した。71℃に到達後、アクリロニトリル12.5重量部、スチレン32.5重量部、ターシャリードデシルメルカプタン0.14重量部の混合液および脱イオン水18重量部にオレイン酸カリウム1.15重量部(固形分)、t-ブチルハイドロパーオキサイド0.25重量部(固形分)を溶解した乳化剤水溶液を4.5時間かけて連続的に滴下した。滴下後、3.5時間保持してグラフト共重合体ラテックス(A−6)を得た。その後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、グラフト重合体(A−6)のパウダーを得た。
Production of graft copolymer (A-6) A glass reactor was charged with 50 parts by weight (solid content) of styrene-butadiene rubber latex (a-3) and purged with nitrogen. After nitrogen substitution, when the temperature inside the tank reached 66 ° C., 5 parts by weight of styrene, 0.31 part by weight of lactose, 0.14 part by weight of tetrasodium pyrophosphate and 0.019 part by weight of ferrous sulfate heptahydrate An aqueous solution in which a part was dissolved in 17 parts by weight of deionized water was added. After reaching 71 ° C., 1.15 parts by weight of potassium oleate (solid) in a mixture of 12.5 parts by weight of acrylonitrile, 32.5 parts by weight of styrene, 0.14 parts by weight of terrestrial decyl mercaptan and 18 parts by weight of deionized water Min), an aqueous emulsifier solution in which 0.25 parts by weight (solid content) of t-butyl hydroperoxide was dissolved was continuously added dropwise over 4.5 hours. After the dropping, the mixture was held for 3.5 hours to obtain a graft copolymer latex (A-6). Then, it dehydrated and dried by the coagulant | flocculant shown in Table 1, the amount of washing water, and the frequency | count of centrifugal dehydration, and obtained the powder of the graft polymer (A-6).

グラフト共重合体(A−7)の製造
ガラスリアクターに、スチレン−ブタジエンゴムラテックス(a−3)40重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し67℃に到達したところで、スチレン3重量部とラクトース0.29重量部、ピロリン酸四ナトリウム0.11重量部及び硫酸第1鉄7水塩0.099重量部を脱イオン水16重量部に溶解した水溶液を添加した。70℃に到達後、アクリロニトリル15重量部、スチレン42重量部、ターシャリードデシルメルカプタン0.18重量部の混合液および脱イオン水18重量部にオレイン酸カリウム1.0重量部(固形分)、t-ブチルハイドロパーオキサイド0.27重量部(固形分)を溶解した乳化剤水溶液を5.5時間かけて連続的に滴下した。滴下後、4.2時間保持してグラフト共重合体ラテックス(A−7)を得た。その後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、グラフト重合体(A−7)のパウダーを得た。
Production of graft copolymer (A-7) A glass reactor was charged with 40 parts by weight (solid content) of styrene-butadiene rubber latex (a-3) and purged with nitrogen. After nitrogen substitution, when the temperature inside the tank reached 67 ° C., 3 parts by weight of styrene, 0.29 parts by weight of lactose, 0.11 part by weight of tetrasodium pyrophosphate and 0.099 weight of ferrous sulfate heptahydrate An aqueous solution having a part dissolved in 16 parts by weight of deionized water was added. After reaching 70 ° C., 15 parts by weight of acrylonitrile, 42 parts by weight of styrene, 0.18 parts by weight of terrestrial decyl mercaptan and 18 parts by weight of deionized water were added to 1.0 part by weight of potassium oleate (solid content), t -An aqueous emulsifier solution in which 0.27 part by weight (solid content) of butyl hydroperoxide was dissolved was continuously added dropwise over 5.5 hours. After dripping, the copolymer was retained for 4.2 hours to obtain a graft copolymer latex (A-7). Then, it dehydrated and dried with the coagulant | flocculant shown in Table 1, the amount of washing water, and the frequency | count of centrifugal dehydration, and obtained the powder of the graft polymer (A-7).

グラフト共重合体(A−8)の製造
ガラスリアクターに、スチレン−ブタジエンゴムラテックス(a−3)60重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し67℃に到達したところで、スチレン8重量部とラクトース0.25重量部、ピロリン酸四ナトリウム0.12重量部及び硫酸第1鉄7水塩0.021重量部を脱イオン水17重量部に溶解した水溶液を添加した。70℃に到達後、アクリロニトリル12重量部、スチレン20重量部、ターシャリードデシルメルカプタン0.17重量部の混合液および脱イオン水17重量部にオレイン酸カリウム1.0重量部(固形分)、t-ブチルハイドロパーオキサイド0.31重量部(固形分)を溶解した乳化剤水溶液を5.0時間かけて連続的に滴下した。滴下後、4.0時間保持してグラフト共重合体ラテックス(A−8)を得た。その後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、グラフト重合体(A−8)のパウダーを得た。
Production of graft copolymer (A-8) A glass reactor was charged with 60 parts by weight (solid content) of styrene-butadiene rubber latex (a-3) and purged with nitrogen. After nitrogen substitution, when the temperature in the tank reached 67 ° C., 8 parts by weight of styrene, 0.25 parts by weight of lactose, 0.12 parts by weight of tetrasodium pyrophosphate and 0.021 weight of ferrous sulfate heptahydrate An aqueous solution in which a part was dissolved in 17 parts by weight of deionized water was added. After reaching 70 ° C., a mixture of 12 parts by weight of acrylonitrile, 20 parts by weight of styrene, 0.17 part by weight of tarlead decyl mercaptan and 17 parts by weight of deionized water, 1.0 part by weight of potassium oleate (solid content), t -An aqueous emulsifier solution in which 0.31 part by weight (solid content) of butyl hydroperoxide was dissolved was continuously added dropwise over 5.0 hours. After dripping, it was kept for 4.0 hours to obtain a graft copolymer latex (A-8). Then, it dehydrated and dried with the coagulant | flocculant shown in Table 1, the amount of washing water, and the frequency | count of centrifugal dehydration, and the powder of the graft polymer (A-8) was obtained.

グラフト共重合体(A−9)の製造
ガラスリアクターに、凝集肥大化スチレン−ブタジエンゴムラテックス(a−2)40重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し65℃に到達したところで、スチレン5重量部、ラクトース0.21重量部、ピロリン酸四ナトリウム0.15重量部及び硫酸第1鉄7水塩0.018重量部を脱イオン水15重量部に溶解した水溶液を添加した。68℃に到達後、アクリロニトリル15重量部、スチレン40重量部、ターシャリードデシルメルカプタン0.23重量部の混合液および脱イオン水15重量部にオレイン酸カリウム1.0重量部(固形分)、t-ブチルハイドロパーオキサイド0.33重量部(固形分)を溶解した乳化剤水溶液を6.0時間かけて連続的に滴下した。滴下後、3.5時間保持してグラフト共重合体ラテックス(A−9)を得た。その後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、グラフト重合体(A−9)のパウダーを得た。
Production of graft copolymer (A-9) A glass reactor was charged with 40 parts by weight (solid content) of coagulated and enlarged styrene-butadiene rubber latex (a-2), and nitrogen substitution was performed. After nitrogen substitution, when the temperature inside the tank reached 65 ° C, 5 parts by weight of styrene, 0.21 parts by weight of lactose, 0.15 parts by weight of tetrasodium pyrophosphate and 0.018 parts by weight of ferrous sulfate heptahydrate An aqueous solution having a part dissolved in 15 parts by weight of deionized water was added. After reaching 68 ° C., a mixture of 15 parts by weight of acrylonitrile, 40 parts by weight of styrene, 0.23 parts by weight of tarlead decyl mercaptan and 15 parts by weight of deionized water, 1.0 part by weight of potassium oleate (solid content), t -An aqueous emulsifier solution in which 0.33 parts by weight (solid content) of butyl hydroperoxide was dissolved was continuously added dropwise over 6.0 hours. After dripping, it was kept for 3.5 hours to obtain a graft copolymer latex (A-9). Then, it dehydrated and dried with the coagulant | flocculant shown in Table 1, the amount of washing water, and the frequency | count of centrifugal dehydration, and obtained the powder of the graft polymer (A-9).

グラフト共重合体(A−10)の製造
ガラスリアクターに、凝集肥大化スチレン−ブタジエンゴムラテックス(a−2)60重量部(固形分)を仕込み窒素置換を行った。窒素置換後、槽内を昇温し65℃に到達したところで、スチレン5重量部とラクトース0.21重量部、ピロリン酸四ナトリウム0.15重量部、過硫酸カリウム0.2重量部及び硫酸第1鉄7水塩0.034重量部を脱イオン水15重量部に溶解した水溶液を添加した。69℃に到達後、アクリロニトリル12重量部、スチレン23重量部、ターシャリードデシルメルカプタン0.18重量部の混合液および脱イオン水15重量部にオレイン酸カリウム1.1重量部(固形分)、t-ブチルハイドロパーオキサイド0.24重量部(固形分)を溶解した乳化剤水溶液を3.8時間かけて連続的に滴下した。滴下後、3.5時間保持してグラフト共重合体ラテックス(A−10)を得た。その後、表1に示した凝固剤、洗浄水量、遠心脱水回数で脱水、乾燥し、グラフト重合体(A−10)のパウダーを得た。
Production of graft copolymer (A-10) A glass reactor was charged with 60 parts by weight (solid content) of agglomerated and enlarged styrene-butadiene rubber latex (a-2), followed by nitrogen substitution. After nitrogen substitution, when the temperature in the tank was increased to 65 ° C., 5 parts by weight of styrene, 0.21 part by weight of lactose, 0.15 part by weight of tetrasodium pyrophosphate, 0.2 part by weight of potassium persulfate and sulfuric acid An aqueous solution in which 0.034 parts by weight of ferrous heptahydrate was dissolved in 15 parts by weight of deionized water was added. After reaching 69 ° C., a mixture of 12 parts by weight of acrylonitrile, 23 parts by weight of styrene, 0.18 parts by weight of terrestrial decyl mercaptan and 15 parts by weight of deionized water, 1.1 parts by weight of potassium oleate (solid content), t An aqueous emulsifier solution in which 0.24 parts by weight (solid content) of butyl hydroperoxide was dissolved was continuously added dropwise over 3.8 hours. After the dropping, the mixture was maintained for 3.5 hours to obtain a graft copolymer latex (A-10). Then, it dehydrated and dried by the coagulant | flocculant shown in Table 1, the amount of washing water, and the frequency | count of centrifugal dehydration, and obtained the powder of the graft polymer (A-10).

共重合体(B)
公知の塊状重合法により、スチレン70部、アクリロニトリル30部からなるスチレンーアクリロニトリル共重合体(B)を得た。この共重合体(B)の鉄イオン、カリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン及び硫酸イオン含有量は0ppmであった。
Copolymer (B)
A styrene-acrylonitrile copolymer (B) comprising 70 parts of styrene and 30 parts of acrylonitrile was obtained by a known bulk polymerization method. The copolymer (B) had an iron ion, potassium ion, sodium ion, magnesium ion, calcium ion and sulfate ion content of 0 ppm.

表1
Table 1

<実施例1〜5及び比較例1〜5>
表2に示すグラフト共重合体(A)、共重合体(B)を混合した後、東芝TEM−35B二軸押出機を用いて240℃にて溶融混練して実施例1〜5及び比較例1〜5のペレットを得た。各実施例及び比較例で得られたペレットを用いて以下の分析、評価に供した。その結果を表2に示す。
<Examples 1-5 and Comparative Examples 1-5>
After mixing the graft copolymer (A) and copolymer (B) shown in Table 2, Examples 1-5 and Comparative Examples were melt kneaded at 240 ° C. using a Toshiba TEM-35B twin screw extruder. 1-5 pellets were obtained. The pellets obtained in each Example and Comparative Example were used for the following analysis and evaluation. The results are shown in Table 2.

鉄イオンの定量方法
サンプルを灰化し、酸溶解後、ICP発光分光分析法により鉄を定量した。
Method for quantifying iron ion After ashing the sample and dissolving the acid, iron was quantified by ICP emission spectroscopy.

カリウムイオン、ナトリウムイオン、マグネシウムイオン及びカルシウムイオンの定量方法
サンプルを灰化し、酸溶解後、フレーム原子吸光分光法によりカリウムイオン、ナトリウムイオン、マグネシウムイオン及びカルシウムイオンを定量した。
Method for quantifying potassium ion, sodium ion, magnesium ion and calcium ion After ashing the sample and dissolving the acid, potassium ion, sodium ion, magnesium ion and calcium ion were quantified by flame atomic absorption spectrometry.

硫酸イオンの定量方法
サンプルを加圧熱水抽出し、イオンクロマト法により硫酸イオンを定量した。
Sulfate ion quantification method Samples were extracted with pressurized hot water and sulfate ions were quantified by ion chromatography.

外観評価
十分乾燥させた上記ペレット70〜90gを2枚のステンレス板ではさみ、これを230℃に加熱した熱プレス機に設置し、圧力がかからない程度まで熱プレス機の熱板を近づけ6分間予熱する。予熱完了後、プレス圧力を9.8MPaまで上昇させ、ステンレス板の間よりはみ出してくる溶融樹脂を手で掴み、ゆっくり破れないようにフィルム状に約1m引き出す(フィルムの厚さは約0.01〜0.10mm)。
フィルム上に直径10cmの円を3箇所描き、それぞれの円内の焼け樹脂によるブツを数え(直径約0.2mm以上のもの)、平均した数値を用いる。
◎:0〜5個
○:6〜10個
△:11〜20個
×:21個以上
Appearance evaluation 70 to 90 g of the pellets, which had been sufficiently dried, were sandwiched between two stainless plates and placed in a hot press machine heated to 230 ° C., and the hot plate of the hot press machine was applied to the extent that no pressure was applied. Preheat for 6 minutes. After the preheating is completed, the press pressure is increased to 9.8 MPa, the molten resin protruding from between the stainless steel plates is grasped by hand, and drawn out to about 1 m into a film shape so that it does not slowly break (the thickness of the film is about 0.01 to 0). .10 mm).
Three circles having a diameter of 10 cm are drawn on the film, the number of burnt resin in each circle is counted (thickness of about 0.2 mm or more), and an average value is used.
A: 0 to 5 ○: 6 to 10 Δ: 11 to 20 ×: 21 or more

酸化発熱開始温度の測定
示差走査熱量計(日立ハイテクサイエンス(株)製 DSC7020)を用いて酸化発熱開始温度を測定した。
酸化発熱開始温度が高い方が焼け樹脂の発生が抑制され、かつ滞留熱安定性にも優れる。
◎:220℃以上
○:210℃以上220℃未満
△:200℃以上210℃未満
×:200℃未満
Measurement of oxidation heat generation start temperature The oxidation heat generation start temperature was measured using a differential scanning calorimeter (DSC7020 manufactured by Hitachi High-Tech Science Co., Ltd.).
A higher oxidation heat generation start temperature suppresses the generation of a baked resin and is excellent in stagnant heat stability.
A: 220 ° C. or higher ○: 210 ° C. or higher and lower than 220 ° C. Δ: 200 ° C. or higher and lower than 210 ° C. x: Less than 200 ° C.

表2
Table 2

表2に示すように、実施例1〜5は本発明の熱可塑性樹脂組成物の例であり、焼け樹脂発生及び滞留熱安定性の指標である酸化発熱開始温度が高く、焼け樹脂によるブツ発生も少なく、良好な外観であった。 As shown in Table 2, Examples 1 to 5 are examples of the thermoplastic resin composition of the present invention, which has a high oxidation heat generation start temperature, which is an index of generation of burnt resin and stagnant heat stability. There was also little and it was the favorable external appearance.

表2に示すように、比較例1は、熱可塑性樹脂組成物中の鉄イオン含有量が本発明の規定量より多く、比較例2は、比較例1よりもさらに鉄イオン含有量が多い。比較例3は、鉄イオン以外のイオン含有量の合計が本発明の規定量の下限より少なく、比較例4は、鉄イオン以外のイオン含有量の合計が本発明の規定量の上限より多い。比較例5は、鉄イオン含有量が本発明の規定量より多くさらに鉄イオン以外のイオン含有量の合計が本発明の規定量の上限より多い。そのため、焼け樹脂発生及び滞留熱安定性の指標である酸化発熱開始温度が低く、焼け樹脂によるブツ発生が多く、外観に劣るものであった。 As shown in Table 2, Comparative Example 1 has a higher iron ion content in the thermoplastic resin composition than the prescribed amount of the present invention, and Comparative Example 2 has a higher iron ion content than Comparative Example 1. In Comparative Example 3, the total content of ions other than iron ions is less than the lower limit of the specified amount of the present invention, and in Comparative Example 4, the total content of ions other than iron ions is higher than the upper limit of the specified amount of the present invention. In Comparative Example 5, the iron ion content is greater than the specified amount of the present invention, and the total content of ions other than iron ions is greater than the upper limit of the specified amount of the present invention. For this reason, the oxidation heat generation start temperature, which is an index of generation of burnt resin and stagnant heat stability, is low, and there are many generations of burnt resin, resulting in poor appearance.

本発明の熱可塑性樹脂組成物は、焼け樹脂による外観不良が抑制された、良好な成形品外観が得られることから、自動車等の車両用内外装部品、各種の家電製品やOA機器のハウジング、その他雑貨分野等、幅広い分野に利用可能である。
Since the thermoplastic resin composition of the present invention provides a good molded product appearance in which poor appearance due to the burnt resin is suppressed, the interior and exterior parts for vehicles such as automobiles, housings of various home appliances and OA equipment, It can be used in a wide range of other miscellaneous goods fields.

すなわち、本発明は、鉄イオン含有量が20ppm以下、さらにカリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン及び硫酸イオンの含有量の合計が100〜4000ppmであることを特徴とする熱可塑性樹脂組成物であって、ゴム状重合体が共役ジエン系重合体を含有するグラフト共重合体を含む熱可塑性樹脂組成物に関するものである。
That is, the present invention provides a thermoplastic resin composition characterized in that the iron ion content is 20 ppm or less, and the total content of potassium ions, sodium ions, magnesium ions, calcium ions and sulfate ions is 100 to 4000 ppm. The rubber-like polymer relates to a thermoplastic resin composition containing a graft copolymer containing a conjugated diene polymer .

Claims (4)

鉄イオン含有量が20ppm以下、さらにカリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン及び硫酸イオンの含有量の合計が100〜4000ppmであることを特徴とする熱可塑性樹脂組成物。 A thermoplastic resin composition having an iron ion content of 20 ppm or less and a total content of potassium ions, sodium ions, magnesium ions, calcium ions and sulfate ions of 100 to 4000 ppm. 鉄イオン含有量が10ppm以下、さらにカリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン及び硫酸イオンの含有量の合計が100〜4000ppmであることを特徴とする熱可塑性樹脂組成物。 A thermoplastic resin composition, wherein the iron ion content is 10 ppm or less, and the total content of potassium ions, sodium ions, magnesium ions, calcium ions and sulfate ions is 100 to 4000 ppm. グラフト共重合体が含まれることを特徴とする請求項1または2に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein a graft copolymer is contained. グラフト共重合体に用いられるゴム状重合体が共役ジエン系重合体であることを特徴とする請求項3に記載の熱可塑性樹脂組成物。
4. The thermoplastic resin composition according to claim 3, wherein the rubbery polymer used for the graft copolymer is a conjugated diene polymer.
JP2014070743A 2014-03-31 2014-03-31 thermoplastic resin composition Pending JP2015189964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014070743A JP2015189964A (en) 2014-03-31 2014-03-31 thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070743A JP2015189964A (en) 2014-03-31 2014-03-31 thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JP2015189964A true JP2015189964A (en) 2015-11-02

Family

ID=54424740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070743A Pending JP2015189964A (en) 2014-03-31 2014-03-31 thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP2015189964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021028A (en) * 2019-07-30 2021-02-18 株式会社カネカ Method for producing rubber graft copolymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088007A (en) * 1983-10-21 1985-05-17 Denki Kagaku Kogyo Kk Production of coagulated latex
JPS60106835A (en) * 1983-11-12 1985-06-12 Denki Kagaku Kogyo Kk Production of coagulated latex
JP2013181151A (en) * 2012-03-05 2013-09-12 Nippon A&L Inc Rubber-reinforced thermoplastic resin composition and resin molded product
JP2013209624A (en) * 2012-03-02 2013-10-10 Nippon A&L Inc Flame-retardant thermoplastic resin composition and resin molded article
JP2014024898A (en) * 2012-07-25 2014-02-06 Nippon A&L Inc Thermoplastic resin composition for vehicle lighting fixture, and molded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088007A (en) * 1983-10-21 1985-05-17 Denki Kagaku Kogyo Kk Production of coagulated latex
JPS60106835A (en) * 1983-11-12 1985-06-12 Denki Kagaku Kogyo Kk Production of coagulated latex
JP2013209624A (en) * 2012-03-02 2013-10-10 Nippon A&L Inc Flame-retardant thermoplastic resin composition and resin molded article
JP2013181151A (en) * 2012-03-05 2013-09-12 Nippon A&L Inc Rubber-reinforced thermoplastic resin composition and resin molded product
JP2014024898A (en) * 2012-07-25 2014-02-06 Nippon A&L Inc Thermoplastic resin composition for vehicle lighting fixture, and molded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021028A (en) * 2019-07-30 2021-02-18 株式会社カネカ Method for producing rubber graft copolymer

Similar Documents

Publication Publication Date Title
JP6519709B2 (en) Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article and method of producing molded article
JP5453511B2 (en) Graft copolymer, thermoplastic resin composition, and method for producing graft copolymer
EP3239235B9 (en) Thermoplastic resin composition, method for producing same, and molded article of same
JP5851142B2 (en) Rubber reinforced thermoplastic resin composition
JP2015189964A (en) thermoplastic resin composition
JP5786079B1 (en) Thermoplastic resin composition
JP5453512B2 (en) Graft copolymer and thermoplastic resin composition
JP5329702B1 (en) Graft copolymer, thermoplastic resin composition, and method for producing graft copolymer
CN105264012B (en) Rubber-reinforced thermoplastic resin composition and resin molded article
JP5457499B2 (en) Thermoplastic resin composition
JP5547828B2 (en) Thermoplastic resin composition and extruded product
JP5547795B2 (en) Thermoplastic resin composition and molded article
JP6214939B2 (en) Thermoplastic resin composition for extrusion molding and extrusion molding
JP5457573B2 (en) Thermoplastic resin composition and molded article
JP5547794B2 (en) Thermoplastic resin composition and extruded product
KR101886887B1 (en) Graft copolymer and thermoplastic resin composition
JP5436517B2 (en) Graft copolymer and thermoplastic resin composition
JP6447306B2 (en) Thermoplastic resin composition
JP6376020B2 (en) Thermoplastic resin composition and molded article thereof
JP6041381B2 (en) Thermoplastic resin composition for vehicle lamp and molded product
TWI500642B (en) Graft copolymer and thermoplastic resin composition
JP2013018949A (en) Graft copolymer and thermoplastic resin composition
JP2017066499A (en) Plating resin composition, and plating molding
JP2004018727A (en) Thermoplastic resin composition
JP2011012122A (en) Thermoplastic resin composition excellent in flame retardancy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20150707

C27B Notice of submission of publications, etc. [third party observations]

Free format text: JAPANESE INTERMEDIATE CODE: C2714

Effective date: 20160322

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20161014

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20161122

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20170228

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20170331

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20170410