JP2004018727A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
JP2004018727A
JP2004018727A JP2002177274A JP2002177274A JP2004018727A JP 2004018727 A JP2004018727 A JP 2004018727A JP 2002177274 A JP2002177274 A JP 2002177274A JP 2002177274 A JP2002177274 A JP 2002177274A JP 2004018727 A JP2004018727 A JP 2004018727A
Authority
JP
Japan
Prior art keywords
mass
parts
monomer
vinyl
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002177274A
Other languages
Japanese (ja)
Other versions
JP4299502B2 (en
Inventor
Tetsumi Ikeda
池田 哲美
Katsuhiko Teramoto
寺本 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002177274A priority Critical patent/JP4299502B2/en
Publication of JP2004018727A publication Critical patent/JP2004018727A/en
Application granted granted Critical
Publication of JP4299502B2 publication Critical patent/JP4299502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition which gives a sheet produced by extrusion molding and suitable for thermal processing, especially for vacuum forming and air-pressure forming. <P>SOLUTION: This thermoplastic resin composition contains 20-60 pts.mass graft copolymer containing a vinyl copolymer component having an ordinary wt. average mol.wt. and a vinyl copolymer component having an especially high wt. average mol.wt., both components being produced together by graft polymerization, and 80-40 pts.mass vinyl copolymer. The composition is especially suitable for vacuum forming and air-pressure forming. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ゴム状重合体存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、および必要に応じて用いられるこれら単量体と共重合可能なビニル系単量体から成る単量体混合物を特定の製造条件下で重合して得られた特定のグラフト共重合体とビニル系共重合体を含有した熱可塑性樹脂組成物に関する。
さらに好ましくは、押出成形法で製造されたシートの熱加工性、とりわけ真空成形、圧空成形における加工性を向上させることができる熱可塑性樹脂組成物に関する。
【0002】
【従来の技術】
芳香族ビニル系樹脂、特にポリスチレン樹脂、AS樹脂、ABS樹脂は成形性、剛性に優れているため、これら熱可塑性樹脂は、射出成形、押出成形、真空成形などにより、目的の形状に付形され、家庭用品、電化製品などの部品として多量に使用されている。
【0003】
これらの成形法のうち、押出成形法により製造されたシートを用い、真空成形、圧空成形などの成形法で、目的の形状に成形する場合の具体的使用例として、電気冷蔵庫の内箱が挙げられる。例えば、ABS樹脂を使用して真空成形加工をしようとする場合、成形加工時の延伸倍率が大きくなるに伴い、延伸倍率の高い箇所は、肉厚がばらついたり、皺、破れ等が発生するために、材料粘度を適当に高めることが必要である。この場合ABS樹脂自体の平均分子量を大きくすることで溶融粘度を高めることが考えられるが、延伸時の粘度が増加し、金型転写性に劣ることになる。また、加工温度を高くしなければならず、結果として、成形加工する時間も延長される。また、延伸時の粘度特性を向上させるために、ABS樹脂に平均分子量の大きいAS樹脂と平均分子量の小さいAS樹脂との両成分を含有させたり、あるいはAS樹脂の分子量分布を調整する方法も提案されているが、必ずしも満足するものではなく改良が望まれていた。
【0004】
これらの要件を満足するABS樹脂に代表される熱可塑性樹脂組成物を製造する場合には、種々の方法が提案されている。例えば、特開平7−316390号公報、特開平8−127061号公報、特開平11−49926号公報、特開平11−241091号公報では、その成形方法に適した成形性を得るため、これまでのABS樹脂に平均分子量の大きいAS樹脂に代表されるビニル系共重合体と平均分子量の小さいビニル系共重合体を配合することで分子量の調整を行ってきた。これらビニル系共重合体は別々に製造しそれそれ配合することで解決されてきた。しかし、このような平均分子量の大きいビニル系共重合体は、例えば、特開昭61−258840号公報に記載されるように、特別な重合方法で製造されており、この方法では現在、一般に普及されている重合設備では容易に、さらに、大量に製造することが難しい。というのも、重合時に発生する大量の反応熱を取り除くのが難しいからである。いわんや、別々に製造したものを混合するのではなく、同一の製造設備で重合の際に一括して平均分子量が大きいビニル系共重合体と平均分子量の小さいビニル系共重合体は従来、安定して製造できるものではなかった。
また、目的の粘度を得るために大きな平均分子量を有する高分子量成分を配合する場合は、造粒時の混錬不足により十分溶融しない状態で溶融混合され、分散性が不足し物性値がバラつくことで一定の品質の発現が生じ難く、また溶融混練するにあたっては十分な時間が要求されるので時間的立場から見ても生産性に劣るなどの欠点があった。
【0005】
【発明が解決しようとする課題】
本発明は、上記の課題を解決することにあり、特に真空成形時の偏肉が少なく、金型転写性のよい熱可塑性樹脂組成物を提供することにある。
すなわち、高分子量成分を配合することによって生じていた溶融混合時の分散性不良を改良して、物性値のバラツキラを改良して機械的強度の発現を促し、かつ、真空成形加工、圧空成形加工などでシートを成形する場合の溶融粘度、延伸時の粘度特性などの成形加工性を改良したものである。
【0006】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意検討した結果、グラフト重合時に通常の重量平均分子量を有するビニル系共重合体成分と重量平均分子量が特に大きいビニル系共重合体成分を一括製造したグラフト共重合体を使用した樹脂組成物とすることによって、この樹脂組成物から得られたシートは真空成形や圧空成形における加工成形性の向上が図られることを見出し、本発明を成すに至った。
【0007】
すなわち、本発明は、下記の製造方法で得られたグラフト共重合体(A)20〜60質量部と、下記のビニル系共重合体(B)80〜40質量部とを含有する熱可塑性樹脂組成物である。
グラフト共重合体(A)は、全ゴム状重合体(X)25〜65質量部の存在下で、芳香族ビニル系単量体、シアン化ビニル系単量体、および必要に応じて用いられるこれら単量体と共重合可能なビニル系単量体から成る単量体混合物(Y)35〜75質量部を重合してグラフト共重合体を製造するに際し(ただし、全ゴム状重合体(X)+全単量体混合物(Y)=100質量部)、
最初に全ゴム状重合体(X)の0〜100質量%および、全単量体混合物(Y)の10.0〜60.0質量%を仕込み、さらに最初の仕込みの単量体混合物量に対して乳化剤を質量比で100:5〜20、連鎖移動剤を質量比で100:0〜0.1、重合開始剤を質量比で100:0〜0.1および、レドックスを質量比で100:0〜0.3の割合で仕込み、重合温度40〜65℃で0.5〜3時間で重合した後、
必要に応じて残りの全ゴム状重合体(X)100〜0質量%を仕込み、さらに残りの全単量体混合物(Y)の90.0〜40.0質量%を段階的または連続的に投入し、同時に残りの単量体混合物量に対する乳化剤を質量比で100:0〜5、連鎖移動剤を質量比で100:0〜0.3、重合開始剤を質量比で100:0.01〜0.3および、レドックスを質量比で100:0〜0.3の割合で段階的または連続的に投入して、重合温度40〜90℃で2〜8時間重合することを特徴とする製造方法で得られたグラフト共重合体である。
【0008】
さらに好ましくは、ゴム状重合体としてラテックスゴム状重合体を用い、固形分換算のゴム状重合体(X)として100質量%を仕込み、また全単量体混合物(Y)中の芳香族ビニル系単量体8〜48質量%、シアン化ビニル系単量体2〜24質量%を仕込み(但し、10.0質量%≦芳香族ビニル系単量体+シアン化ビニル系単量体≦60.0質量%)、さらに最初の仕込みの単量体混合物量に対して乳化剤を質量比で100:5〜20、連鎖移動剤を質量比で100:0〜0.1、重合開始剤を質量比で100:0〜0.1および、レドックスを質量比で100:0〜0.3の割合で仕込み、重合温度40〜65℃で0.5〜3時間で重合した後、
終了と同時に残りの単量体混合物量に対する乳化剤を質量比で100:0〜5、連鎖移動剤を質量比で100:0〜0.3、重合開始剤を質量比で100:0.01〜0.3および、レドックスを質量比で100:0〜0.3の割合で仕込み、続いて芳香族ビニル系単量体24〜72質量%、シアン化ビニル系単量体8〜36質量%(但し、40.0質量%≦芳香族ビニル系単量体+シアン化ビニル系単量体≦90.0質量%)を段階的または連続的に投入し、重合温度40〜90℃で2〜8時間重合する製造方法によって得られたグラフト共重合体である。
【0009】
ビニル系共重合体(B)としては、芳香族ビニル系単量体50〜90質量%、シアン化ビニル系単量体50〜100質量%、および必要に応じて用いられるこれら単量体と共重合可能なビニル系単量体0〜20質量%から成る重合体で、かつ重量平均分子量が5万〜30万であるビニル系共重合体を用いる。
さらに、好ましいビニル系共重合体(B)は、芳香族ビニル系単量体60〜80質量%、シアン化ビニル系単量体20〜40質量%、および必要に応じて用いられるこれら単量体と共重合可能なビニル系単量体0〜20質量%から成る重合体で、かつ重量平均分子量が5万〜30万であるビニル系共重合体である。
【0010】
さらには、好ましくはグラフト共重合体(A)が、メチルエチルケトン(MEK)可溶分の共重合体(a)のゲルパーミエションクロマトグラフイーにおける主成分(b)の重量平均分子量が8万〜60万で、残りの成分(c)の重量平均分子量が80万以上である熱可塑性樹脂組成物である。
【0011】
また、さらに好ましくはグラフト共重合体(A)が、メチルエチルケトン(MEK)可溶分の共重合体(a)の重量平均分子量(Mw)と数平均分子量(Mn)の比がMw/Mn≧4.0である熱可塑性樹脂組成物である。
【0012】
以下、本発明を詳細に説明する。
本発明の熱可塑性樹脂組成物は、ゴム状重合体存在下に芳香族ビニル系単量体、シアン化ビニル系単量体、および必要に応じてこれら単量体と共重合可能なビニル系単量体からなる単量体混合物を乳化重合して得られる特定の製造条件で得られるグラフト共重合体(A)と、芳香族ビニル系単量体、シアン化ビニル系単量体、および必要に応じてこれら単量体と共重合可能なビニル系単量体成分からなるビニル系共重合体(B)とを含有したものである。
【0013】
本発明に係るグラフト共重合体(A)とビニル系共重合体(B)とで用いられる芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、ジメチルスチレン、ビニルトルエンなどが挙げられ、これらのなかでもスチレンが好ましい。
【0014】
シアン化ビニル系単量体としては、アクリロニトリル、メタクリロニトリル、フマロニトリルなどが挙げられ、これらのなかでもアクリロニトリルが好ましい。
【0015】
必要に応じて用いられるこれらの単量体と共重合可能なビニル系単量体としては、特に制限はないがメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸−2−エチルヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸イソボルニルなどのようなメタクリル酸エステル単量体、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸−2−エチルヘキシル、アクリル酸シクロヘキシルなどのアクリル酸エステル単量体、マレイン酸、イタコン酸、シトラコン酸などの不飽和ジカルボン酸単量体および、これらの無水物、マレイミド、N−メチルマレイミド、N−ブチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミドなどの不飽和ジカルボン酸のイミド化合物単量体などが挙げられ、これらのビニル系単量体は、単独または2種以上を組み合わせても使用できる。
【0016】
本発明に係るグラフト共重合体(A)の製造で用いられるゴム状重合体としては、特に制限は無いが、ポリブタジエン、ブタジエン−スチレン共重合体、ブタジエン−アクリロニトリル共重合体、ポリイソプレン、ポリクロロプレンなどのブタジエン系重合体、アクリル酸プロピル重合体、アクリル酸ブチル重合体などのアクリル酸エステル重合体、エチレン−プロピレン−共役ジエン系ゴムなどをを挙げることができる。これらのゴム状重合体は単独でも2種以上を混合して使用することもできる。特に、本発明は乳化重合法が用いられるのでゴム状重合体としてはラテックス状態での上記のゴム状重合体を用いることが好ましい。
【0017】
なお、本発明の製造方法においては、ゴム状重合体の粒子径は特に限定されるものではないが、本発明で得られたグラフト共重合体およびその樹脂組成物を射出成形品、押出成形品などに用いる場合に、強度などを要求される成形品の場合にはゴム状重合体の粒子径は200nm〜420nm、好ましくは240nm〜390nm、さらに好ましくは280nm〜380nmの範囲にあるものを用いることが好ましい。
【0018】
本発明の製造方法における全ゴム状重合体(X)と全単量体混合物(Y)との全組成比は、ゴム状重合体25〜65質量部の存在下に、全単量体混合物(Y)35〜75質量部の範囲で選ぶのが好ましい(ただし、全ゴム状重合体(X)+全単量体混合物(Y)=100質量部)。なお、ゴム状重合体ラテックスを用いた場合は、全ゴム状重合体(X)とは、ゴム状重合体ラテックスの固形分をいう。
【0019】
また、ゴム状重合体は、全ゴム状重合体(X)の0〜100質量%を最初に仕込んでもよい。その後残りを順次重合時に投下することであるが、好ましくは最初に全ゴム状重合体(X)の100質量%を仕込んで製造することである。
【0020】
また、本発明における全単量体混合物(Y)中の各単量体の割合は、特に限定されるものではないが、最初に、全単量体混合物(Y)の10.0〜60.0質量%を仕込み、残りの単量体混合物(Y)の40.0〜90.0質量%を段階的または連続的に投入する。
【0021】
また、本発明に係るグラフト共重合体の製造方法では、同一バッチで段階的に重合するが、段数は限定されるものではなく、許される限り何段階でも構わない。
【0022】
本発明のグラフト共重合体の製造方法は、高分子量のビニル系共重合体を得るために2段階重合を行う方が好ましい。グラフト共重合体の製造方法としては、乳化重合法、懸濁重合法、塊状重合法、乳化−懸濁重合法などの公知の重合法を回分式および、または連続式と組み合わせて用いられる。これらのなかで、グラフト共重合体を製造する方法は乳化重合法によるのが好ましく、ラテックス状のゴム状重合体を用い、スチレン系単量体、シアン化ビニル系単量体、および必要に応じこれと共重合可能な単量体の単量体混合物を乳化重合法で重合するのが好ましい。
【0023】
好ましい乳化重合法の例を示す。まず、最初にゴム状重合体ラッテクスを用い、固形分として全ゴム状重合体(X)100質量%を仕込み、さらに全単量体混合物(Y)の芳香族ビニル系単量体8〜48質量%、シアン化ビニル系単量体2〜24質量%を仕込み(但し、10.0質量%≦芳香族ビニル系単量体+シアン化ビニル系単量体≦60.0質量%)、最初の仕込みの単量体混合物量に対して乳化剤を質量比で100:5〜20、連鎖移動剤を質量比で100:0〜0.1、重合開始剤を質量比で100:0〜0.1、レドックスを質量比で100:0〜0.3の割合で仕込み、重合温度40〜65℃で0.5〜3時間で重合した後、終了と同時に残りの単量体混合物量に対する乳化剤を質量比で100:0〜5、連鎖移動剤を質量比で100:0〜0.3、重合開始剤を質量比で100:0.01〜0.3、レドックスを質量比で100:0〜0.3の割合で仕込み、続いて残りの単量体混合物として芳香族ビニル系単量体24〜72質量%、シアン化ビニル系単量体8〜36質量%(但し、40.0質量%≦芳香族ビニル系単量体+シアン化ビニル系単量体≦90.0質量%)を段階的または連続的に投入し、重合温度40〜90℃で2〜8時間重合するグラフト共重合体の製造方法である。
【0024】
使用する乳化剤は公知のものが使用でき、特に制限は無い。たとえば、高級脂肪酸塩(例えば、半硬化牛脂肪酸カリ石鹸等)、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキル酸エステル塩、アルキルジフェニルエーテルスルホン酸塩などのアニオン性界面活性剤、また、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステルなどのノニオン性界面活性剤、さらにはアルキルアミン塩などのカチオン性界面活性剤を使用することができる。また、これらの乳化剤は単独でも、併用しても使用することができる。
【0025】
また、重合開始剤としては、水溶性、油溶性の単独系、もしくはレドックス系のものでよく、例として、通常の過硫酸塩などの無機開始剤を単独で用いるか、あるいは亜硫酸塩、亜硫酸水素塩、チオ硫酸塩などと組み合わせてレドックス系開始剤として用いることもできる。さらに、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルパーオキシアセテート、過酸化ベンゾイル、過酸化ラウロイルなどの有機過酸化物、アゾ化合物などを単独で用いるか、ホルムアルデヒドナトリウムスルホキシレートなどと組み合わせてレドックス系開始剤として用いることもできる。
【0026】
レドックスとしては、特に制限は無いが、賦活剤、キレート剤、還元剤の少なくとも1種以上から構成されるのが好ましい。賦活剤はグルコース、デキストロース、ホルムアルデヒドナトリウムスルホキシレート、亜硫酸塩(例えば、亜硫酸ナトリウム)、亜硫酸水素塩(例えば、亜硫酸水素ナトリウム)、チオ硫酸塩(例えばチオ硫酸ナトリウム)などが使用できる。
キレート剤としては、ヘキサシアノ鉄(III)カリウム、エチレンジアミン4酢酸塩などが使用できる。還元剤としては硫酸第一鉄、ピロリン酸ナトリウム、リン酸ナトリウム、硫酸銅などが使用できる。
【0027】
連鎖移動剤としては、特に制限は無いが、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタンなどのメルカプタン類、または、ターピノーレン、α−メチルスチレンダイマーなどが挙げられる。
【0028】
これら、乳化剤、連鎖移動剤、重合開始剤、レドックスの割合は最初の仕込みの単量体混合物量100に対しては質量比でそれぞれ乳化剤5〜20、連鎖移動剤0〜0.1、重合開始剤0〜0.1および、レドックス0〜0.3の割合で仕込み、好ましくは乳化剤8〜15、連鎖移動剤0〜0.05、重合開始剤0〜0.05および、レドックス0.1〜0.3である。
また、最初の重合終了と同時に残りの単量体混合物量100に対してそれぞれ質量比で乳化剤0〜5、連鎖移動剤0〜0.3、重合開始剤0.01〜0.3、レドックス0〜0.3の割合で仕込み、好ましくは乳化剤0〜3、連鎖移動剤0.05〜0.3、重合開始剤0.05〜0.3および、レドックスを0.05〜0.3の割合で仕込むことである。
【0029】
本発明の方法による高分子量含有重合体の回収方法は、例えば、得られた重合体ラテックスを常温まで冷却し、硫酸、塩酸、リン酸などの酸、または、塩化アルミニウム、塩化カルシウム、硫酸マグネシウム、硫酸アルミニウム、酢酸カルシウムなどの塩などの電解質により、酸凝固もしくは塩析させて重合体を沈殿せしめた後、さらに濾過、洗浄、乾燥して得ることができる。また、得られた重合体ラテックスを噴霧乾燥もしくは凍結乾燥などの手法で回収するなど、公知の回収方法を使用し得る。
【0030】
本発明の製造方法で得られるグラフト共重合体をメチルエチルケトン(MEK)に溶解させ、可溶分から回収される共重合体(a)の重量平均分子量は、15万〜250万、好ましくは20万〜200万、さらに好ましくは25万〜150万のものが得られる。また、重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/MnがMw/Mn≧4.0、好ましくはMw/Mn≧5.0、さらに好ましくはMw/Mn≧6.0のものが得られる。
さらに、共重合体(a)は、後述する測定装置の計算機で波形解析し、主成分(b),残りの成分(c)の2成分に分けることが出来る。主成分(b)の重量平均分子量は8万〜60万、好ましくは12万〜40万、さらに好ましくは15万〜30万である。また、残りの成分(c)の重量平均分子量は80万以上、好ましくは120万以上、さらに好ましくは200万以上であるものが好ましく製造することができる。
また、グラフト共重合体をMEKに溶解する方法および各種平均分子量値、および測定の方法も後述する方法で行ったものをいう。
【0031】
本発明の製造方法で得られるグラフト共重合体のグラフト率は、30〜100%が好ましく、後記する通常のグラフト率の測定方法で得ることができる。
【0032】
本発明の樹脂組成物を構成するビニル系共重合体(B)は、芳香族ビニル系単量体50〜90質量%、シアン化ビニル系単量体50〜10質量%、および必要に応じて用いられるこれら単量体と共重合可能なビニル系単量体0〜20質量%から成る重合体である。好ましい芳香族ビニル系単量体は55〜85質量%、さらに好ましくは60〜80質量%で、好ましいシアン化ビニル系単量体は15〜45質量%、さらに好ましくは20〜40質量%からなる共重合体である。
重合法としては、乳化重合法、懸濁重合法、塊状重合法、乳化−懸濁重合法などの公知の重合法を回分式および、または連続式と組み合わせて用いることができる。
【0033】
次に、本発明の熱可塑性樹脂組成物を説明する。
本発明の熱可塑性樹脂組成物は、グラフト共重合体(A)20〜60質量部とビニル系共重合体(B)80〜40質量部からなる。さらには、グラフト共重合体(A)30〜45質量部とビニル系共重合体(B)70〜55質量部からなることが好ましい。グラフト共重合体量が、20質量部以下では偏肉が大きく、また60質量部以上では型転写性が劣る。
【0034】
この熱可塑性樹脂組成物を調整するには、(1)各々別々に製造された粉状、フレーク状、ビーズ状、ペレット状の重合体を所定量秤量して溶融混合する方法、(2)ラテックス状重合体の場合は、各々別々に製造されたラテックス状の重合体を所定量秤量して混合・凝固して粉状とする方法などを挙げることができるが、これらに限定されるものではない。
【0035】
本発明の熱可塑性樹脂組成物を構成する各成分を溶融混合する方法は特に制限されるものではなく、一軸押出機、二軸押出機などの押出機、またはバンバリーミキサー、ニーダー・ルーダー、加圧ニーダー、加熱ロールなどの混練機など一般の公知の加工装置により、溶融混合して、樹脂組成物とすることができる。
【0036】
本発明の熱可塑性樹脂組成物には、本発明の樹脂組成物の性質を害しない種類、および量の滑剤、離型剤、着色剤、抗酸化剤、紫外線吸収剤、耐光性安定剤、耐熱向上剤、充填剤、帯電防止剤、難燃剤、抗菌剤、防カビ剤などの各種樹脂添加剤を必要に応じて添加することができる。
【0037】
得られた熱可塑性樹脂組成物は、通常の公知の成形方法、例えば射出成形、押出成形、中空成形、プレス成形などの各種成形法によって各種成形品を得ることができるが、特に、押出成形法によってシート化し、このシートをプラグアシスト圧空・真空成形法によって製造する電気冷蔵庫の内箱の用途等に好適に使用することができる。
【0038】
【実施例】
下記の実施例および比較例で本発明を具体的に説明するが、本発明は以下の例に限定されるものではない。
【0039】
まず、用いた原料樹脂について述べる。
(1)グラフト共重合体(A)の製造
A−1:グラフト共重合体の製造
(イ)ゴム状重合体の製造
攪拌機、加熱冷却装置、温度計、圧力計、原料・助剤添加装置を備えたステンレス製オートクレーブに、窒素置換後、ブタジエン100質量部に対しロジン酸カリウム3.0質量部、t−ドデシルメルカプタン0.3質量部、第二リン酸ナトリウム1.5質量部、脱イオン水70質量部を仕込み、攪拌下、内温を55℃に昇温した。内温が55℃に達した時点で、過硫酸アンモニウム0.5質量部を添加した。数分後に発熱が起こり、重合の開始が確認された。内圧が0.1MPaとなった時点で重合を終了し、冷却した。得られたゴム状重合体ラテックスの固形分濃度は50%、ゴムの平均粒径310nmであった。
【0040】
(ロ)グラフト共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、脱イオン水(ラテックス中の水分を含む)270質量部、半硬化牛脂肪酸カリ石鹸(花王社製KSソープ)1.5質量部、スチレン10.5質量部、アクリロニトリル4.5質量部を仕込み重合系内を窒素ガスで置換し、攪換下、上記(イ)で得られたゴム状重合体ラテックス50質量部(固形分として)を仕込み、内温を50℃に昇温した。内温が途中の48℃に達した時点で、脱イオン水10質量部に硫酸第一鉄0.0003質量部、エチレンジアミン四酢酸0.00075質量部、ホルムアルデヒドナトリウムスルホキシレート0.0225質量部を溶解した溶液を添加し、内温50℃で1時間重合した。
続けて脱イオン水10質量部に硫酸第一鉄0.0014質量部、エチレンジアミン四酢酸0.00245質量部、ホルムアルデヒドナトリウムスルホキシレート0.0735質量部を溶解した溶液を添加した。添加後、スチレン24.5質量部、アクリロニトリル10.5質量部からなる単量体混合物と脱イオン水27質量部、高級脂肪酸石鹸0.525質量部、t−ブチルパーオキシアセテート0.035質量部、α−メチルスチレンダイマー0.035質量部の割合よりなる溶液を連続添加し、温度60℃で5時間重合した。
重合終了後内温を冷却し、得られたラテックスに老化防止剤(チバスペシャリティケミカルズ社製イルガノックス1076)1.5質量部を添加し、続いてラテックスを温度95℃加熱した硫酸マグネシウム水溶液に加えて凝固し、濾過、洗浄、乾燥して、白色粉末状の樹脂組成物を得た。
このグラフト共重合体をA−1とする。後記した各測定方法に従って測定した結果を表1に示す。
【0041】
A−2:グラフト共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、脱イオン水(ラテックス中の水分を含む)270質量部、半硬化牛脂肪酸カリ石鹸(花王社製KSソープ)2.4質量部、スチレン16.8質量部、アクリロニトリル7.2質量部を仕込み重合系内を窒素ガスで置換し、攪換下、上記(イ)で得られたゴム状重合体ラテックス40質量部(固形分として)を仕込み、内温を50℃に昇温した。内温が途中の48℃に達した時点で、脱イオン水10質量部に硫酸第一鉄0.00048質量部、エチレンジアミン四酢酸0.0012質量部、ホルムアルデヒドナトリウムスルホキシレート0.036質量部を溶解した溶液を添加し、内温50℃で1時間重合した。
続けて脱イオン水10質量部に硫酸第一鉄0.00144質量部、エチレンジアミン四酢酸0.00252質量部、ホルムアルデヒドナトリウムスルホキシレート0.0756質量部を溶解した溶液を添加した。添加後、スチレン25.2質量部、アクリロニトリル10.8質量部からなる単量体混合物と脱イオン水27質量部、半硬化牛脂肪酸カリ石鹸0.54質量部、t−ブチルパーオキシアセテート0.036質量部、ターヒ゜ノーレン0.036質量部の割合よりなる溶液を連続添加し、温度60℃で5時間重合した。
重合終了後内温を冷却し、得られたラテックスに老化防止剤(チバスペシャリティケミカルズ社製イルガノックス1076)1.5質量部を添加し、続いてラテックスを温度95℃加熱した硫酸マグネシウム水溶液に加えて凝固し、濾過、洗浄、乾燥して、白色粉末状の樹脂組成物を得た。
このグラフト重合体をA−2とする。後記した各測定方法に従って測定した結果を表1に示す。
【0042】
A−3:グラフト共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、脱イオン水(ラテックス中の水分を含む)270質量部、半硬化牛脂肪酸カリ石鹸(花王社製KSソープ)1.5質量部、スチレン11.25質量部,アクリロニトリル3.75質量部を仕込み重合系内を窒素ガスで置換し、攪換下、上記(イ)で得られたゴム状重合体ラテックス50質量部(固形分として)を仕込み、内温を50℃に昇温した。内温が途中の48℃に達した時点で、脱イオン水10質量部に硫酸第一鉄0.0003質量部、エチレンジアミン四酢酸0.00075質量部、ホルムアルデヒドナトリウムスルホキシレート0.0225質量部を溶解した溶液を添加し、内温50℃で1時間重合した。
続けて脱イオン水10質量部に硫酸第一鉄0.0014質量部、エチレンジアミン四酢酸0.00245質量部、ホルムアルデヒドナトリウムスルホキシレート0.0735質量部に溶解した溶液を添加した。添加後、スチレン26.25質量部、アクリロニトリル8.75質量部からなる単量体混合物と脱イオン水27質量部、高級脂肪酸石鹸0.525質量部、過硫酸カリウム0.035質量部、α−メチルスチレンダイマー0.035質量部の割合よりなる溶液を連続添加し、温度60℃で5時間重合した。
重合終了後内温を冷却し、得られたラテックスに老化防止剤(チバスペシャリティケミカルズ社製イルガノックス1076)1.5質量部を添加し、続いてラテックスを温度95℃加熱した硫酸マグネシウム水溶液に加えて凝固し、濾過、洗浄、乾燥して、白色粉末状の樹脂組成物を得た。
このグラフト重合体をA−3とする。後記した各測定方法に従って測定した結果を表1に示す
【0043】
A−4:グラフト共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、脱イオン水(ラテックス中の水分を含む)270質量部、半硬化牛脂肪酸カリ石鹸(花王社製KSソープ)1.5質量部、t−ブチルパーオキシアセテート0.0015質量部、スチレン11.25質量部、アクリロニトリル3.75質量部を仕込み重合系内を窒素ガスで置換し、攪換下、上記(イ)で得られたゴム状重合体ラテックス50質量部(固形分として)を仕込み、内温を50℃に昇温した。内温が途中の48℃に達した時点で、脱イオン水10質量部に硫酸第一鉄0.0003質量部、エチレンジアミン四酢酸0.00075質量部、ホルムアルデヒドナトリウムスルホキシレート0.0225質量部を溶解した溶液を添加し、内温50℃で1時間重合した。
続けて脱イオン水10質量部に硫酸第一鉄0.0014質量部、エチレンジアミン四酢酸0.00245質量部、ホルムアルデヒドナトリウムスルホキシレート0.0735質量部を溶解した溶液を添加した。添加後、スチレン26.25質量部、アクリロニトリル8.75質量部からなる単量体混合物と脱イオン水27質量部、高級脂肪酸石鹸0.525質量部、t−ブチルパーオキシアセテート0.035質量部、n−ドデシルメルカプタン0.035質量部の割合よりなる溶液を連続添加し、温度60℃で5時間重合した。
重合終了後内温を冷却し、得られたラテックスに老化防止剤(チバスペシャリティケミカルズ社製イルガノックス1076)1.5質量部を添加し、続いてラテックスを温度95℃加熱した硫酸マグネシウム水溶液に加えて凝固し、濾過、洗浄、乾燥して、白色粉末状の樹脂組成物を得た。
このグラフト重合体をA−4とする。後記した各測定方法に従って測定した結果を表1に示す
【0044】
A−5:グラフト共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、脱イオン水(ラテックス中の水分を含む)270質量部、半硬化牛脂肪酸カリ石鹸(花王社製KSソープ)1.5質量部、t−ブチルパーオキシアセテート0.0075質量部、α−メチルスチレンダイマー0.0075質量部、スチレン11.25質量部,アクリロニトリル3.75質量部を仕込み重合系内を窒素ガスで置換し、攪換下、上記(イ)で得られたゴム状重合体ラテックス50質量部(固形分として)を仕込み、内温を50℃に昇温した。内温が途中の48℃に達した時点で、脱イオン水10質量部に硫酸第一鉄0.0003質量部、エチレンジアミン四酢酸0.00075質量部、ホルムアルデヒドナトリウムスルホキシレート0.0225質量部を溶解した溶液を添加し、内温50℃で1時間重合した。
続けて脱イオン水10質量部に硫酸第一鉄0.0014質量部、エチレンジアミン四酢酸0.00245質量部、ホルムアルデヒドナトリウムスルホキシレート0.0755質量部を溶解した溶液を添加した。添加後、スチレン26.25質量部、アクリロニトリル8.75質量部からなる単量体混合物と脱イオン水27質量部、高級脂肪酸石鹸0.525質量部、t−ブチルパーオキシアセテート0.035質量部、t−ドデシルメルカプタン0.035質量部の割合よりなる溶液を連続添加し、温度60℃で5時間重合した。
重合終了後内温を冷却し、得られたラテックスに老化防止剤(チバガイギー社製イルガノックス1076)1.5質量部を添加し、続いてラテックスを温度95℃加熱した硫酸マグネシウム水溶液に加えて凝固し、濾過、洗浄、乾燥して、白色粉末状の樹脂組成物を得た。
このグラフト重合体をA−5とする。後記した各測定方法に従って測定した結果を表1に示す
【0045】
C−1:グラフト共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、上記(イ)で得られたゴム状重合体ラテックス50質量部(固形分として)、脱イオン水(ラテックス中の水分を含む)270質量部を仕込み、重合系内を窒素ガスで置換し、攪拌下、内温50℃に昇温した。内温が途中の48℃に達した時点で、脱イオン水13質量部に、硫酸第一鉄7水塩0.0025質量部、エチレンジアミン4酢酸4ナトリウム2水塩0.005質量部、ホルムアルデヒドナトリウムスルホキシレート0.3質量部よりなる溶液を添加した。スチレン35質量部、アクリロニトリル15質量部と脱イオン水27質量部に、半硬化牛脂肪酸カリ石鹸1.5質量部、ジイソプロピルベンゼンハイドロパーオキサイド0.2質量部、α−メチルスチレンダイマー0.25質量部よりなる溶液を連続添加開始し、60℃の温度で5時間重合した。その後、70℃の温度で2時間反応を継続した後、内温を冷却した。得られた混合ラテックスに老化防止剤(イルガノックス1076)1.5部を添加し、次いでラテックスを温度95℃に加熱した硫酸マグネシウム水溶液に加えて凝固し、濾過、洗浄、乾燥して、白色粉末状の樹脂組成物を得た。このグラフト重合体をC−1とする。結果を表1に示す。
【0046】
C−2:グラフト共重合体の製造
C−1のグラフト共重合体を製造する条件のうち、連鎖移動剤α−メチルスチレンダイマー0.25質量部をt−ドデシルメルカプタン0.075質量部に代えた以外はC−1と同一の製造上件で重合した。また、得られたラテックスに老化防止剤(イルガノックス1076)1.5部を添加し、次いでラテックスを温度95℃に加熱した硫酸マグネシウム水溶液に加えて凝固し、濾過、洗浄、乾燥して、白色粉末状の樹脂組成物を得た。このグラフト重合体をC−2とする。結果を表1に示す。
【0047】
C−3:グラフト共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、上記(イ)で得られたゴム状重合体ラテックス50質量部(固形分として)、脱イオン水(ラテックス中の水分を含む)270質量部を仕込み、重合系内を窒素ガスで置換し、攪拌下、内温50℃に昇温した。内温が途中の48℃に達した時点で、脱イオン水13質量部に、硫酸第一鉄7水塩0.0025質量部、エチレンジアミン4酢酸4ナトリウム2水塩0.005質量部、ホルムアルデヒドナトリウムスルホキシレート0.3質量部よりなる溶液を添加した。スチレン35質量部、アクリロニトリル15質量部と脱イオン水27質量部に、半硬化牛脂肪酸カリ石鹸1.5質量部、ジイソプロピルベンゼンハイドロパーオキサイド0.1質量部、α−メチルスチレンダイマー0.1質量部よりなる溶液を連続添加開始し、60℃の温度で5時間重合した。その後、70℃の温度で2時間反応を継続した後、内温を冷却した。得られた混合ラテックスに老化防止剤(イルガノックス1076)1.5部を添加し、次いでラテックスを温度95℃に加熱した硫酸マグネシウム水溶液に加えて凝固し、濾過、洗浄、乾燥して、白色粉末状の樹脂組成物を得た。このグラフト重合体をC−3とする。結果を表1に示す。
【0048】
(2)ビニル系共重合体の製造
B−1:ビニル系共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、スチレン30質量部、アクリロニトリル30質量部、第三リン酸カルシウム0.07質量部、n−ドデシルメルカプタン0.1質量部、脱イオン水100質量部を仕込み、重合系内を窒素ガスで置換した。攪拌下、内温96℃に昇温し、過硫酸カリウム0.01質量部を添加し、重合反応を開始した。重合を開始してから直ちにスチレン40質量部を一定の速度で7時間かけて連続添加するとともに、内温を96℃で4時間維持し、その後30分かけて105℃に昇温し、1.5時間維持した。さらに30分かけて115℃に昇温し、3時間維持し重合を終了した。その後、冷却し、濾過、水洗、乾燥して、ビーズ状のビニル系系共重合体を得た。この重合体の重量平均分子量は16万であった。この重合体を以下B−1という。なお、このビニル系共重合体のスチレンモノマーとアクリロニトリルの質量比は熱分解ガスクロマトグラフィーにて定量し、70.2/29.8であった。
【0049】
B−2:ビニル系共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、スチレン25質量部、アクリロニトリル25質量部、第三リン酸カルシウム0.07質量部、n−ドデシルメルカプタン0.2質量部、脱イオン水100質量部を仕込み、重合系内を窒素ガスで置換した。攪拌下、内温96℃に昇温し、過硫酸カリウム0.01質量部を添加し、重合反応を開始した。重合を開始してから直ちにスチレン50質量部を一定の速度で7時間かけて連続添加するとともに、内温を96℃で4時間維持し、その後30分かけて105℃に昇温し、1.5時間維持した。さらに30分かけて115℃に昇温し、3時間維持し重合を終了した。その後、冷却し、濾過、水洗、乾燥して、ビーズ状のビニル系系共重合体を得た。この重合体の重量平均分子量は15万であった。この重合体を以下B−2という。なお、このビニル系共重合体のスチレンモノマーとアクリロニトリルの質量比は熱分解ガスクロマトグラフィーにて定量し、75.8/24.2であった。
【0050】
B−3:ビニル系共重合体の製造
攪拌機、加熱冷却装置、温度計、原料・助剤添加装置を備えたステンレス製オートクレーブに、脱イオン水(ラテックス中の水分を含む)2000質量部、半硬化牛脂肪酸カリ石鹸(花王社製KSソープ)20質量部、スチレン75質量部,アクリロニトリル25質量部を仕込み重合系内を窒素ガスで置換し、内温を50℃に昇温した。内温が途中の50℃に達した時点で、脱イオン水26質量部に硫酸第一鉄0.005質量部、エチレンジアミン四酢酸0.01質量部、ホルムアルデヒドナトリウムスルホキシレート0.3質量部を溶解した溶液を添加し、内温50℃を維持し、t−ブチルハイドロパーオキサイド0.01質量部を連続滴下しながら、4時間半攪拌し重合した。重合終了後内温を冷却し、続いてラテックスを温度95℃加熱した硫酸マグネシウム水溶液に加えて凝固し、濾過、洗浄、乾燥して、白色粉末状のビニル系共重合体を得た。この重合体の重量平均分子量は312万であった。この重合体を以下B−3という。なお、このビニル系共重合体のスチレンモノマーとアクリロニトリルの質量比は熱分解ガスクロマトグラフィーにて定量し、74.5/25.5であった。
【0051】
【表1】

Figure 2004018727
【0052】
なお、表1の各物性は、下記のようにして測定した。
(1) 重量平均分子量およびMw/Mn
グラフト共重合体のメチルエチルケトン(MEK)可溶分の共重合体(a)の重量平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)装置を用い、次の条件で測定したもので、分子量はポリスチレン換算値である。
装 置;Shodex製、「SYSTEM−21」
カラム;PLgel MIXED−B
温 度;40℃
溶 媒;テトラヒドロフラン
検 出;RI
濃 度;0.2%
注入量;100μl
検量線;標準ポリスチレン(Polymer Laboratories製)を用い、溶離時間と溶出量との関係を分子量と変換して各種平均分子量を求めた。
なお、ビニル系共重合体(B)の重量平均分子量も上記の条件で測定した。
【0053】
(イ)なお、グラフト共重合体からメチルエチルケトン(MEK)可溶分を抽出する条件は下記の条件で行った。
グラフト共重合体ラテックス約20gをメタノール100mlで析出、凝固させ、凝固物は濾紙を用いて吸引濾過する。濾過物は室温で24時間、真空乾燥機で約4時間乾燥させる。得られた試料の約1.2gを100ml三角フラスコに取り、メチルエチルケトン(MEK)30gを加えた後、温度23℃で24時間攪拌し、その後、遠心分離器機(日立製作所製CR26H)でメチルエチルケトン(MEK)に対する不溶分の分離を実施し、遠心分離操作後30分静置した。この遠心分離器の操作条件を次の通り設定した。
温度 :−9℃
回転数:23,000rpm
時間 :50分
遠心分離させた溶液の上澄み液と沈殿物とを分離し、上澄み液をメタノール150mlが入れてある300mlビーカーに注ぎ入れて、析出させ、析出物を濾紙を用いて吸引濾過する。濾過物は室温で24時間乾燥させ、次に真空乾燥機で4時間残溶剤を飛ばして試料を得た。
【0054】
(ロ)主成分の低分子側と従成分の高分子量側との解析
なお、グラフト共重合体のメチルエチルケトン(MEK)可溶分の重量平均分子量は、GPC溶離曲線において低分子量側の主ピークと高分子量側の従ピークとが明確に区別できる場合、主ピークと従ピークに対応する位置の対照ガウス分布を想定して重量平均分子量および数平均分子量を求める方法でおこなった。
また、残り高分子側における従ピークが目立たずあるは判別が難しい場合は、主ピークで想定したガウス分布から外れた高分子量側の裾部についてトライアンドエラーで最適なガウス分布を想定しながら、重量平均分子量および数平均分子量を求める方法で求めた。
なお、GPC溶離曲線を溶出量ml(mv)と溶出時間を0.5ml/secごとに分割して計算した。詳細な計算はGPC装置に付設されているデーター処理機東洋曹達SC−8020を用いて分子量分布曲線および各種平均分量値を求めた。
【0055】
(2)ゴム状重合体ラテックス中のゴムの体積平均粒子径の測定方法
本発明のゴム状重合体の体積平均粒子径は、レーザー回折散乱法で求めた。その測定条件は以下の通りである。
装置:COULTER LS 230(COULTER社製)
濃度:2.0%
希釈溶媒:蒸留水
解析ソフトウエアー:Version2.05
【0056】
(3)グラフト率の測定方法
本発明のグラフト共重合体のグラフト率は、次の方法で求めた。
グラフト共重合体ラテックス約20gをメタノール100mlで析出、凝固させ、凝固物を濾紙を用いて吸引濾過する。濾過物は真空乾燥機で24時間、室温で乾燥させる。得られた試料の約1.2gを100ml三角フラスコに取り、メチルエチルケトン(MEK)30gを加えた後、温度23℃で24時間攪拌し、その後遠心分離器機でメチルエチルケトン(MEK)に対する不溶分の分離を実施し、遠心分離操作後30分静置した。この遠心分離器の操作条件を次の通り設定した。
温度:−9℃
回転数:20,000rpm
時間:60分
遠心分離させた溶液の上澄液と沈殿物とを分離し、沈殿物は真空乾燥機で乾燥し、不溶分xとした。さらに、この不溶分の試料を用いてケルダール窒素法によって定量したアクリロニトリル単量体の質量yと熱分解ガスクロマトグラフィーにより定量したスチレン単量体の質量zを求め、グラフト率(%)=100×(y+z)/{x−(y+z)}の式から計算した。
【0057】
実施例1〜5
上記グラフト共重合体(A)およびビニル系共重合体(B)を表2に記載した割合で配合して、二軸押出機にてペレット化した。このペレットを押出成形機にて厚さ2mmのシートを作製し、引き続き真空成形試験を行った。結果を表2に示す。
【0058】
比較例1〜4
上記グラフト共重合体(C)およびビニル系共重合体(B)を表2に記載した割合で配合して、二軸押出機にてペレット化した。このペレットを押出成形機にて厚さ2mmのシートを作製し、引き続き真空成形試験を行った。結果を表2に示す。
【0059】
【表2】
Figure 2004018727
【0060】
なお、表2の真空成形性の評価に下記の方法で行った。
(1)真空成形における編肉性(編肉比)
熱可塑性樹脂組成物を用いてTダイ付き押出成形機(田辺プラスチック工業社製VE−40)を使用して厚さ1mmのシートを製造し、このシートから400×400mmのシート板を切り出し、真空成形機(FK0431−10、プラグアシスト式)を使用して、一辺270mm、深さ150mmの箱型成形品をシート温度で170℃で成形した。
なお、シート温度は、シート表面温度分布を日本電子製サーモビュアーJTG−6300で観察し、ブローイング成形直前の表面温度が均一になるよう加熱ヒーターの温度制御で行った。
成形時に使用したプラグの形状は、一辺225mm、高さ140mmで各コーナー部のRは10mmである。成形工程の時間は、最初のブローイング時間は2秒で、加熱終了し、さらに1秒後ブローイングを開始した。次のプラグ降下は、加熱終了後から5.5秒後に開始した。真空成形は、加熱終了後7秒後に開始し、−730mmHgで20秒真空を保持した。
得られた成形品を開口部の一辺の中央から底部の中央に縦方向に切断し、切断面における最低肉厚aを測定し、シート成形品の厚さbとの比(b/a)を偏肉比としてその値を示した。偏肉比が小さいほど偏肉がなく好ましいことを意味する。
【0061】
(2)真空成形における型転写性(曲率半径)
上記真空成形で得られた成形品の4角部の開口部から底部へ125mmの深さとなる点を中心とした開口部と平行方向の曲率半径Rの測定値を示した。金型の該部位の半径R値は1.0であるので、該部位の曲率半径R値が1.0に近いほど型転写性が良いことを示す。
【0062】
表2より、次のことが明らかになる。本発明に係る熱可塑性樹脂組成物は、実施例1〜5から偏肉性及び型転写性に優れて良好な真空成形性が得られていることがわかる。これに対し比較例1〜3は、グラフト共重合体中のメチルエチルケトン可溶分の重量平均分子量の構成が本発明の適用範囲を外れるため、良好な真空成形性が得られない。また、比較例4は、構成的には実施例と対応するが、別々に製造したビニル系共重合体を混合しているために編肉性、型転写性共に実施例よりは劣る。
【0063】
【発明の効果】
本発明の熱可塑性樹脂組成物は、グラフト共重合体中に異なる重量平均分子量成分、特に高分子量成分を製造時に有しているので、押出成形法で製造されたシートの熱加工性、とりわけ真空成形性、圧空成形性に好適である。
【図面の簡単な説明】
【図1】A−1のGPCによる分子量分布曲線である。
【図2】C−1のGPCによる分子量分布曲線である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention comprises an aromatic vinyl monomer, a vinyl cyanide monomer, and a vinyl monomer copolymerizable with these monomers, if necessary, in the presence of a rubbery polymer. The present invention relates to a thermoplastic resin composition containing a specific graft copolymer and a vinyl copolymer obtained by polymerizing a monomer mixture under specific production conditions.
More preferably, the present invention relates to a thermoplastic resin composition that can improve the thermal processability of a sheet produced by an extrusion molding method, particularly, the processability in vacuum forming and pressure forming.
[0002]
[Prior art]
Aromatic vinyl resins, especially polystyrene resins, AS resins, and ABS resins are excellent in moldability and rigidity. Therefore, these thermoplastic resins are formed into a desired shape by injection molding, extrusion molding, vacuum molding, or the like. It is used in large quantities as parts for household goods, electrical appliances and the like.
[0003]
Among these molding methods, an inner box of an electric refrigerator is used as a specific example of using a sheet manufactured by an extrusion molding method, and forming into a desired shape by a molding method such as vacuum molding or air pressure molding. Can be For example, when vacuum forming is to be performed using ABS resin, as the stretch ratio at the time of the forming process increases, a portion having a high stretch ratio may have a variation in thickness, wrinkles, breakage, or the like. In addition, it is necessary to appropriately increase the material viscosity. In this case, it is conceivable to increase the melt viscosity by increasing the average molecular weight of the ABS resin itself. However, the viscosity at the time of stretching increases, and the mold transferability becomes poor. In addition, the processing temperature must be increased, and as a result, the time required for forming processing is extended. In addition, in order to improve the viscosity characteristics at the time of stretching, a method in which both components of an AS resin having a large average molecular weight and an AS resin having a small average molecular weight are contained in an ABS resin, or a method of adjusting the molecular weight distribution of the AS resin is also proposed. However, it was not always satisfactory and improvement was desired.
[0004]
Various methods have been proposed for producing a thermoplastic resin composition represented by an ABS resin satisfying these requirements. For example, in JP-A-7-316390, JP-A-8-127061, JP-A-11-49926, and JP-A-11-241091, in order to obtain moldability suitable for the molding method, The molecular weight has been adjusted by mixing a vinyl copolymer represented by an AS resin having a large average molecular weight and a vinyl copolymer having a small average molecular weight into an ABS resin. These vinyl copolymers have been solved by separately producing and blending them. However, such a vinyl copolymer having a large average molecular weight is produced by a special polymerization method as described in, for example, JP-A-61-258840, and this method is currently widely used. It is difficult to produce easily and in large quantities with the polymerization equipment used. This is because it is difficult to remove a large amount of reaction heat generated during polymerization. In other words, instead of mixing separately manufactured products, vinyl copolymers with a high average molecular weight and vinyl copolymers with a low average molecular weight are not stable at the same time during polymerization in the same manufacturing equipment. It could not be manufactured.
Also, when compounding a high molecular weight component having a large average molecular weight to obtain the desired viscosity, it is melted and mixed in a state where it is not sufficiently melted due to insufficient kneading at the time of granulation, the dispersibility is insufficient and the physical property value varies. As a result, there are drawbacks such that it is difficult to develop a certain quality and that sufficient time is required for melt-kneading, so that the productivity is poor from the viewpoint of time.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems, and in particular, to provide a thermoplastic resin composition with less unevenness in thickness during vacuum forming and good mold transferability.
In other words, the poor dispersibility at the time of melt mixing caused by the incorporation of the high molecular weight component is improved, the dispersion of the physical property values is improved, and the development of mechanical strength is promoted. This is an improvement in the moldability such as the melt viscosity in forming a sheet by the method described above and the viscosity characteristics during stretching.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, produced a vinyl copolymer component having a normal weight average molecular weight and a vinyl copolymer component having a particularly large weight average molecular weight at the time of graft polymerization. It has been found that by forming a resin composition using the graft copolymer thus obtained, a sheet obtained from this resin composition can be improved in workability in vacuum forming or pressure forming, and the present invention has been achieved. Was.
[0007]
That is, the present invention provides a thermoplastic resin containing 20 to 60 parts by mass of a graft copolymer (A) obtained by the following production method and 80 to 40 parts by mass of a vinyl copolymer (B) described below. A composition.
The graft copolymer (A) is used in the presence of 25 to 65 parts by mass of the total rubbery polymer (X), and is used as an aromatic vinyl monomer, a vinyl cyanide monomer, and if necessary. In producing a graft copolymer by polymerizing 35 to 75 parts by mass of a monomer mixture (Y) composed of a vinyl monomer copolymerizable with these monomers (provided that all rubbery polymer (X ) + Total monomer mixture (Y) = 100 parts by mass),
First, 0 to 100% by mass of the total rubbery polymer (X) and 10.0 to 60.0% by mass of the total monomer mixture (Y) are charged. On the other hand, the emulsifier is 100: 5 to 20 by mass, the chain transfer agent is 100: 0 to 0.1 by mass, the polymerization initiator is 100: 0 to 0.1 by mass, and the redox is 100 by mass. : After charging at a ratio of 0 to 0.3 and polymerizing at a polymerization temperature of 40 to 65 ° C for 0.5 to 3 hours,
If necessary, 100 to 0% by mass of the remaining rubber-like polymer (X) is charged, and 90.0 to 40.0% by mass of the remaining monomer mixture (Y) is gradually or continuously added. At the same time, the emulsifier and the chain transfer agent with respect to the amount of the remaining monomer mixture are 100: 0 to 5 by mass, the chain transfer agent is 100: 0 to 0.3 by mass, and the polymerization initiator is 100: 0.01 by mass. To 0.3 and redox in a mass ratio of 100: 0 to 0.3 in a stepwise or continuous manner, and polymerizing at a polymerization temperature of 40 to 90 ° C. for 2 to 8 hours. It is a graft copolymer obtained by the method.
[0008]
More preferably, a latex rubber-like polymer is used as the rubber-like polymer, 100% by mass is charged as the rubber-like polymer (X) in terms of solid content, and an aromatic vinyl-based polymer in the total monomer mixture (Y) is used. 8 to 48% by mass of a monomer and 2 to 24% by mass of a vinyl cyanide monomer (however, 10.0 mass% ≦ aromatic vinyl monomer + vinyl cyanide monomer ≦ 60. 0% by mass), an emulsifier in a mass ratio of 100: 5 to 20, a chain transfer agent in a mass ratio of 100: 0 to 0.1, and a polymerization initiator in a mass ratio of the initially charged monomer mixture amount. At 100: 0 to 0.1 and at a mass ratio of redox of 100: 0 to 0.3, and after polymerization at a polymerization temperature of 40 to 65 ° C. for 0.5 to 3 hours,
At the same time as the completion, the emulsifier to the remaining monomer mixture amount is 100: 0 to 5 in mass ratio, the chain transfer agent is 100: 0 to 0.3 in mass ratio, and the polymerization initiator is 100: 0.01 to 100 in mass ratio. 0.3 and redox at a mass ratio of 100: 0 to 0.3, followed by 24-72% by mass of an aromatic vinyl monomer and 8-36% by mass of a vinyl cyanide monomer ( However, 40.0% by mass ≦ aromatic vinyl monomer + vinyl cyanide monomer ≦ 90.0% by mass) is added stepwise or continuously, and the polymerization temperature is 40 to 90 ° C. and 2 to 8%. It is a graft copolymer obtained by a production method in which polymerization is performed for a time.
[0009]
Examples of the vinyl copolymer (B) include 50 to 90% by mass of an aromatic vinyl monomer, 50 to 100% by mass of a vinyl cyanide monomer, and copolymers of these monomers used as needed. A vinyl copolymer having a weight average molecular weight of 50,000 to 300,000, which is a polymer composed of 0 to 20% by mass of a polymerizable vinyl monomer, is used.
Further, preferred vinyl copolymers (B) include 60 to 80% by mass of an aromatic vinyl monomer, 20 to 40% by mass of a vinyl cyanide monomer, and optionally these monomers. And a vinyl copolymer having a weight-average molecular weight of 50,000 to 300,000.
[0010]
Furthermore, the graft copolymer (A) preferably has a weight-average molecular weight of 80,000 or more of the main component (b) in gel permeation chromatography of the copolymer (a) soluble in methyl ethyl ketone (MEK). A thermoplastic resin composition having a weight average molecular weight of 600,000 and the remaining component (c) of 800,000 or more.
[0011]
More preferably, the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the copolymer (a) in which the graft copolymer (A) is soluble in methyl ethyl ketone (MEK) is Mw / Mn ≧ 4. 0.0 is a thermoplastic resin composition.
[0012]
Hereinafter, the present invention will be described in detail.
The thermoplastic resin composition of the present invention comprises an aromatic vinyl monomer, a vinyl cyanide monomer, and, if necessary, a vinyl monomer copolymerizable with these monomers in the presence of a rubbery polymer. Graft copolymer (A) obtained under specific production conditions obtained by emulsion polymerization of a monomer mixture comprising a monomer, an aromatic vinyl monomer, a vinyl cyanide monomer, and Accordingly, a vinyl copolymer (B) comprising a copolymerizable vinyl monomer component with these monomers is contained.
[0013]
Examples of the aromatic vinyl monomer used in the graft copolymer (A) and the vinyl copolymer (B) according to the present invention include styrene, α-methylstyrene, dimethylstyrene, and vinyltoluene. Of these, styrene is preferred.
[0014]
Examples of the vinyl cyanide-based monomer include acrylonitrile, methacrylonitrile, fumaronitrile, etc. Among them, acrylonitrile is preferable.
[0015]
The vinyl monomer that can be copolymerized with these monomers used as necessary is not particularly limited, but is methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, methacrylic acid-2-. Methacrylate monomers such as ethylhexyl, phenyl methacrylate, benzyl methacrylate, isobornyl methacrylate, etc., methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate Such as acrylic acid ester monomers, maleic acid, itaconic acid, unsaturated dicarboxylic acid monomers such as citraconic acid and anhydrides thereof, maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N-cyclohexylma Imide compound monomer of unsaturated dicarboxylic acids and the like, such as imides, these vinyl monomers may be used alone or in combination of two or more.
[0016]
The rubbery polymer used in the production of the graft copolymer (A) according to the present invention is not particularly limited, but includes polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, polyisoprene, and polychloroprene. And the like, butadiene-based polymers, propyl acrylate polymers, butyl acrylate polymers and other acrylate polymers, and ethylene-propylene-conjugated diene-based rubbers. These rubbery polymers can be used alone or in combination of two or more. In particular, since the present invention employs an emulsion polymerization method, it is preferable to use the above-mentioned rubbery polymer in a latex state as the rubbery polymer.
[0017]
In the production method of the present invention, the particle size of the rubbery polymer is not particularly limited, but the graft copolymer obtained by the present invention and the resin composition thereof are injection-molded, extruded. In the case of a molded article requiring strength or the like, a rubber-like polymer having a particle diameter of 200 nm to 420 nm, preferably 240 nm to 390 nm, more preferably 280 nm to 380 nm is used. Is preferred.
[0018]
In the production method of the present invention, the total composition ratio of the entire rubber-like polymer (X) and the total monomer mixture (Y) is determined in the presence of the rubber-like polymer in an amount of 25 to 65 parts by mass. Y) It is preferable to select from 35 to 75 parts by mass (provided that the total rubbery polymer (X) + the total monomer mixture (Y) = 100 parts by mass). When a rubber-like polymer latex is used, the total rubber-like polymer (X) refers to the solid content of the rubber-like polymer latex.
[0019]
Further, the rubbery polymer may be initially charged with 0 to 100% by mass of the total rubbery polymer (X). Thereafter, the remainder is sequentially dropped at the time of polymerization. Preferably, the production is performed by initially charging 100% by mass of the entire rubbery polymer (X).
[0020]
In addition, the proportion of each monomer in the total monomer mixture (Y) in the present invention is not particularly limited, but first, 10.0 to 60.% of the total monomer mixture (Y). 0 mass% is charged, and 40.0 to 90.0 mass% of the remaining monomer mixture (Y) is charged stepwise or continuously.
[0021]
In the method for producing a graft copolymer according to the present invention, polymerization is performed stepwise in the same batch. However, the number of stages is not limited, and any number of stages may be used as long as it is allowed.
[0022]
In the method for producing a graft copolymer of the present invention, two-stage polymerization is preferably performed in order to obtain a high-molecular-weight vinyl copolymer. As a method for producing the graft copolymer, a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, or an emulsion-suspension polymerization method is used in combination with a batch system or a continuous system. Among these, the method for producing the graft copolymer is preferably an emulsion polymerization method, using a latex-like rubbery polymer, and using a styrene monomer, a vinyl cyanide monomer, and if necessary. It is preferable to polymerize a monomer mixture of a monomer copolymerizable therewith with an emulsion polymerization method.
[0023]
The example of a preferable emulsion polymerization method is shown. First, 100% by mass of the total rubbery polymer (X) is charged as a solid using a rubbery polymer latex, and the aromatic vinyl monomer of the total monomer mixture (Y) is 8 to 48% by mass. %, 2 to 24% by mass of a vinyl cyanide monomer (however, 10.0% by mass ≦ aromatic vinyl monomer + vinyl cyanide monomer ≦ 60.0% by mass) The emulsifier is 100: 5 to 20 by mass, the chain transfer agent is 100: 0 to 0.1 by mass, and the polymerization initiator is 100: 0 to 0.1 by mass with respect to the charged monomer mixture. After the redox was charged at a mass ratio of 100: 0 to 0.3 and polymerized at a polymerization temperature of 40 to 65 ° C for 0.5 to 3 hours, the emulsifier was added to the remaining monomer mixture at the same time as the completion. 100: 0 to 5 in ratio, 100: 0 to 0.3 in mass ratio of chain transfer agent, polymerization initiation 100: 0.01-0.3 by mass ratio, and redox at a ratio of 100: 0-0.3 by mass ratio, and then aromatic vinyl monomers 24-72 as a remaining monomer mixture. % Or 8 to 36% by mass of vinyl cyanide monomer (however, 40.0% by mass ≦ aromatic vinyl monomer + vinyl cyanide monomer ≦ 90.0% by mass) This is a method for producing a graft copolymer which is continuously charged and polymerized at a polymerization temperature of 40 to 90 ° C. for 2 to 8 hours.
[0024]
A known emulsifier can be used, and there is no particular limitation. For example, anionic surfactants such as higher fatty acid salts (for example, semi-hardened cattle fatty acid potash soap), alkyl sulfate salts, alkyl benzene sulfonate salts, alkyl acid ester salts, alkyl diphenyl ether sulfonate salts, and polyoxyethylene Nonionic surfactants such as alkyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters and glycerin fatty acid esters, and cationic surfactants such as alkylamine salts can be used. These emulsifiers can be used alone or in combination.
[0025]
Further, the polymerization initiator may be a water-soluble, oil-soluble single system, or a redox system, for example, a single inorganic initiator such as a normal persulfate, or a sulfite, hydrogen sulfite It can also be used as a redox initiator in combination with salts, thiosulfates, and the like. Furthermore, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyacetate, organic peroxides such as benzoyl peroxide, lauroyl peroxide, azo compounds, etc. may be used alone or formaldehyde sodium sulfoxylate. Can be used as a redox initiator.
[0026]
The redox is not particularly limited, but is preferably composed of at least one of an activator, a chelating agent, and a reducing agent. As the activator, glucose, dextrose, formaldehyde sodium sulfoxylate, sulfite (eg, sodium sulfite), bisulfite (eg, sodium bisulfite), thiosulfate (eg, sodium thiosulfate) and the like can be used.
As the chelating agent, potassium hexacyanoiron (III), ethylenediaminetetraacetate and the like can be used. As the reducing agent, ferrous sulfate, sodium pyrophosphate, sodium phosphate, copper sulfate and the like can be used.
[0027]
The chain transfer agent is not particularly limited, and includes mercaptans such as n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, terpinolene, α-methylstyrene dimer, and the like.
[0028]
These emulsifiers, chain transfer agents, polymerization initiators, and redox ratios are as follows: mass ratio of emulsifiers 5 to 20, chain transfer agent 0 to 0.1, Agents 0 to 0.1 and redox 0 to 0.3, preferably emulsifiers 8 to 15, chain transfer agent 0 to 0.05, polymerization initiator 0 to 0.05, and redox 0.1 to 0.3.
Simultaneously with the completion of the first polymerization, the emulsifiers 0 to 5, the chain transfer agents 0 to 0.3, the polymerization initiators 0.01 to 0.3, and the redox 0 were respectively added to the remaining monomer mixture in an amount of 100 based on the mass ratio. To 0.3, preferably emulsifier 0 to 3, chain transfer agent 0.05 to 0.3, polymerization initiator 0.05 to 0.3, and redox in a ratio of 0.05 to 0.3. It is to prepare in.
[0029]
The method for recovering a high molecular weight-containing polymer according to the method of the present invention includes, for example, cooling the obtained polymer latex to normal temperature, sulfuric acid, hydrochloric acid, an acid such as phosphoric acid, or aluminum chloride, calcium chloride, magnesium sulfate, The polymer can be precipitated by acid coagulation or salting out with an electrolyte such as a salt such as aluminum sulfate or calcium acetate, followed by filtration, washing and drying. Further, a known recovery method such as recovery of the obtained polymer latex by a technique such as spray drying or freeze drying can be used.
[0030]
The graft copolymer obtained by the production method of the present invention is dissolved in methyl ethyl ketone (MEK), and the copolymer (a) recovered from the soluble matter has a weight average molecular weight of 150,000 to 2.5 million, preferably 200,000 to 250,000. 2,000,000, more preferably 250,000 to 1.5,000,000 are obtained. Further, the ratio Mw / Mn of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is Mw / Mn ≧ 4.0, preferably Mw / Mn ≧ 5.0, more preferably Mw / Mn ≧ 6.0. Things are obtained.
Further, the copolymer (a) can be divided into two components of a main component (b) and a remaining component (c) by performing a waveform analysis by a computer of a measuring device described later. The weight average molecular weight of the main component (b) is from 80,000 to 600,000, preferably from 120,000 to 400,000, more preferably from 150,000 to 300,000. The remaining component (c) has a weight average molecular weight of 800,000 or more, preferably 1.2 million or more, and more preferably 2 million or more, and can be produced.
In addition, the method of dissolving the graft copolymer in MEK, various average molecular weight values, and the measurement methods also refer to those performed by the methods described below.
[0031]
The graft ratio of the graft copolymer obtained by the production method of the present invention is preferably from 30 to 100%, and can be obtained by a usual method for measuring the graft ratio described later.
[0032]
The vinyl copolymer (B) constituting the resin composition of the present invention comprises 50 to 90% by mass of an aromatic vinyl monomer, 50 to 10% by mass of a vinyl cyanide monomer, and if necessary. It is a polymer composed of 0 to 20% by mass of a vinyl monomer copolymerizable with these monomers to be used. The preferred aromatic vinyl monomer is 55 to 85% by mass, more preferably 60 to 80% by mass, and the preferred vinyl cyanide monomer is 15 to 45% by mass, more preferably 20 to 40% by mass. It is a copolymer.
As the polymerization method, a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a bulk polymerization method, or an emulsion-suspension polymerization method can be used in combination with a batch system or a continuous system.
[0033]
Next, the thermoplastic resin composition of the present invention will be described.
The thermoplastic resin composition of the present invention comprises 20 to 60 parts by mass of the graft copolymer (A) and 80 to 40 parts by mass of the vinyl copolymer (B). Further, it is preferable that the graft copolymer (A) is composed of 30 to 45 parts by mass and the vinyl copolymer (B) is composed of 70 to 55 parts by mass. When the amount of the graft copolymer is 20 parts by mass or less, the thickness unevenness is large.
[0034]
This thermoplastic resin composition can be prepared by (1) a method in which powdery, flake, bead-like, or pellet-like polymers each separately produced are weighed in a predetermined amount and melt-mixed; (2) latex In the case of a polymer in the form of a powder, a method in which a separately prepared latex-like polymer is weighed in a predetermined amount, mixed and coagulated to form a powder, and the like can be mentioned, but it is not limited thereto. .
[0035]
The method of melt-mixing each component constituting the thermoplastic resin composition of the present invention is not particularly limited, and is a single-screw extruder, an extruder such as a twin-screw extruder, or a Banbury mixer, a kneader / ruder, and a pressurizer. The resin composition can be melted and mixed with a general known processing device such as a kneader such as a kneader or a heating roll.
[0036]
The thermoplastic resin composition of the present invention includes a kind and amount of a lubricant, a release agent, a colorant, an antioxidant, an ultraviolet absorber, a light-fast stabilizer, and a heat-resistant material that do not impair the properties of the resin composition of the present invention. Various resin additives such as an enhancer, a filler, an antistatic agent, a flame retardant, an antibacterial agent, and a fungicide can be added as necessary.
[0037]
The obtained thermoplastic resin composition can be obtained in various molded articles by various known molding methods such as injection molding, extrusion molding, hollow molding, and various molding methods such as press molding. The sheet can be suitably used for an inner box of an electric refrigerator manufactured by a plug-assisted pneumatic / vacuum forming method.
[0038]
【Example】
The present invention will be specifically described with reference to the following examples and comparative examples, but the present invention is not limited to the following examples.
[0039]
First, the used raw resin will be described.
(1) Production of graft copolymer (A)
A-1: Production of graft copolymer
(A) Production of rubbery polymer
After replacing with nitrogen in a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, a pressure gauge, and a raw material / auxiliary additive device, 3.0 parts by mass of potassium rosinate and 100 parts by mass of butadiene, and 0 parts of t-dodecyl mercaptan were used. 0.3 parts by mass, 1.5 parts by mass of dibasic sodium phosphate and 70 parts by mass of deionized water were charged, and the internal temperature was raised to 55 ° C. with stirring. When the internal temperature reached 55 ° C., 0.5 parts by mass of ammonium persulfate was added. An exotherm occurred a few minutes later, confirming the start of polymerization. When the internal pressure reached 0.1 MPa, the polymerization was terminated and cooled. The solid content concentration of the obtained rubbery polymer latex was 50%, and the average particle size of the rubber was 310 nm.
[0040]
(B) Production of graft copolymer
In a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary agent adding device, 270 parts by mass of deionized water (including moisture in latex), semi-cured beef fatty acid potassium soap (KS soap manufactured by Kao Corporation) ) 1.5 parts by mass of styrene, 10.5 parts by mass of styrene, and 4.5 parts by mass of acrylonitrile were charged, and the inside of the polymerization system was replaced with nitrogen gas. A mass part (as solid content) was charged, and the internal temperature was raised to 50 ° C. When the internal temperature reached 48 ° C. on the way, 0.0003 parts by mass of ferrous sulfate, 0.00075 parts by mass of ethylenediaminetetraacetic acid, and 0.0225 parts by mass of formaldehyde sodium sulfoxylate were added to 10 parts by mass of deionized water. The dissolved solution was added, and polymerization was performed at an internal temperature of 50 ° C. for 1 hour.
Subsequently, a solution prepared by dissolving 0.0014 parts by mass of ferrous sulfate, 0.00245 parts by mass of ethylenediaminetetraacetic acid, and 0.0735 parts by mass of formaldehyde sodium sulfoxylate in 10 parts by mass of deionized water was added. After the addition, a monomer mixture consisting of 24.5 parts by mass of styrene, 10.5 parts by mass of acrylonitrile and 27 parts by mass of deionized water, 0.525 parts by mass of a higher fatty acid soap, 0.035 parts by mass of t-butyl peroxyacetate , A solution consisting of 0.035 parts by mass of α-methylstyrene dimer was continuously added, and polymerization was carried out at a temperature of 60 ° C. for 5 hours.
After the polymerization was completed, the internal temperature was cooled, and 1.5 parts by mass of an antioxidant (Irganox 1076 manufactured by Ciba Specialty Chemicals) was added to the obtained latex, and then the latex was added to an aqueous solution of magnesium sulfate heated to 95 ° C. The mixture was solidified, filtered, washed and dried to obtain a white powdery resin composition.
This graft copolymer is designated as A-1. Table 1 shows the results measured according to the respective measurement methods described below.
[0041]
A-2: Production of graft copolymer
In a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary agent adding device, 270 parts by mass of deionized water (including moisture in latex), semi-cured beef fatty acid potassium soap (KS soap manufactured by Kao Corporation) ) 2.4 parts by mass, 16.8 parts by mass of styrene, and 7.2 parts by mass of acrylonitrile were charged, the inside of the polymerization system was replaced with nitrogen gas, and under stirring, the rubber-like polymer latex 40 obtained in the above (a) was stirred. A mass part (as solid content) was charged, and the internal temperature was raised to 50 ° C. When the internal temperature reached 48 ° C. on the way, 0.00048 parts by mass of ferrous sulfate, 0.0012 parts by mass of ethylenediaminetetraacetic acid, and 0.036 parts by mass of formaldehyde sodium sulfoxylate were added to 10 parts by mass of deionized water. The dissolved solution was added, and polymerization was performed at an internal temperature of 50 ° C. for 1 hour.
Subsequently, a solution prepared by dissolving 0.00144 parts by mass of ferrous sulfate, 0.00252 parts by mass of ethylenediaminetetraacetic acid, and 0.0756 parts by mass of formaldehyde sodium sulfoxylate in 10 parts by mass of deionized water was added. After the addition, a monomer mixture consisting of 25.2 parts by mass of styrene, 10.8 parts by mass of acrylonitrile, 27 parts by mass of deionized water, 0.54 parts by mass of semi-cured bovine fatty acid potassium soap, and 0.1 part of t-butyl peroxyacetate. A solution consisting of 036 parts by mass and 0.036 parts by mass of terpenolene was continuously added, and polymerized at a temperature of 60 ° C. for 5 hours.
After the polymerization was completed, the internal temperature was cooled, and 1.5 parts by mass of an antioxidant (Irganox 1076 manufactured by Ciba Specialty Chemicals) was added to the obtained latex, and then the latex was added to an aqueous solution of magnesium sulfate heated to 95 ° C. The mixture was solidified, filtered, washed and dried to obtain a white powdery resin composition.
This graft polymer is designated as A-2. Table 1 shows the results measured according to the respective measurement methods described below.
[0042]
A-3: Production of graft copolymer
In a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary agent adding device, 270 parts by mass of deionized water (including moisture in latex), semi-cured beef fatty acid potassium soap (KS soap manufactured by Kao Corporation) ) 1.5 parts by mass, 11.25 parts by mass of styrene, and 3.75 parts by mass of acrylonitrile were charged, the inside of the polymerization system was replaced with nitrogen gas, and under stirring, the rubbery polymer latex 50 obtained in the above (A) was stirred. A mass part (as solid content) was charged, and the internal temperature was raised to 50 ° C. When the internal temperature reached 48 ° C. on the way, 0.0003 parts by mass of ferrous sulfate, 0.00075 parts by mass of ethylenediaminetetraacetic acid, and 0.0225 parts by mass of formaldehyde sodium sulfoxylate were added to 10 parts by mass of deionized water. The dissolved solution was added, and polymerization was performed at an internal temperature of 50 ° C. for 1 hour.
Subsequently, a solution of 0.0014 parts by mass of ferrous sulfate, 0.00245 parts by mass of ethylenediaminetetraacetic acid, and 0.0735 parts by mass of formaldehyde sodium sulfoxylate was added to 10 parts by mass of deionized water. After the addition, a monomer mixture comprising 26.25 parts by mass of styrene, 8.75 parts by mass of acrylonitrile and 27 parts by mass of deionized water, 0.525 parts by mass of a higher fatty acid soap, 0.035 parts by mass of potassium persulfate, α- A solution consisting of 0.035 parts by mass of methylstyrene dimer was continuously added, and polymerization was carried out at a temperature of 60 ° C. for 5 hours.
After the polymerization was completed, the internal temperature was cooled, and 1.5 parts by mass of an antioxidant (Irganox 1076 manufactured by Ciba Specialty Chemicals) was added to the obtained latex, and then the latex was added to an aqueous solution of magnesium sulfate heated to 95 ° C. The mixture was solidified, filtered, washed and dried to obtain a white powdery resin composition.
This graft polymer is designated as A-3. Table 1 shows the results measured according to the respective measurement methods described below.
[0043]
A-4: Production of graft copolymer
In a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary agent adding device, 270 parts by mass of deionized water (including moisture in latex), semi-cured beef fatty acid potassium soap (KS soap manufactured by Kao Corporation) ) 1.5 parts by mass, 0.0015 parts by mass of t-butyl peroxyacetate, 11.25 parts by mass of styrene, and 3.75 parts by mass of acrylonitrile, and the inside of the polymerization system was replaced with nitrogen gas. 50 parts by mass (as solid content) of the rubbery polymer latex obtained in a) were charged, and the internal temperature was raised to 50 ° C. When the internal temperature reached 48 ° C. on the way, 0.0003 parts by mass of ferrous sulfate, 0.00075 parts by mass of ethylenediaminetetraacetic acid, and 0.0225 parts by mass of formaldehyde sodium sulfoxylate were added to 10 parts by mass of deionized water. The dissolved solution was added, and polymerization was performed at an internal temperature of 50 ° C. for 1 hour.
Subsequently, a solution prepared by dissolving 0.0014 parts by mass of ferrous sulfate, 0.00245 parts by mass of ethylenediaminetetraacetic acid, and 0.0735 parts by mass of formaldehyde sodium sulfoxylate in 10 parts by mass of deionized water was added. After the addition, a monomer mixture consisting of 26.25 parts by mass of styrene, 8.75 parts by mass of acrylonitrile and 27 parts by mass of deionized water, 0.525 parts by mass of a higher fatty acid soap, 0.035 parts by mass of t-butyl peroxyacetate A solution consisting of 0.035 parts by mass of n-dodecyl mercaptan was continuously added, and polymerization was carried out at a temperature of 60 ° C. for 5 hours.
After the polymerization was completed, the internal temperature was cooled, and 1.5 parts by mass of an antioxidant (Irganox 1076 manufactured by Ciba Specialty Chemicals) was added to the obtained latex, and then the latex was added to an aqueous solution of magnesium sulfate heated to 95 ° C. The mixture was solidified, filtered, washed and dried to obtain a white powdery resin composition.
This graft polymer is designated as A-4. Table 1 shows the results measured according to the respective measurement methods described below.
[0044]
A-5: Production of graft copolymer
In a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary agent adding device, 270 parts by mass of deionized water (including moisture in latex), semi-cured beef fatty acid potassium soap (KS soap manufactured by Kao Corporation) ) 1.5 parts by mass, 0.0075 parts by mass of t-butyl peroxyacetate, 0.0075 parts by mass of α-methylstyrene dimer, 11.25 parts by mass of styrene, and 3.75 parts by mass of acrylonitrile. The mixture was replaced with a gas, and under stirring, 50 parts by mass (as solid content) of the rubbery polymer latex obtained in the above (a) were charged, and the internal temperature was raised to 50 ° C. When the internal temperature reached 48 ° C. on the way, 0.0003 parts by mass of ferrous sulfate, 0.00075 parts by mass of ethylenediaminetetraacetic acid, and 0.0225 parts by mass of formaldehyde sodium sulfoxylate were added to 10 parts by mass of deionized water. The dissolved solution was added, and polymerization was performed at an internal temperature of 50 ° C. for 1 hour.
Subsequently, a solution prepared by dissolving 0.0014 parts by mass of ferrous sulfate, 0.00245 parts by mass of ethylenediaminetetraacetic acid, and 0.0755 parts by mass of formaldehyde sodium sulfoxylate in 10 parts by mass of deionized water was added. After the addition, a monomer mixture consisting of 26.25 parts by mass of styrene, 8.75 parts by mass of acrylonitrile and 27 parts by mass of deionized water, 0.525 parts by mass of a higher fatty acid soap, 0.035 parts by mass of t-butyl peroxyacetate And a solution consisting of 0.035 parts by mass of t-dodecyl mercaptan was added continuously, and polymerization was carried out at a temperature of 60 ° C. for 5 hours.
After the polymerization was completed, the internal temperature was cooled, and 1.5 parts by mass of an antioxidant (Irganox 1076 manufactured by Ciba Geigy) was added to the obtained latex. Subsequently, the latex was added to an aqueous solution of magnesium sulfate heated to 95 ° C. for coagulation. The mixture was filtered, washed and dried to obtain a white powdery resin composition.
This graft polymer is designated as A-5. Table 1 shows the results measured according to the respective measurement methods described below.
[0045]
C-1: Production of graft copolymer
In a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary agent adding device, 50 parts by mass (as a solid content) of the rubbery polymer latex obtained in the above (a), deionized water (latex) 270 parts by mass of the polymerization system (including water therein) were charged, the inside of the polymerization system was replaced with nitrogen gas, and the temperature was raised to an internal temperature of 50 ° C. with stirring. When the internal temperature reaches 48 ° C. on the way, 13 parts by mass of deionized water, 0.0025 parts by mass of ferrous sulfate heptahydrate, 0.005 parts by mass of ethylenediaminetetraacetic acid tetrasodium dihydrate, 0.005 parts by mass of sodium formaldehyde A solution consisting of 0.3 parts by weight of sulfoxylate was added. 35 parts by mass of styrene, 15 parts by mass of acrylonitrile and 27 parts by mass of deionized water, 1.5 parts by mass of semi-cured bovine fatty acid potassium soap, 0.2 parts by mass of diisopropylbenzene hydroperoxide, 0.25 parts by mass of α-methylstyrene dimer Part of the solution was continuously added, and polymerization was performed at a temperature of 60 ° C. for 5 hours. Thereafter, the reaction was continued at a temperature of 70 ° C. for 2 hours, and then the internal temperature was cooled. 1.5 parts of an antioxidant (Irganox 1076) was added to the resulting mixed latex, and the latex was added to an aqueous solution of magnesium sulfate heated to 95 ° C. to coagulate, filtered, washed and dried to give a white powder. A resin composition was obtained. This graft polymer is designated as C-1. Table 1 shows the results.
[0046]
C-2: Production of graft copolymer
Production conditions same as C-1 except that 0.25 parts by mass of chain transfer agent α-methylstyrene dimer was changed to 0.075 parts by mass of t-dodecyl mercaptan among the conditions for producing the graft copolymer of C-1. Polymerized on the matter. Further, 1.5 parts of an antioxidant (Irganox 1076) was added to the obtained latex, and the latex was added to an aqueous magnesium sulfate solution heated to a temperature of 95 ° C. to coagulate, filtered, washed and dried to give a white color. A powdery resin composition was obtained. This graft polymer is designated as C-2. Table 1 shows the results.
[0047]
C-3: Production of graft copolymer
In a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary agent adding device, 50 parts by mass (as a solid content) of the rubbery polymer latex obtained in the above (a), deionized water (latex) 270 parts by mass of the polymerization system (including water therein) were charged, the inside of the polymerization system was replaced with nitrogen gas, and the temperature was raised to an internal temperature of 50 ° C. with stirring. When the internal temperature reaches 48 ° C. on the way, 13 parts by mass of deionized water, 0.0025 parts by mass of ferrous sulfate heptahydrate, 0.005 parts by mass of ethylenediaminetetraacetic acid tetrasodium dihydrate, 0.005 parts by mass of sodium formaldehyde A solution consisting of 0.3 parts by weight of sulfoxylate was added. 35 parts by mass of styrene, 15 parts by mass of acrylonitrile and 27 parts by mass of deionized water, 1.5 parts by mass of semi-cured bovine fatty acid potassium soap, 0.1 part by mass of diisopropylbenzene hydroperoxide, 0.1 part by mass of α-methylstyrene dimer Part of the solution was continuously added, and polymerization was performed at a temperature of 60 ° C. for 5 hours. Thereafter, the reaction was continued at a temperature of 70 ° C. for 2 hours, and then the internal temperature was cooled. 1.5 parts of an antioxidant (Irganox 1076) was added to the resulting mixed latex, and the latex was added to an aqueous solution of magnesium sulfate heated to 95 ° C. to coagulate, filtered, washed and dried to give a white powder. A resin composition was obtained. This graft polymer is designated as C-3. Table 1 shows the results.
[0048]
(2) Production of vinyl copolymer
B-1: Production of vinyl copolymer
30 parts by mass of styrene, 30 parts by mass of acrylonitrile, 0.07 parts by mass of tricalcium phosphate, 0.1 parts by mass of n-dodecyl mercaptan were placed in a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary agent adding device. Parts and 100 parts by mass of deionized water, and the inside of the polymerization system was replaced with nitrogen gas. Under stirring, the temperature was raised to an internal temperature of 96 ° C., and 0.01 parts by mass of potassium persulfate was added to initiate a polymerization reaction. Immediately after the start of the polymerization, 40 parts by mass of styrene were continuously added at a constant rate over a period of 7 hours, the internal temperature was maintained at 96 ° C for 4 hours, and then the temperature was raised to 105 ° C over 30 minutes. Maintained for 5 hours. The temperature was raised to 115 ° C. over a further 30 minutes and maintained for 3 hours to complete the polymerization. Thereafter, the mixture was cooled, filtered, washed with water, and dried to obtain a bead-shaped vinyl copolymer. The weight average molecular weight of this polymer was 160,000. This polymer is hereinafter referred to as B-1. The mass ratio of styrene monomer to acrylonitrile in this vinyl copolymer was determined by pyrolysis gas chromatography and found to be 70.2 / 29.8.
[0049]
B-2: Production of vinyl copolymer
In a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary agent adding device, 25 parts by mass of styrene, 25 parts by mass of acrylonitrile, 0.07 parts by mass of tribasic calcium phosphate, 0.2 parts by mass of n-dodecyl mercaptan Parts and 100 parts by mass of deionized water, and the inside of the polymerization system was replaced with nitrogen gas. Under stirring, the temperature was raised to an internal temperature of 96 ° C., and 0.01 parts by mass of potassium persulfate was added to initiate a polymerization reaction. Immediately after the start of the polymerization, 50 parts by mass of styrene were continuously added at a constant rate over a period of 7 hours, the internal temperature was maintained at 96 ° C for 4 hours, and then the temperature was raised to 105 ° C over 30 minutes. Maintained for 5 hours. The temperature was raised to 115 ° C. over a further 30 minutes and maintained for 3 hours to complete the polymerization. Thereafter, the mixture was cooled, filtered, washed with water, and dried to obtain a vinyl copolymer in the form of beads. The weight average molecular weight of this polymer was 150,000. This polymer is hereinafter referred to as B-2. The mass ratio of styrene monomer to acrylonitrile in this vinyl copolymer was determined by pyrolysis gas chromatography, and was 75.8 / 24.2.
[0050]
B-3: Production of vinyl copolymer
In a stainless steel autoclave equipped with a stirrer, a heating / cooling device, a thermometer, and a raw material / auxiliary additive device, 2,000 parts by mass of deionized water (including water in latex), semi-cured beef fatty acid potassium soap (KS soap manufactured by Kao Corporation) ) 20 parts by mass, 75 parts by mass of styrene, and 25 parts by mass of acrylonitrile were charged, the inside of the polymerization system was replaced with nitrogen gas, and the internal temperature was raised to 50 ° C. When the internal temperature reached 50 ° C. on the way, 0.005 parts by mass of ferrous sulfate, 0.01 parts by mass of ethylenediaminetetraacetic acid, and 0.3 parts by mass of formaldehyde sodium sulfoxylate were added to 26 parts by mass of deionized water. The dissolved solution was added thereto, and while maintaining the internal temperature at 50 ° C., 0.01 part by mass of t-butyl hydroperoxide was continuously added dropwise, and the mixture was stirred for 4.5 hours to carry out polymerization. After completion of the polymerization, the internal temperature was cooled, and then the latex was added to an aqueous solution of magnesium sulfate heated to 95 ° C., coagulated, filtered, washed and dried to obtain a white powdery vinyl copolymer. The weight average molecular weight of this polymer was 31,200,000. This polymer is hereinafter referred to as B-3. The mass ratio of styrene monomer to acrylonitrile in this vinyl copolymer was determined by pyrolysis gas chromatography and found to be 74.5 / 25.5.
[0051]
[Table 1]
Figure 2004018727
[0052]
In addition, each physical property of Table 1 was measured as follows.
(1) Weight average molecular weight and Mw / Mn
The weight average molecular weight of the copolymer (a) of the methyl ethyl ketone (MEK) soluble portion of the graft copolymer was measured using a gel permeation chromatography (GPC) apparatus under the following conditions. It is a polystyrene conversion value.
Apparatus; Shodex “SYSTEM-21”
Column; PLgel MIXED-B
Temperature; 40 ° C
Solvent: tetrahydrofuran
Detection; RI
Concentration: 0.2%
Injection volume; 100 μl
Calibration curve: Using a standard polystyrene (manufactured by Polymer Laboratories), the relationship between the elution time and the elution amount was converted into a molecular weight to obtain various average molecular weights.
The weight average molecular weight of the vinyl copolymer (B) was also measured under the above conditions.
[0053]
(A) The conditions for extracting the methyl ethyl ketone (MEK) soluble component from the graft copolymer were as follows.
About 20 g of the graft copolymer latex is precipitated and coagulated with 100 ml of methanol, and the coagulated product is subjected to suction filtration using a filter paper. The filtrate is dried at room temperature for 24 hours and in a vacuum drier for about 4 hours. About 1.2 g of the obtained sample was placed in a 100 ml Erlenmeyer flask, 30 g of methyl ethyl ketone (MEK) was added, and the mixture was stirred at a temperature of 23 ° C. for 24 hours. ) Was performed, and the mixture was allowed to stand for 30 minutes after the centrifugation operation. The operating conditions of this centrifuge were set as follows.
Temperature: -9 ° C
Rotation speed: 23,000 rpm
Time: 50 minutes
The supernatant and the precipitate of the centrifuged solution are separated, and the supernatant is poured into a 300 ml beaker containing 150 ml of methanol to precipitate the precipitate. The precipitate is suction-filtered using a filter paper. The filtrate was dried at room temperature for 24 hours, and then the residual solvent was removed by a vacuum dryer for 4 hours to obtain a sample.
[0054]
(B) Analysis of low molecular weight side of main component and high molecular weight side of minor component
The weight-average molecular weight of the methyl ethyl ketone (MEK) soluble portion of the graft copolymer is determined when the main peak on the low molecular weight side and the minor peak on the high molecular weight side can be clearly distinguished in the GPC elution curve. The weight average molecular weight and the number average molecular weight were determined by assuming a control Gaussian distribution at a position corresponding to.
In addition, when it is difficult to determine whether the secondary peak on the remaining polymer side is inconspicuous or difficult to determine, while assuming an optimal Gaussian distribution by trial and error for the tail on the high molecular weight side deviating from the Gaussian distribution assumed by the main peak, The weight-average molecular weight and the number-average molecular weight were determined.
The GPC elution curve was calculated by dividing the elution volume ml (mv) and elution time by 0.5 ml / sec. For detailed calculations, a molecular weight distribution curve and various average molecular weights were obtained using a data processor Toyo Soda SC-8020 attached to a GPC apparatus.
[0055]
(2) Method for measuring volume average particle diameter of rubber in rubber-like polymer latex
The volume average particle size of the rubbery polymer of the present invention was determined by a laser diffraction scattering method. The measurement conditions are as follows.
Apparatus: COULTER LS 230 (manufactured by COULTER)
Concentration: 2.0%
Diluent solvent: distilled water
Analysis software: Version 2.05
[0056]
(3) Method for measuring graft ratio
The graft ratio of the graft copolymer of the present invention was determined by the following method.
About 20 g of the graft copolymer latex is precipitated and coagulated with 100 ml of methanol, and the coagulated product is subjected to suction filtration using a filter paper. The filtrate is dried in a vacuum dryer for 24 hours at room temperature. About 1.2 g of the obtained sample was placed in a 100 ml Erlenmeyer flask, 30 g of methyl ethyl ketone (MEK) was added, and the mixture was stirred at a temperature of 23 ° C. for 24 hours. The centrifugation operation was performed and the mixture was allowed to stand for 30 minutes. The operating conditions of this centrifuge were set as follows.
Temperature: -9 ° C
Rotation speed: 20,000 rpm
Time: 60 minutes
The supernatant of the solution subjected to centrifugation was separated from the precipitate, and the precipitate was dried with a vacuum drier to obtain an insoluble content x. Further, the mass y of the acrylonitrile monomer quantified by the Kjeldahl nitrogen method using the sample of this insoluble matter and the mass z of the styrene monomer quantified by pyrolysis gas chromatography were determined, and the graft ratio (%) = 100 × It was calculated from the equation (y + z) / {x- (y + z)}.
[0057]
Examples 1 to 5
The above graft copolymer (A) and vinyl copolymer (B) were blended in the proportions shown in Table 2 and pelletized with a twin screw extruder. The pellet was formed into a sheet having a thickness of 2 mm by an extruder, and a vacuum forming test was subsequently performed. Table 2 shows the results.
[0058]
Comparative Examples 1-4
The above graft copolymer (C) and vinyl copolymer (B) were blended in the proportions shown in Table 2 and pelletized with a twin screw extruder. The pellet was formed into a sheet having a thickness of 2 mm by an extruder, and a vacuum forming test was subsequently performed. Table 2 shows the results.
[0059]
[Table 2]
Figure 2004018727
[0060]
In addition, the following methods evaluated the vacuum formability of Table 2.
(1) Meatability in vacuum forming (meat ratio)
Using a thermoplastic resin composition, an extruder with a T-die (VE-40 manufactured by Tanabe Plastic Industry Co., Ltd.) was used to produce a 1 mm thick sheet, and a 400 × 400 mm sheet was cut out from this sheet and vacuumed. Using a molding machine (FK0431-10, plug assist type), a box-shaped molded product having a side of 270 mm and a depth of 150 mm was molded at a sheet temperature of 170 ° C.
The sheet temperature was determined by observing the sheet surface temperature distribution with JEOL's Thermoviewer JTG-6300 and controlling the heater temperature so that the surface temperature immediately before blow molding was uniform.
The shape of the plug used at the time of molding was 225 mm on a side, 140 mm in height, and R at each corner was 10 mm. As for the time of the molding step, the initial blowing time was 2 seconds, the heating was completed, and after 1 second, the blowing was started. The next plug drop started 5.5 seconds after the end of heating. Vacuum forming was started 7 seconds after the end of the heating, and the vacuum was maintained at -730 mmHg for 20 seconds.
The obtained molded product is cut vertically from the center of one side of the opening to the center of the bottom, the minimum thickness a at the cut surface is measured, and the ratio (b / a) to the thickness b of the sheet molded product is determined. The value was shown as the thickness deviation ratio. A smaller thickness deviation ratio means that there is no thickness deviation, which is preferable.
[0061]
(2) Mold transferability (radius of curvature) in vacuum forming
The measured values of the radius of curvature R in the direction parallel to the opening centered on a point having a depth of 125 mm from the opening of the square part to the bottom of the molded product obtained by the vacuum forming are shown. Since the radius R value of the portion of the mold is 1.0, the closer the radius of curvature R value of the portion is to 1.0, the better the mold transferability.
[0062]
From Table 2, the following becomes clear. It can be seen from Examples 1 to 5 that the thermoplastic resin composition according to the present invention is excellent in uneven thickness and mold transferability and has good vacuum moldability. On the other hand, in Comparative Examples 1 to 3, good vacuum moldability cannot be obtained because the configuration of the weight-average molecular weight of the methyl ethyl ketone-soluble component in the graft copolymer falls outside the applicable range of the present invention. Comparative Example 4 is structurally corresponding to the example, but is inferior to the example in both the knitting property and the mold transfer property because the separately produced vinyl copolymer is mixed.
[0063]
【The invention's effect】
Since the thermoplastic resin composition of the present invention has different weight average molecular weight components, particularly high molecular weight components in the graft copolymer at the time of production, the heat processability of the sheet produced by the extrusion molding method, especially vacuum Suitable for moldability and air pressure moldability.
[Brief description of the drawings]
FIG. 1 is a molecular weight distribution curve of A-1 by GPC.
FIG. 2 is a molecular weight distribution curve by GPC of C-1.

Claims (4)

下記の製造方法で得られたグラフト共重合体(A)20〜60質量部と、下記のビニル系共重合体(B)80〜40質量部とを含有する熱可塑性樹脂組成物。
グラフト共重合体(A)は、全ゴム状重合体(X)25〜65質量部の存在下で、芳香族ビニル系単量体、シアン化ビニル系単量体、および必要に応じて用いられるこれら単量体と共重合可能なビニル系単量体から成る単量体混合物(Y)35〜75質量部を重合してグラフト共重合体を製造するに際し(ただし、全ゴム状重合体(X)+全単量体混合物(Y)=100質量部)、
最初に全ゴム状重合体(X)の0〜100質量%および、全単量体混合物(Y)の10.0〜60.0質量%を仕込み、さらに最初の仕込みの単量体混合物量に対して乳化剤を質量比で100:5〜20、連鎖移動剤を質量比で100:0〜0.1、重合開始剤を質量比で100:0〜0.1および、レドックスを質量比で100:0〜0.3の割合で仕込み、重合温度40〜65℃で0.5〜3時間で重合した後、
必要に応じて残りの全ゴム状重合体(X)100〜0質量%を仕込み、さらに残りの全単量体混合物(Y)の90.0〜40.0質量%を段階的または連続的に投入し、同時に残りの単量体混合物量に対する乳化剤を質量比で100:0〜5、連鎖移動剤を質量比で100:0〜0.3、重合開始剤を質量比で100:0.01〜0.3および、レドックスを質量比で100:0〜0.3の割合で段階的または連続的に投入して、重合温度40〜90℃で2〜8時間重合することを特徴とする製造方法で得られたグラフト共重合体。
ビニル系共重合体(B)は、芳香族ビニル系単量体50〜90質量%、シアン化ビニル系単量体50〜10質量%、および必要に応じて用いられるこれら単量体と共重合可能なビニル系単量体0〜20質量%から成る重合体で、かつ重量平均分子量が5万〜30万であるビニル系共重合体。
A thermoplastic resin composition containing 20 to 60 parts by mass of the graft copolymer (A) obtained by the following production method and 80 to 40 parts by mass of the following vinyl copolymer (B).
The graft copolymer (A) is used in the presence of 25 to 65 parts by mass of the total rubbery polymer (X), and is used as an aromatic vinyl monomer, a vinyl cyanide monomer, and if necessary. In producing a graft copolymer by polymerizing 35 to 75 parts by mass of a monomer mixture (Y) composed of a vinyl monomer copolymerizable with these monomers (provided that all rubbery polymer (X ) + Total monomer mixture (Y) = 100 parts by mass),
First, 0 to 100% by mass of the total rubbery polymer (X) and 10.0 to 60.0% by mass of the total monomer mixture (Y) are charged. On the other hand, the emulsifier is 100: 5 to 20 by mass, the chain transfer agent is 100: 0 to 0.1 by mass, the polymerization initiator is 100: 0 to 0.1 by mass, and the redox is 100 by mass. : After charging at a ratio of 0 to 0.3 and polymerizing at a polymerization temperature of 40 to 65 ° C for 0.5 to 3 hours,
If necessary, 100 to 0% by mass of the remaining rubber-like polymer (X) is charged, and 90.0 to 40.0% by mass of the remaining monomer mixture (Y) is gradually or continuously added. At the same time, the emulsifier and the chain transfer agent with respect to the amount of the remaining monomer mixture are 100: 0 to 5 by mass, the chain transfer agent is 100: 0 to 0.3 by mass, and the polymerization initiator is 100: 0.01 by mass. To 0.3 and redox in a mass ratio of 100: 0 to 0.3 in a stepwise or continuous manner, and polymerizing at a polymerization temperature of 40 to 90 ° C. for 2 to 8 hours. Graft copolymer obtained by the method.
The vinyl copolymer (B) is copolymerized with 50 to 90% by mass of an aromatic vinyl monomer, 50 to 10% by mass of a vinyl cyanide monomer, and these monomers used as needed. A vinyl copolymer having a weight average molecular weight of 50,000 to 300,000, which is a polymer comprising 0 to 20% by mass of a possible vinyl monomer.
下記の製造方法で得られたとグラフト共重合体(A)20〜60質量部と、下記のビニル系共重合体(B)80〜40質量部とを含有することを特徴とする請求項1記載の熱可塑性樹脂組成物。
グラフト共重合体(A)は、請求項1記載のグラフト共重合体を製造するに際し、最初にゴム状重合体ラテックスを用いて全ゴム状重合体(X)の100質量%および、全単量体混合物(Y)中の芳香族ビニル系単量体8〜48質量%、シアン化ビニル系単量体2〜24質量%を仕込み(但し、10.0質量%≦芳香族ビニル系単量体+シアン化ビニル系単量体≦60.0質量%)、さらに最初の仕込みの単量体混合物量に対して乳化剤を質量比で100:5〜20、連鎖移動剤を質量比で100:0〜0.1、重合開始剤を質量比で100:0〜0.1および、レドックスを質量比で100:0〜0.3の割合で仕込み、重合温度40〜65℃で0.5〜3時間で重合した後、
終了と同時に残りの単量体混合物量に対する乳化剤を質量比で100:0〜5、連鎖移動剤を質量比で100:0〜0.3、重合開始剤を質量比で100:0.01〜0.3および、レドックスを質量比で100:0〜0.3の割合で仕込み、続いて芳香族ビニル系単量体24〜72質量%、シアン化ビニル系単量体8〜36質量%(但し、40.0質量%≦芳香族ビニル系単量体+シアン化ビニル系単量体≦90.0質量%)を段階的または連続的に投入し、重合温度40〜90℃で2〜8時間重合する製造方法で得られたグラフト共重合体。
ビニル系共重合体(B)は、芳香族ビニル系単量体60〜80質量%、シアン化ビニル系単量体20〜40質量%、および必要に応じて用いられるこれら単量体と共重合可能なビニル系単量体0〜20質量%から成る重合体で、かつ重量平均分子量が5万〜30万であるビニル系共重合体。
The graft copolymer (A) obtained by the following production method contains 20 to 60 parts by mass, and the following vinyl copolymer (B) 80 to 40 parts by mass is contained. Thermoplastic resin composition.
In preparing the graft copolymer according to claim 1, the graft copolymer (A) is first prepared by using a rubber-like polymer latex at 100% by mass of the total rubber-like polymer (X) and the total monomer amount. 8 to 48% by mass of an aromatic vinyl monomer and 2 to 24% by mass of a vinyl cyanide monomer in the mixture (Y) (provided that 10.0% by mass ≦ aromatic vinyl monomer) + Vinyl cyanide monomer ≦ 60.0% by mass), the emulsifier in a mass ratio of 100: 5 to 20, and the chain transfer agent in a mass ratio of 100: 0 based on the initially charged monomer mixture amount. To 0.1, a polymerization initiator in a ratio of 100: 0 to 0.1 in mass ratio and a redox in a ratio of 100: 0 to 0.3 in mass ratio, and 0.5 to 3 at a polymerization temperature of 40 to 65 ° C. After polymerizing in time,
At the same time as the completion, the emulsifier to the remaining monomer mixture amount is 100: 0 to 5 in mass ratio, the chain transfer agent is 100: 0 to 0.3 in mass ratio, and the polymerization initiator is 100: 0.01 to 100 in mass ratio. 0.3 and redox at a mass ratio of 100: 0 to 0.3, followed by 24-72% by mass of an aromatic vinyl monomer and 8-36% by mass of a vinyl cyanide monomer ( However, 40.0% by mass ≦ aromatic vinyl monomer + vinyl cyanide monomer ≦ 90.0% by mass) is added stepwise or continuously, and the polymerization temperature is 40 to 90 ° C. and 2 to 8%. A graft copolymer obtained by a production method in which polymerization is performed for a time.
The vinyl copolymer (B) is copolymerized with 60 to 80% by mass of an aromatic vinyl monomer, 20 to 40% by mass of a vinyl cyanide monomer, and these monomers used as needed. A vinyl copolymer having a weight average molecular weight of 50,000 to 300,000, which is a polymer comprising 0 to 20% by mass of a possible vinyl monomer.
グラフト共重合体(A)が、メチルエチルケトン(MEK)可溶分の共重合体(a)のゲルパーミエションクロマトグラフイーにおける主成分(b)の重量平均分子量が8万〜60万で、残りの成分(c)の重量平均分子量が80万以上であることを特徴とする請求項1乃至2記載の熱可塑性樹脂組成物。The graft copolymer (A) has a weight average molecular weight of 80,000 to 600,000 of the main component (b) in gel permeation chromatography of the copolymer (a) soluble in methyl ethyl ketone (MEK), and the remaining 3. The thermoplastic resin composition according to claim 1, wherein the component (c) has a weight average molecular weight of 800,000 or more. グラフト共重合体(A)が、メチルエチルケトン(MEK)可溶分の共重合体(a)の重量平均分子量(Mw)と数平均分子量(Mn)の比がMw/Mn≧4.0であることを特徴とする請求項3記載の熱可塑性樹脂組成物。The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the copolymer (a) in which the graft copolymer (A) is soluble in methyl ethyl ketone (MEK) is Mw / Mn ≧ 4.0. The thermoplastic resin composition according to claim 3, wherein:
JP2002177274A 2002-06-18 2002-06-18 Thermoplastic resin composition Expired - Fee Related JP4299502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177274A JP4299502B2 (en) 2002-06-18 2002-06-18 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177274A JP4299502B2 (en) 2002-06-18 2002-06-18 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JP2004018727A true JP2004018727A (en) 2004-01-22
JP4299502B2 JP4299502B2 (en) 2009-07-22

Family

ID=31175352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177274A Expired - Fee Related JP4299502B2 (en) 2002-06-18 2002-06-18 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP4299502B2 (en)

Also Published As

Publication number Publication date
JP4299502B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP6519709B2 (en) Thermoplastic resin composition, method of producing thermoplastic resin composition, molded article and method of producing molded article
CN107001760B (en) Thermoplastic resin composition, process for producing the same, and molded article thereof
KR102535966B1 (en) Styrenic thermoplastic resin composition, manufacturing method of styrenic thermoplastic resin composition, molded article and manufacturing method of molded article
JP3561088B2 (en) Styrene resin composition using rubber-containing resin composition
JP2006522838A (en) Thermoplastic resin composition
JP4299502B2 (en) Thermoplastic resin composition
JP2003026742A (en) Method for manufacturing graft copolymer latex
JP2001064464A (en) Thermoplastic resin composition
JP3338557B2 (en) Thermoplastic resin composition
JP2001207015A (en) Thermoplastic resin composition
JP2000178405A (en) Resin composition and its production
JP4159693B2 (en) Thermoplastic resin composition for blow molding and blow-molded product thereof
JP4596626B2 (en) Manufacturing method of molded products
JP2004018728A (en) Method for producing graft copolymer
TWI743380B (en) Thermoplastic resin composition for plating, resin molded article and plated processed article
JP3015707B2 (en) Method for producing graft copolymer
JP3181690B2 (en) Method for producing graft copolymer
KR20180050064A (en) A method for preparing thermoplastic resin
CA2372055A1 (en) Vinyl chloride resin composition
JP2005343946A (en) Method for producing thermoplastic resin composition
JP4180395B2 (en) Method for producing graft copolymer
CN113906085A (en) Polydimethylsiloxane rubber mixture, and thermoplastic resin composition containing polydimethylsiloxane rubber to which said mixture is added
WO2011027855A1 (en) Acrylic rubber reinforced thermoplastic resin and preparation method therefor
JP2004196962A (en) Manufacturing process of rubber-reinforced resin
JPS6386756A (en) Modifying agent for thermoplastic resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees